Urinary Sodium and Potassium Excretion, Mortality, an

New England Journal of Medicine
371, 612-623
DOI: 10.1056/nejmoal311889

Citation Report

The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic
disease. Open Heart, 2014, 1, e000167.
18 Hypertension. Annals of Internal Medicine, 2014, 161, ITC1. 2.0

[^0]

33 Gut microbiota in hypertension. Current Opinion in Nephrology and Hypertension, 2015, 24, 403-409.
1.0

142
34 Estimation of sodium excretion should be made as simple as possible, but not simpler. Journal of
Hypertension, 2015, 33, 884-886.

$0.3 \quad 14$35 Role of sodium status in the clinical management of diabetic nephropathy: interaction withRAAS-blockade efficacy. Diabetes Management, 2015, 5, 229-243.
$0.5 \quad 1$
36 Response to $\hat{€^{\sim}}$ Oxidative stress in patients affected by primary aldosteronismâ $€^{T M}$. Journal of Hypertension,
$2015,33,884$. 0.3o
Heat-Treated Solar Sea Salt Has Antioxidant Activity In Vitro and Produces Less Oxidative Stress in 1.2 5
37 Rats Compared with Untreated Solar Sea Salt. Journal of Food Biochemistry, 2015, 39, 631-641. 0.3
Hypertension, 2015, 33, 1509-1520. 203 203High Sodium Intake: Review of Recent Issues on Its Association with Cardiovascular Events and

\#	Article	IF	Citations
43	Sodium Intake Recommendations: A Subject that Needs to be Reconsidered. Current Hypertension Reviews, 2015, 11, 8-13.	0.5	8
45	Vitamin D analogues to target residual proteinuria: potential impact on cardiorenal outcomes. Nephrology Dialysis Transplantation, 2015, 30, 1988-1994.	0.4	26
46	Measuring Sodium Intake in Populations: Simple Is Best?. American Journal of Hypertension, 2015, 28, 1303-1305.	1.0	10
47	Validation of diet and urinary excretion derived estimates of sodium excretion against 24-hÂurine excretion in a worksite sample. Nutrition, Metabolism and Cardiovascular Diseases, 2015, 25, 771-779.	1.1	28
48	Dietary Sodium and Cardiovascular Disease. Current Hypertension Reports, 2015, 17, 559.	1.5	16
49	Nutrition and Atherosclerosis. Archives of Medical Research, 2015, 46, 408-426.	1.5	187
50	The Significance of Duration and Amount of Sodium Reduction Intervention in Normotensive and Hypertensive Individuals: A Meta-Analysis. Advances in Nutrition, 2015, 6, 169-177.	2.9	51
51	European Public Health News. European Journal of Public Health, 2015, 25, 547-550.	0.1	1
52	Sodium Consumption in Southeast Asia: An Updated Review of Intake Levels and Dietary Sources in Six Countries. , 2015, , 765-792.		10
53	Reducing the Blood Pressureâ€"Related Burden of Cardiovascular Disease: Impact of Achievable Improvements in Blood Pressure Prevention and Control. Journal of the American Heart Association, 2015, 4, e002276.	1.6	148

54 The health impacts of dietary sodium and a low-salt diet. Clinical Medicine, 2015, 15, 585-588. 0.8 25
55 Associations Between Genetic Variants of the Natriuretic Peptide System and Blood Pressure Response
to Dietary Sodium Intervention: The GenSalt Study. American Journal of Hypertension, 2016, 29, 397-404.
1.0 256 Response to "The Data Show a U-Shaped Association of Sodium Intake With Cardiovascular Disease andMortality". American Journal of Hypertension, 2015, 28, 426-427.
$1.0 \quad 1$

2015 Guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the
0.6

183
Management of Hypertension. Journal of the Chinese Medical Association, 2015, 78, 1-47.

Dietary Sodium: Where Science and Policy Conflict: Impact of the 2013 IOM Report on Sodium Intake in Populations. Current Hypertension Reports, 2015, 17, 9.
1.3

\#	Article	IF	Citations
62	Salt and sugar: their effects on blood pressure. Pflugers Archiv European Journal of Physiology, 2015, 467, 577-586.	1.3	43
64	Reducing Salt Intake for Prevention of Cardiovascular Diseaseâ€"Times Are Changing. Advances in Chronic Kidney Disease, 2015, 22, 108-115.	0.6	18
65	The hidden hand of chloride in hypertension. Pflugers Archiv European Journal of Physiology, 2015, 467, 595-603.	1.3	68
66	The Data Show a U-Shaped Association of Sodium Intake With Cardiovascular Disease and Mortality. American Journal of Hypertension, 2015, 28, 424-425.	1.0	8
67	High salt primes a specific activation state of macrophages, M(Na). Cell Research, 2015, 25, 893-910.	5.7	189
68	Dietary risk factors for incidence or progression of chronic kidney disease in individuals with type 2 diabetes in the European Union. Nephrology Dialysis Transplantation, 2015, 30, iv76-iv85.	0.4	31
69	Personalized hypertension management in practice. Personalized Medicine, 2015, 12, 297-311.	0.8	1
71	Using Decomposition Analysis to Identify Modifiable Racial Disparities in the Distribution of Blood Pressure in the United States. American Journal of Epidemiology, 2015, 182, 345-353.	1.6	27

