Der1 promotes movement of misfolded proteins throug membrane

Nature Cell Biology 16, 77-86 DOI: 10.1038/ncb2882

Citation Report

#	Article	IF	CITATIONS
1	Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. Journal of Biomedical Research, 2014, 28, 178.	0.7	40
2	A channel for ERAD. Nature Reviews Molecular Cell Biology, 2014, 15, 2-3.	16.1	3
3	Derlin-1 Regulates Mutant VCP-Linked Pathogenesis and Endoplasmic Reticulum Stress-Induced Apoptosis. PLoS Genetics, 2014, 10, e1004675.	1.5	19
4	Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells, 2014, 3, 824-847.	1.8	95
5	ER-associated degradation: Protein quality control and beyond. Journal of Cell Biology, 2014, 204, 869-879.	2.3	508
6	The FOXO Transcription Factor DAF-16 Bypasses ire-1 Requirement to Promote Endoplasmic Reticulum Homeostasis. Cell Metabolism, 2014, 20, 870-881.	7.2	26
7	The Rhomboid-Like Superfamily: Molecular Mechanisms and Biological Roles. Annual Review of Cell and Developmental Biology, 2014, 30, 235-254.	4.0	115
8	Key Steps in ERAD of Luminal ER Proteins Reconstituted with Purified Components. Cell, 2014, 158, 1375-1388.	13.5	175
9	TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11425-11430.	3.3	92
10	Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nature Structural and Molecular Biology, 2014, 21, 325-335.	3.6	319
11	Contribution of calumin to embryogenesis through participation in the endoplasmic reticulum-associated degradation activity. Developmental Biology, 2014, 393, 33-43.	0.9	11
12	Recent technical developments in the study of ER-associated degradation. Current Opinion in Cell Biology, 2014, 29, 82-91.	2.6	27
13	Protein import into complex plastids: Cellular organization of higher complexity. European Journal of Cell Biology, 2015, 94, 340-348.	1.6	32
14	Nâ€ŧerminal lysines are essential for protein translocation via a modified <scp>ERAD</scp> system in complex plastids. Molecular Microbiology, 2015, 96, 609-620.	1.2	16
15	The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Molecular Biology of the Cell, 2015, 26, 185-194.	0.9	32
16	Pathogenic Hijacking of ER-Associated Degradation: Is ERAD Flexible?. Molecular Cell, 2015, 59, 335-344.	4.5	45
17	The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. Journal of Cell Biology, 2015, 209, 261-273.	2.3	76
18	Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends in Cell Biology, 2015, 25, 611-622	3.6	78

#	Article	IF	CITATIONS
19	Glycosylation-directed quality control of protein folding. Nature Reviews Molecular Cell Biology, 2015, 16, 742-752.	16.1	304
20	Membrane-Bound Selenoproteins. Antioxidants and Redox Signaling, 2015, 23, 795-813.	2.5	53
21	Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 489-502.	2.3	25
22	A bacterial toxin and a nonenveloped virus hijack ER-to-cytosol membrane translocation pathways to cause disease. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 477-488.	2.3	12
23	Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP. Cell Reports, 2015, 13, 944-956.	2.9	60
24	Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 1-17.	2.3	72
25	How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses, 2016, 8, 242.	1.5	31
26	Endoplasmic Reticulum-Associated Degradation and Protein Quality Control. , 2016, , 596-611.		4
27	The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nature Communications, 2016, 7, 13707.	5.8	40
28	A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins. Journal of Biological Chemistry, 2016, 291, 12195-12207.	1.6	30
29	Direct and essential function for Hrd3 in ER-associated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5934-5939.	3.3	55
30	Inactive rhomboid proteins: New mechanisms with implications in health and disease. Seminars in Cell and Developmental Biology, 2016, 60, 29-37.	2.3	29
31	Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Scientific Reports, 2016, 6, 20261.	1.6	19
32	Snapshot: implications for melatonin in endoplasmic reticulum homeostasis. British Journal of Pharmacology, 2016, 173, 3431-3442.	2.7	28
34	Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD. Cell, 2016, 166, 394-407.	13.5	169
35	The use of unnatural amino acids to study and engineer protein function. Current Opinion in Structural Biology, 2016, 38, 119-128.	2.6	90
36	Endoplasmic Reticulum–Associated Degradation and Lipid Homeostasis. Annual Review of Nutrition, 2016, 36, 511-542.	4.3	113
37	The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation Components. Antimicrobial Agents and Chemotherapy, 2016, 60, 1438-1449.	1.4	9