72 Salt Restriction in Diabetes. Current Diabetes Reports, 2015, 15, 58.
73 Daily Sodium and Potassium Excretion Can Be Estimated by Scheduled Spot Urine Collections.Nephron, 2015, 130, 35-40.
13
Sodium Excretion and Cardiovascular Structure and Function in the Nonhypertensive Population: The Korean Genome and Epidemiology Study. American Journal of Hypertension, 2015, 28, 1010-1016. 1.0
7Longitudinal Effects of Dietary Sodium and Potassium on Blood Pressure in Adolescent Girls. JAMAPediatrics, 2015, 169, 560.3.364
Use of Urine Biomarkers to Assess Sodium Intake: Challenges and Opportunities. Annual Review of Nutrition, 2015, 35, 349-387. 4.3 112
772.90
Dietary Sodium and Health. Journal of the American College of Cardiology, 2015, 65, 1042-1050.1.2256
80 Dietary Sodium Intake: Scientific Basis for Public Policy. Blood Purification, 2015, 39, 16-20. 0.9
6

\#	Article	IF	Citations
83	Hypertension. Lancet, The, 2015, 386, 801-812.	6.3	539
84	Sodium Intake and Cardiovascular Health. Circulation Research, 2015, 116, 1046-1057.	2.0	152
86	Food Consumption and its Impact on Cardiovascular Disease: Importance of Solutions Focused on the Globalized FoodÂSystem. Journal of the American College of Cardiology, 2015, 66, 1590-1614.	1.2	343
87	Innovative and Collaborative Strategies to Reduce Population-Wide Sodium Intake. Current Nutrition Reports, 2015, 4, 279-289.	2.1	9
89	Low-normal serum potassium is associated with an increased risk of cardiovascular and all-cause death in community-based elderly. Journal of the Formosan Medical Association, 2015, 114, 517-525.	0.8	21
90	Too much focus on low-quality science?. Cmaj, 2015, 187, 131.2-132.	0.9	6
91	Agreement Between 24-Hour Salt Ingestion and Sodium Excretion in a Controlled Environment. Hypertension, 2015, 66, 850-857.	1.3	176
93	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990â€"2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2015, 386, 2287-2323.	6.3	2,184
94	Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 2152-2158.	2.2	68
95	Is Fluid Overload as Measured by Bioimpedance Spectroscopy Harmful in CKDâ€"If So, Why?. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1-3.	2.2	8
97	Low Sodium and High Potassium Intake for Cardiovascular Prevention: Evidence Revisited With Emphasis on Challenges in Subâ€ Eaharan Africa. Journal of Clinical Hypertension, 2015, 17, 81-83. $_{\text {2 }}$	1.0	24
98	A New Breed of Evidence and the Tools to Generate It: Introducing ANDHII. Journal of the Academy of Nutrition and Dietetics, 2015, 115, 19-22.	0.4	32

99 Controversial sodium guidelines: Scientific solution or perpetual debate?. Cmaj, 2015, 187, 95-96.

0.95
100 The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics. 1.3 41
American Journal of Physiology - Renal Physiology, 2015, 308, F167-F178.Estimated daily salt intake in relation to blood pressure and blood lipids: the role of obesity.
102 2016, 7, 164.

\#	Article	IF	Citations
105	The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion. PLoS ONE, 2016, 11, e0146641.	1.1	25
106	Projected Impact of Salt Restriction on Prevention of Cardiovascular Disease in China: A Modeling Study. PLoS ONE, 2016, 11, e0146820.	1.1	21
107	Influence of Salt Intake on Association of Blood Uric Acid with Hypertension and Related Cardiovascular Risk. PLoS ONE, 2016, 11, e0150451.	1.1	19
108	Potassium Measures and Their Associations with Glucose and Diabetes Risk: The Multi-Ethnic Study of Atherosclerosis (MESA). PLoS ONE, 2016, 11, e0157252.	1.1	14
109	Reduced Dietary Sodium Intake Increases Heart Rate. A Meta-Analysis of 63 Randomized Controlled Trials Including 72 Study Populations. Frontiers in Physiology, 2016, 7, 111.	1.3	22
110	Low Salt Diet and Insulin Resistance. Clinical Nutrition Research, 2016, 5, 1.	0.5	23
111	Association of Urinary Sodium Excretion With Insulin Resistance in Korean Adolescents. Medicine (United States), 2016, 95, e3447.	0.4	11
112	Significance of adjusting salt intake by body weight in the evaluation of dietary salt and blood pressure. Journal of the American Society of Hypertension, 2016, 10, 647-655.e3.	2.3	9
113	Factors Associated With High Sodium Intake Based on Estimated 24-Hour Urinary Sodium Excretion. Medicine (United States), 2016, 95, e2864.	0.4	25
114	Sodium sources in the Japanese diet: difference between generations and sexes. Public Health Nutrition, 2016, 19, 2011-2023.	1.1	76
115	Dietary reference values for potassium. EFSA Journal, 2016, 14, e04592.	0.9	52
116	Dietary patterns extracted from the current Japanese diet and their associations with sodium and potassium intakes estimated by repeated 24 h urine collection. Public Health Nutrition, 2016, 19, 2580-2591.	1.1	11
117	Are 24 h urinary sodium excretion and sodium:potassium independently associated with obesity in Chinese adults?. Public Health Nutrition, 2016, 19, 1074-1080.	1.1	19
118	Low sodium intake and cardiovascular health: an unanswered question. Response to: Letter from Dr N. Campbell, â $€^{\sim}$ Dissidents and dietary sodium. Concerns about the commentary by Oấ $\mathbb{T M}^{\mathrm{M}}$ Donnellet al.â $€^{\mathbb{T M}}$. International Journal of Epidemiology, 2016, 46, dyw297.	0.9	6
119	Population Data on Blood Pressure and Dietary Sodium and Potassium Do Not Support Public Health Strategy to Reduce Salt Intake in Canadians. Canadian Journal of Cardiology, 2016, 32, 283-285.	0.8	6
120	Interaction according to urinary sodium excretion level on the association between <i>ATP2B1</i> rs17249754 and incident hypertension: the Korean genome epidemiology study. Clinical and Experimental Hypertension, 2016, 38, 352-358.	0.5	8
121	Dietary Salt, Kidney Disease, and Cardiovascular Health. JAMA - Journal of the American Medical Association, 2016, 315, 2173.	3.8	4
122	Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet, The, 2016, 388, 465-475.	6.3	381

\#	Article	IF	Citations
123	Saltâ€"too much or too little?. Lancet, The, 2016, 388, 439-440.	6.3	14
124	Changes in urinary potassium excretion in patients with chronic kidney disease. Kidney Research and Clinical Practice, 2016, 35, 78-83.	0.9	19
125	Sodium Intake and Osteoporosis. Findings From the Women's Health Initiative. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1414-1421.	1.8	27
126	Maintaining K+ balance on the low-Na+, high-K+ diet. American Journal of Physiology - Renal Physiology, 2016, 310, F581-F595.	1.3	8
127	Sodium intake, RAAS-blockade and progressive renal disease. Pharmacological Research, 2016, 107, 344-351.	3.1	28
128	Association of estimated sodium and potassium intake with blood pressure in patients with systemic lupus erythematosus. Lupus, 2016, 25, 1463-1469.	0.8	3
129	Response of mineral malnutrition elements in African ginger pseudo-stems to nematode infection. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 387-390.	0.3	0
130	Low Response of Reninâ€"Angiotensin System to Sodium Intake Intervention in Chinese Hypertensive Patients. Medicine (United States), 2016, 95, e2602.	0.4	6
131	Salt and health: time to revisit the recommendations. Kidney International, 2016, 89, 259-260.	2.6	10
132	Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension. Current Hypertension Reports, 2016, 18, 70.	1.5	19
133	Opponent's comments. Nephrology Dialysis Transplantation, 2016, 31, 1403-1404.	0.4	3
134	Nutrition Interventions for Cardiovascular Disease. Medical Clinics of North America, 2016, 100, 1251-1264.	1.1	11
135	A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet, The, 2016, 388, 2665-2712.	6.3	670

136 Cardiovascular Risk Factors: Role of Lifestyle. , 2016, , 65-77. 0
Sodium Intake and All-Cause Mortality Over 20 Years in the Trials of HypertensionÂPrevention. Journal 1.2 173 of the American College of Cardiology, 2016, 68, 1609-1617.
$1.2 \quad 12$
138 the American College of Cardiology, 2016, 68, 1618-1621.Global, regional, and national comparative risk assessment of 79 behavioural, environmental andBurden of Disease Study 2015. Lancet, The, 2016, 388, 1659-1724.

The effect of dietary sodium modification on blood pressure in adults with systolic blood pressure
less than 140â€ŠmmHg. JBI Database of Systematic Reviews and Implementation Reports, 2016, 14, 196-237. 1.7
15

$$
\begin{aligned}
& 155 \text { Sodium intake in Germany estimated from sodium excretion measured in spot urine samples. BMC } \\
& \text { Nutrition, 2016, } 2 \text {. . }
\end{aligned}
$$