#	Article	IF	CITATIONS
38	Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP. Human Molecular Genetics, 2016, 25, 976-988.	1.4	12
39	The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annual Review of Immunology, 2017, 35, 149-176.	9.5	228
40	The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochemical Journal, 2017, 474, 445-469.	1.7	123
41	Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Molecular Biology of the Cell, 2017, 28, 2076-2090.	0.9	22
42	A Case for Sec61 Channel Involvement in ERAD. Trends in Biochemical Sciences, 2017, 42, 171-179.	3.7	45
43	Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic, 2017, 18, 96-109.	1.3	45
44	Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). Journal of Cell Science, 2017, 130, 3322-3335.	1.2	40
45	Proteasomal degradation of T. gondii ROP18 requires Derlin2. Acta Tropica, 2017, 174, 106-113.	0.9	1
46	Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature, 2017, 548, 352-355.	13.7	160
47	Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Molecular Biology of the Cell, 2017, 28, 270-284.	0.9	25
48	Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Current Topics in Developmental Biology, 2017, 121, 111-171.	1.0	26
49	Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-18.	1.9	23
50	Membrane Protein Dislocation by the Rhomboid Pseudoprotease Dfm1: No Pore Needed?. Molecular Cell, 2018, 69, 161-162.	4.5	7
51	Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin–Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annual Review of Biochemistry, 2018, 87, 751-782.	5.0	104
52	Mechanistic insights into ER-associated protein degradation. Current Opinion in Cell Biology, 2018, 53, 22-28.	2.6	264
53	Protein Quality Control in the Endoplasmic Reticulum of Plants. Annual Review of Plant Biology, 2018, 69, 147-172.	8.6	91
54	ER stress and cancer: The FOXO forkhead transcription factor link. Molecular and Cellular Endocrinology, 2018, 462, 67-81.	1.6	36
55	Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World Journal of Biological Chemistry, 2018, 9, 1-15.	1.7	57

#	Article	IF	CITATIONS
56	Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Current Opinion in Nephrology and Hypertension, 2018, 27, 364-372.	1.0	17
57	Protein Quality Control in the Endoplasmic Reticulum and Cancer. International Journal of Molecular Sciences, 2018, 19, 3020.	1.8	61
58	Stress Response Mechanisms in Fungi. , 2018, , .		6
59	Response and Cytoprotective Mechanisms Against Proteotoxic Stress in Yeast and Fungi. , 2018, , 161-188.		0
60	Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends in Biochemical Sciences, 2018, 43, 593-605.	3.7	342
61	The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends in Biochemical Sciences, 2018, 43, 726-739.	3.7	44
62	OsDER1 Is an ER-Associated Protein Degradation Factor That Responds to ER Stress. Plant Physiology, 2018, 178, 402-412.	2.3	29
63	Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. Journal of Immunology, 2018, 201, 1875-1888.	0.4	20
64	Molecular chaperones: from proteostasis to pathogenesis. FEBS Journal, 2018, 285, 3353-3361.	2.2	6
65	Endoplasmic reticulum quality control by garbage disposal. FEBS Journal, 2019, 286, 232-240.	2.2	25
66	Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nature Communications, 2019, 10, 3020.	5.8	21
67	Protein quality control in the secretory pathway. Journal of Cell Biology, 2019, 218, 3171-3187.	2.3	264
69	A photoactivatable crosslinking system reveals protein interactions in the Toxoplasma gondii inner membrane complex. PLoS Biology, 2019, 17, e3000475.	2.6	21
70	Chaperoning Endoplasmic Reticulum–Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033928.	2.3	100
71	Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS ONE, 2019, 14, e0211180.	1.1	10
72	Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 55, 142-151.	3.6	47
73	Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins, 2019, 11, 350.	1.5	56
74	Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. International Journal of Molecular Sciences, 2019, 20, 1307.	1.8	32