Influence of gestational salt restriction in fetal growth and in development of diseases in adulthood.

```
158 Does Limiting Salt Intake Prevent Heart Failure? A Critical Appraisal. Current Cardiovascular Risk
Reports, 2016, 10, }1
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 162 & GlycA, a novel proinflammatory glycoprotein biomarker, and high-sensitivity C-reactive protein are inversely associated with sodium intake after controlling for adiposity: the Prevention of Renal and Vascular End-Stage Disease study. American Journal of Clinical Nutrition, 2016, 104, 415-422. & 2.2 & 17 \\
\hline 163 & The Global Promise of Healthy Lifestyle and Social Connections for Better Health in People With Diabetes. American Journal of Kidney Diseases, 2016, 68, 1-4. & 2.1 & 6 \\
\hline 164 & Population-Attributable Fractions of Modifiable Lifestyle Factors for CKD and Mortality in Individuals With Type 2 Diabetes: AÂCohort Study. American Journal of Kidney Diseases, 2016, 68, 29-40. & 2.1 & 46 \\
\hline 165 & Dietary Sodium and Cardiovascular Disease Risk â€" Measurement Matters. New England Journal of Medicine, 2016, 375, 580-586. & 13.9 & 165 \\
\hline 166 & Effects of Dietary Sodium Restriction in Kidney Transplant Recipients Treated With Renin-Angiotensin-Aldosterone System Blockade: A Randomized Clinical Trial. American Journal of Kidney Diseases, 2016, 67, 936-944. & 2.1 & 19 \\
\hline 167 & Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin llấ"Dependent Hypertension in Mice. Hypertension, 2016, 67, 661-668. & 1.3 & 31 \\
\hline 168 & Heart Disease and Stroke Statisticsâ€"2016 Update. Circulation, 2016, 133, e38-360. & 1.6 & 5,447 \\
\hline 169 & Physiology of the Developing Kidney: Sodium and Water Homeostasis and Its Disorders. , 2016, , 181-217. & & 3 \\
\hline 170 & Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation, 2016, 133, 187-225. & 1.6 & 1,501 \\
\hline 171 & Dietary phosphorus restriction in predialysis chronic kidney disease: time for a cease-fire?. Kidney International, 2016, 89, 21-23. & 2.6 & 7 \\
\hline 172 & Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Advances in Nutrition, 2016, 7, 76-89. & 2.9 & 251 \\
\hline 173 & Association of Urinary Sodium Excretion With Blood Pressure and Cardiovascular Clinical Events in 17,033 Latin Americans. American Journal of Hypertension, 2016, 29, 796-805. & 1.0 & 26 \\
\hline 174 & Expansion of the National Salt Reduction Initiative. Medical Decision Making, 2016, 36, 72-85. & 1.2 & 21 \\
\hline 175 & Urinary potassium excretion and risk of cardiovascular events. American Journal of Clinical Nutrition, 2016, 103, 1204-1212. & 2.2 & 29 \\
\hline 176 & Relationship of nutrition knowledge and self-reported dietary behaviors with urinary excretion of sodium and potassium: comparison between dietitians and nondietitians. Nutrition Research, 2016, 36, 440-451. & 1.3 & 11 \\
\hline 177 & Commentary: Accepting what we donâ TM \(^{\text {TM }}\) know will lead to progress. International Journal of Epidemiology, 2016, 45, 260-262. & 0.9 & 8 \\
\hline 178 & A Radical Sodium Reduction Policy Is Not Supported by Randomized Controlled Trials or Observational Studies: Grading the Evidence. American Journal of Hypertension, 2016, 29, 543-548. & 1.0 & 29 \\
\hline 179 & Mean population salt intake estimated from 24-h urine samples and spot urine samples: a systematic review and meta-analysis. International Journal of Epidemiology, 2016, 45, 239-250. & 0.9 & 114 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 180 & Epidemiology of Atherosclerosis and the Potential to Reduce the Clobal Burden of Atherothrombotic Disease. Circulation Research, 2016, 118, 535-546. & 2.0 & 936 \\
\hline 181 & Effect of salt intake on blood pressure in patients receiving antihypertensive therapy: Shimane CoHRE Study. European Journal of Internal Medicine, 2016, 28, 70-73. & 1.0 & 11 \\
\hline 182 & Nutrient interface with biology and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1-4. & 1.3 & 5 \\
\hline 183 & Diet and Major Renal Outcomes: A Prospective Cohort Study. The NIH-AARP Diet and Health Study. , 2016, 26, 288-298. & & 68 \\
\hline 184 & Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 118, 102-111. & 1.5 & 31 \\
\hline 185 & Dietary Salt Restriction in Heart Failure: Where Is the Evidence?. Progress in Cardiovascular Diseases, 2016, 58, 401-406. & 1.6 & 10 \\
\hline 186 & Lanosterol Synthase Gene Polymorphisms and Changes in Endogenous Ouabain in the Response to Low Sodium Intake. Hypertension, 2016, 67, 342-348. & 1.3 & 10 \\
\hline 187 & Assessment of Dietary Sodium and Potassium in Canadians Using 24-Hour Urinary Collection. Canadian Journal of Cardiology, 2016, 32, 319-326. & 0.8 & 25 \\
\hline 188 & Dietary Sodium: Where Science and Policy Diverge. American Journal of Hypertension, 2016, 29, 424-427. & 1.0 & 12 \\
\hline 189 & Mild hyponatremia, hypernatremia and incident cardiovascular disease and mortality in older men: A population-based cohort study. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 12-19. & 1.1 & 53 \\
\hline
\end{tabular}

190 Kimchi (Korean Fermented Vegetables) as a Probiotic Food. , 2016, , 391-408. 4

191 Potassium and Its Discontents. Journal of the American Society of Nephrology: JASN, 2016, 27, 981-989. 3.0

Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 264-274.
2.4

55

Urinary Sodium and Potassium Excretion and CKD Progression. Journal of the American Society of
Nephrology: JASN, 2016, 27, 1202-1212.
3.0
174

Hypertension, Dietary Sodium, and Cognitive Decline: Results From the Womenâ \(\epsilon^{T M} s\) Health Initiative Memory Study. American Journal of Hypertension, 2016, 29, 202-216.
1.0

48

Changing dietary patterns and associated risk factors on trends in blood pressure levels in
middle-aged Irish adults: a population-based study. Journal of Human Hypertension, 2016, 30, 147-148.
1.0

0
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 198 & Serum Potassium and Cardiovascular Outcomes: The Highs and the Lows. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 220-221. & 2.2 & 8 \\
\hline 199 & Natural sea salt consumption confers protection against hypertension and kidney damage in Dahl salt-sensitive rats. Food and Nutrition Research, 2017, 61, 1264713. & 1.2 & 8 \\
\hline 200 & The technical report on sodium intake and cardiovascular disease in low- and middle-income countries by the joint working group of the World Heart Federation, the European Society of Hypertension and the European Public Health Association. European Heart Journal, 2017, 38, ehw549. & 1.0 & 65 \\
\hline 201 & Heart Disease and Stroke Statisticsâ€"2017 Update: A Report From the American Heart Association. Circulation, 2017, 135, e146-e603. & 1.6 & 7,085 \\
\hline 202 & Adiposity and Blood Pressure in 110â€\%^000 Mexican Adults. Hypertension, 2017, 69, 608-614. & 1.3 & 31 \\
\hline 203 & Novel Paradigms of Salt and Hypertension. Journal of the American Society of Nephrology: JASN, 2017, 28, 1362-1369. & 3.0 & 64 \\
\hline 204 & Laser-Ablation Sampling for Accurate Analysis of Sulfur in Edible Salts. Applied Spectroscopy, 2017, 71, 651-658. & 1.2 & 11 \\
\hline 205 & Potassium Excretion and Outcomes in CKD: Is K Intake OK?. American Journal of Kidney Diseases, 2017, 69, 325-327. & 2.1 & 4 \\
\hline 206 & Estimated reductions in cardiovascular and gastric cancer disease burden through salt policies in England: an IMPACT <sub>NCD</sub> microsimulation study. BMJ Open, 2017, 7, e013791. & 0.8 & 40 \\
\hline 207 & Estimating dietary sodium intake using spot urine samples. Journal of Hypertension, 2017, 35, 466-467. & 0.3 & 5 \\
\hline 208 & Renal function in relation to sodium intake: aÂquantitative review of the literature. Kidney International, 2017, 92, 67-78. & 2.6 & 29 \\
\hline 209 & Prevalence, Awareness, Treatment, and Control of Hypertension among Kazakhs with high Salt Intake in Xinjiang, China: A Community-based Cross-sectional Study. Scientific Reports, 2017, 7, 45547. & 1.6 & 16 \\
\hline 210 & The Effects of Dietary Factors on Blood Pressure. Cardiology Clinics, 2017, 35, 197-212. & 0.9 & 45 \\
\hline 211 & Cost-effectiveness of salt reduction to prevent hypertension and CVD: a systematic review. Public Health Nutrition, 2017, 20, 1993-2003. & 1.1 & 34 \\
\hline 212 & Understanding the Two Faces of Low-Salt Intake. Current Hypertension Reports, 2017, 19, 49. & 1.5 & 11 \\
\hline 213 & Estimating \(24 a ̂ € H\) our Urine Sodium From Multiple Spot Urine Samples. Journal of Clinical Hypertension, 2017, 19, 431-438. & 1.0 & 12 \\
\hline 214 & Associations of Biomarker-Calibrated Sodium and Potassium Intakes With Cardiovascular Disease Risk Among Postmenopausal Women. American Journal of Epidemiology, 2017, 186, 1035-1043. & 1.6 & 26 \\
\hline 215 & Understanding the science that supports populationâ€wide salt reduction programs. Journal of Clinical Hypertension, 2017, 19, 569-576. & 1.0 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 223 & Dietary sodium induces a redistribution of the tubular metabolic workload. Journal of Physiology, 2017, 595, 6905-6922. & 1.3 & 34 \\
\hline 224 & Combined Salt and Caloric Restrictions: Potential Adverse Outcomes. Journal of the American Heart Association, 2017, 6, . & 1.6 & 6 \\
\hline 225 & The Science of Salt: A regularly updated systematic review of the implementation of salt reduction interventions (September 2016â€"February 2017). Journal of Clinical Hypertension, 2017, 19, 928-938. & 1.0 & 32 \\
\hline 226 & An Increasingly Complex Relationship Between Salt and Water. American Journal of Kidney Diseases, 2017, 70, 599-601. & 2.1 & 2 \\
\hline 227 & Red meat intake is positively associated with non-fatal acute myocardial infarction in the Costa Rica Heart Study. British Journal of Nutrition, 2017, 118, 303-311. & 1.2 & 9 \\
\hline
\end{tabular}

Evidence for Health Decision Making â€" Beyond Randomized, Controlled Trials. New England Journal
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 234 & Revised Reference Values for Potassium Intake. Annals of Nutrition and Metabolism, 2017, 71, 118-124. & 1.0 & 16 \\
\hline 235 & Salt-responsive gut commensal modulates TH17 axis and disease. Nature, 2017, 551, 585-589. & 13.7 & 896 \\
\hline 237 & The Validity of Predictive Equations to Estimate 24-Hour Sodium Excretion. American Journal of Epidemiology, 2017, 186, 149-159. & 1.6 & 32 \\