		CITATION RE	PORT	
#	Article		IF	CITATIONS
75	Assays for protein retrotranslocation in ERAD. Methods in Enzymology, 2019, 619, 1-26.		0.4	9
76	Regulation of Antigen Export to the Cytosol During Cross-Presentation. Frontiers in Imm 2019, 10, 41.	unology,	2.2	67
77	The enigmatic ATP supply of the endoplasmic reticulum. Biological Reviews, 2019, 94, 62	10-628.	4.7	38
78	Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear enve Seminars in Cell and Developmental Biology, 2019, 93, 111-124.	lope.	2.3	98
79	Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochir Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158488.	nica Et	1.2	10
80	A photo-cross-linking approach to monitor protein dynamics in living cells. Biochimica Et Acta - General Subjects, 2020, 1864, 129317.	Biophysica	1.1	20
81	Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumo Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 322-353.	r immunity.	2.3	2
82	The ER-associated protease Ste24 prevents N-terminal signal peptide-independent transl the endoplasmic reticulum in Saccharomyces cerevisiae. Journal of Biological Chemistry, 10406-10419.		1.6	14
83	Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molec Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes, 2020, 11, 546.	ule	1.0	15
84	Endoplasmic reticulumâ€associated degradation mediated by <scp>MoHrd1</scp> and <scp>MoDer1</scp> is pivotal for appressorium development and pathogenicity of <i>N oryzae</i> . Environmental Microbiology, 2020, 22, 4953-4973.	lagnaporthe	1.8	16
85	The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight a physiological implications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020	ınd), 1867, 118793.	1.9	13
86	Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of 1 proteins. Nature Cell Biology, 2020, 22, 274-281.	nisfolded	4.6	56
87	Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modula International Journal of Molecular Sciences, 2020, 21, 452.	itors.	1.8	31
88	RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal ca via modulating UPR and focal adhesion genes. Biochimica Et Biophysica Acta - Molecular Disease, 2020, 1866, 165810.		1.8	7
89	Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin lig Science, 2020, 368, .	ase complex.	6.0	143
90	Potential Physiological Relevance of ERAD to the Biosynthesis of GPI-Anchored Proteins i International Journal of Molecular Sciences, 2021, 22, 1061.	n Yeast.	1.8	5
91	How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the End Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. International Journal of Molec Sciences, 2021, 22, 2078.		1.8	5
92	Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochimica Et Biophysica Acta - General Subjects, 2 129812.	.021, 1865,	1.1	48

#	Article	IF	CITATIONS
93	Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Frontiers in Cell and Developmental Biology, 2021, 9, 683940.	1.8	26
94	Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Molecular Cell, 2021, 81, 2507-2519.	4.5	69
95	Translocation of Proteins through a Distorted Lipid Bilayer. Trends in Cell Biology, 2021, 31, 473-484.	3.6	47
97	Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genetics, 2021, 17, e1009687.	1.5	2
99	Who with whom: functional coordination of E2 enzymes by RING E3 ligases during polyâ€ubiquitylation. EMBO Journal, 2020, 39, e104863.	3.5	23
100	Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. ELife, 2019, 8, .	2.8	40
101	Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation. ELife, 2020, 9, .	2.8	34
102	PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nature Communications, 2021, 12, 5991.	5.8	21
103	Chaperones in the Endoplasmic Reticulum (ER): Function and Interaction Network. , 2014, , 235-271.		0
105	Mechanism of Quality Control of Nascent Membrane Proteins. , 2019, , 111-130.		0
107	Analysis of multiple gene co-expression networks to discover interactions favoring CFTR biogenesis and I"F508-CFTR rescue. BMC Medical Genomics, 2021, 14, 258.	0.7	2
108	Epithelial Ion Channel Folding and ER-Associated Degradation (ERAD). Physiology in Health and Disease, 2020, , 207-247.		0
109	The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3. MBio, 2021, 12, e0260221.	1.8	2
110	Protein Aggregation in the ER: Calm behind the Storm. Cells, 2021, 10, 3337.	1.8	18
111	A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. Current Genetics, 2022, 68, 227-242.	0.8	3
112	Order through destruction: how ERâ€associated protein degradation contributes to organelle homeostasis. EMBO Journal, 2022, 41, e109845.	3.5	65
113	Revisiting CFTR Interactions: Old Partners and New Players. International Journal of Molecular Sciences, 2021, 22, 13196.	1.8	11
114	The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	Ο

IF ARTICLE CITATIONS # Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic 115 1.6 10 reticulum-associated protein degradation. Journal of Biological Chemistry, 2022, 298, 102373. Functional Specialization of Dendritic Cell Subsets., 2022,,. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. 117 1.7 0 Faculty Reviews, 0, 11, . Prognosis and immune infiltration analysis of endoplasmic reticulum stress-related genes in bladder 1.1 urothelial carcinoma. Frontiers in Genetics, 0, 13, . BRCA1 mediates protein homeostasis through the ubiquitination of PERK and IRE1. IScience, 2022, 25, 119 1.9 4 105626. Endoplasmic Reticulum-Associated Degradation and Protein Quality Control., 2016, , 773-788. The ERAD system is restricted by elevated ceramides. Science Advances, 2023, 9, . 121 4.7 9 Mechanisms of substrate processing during ER-associated protein degradation. Nature Reviews Molecular Cell Biology, 2023, 24, 777-796. 127 16.1

CITATION REPORT