\hline 238 & Use of a Single Baseline Versus Multiyear 24-Hour Urine Collection for Estimation of Long-Term Sodium Intake and Associated Cardiovascular and Renal Risk. Circulation, 2017, 136, 917-926. & 1.6 & 91 \\
\hline 239 & The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, 2017, , . & 0.8 & 14 \\
\hline 240 & Atherosclerosis. Advances in Experimental Medicine and Biology, 2017, 1003, 121-144. & 0.8 & 61 \\
\hline 241 & Donâ \(€^{\text {TM }}\) t Pass the Salt: Evidence to Support Avoidance of High Salt Intake in CKD. American Journal of Kidney Diseases, 2017, 69, 175-178. & 2.1 & 7 \\
\hline 242 & Association between dietary sodium intake and cognitive function in older adults. Journal of Nutrition, Health and Aging, 2017, 21, 276-283. & 1.5 & 20 \\
\hline
\end{tabular}

243 Health Promotion and Wellness. , 2017, , 99-111.
0
\[
\begin{aligned}
& 244 \text { Population Dietary Salt Reduction and the Risk of Cardiovascular Disease: A Commentary on Recent } \\
& \text { Evidence. Journal of Clinical Hypertension, 2017, 19, 4-5. }
\end{aligned}
\]
250 Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium ..... 1.7 ..... 84
Increase. Nutrients, 2017, 9, 700.

Association of the urinary sodium to urinary specific gravity ratio with metabolic syndrome in Korean
255 children and adolescents: The Korea National Health and Nutrition Examination Survey 2010-2013. PLoS
\(1.1 \quad 12\)
ONE, 2017, 12, e0189934.
256 Urinary Sodium Concentration Is an Independent Predictor of All-Cause and Cardiovascular Mortality
in a Type 2 Diabetes Cohort Population. Journal of Diabetes Research, 2017, 2017, 1-10.
\(1.0 \quad 12\)

The relationship between diabetic risk factors, diabetic complications and salt intake. Journal of
Diabetes and Its Complications, 2018, 32, 531-537.
1.2

Measurements of 24-Hour Urinary Sodium and Potassium Excretion. JAMA - Journal of the American Medical Association, 2018, 319, 1201.

Protocol for a cluster randomised controlled trial on information technology-enabled nutrition
259 intervention among urban adults in Chandigarh (India): SMART eating trial. Global Health Action, 2018, 11, 1419738.

260 Relation of Dietary Sodium (Salt) to Blood Pressure and Its Possible Modulation by Other Dietary
260 Factors. Hypertension, 2018, 71, 631-637.
\(1.3 \quad 76\)

261 Urinary potassium excretion and its association with acute kidney injury in the intensive care unit. Journal of Critical Care, 2018, 46, 58-62.

Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion
263 Transport through WNK Signaling in the Malpighian Tubule. Journal of the American Society of
3.0 Nephrology: JASN, 2018, 29, 1449-1461.

Measurement of daily sodium excretion in patients with chronic kidney disease; special reference to
264 the difference between the amount measured from \(24 \hat{a} € \%\) oh collected urine sample and the estimated amount from a spot urine. Renal Failure, 2018, 40, 238-242.

265 Urinary sodium excretion in acute heart failure: Interaction between heart and kidney. International Journal of Cardiology, 2018, 254, 244-245.
0.8

0

266 Nutrition and Cardiovascular Diseaseâ€"an Update. Current Atherosclerosis Reports, 2018, 20, 8.
2.0

87

267 Sodium excretion and health-related quality of life: the results from the Korea National Health and
\(1.3 \quad 4\)
Nutrition Examination Survey 2010â€"2011. European Journal of Clinical Nutrition, 2018, 72, 1490-1496.

Dietary sodium to potassium ratio and the incidence of hypertension and cardiovascular disease: A population-based longitudinal study. Clinical and Experimental Hypertension, 2018, 40, 772-779.
0.5

Heart Disease and Stroke Statisticsâ€"2018 Update: A Report From the American Heart Association.
Circulation, 2018, 137, e67-e492.
1.6

5,228

Non-uniform relationship between salt status and aldosterone activity in patients with chronic kidney disease. Clinical Science, 2018, 132, 285-294.
1.8

3

272 Role of \(\mathrm{ClC}-\mathrm{K}\) and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney. Bioscience Reports, 2018, 38, .
1.1

20

Association between urinary sodium and potassium excretion and blood pressure and inflammation in patients with rheumatoid arthritis. Clinical Rheumatology, 2018, 37, 895-900.

Twentyâ€fourâ€Hour Urinary Potassium Excretion, But Not Sodium Excretion, Is Associated With Allâ€Cause Mortality in a General Population. Journal of the American Heart Association, 2018, 7, .

Association of sodium intake with insulin resistance in Korean children and adolescents: the Korea
275 National Health and Nutrition Examination Survey 2010. Journal of Pediatric Endocrinology and
\(0.4 \quad 9\)
Metabolism, 2018, 31, 117-125.

Association patterns of urinary sodium, potassium, and their ratio with blood pressure across various levels of salt-diet regions in China. Scientific Reports, 2018, 8, 6727.
1.6

Salt and hypertension. Current Opinion in Cardiology, 2018, 33, 377-381.
0.8

Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nature Reviews Cardiology, 2018, 15, 371-377.

279 Beneficial Effects of High Potassium. Hypertension, 2018, 71, 1015-1022.
1.3

39

\section*{280 <scp>PURE</scp> is not so pure when it comes to dietary sodium and cardiovascular events!. Journal} of Clinical Hypertension, 2018, 20, 976-977.

Risk of Cardiovascular Mortality Associated With Serum Sodium and Chloride in the General
281 Population. Canadian Journal of Cardiology, 2018, 34, 999-1003.

282 U-shaped dietary sodiumâ€"associated incidence of chronic kidney disease cautions against salt overrestriction inÂhypertension. Kidney International, 2018, 93, 776-778.
2.6

2

High Salt Intake Attenuates Breast Cancer Metastasis to Lung. Journal of Agricultural and Food
Chemistry, 2018, 66, 3386-3392.

Sodium Intake, Blood Pressure, and Dietary Sources of Sodium in an Adult South Indian Population. Annals of Global Health, 2018, 82, 234.

Preventive Interventions for the Second Half of Life: A Systematic Review. American Journal of Health Promotion, 2018, 32, 1122-1139.

Association Between Sodium Excretion and Cardiovascular Disease and Mortality in the Elderly: A Cohort Study. Journal of the American Medical Directors Association, 2018, 19, 229-234.
1.2

22

287 The impact of salt intake during and after pregnancy. Hypertension Research, 2018, 41, 1-5.
1.5

Effects of a nationwide strategy to reduce salt intake in Samoa. Journal of Hypertension, 2018, 36, 188-198.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 290 & High and low sodium intakes are associated with incident chronic kidney disease in patients with normal renal function and hypertension. Kidney International, 2018, 93, 921-931. & 2.6 & 47 \\
\hline 291 & Monitoring the South African populationâ€ \({ }^{T M}\) s salt intake: spot urine v. 24 h urine. Public Health Nutrition, 2018, 21, 480-488. & 1.1 & 23 \\
\hline 292 & External validation and comparison of formulae estimating 24-h sodium intake from a fasting morning urine sample. Journal of Hypertension, 2018, 36, 785-792. & 0.3 & 11 \\
\hline 293 & Protective effect of Xinâ \(€^{\prime} J i a ̂ €^{\top} E r a ̂ \not €^{〔} K a n g\) on cardiovascular remodeling in high saltâ \(€^{\prime}\) induced hypertensive mice. Experimental and Therapeutic Medicine, 2018, 17, 1551-1562. & 0.8 & 5 \\
\hline 294 & Modern Recommendations of Salt Restriction - Based on Facts or Fiction?. Journal of Evolution and Health, 2018, 3, . & 0.2 & 0 \\
\hline 295 & Salt and cardiovascular disease in PURE: A large sample size cannot make up for erroneous estimations. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2018, 19, 147032031881001. & 1.0 & 14 \\
\hline 296 & An association of urinary sodium-potassium ratio with insulin resistance among Korean adults. Nutrition Research and Practice, 2018, 12, 443. & 0.7 & 10 \\
\hline 297 & Association of Low Urinary Sodium Excretion With Increased Risk of Stroke. Mayo Clinic Proceedings, 2018, 93, 1803-1809. & 1.4 & 24 \\
\hline 298 & 2018 ESC/ESH Guidelines for the management of arterial hypertension. Journal of Hypertension, 2018, 36, 1953-2041. & 0.3 & 2,129 \\
\hline 299 & Canadian Cardiovascular Harmonized National Guidelines Endeavour (C-CHANGE) guideline for the prevention and management of cardiovascular disease in primary care: 2018 update. Cmaj, 2018, 190, E1192-E1206. & 0.9 & 39 \\
\hline
\end{tabular}

300 Guide to Popular Diets, Food Choices, and Their Health Outcome. Health Care Current Reviews, 2018, 06, .
\(0.1 \quad 2\)
\[
\begin{aligned}
& 301 \text { Nutritional Peak Week and Competition Day Strategies of Competitive Natural Bodybuilders. Sports, } \\
& 2018,6,126 .
\end{aligned}
\]
\(0.7 \quad 23\)

Low-Salt Intake Suggestions in Hypertensive Patients Do not Jeopardize Urinary lodine Excretion.
302 Nutrients, 2018, 10, 1548.
\(1.7 \quad 6\)
303 Interference With Endothelial PPAR (Peroxisome Proliferatorâ€"Activated Receptor)-1̂3 Causes \begin{tabular}{l} 
Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System \\
Activation. Hypertension, 2018, 72, 1227-1235.
\end{tabular}

304 Association between socioeconomic factors and urinary sodium-to-potassium ratio: the Nagahama
1.5

13
Study. Hypertension Research, 2018, 41, 973-980.

305 Urinary sodium-to-potassium ratio and serum asymmetric dimethylarginine levels in patients with type
1.5 2 diabetes. Hypertension Research, 2018, 41, 913-922.

Validity of predictive equations for 24-h urinary potassium excretion based on timing of spot urine
306 collection among adults: the MESA and CARDIA Urinary Sodium Study and NHANES Urinary Sodium
2.2

16 Calibration Study. American Journal of Clinical Nutrition, 2018, 108, 532-547.
\begin{tabular}{|c|c|c|c|}
\hline 313 & Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. American Journal of Physiology - Renal Physiology, 2018, 315, F110-F122. & 1.3 & 27 \\
\hline 314 & Effects of Korean diet control nutrition education on cardiovascular disease risk factors in patients who underwent cardiovascular disease surgery. Journal of Nutrition and Health, 2018, 51, 215. & 0.2 & 3 \\
\hline 315 & Estimation of Salt Intake Assessed by 24-Hour Urinary Sodium Excretion among Somali Adults in Oslo, Norway. Nutrients, 2018, 10, 900. & 1.7 & 20 \\
\hline 316 & High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice. Frontiers in Immunology, 2017, 8, 1969. & 2.2 & 70 \\
\hline 317 & Sodium and Potassium Intake from Food Diaries and 24-h Urine Collections from 7 Days in a Sample of Healthy Greek Adults. Frontiers in Nutrition, 2018, 5, 13. & 1.6 & 11 \\
\hline 318 & Sodium and Potassium Consumption in a Semi-Urban Area in Peru: Evaluation of a Population-Based 24-Hour Urine Collection. Nutrients, 2018, 10, 245. & 1.7 & 8 \\
\hline 319 & Main Sources, Socio-Demographic and Anthropometric Correlates of Salt Intake in Austria. Nutrients, 2018, 10, 311. & 1.7 & 21 \\
\hline 320 & Simple dietary advice reduces 24 -hour urinary sodium excretion, blood pressure, and drug consumption in hypertensive patients. Journal of the American Society of Hypertension, 2018, 12, 652-659. & 2.3 & 10 \\
\hline 321 & Conflicting Evidence on Health Effects Associated with Salt Reduction Calls for a Redesign of the Salt Dietary Guidelines. Progress in Cardiovascular Diseases, 2018, 61, 20-26. & 1.6 & 22 \\
\hline 322 & Longitudinal Change of Perceived Salt Intake and Stroke Risk in a Chinese Population. Stroke, 2018, 49, 1332-1339. & 1.0 & 57 \\
\hline 323 & 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 2018, 39, 3021-3104. & 1.0 & 6,826 \\
\hline 324 & Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet, The, 2018, 392, 496-506. & 6.3 & 243 \\
\hline 325 & Salt Intake and All-Cause Mortality in Hemodialysis Patients. American Journal of Nephrology, 2018, 48, 87-95. & 1.4 & 15 \\
\hline
\end{tabular}
\begin{tabular}{lll}
329 & \begin{tabular}{l} 
The association of estimated salt intake with blood pressure in a Viet Nam national survey. PLoS ONE, \\
2018,13, e0191437.
\end{tabular} & 1.1
\end{tabular}

336 Primary prevention of ischaemic heart disease: populations, individuals, and health professionals.
Lancet, The, 2019, 394, 685-696.
6.3

92

337 Multiple lifestyle interventions reverses hypertension. Cogent Medicine, 2019, 6, 1636534.
\(0.7 \quad 7\)
\(339 \begin{aligned} & \text { Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clinical } \\ & \text { and Experimental Nephrology, 2019, 23, 1175-1180. }\end{aligned}\)
0.7

29

\(1.3 \quad 18\)

341 Population Health and Aging. Journal of Nutrition, Health and Aging, 2019, 23, 683-686.
1.5

2

342 Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1453-1473.
5.9

73

Clinical outcomes and economic impact of the 2017 ACC/AHA guidelines on hypertension in China.
1.0

20
343 Journal of Clinical Hypertension, 2019, 21, 1212-1220.

Cohort Validation Study. American Journal of Hypertension, 2019, 32, 983-991.

347 Association of urinary sodium/potassium ratio with structural and functional vascular changes in nonâ€diabetic hypertensive patients. Journal of Clinical Hypertension, 2019, 21, 1360-1369.

348 Dietary reference values for sodium. EFSA Journal, 2019, 17, e05778.
0.9

Mineralocorticoid receptor blockade suppresses dietary salt-induced ACEI/ARB-resistant albuminuria
in non-diabetic hypertension: a sub-analysis of evaluate study. Hypertension Research, 2019, 42, 514-521.
1.5

Reducing population salt intakeâ€"An update on latest evidence and global action. Journal of Clinical
1.0 Hypertension, 2019, 21, 1596-1601.

33

351 Sodium Intake and Hypertension. Nutrients, 2019, 11, 1970.
1.7

352 Looking back and thinking forwards â€" 15 years of cardiology and cardiovascular research. Nature Reviews Cardiology, 2019, 16, 651-660.

Salt Reduction Intervention in Families Investigating Metabolic, Behavioral and Health Effects of
353 Targeted Intake Reductions: Study Protocol for a Four Months Three-Armed, Randomized, Controlled
\(1.2 \quad 9\)
â€œReal-Lifeâ€•Trial. International Journal of Environmental Research and Public Health, 2019, 16, 3532.

Effect of low-sodium salt substitutes on blood pressure, detected hypertension, stroke and mortality.
Heart, 2019, 105, heartjnl-2018-314036.
1.2

33

\section*{355 Heart Disease and Stroke Statisticsâ€"2019 Update: A Report From the American Heart Association.}

Circulation, 2019, 139, e56-e528.

Dietary Sources of Salt in Low- and Middle-Income Countries: A Systematic Literature Review.
International Journal of Environmental Research and Public Health, 2019, 16, 2082.
1.2

22

357 Salt and health. , 2019, , 3-43.
2

358 The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 2019, 15, 546-558.
4.1

74

359 In replyâ \(€\) "Low-Sodium Intake: A Risk Factor for Stroke?. Mayo Clinic Proceedings, 2019, 94, 729-730. 1.4

360 Relation of Dietary Sodium Intake With Subclinical Markers of Cardiovascular Disease (from MESA). American Journal of Cardiology, 2019, 124, 636-643.

The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement
362 on the use of \(24 \hat{a} € h o u r\), spot, and short duration (\&lt; 24 Âhours) timed urine collections to assess dietary sodium intake. Journal of Clinical Hypertension, 2019, 21, 700-709.

363 The Influence of Dietary Salt Beyond Blood Pressure. Current Hypertension Reports, 2019, 21, 42.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 364 & The importance of a valid assessment of salt intake in individuals and populations. A scientific statement of the British and Irish Hypertension Society. Journal of Human Hypertension, 2019, 33, 345-348. & 1.0 & 15 \\
\hline 365 & Dose-response relation between dietary sodium and blood pressure: a meta-regression analysis of 133 randomized controlled trials. American Journal of Clinical Nutrition, 2019, 109, 1273-1278. & 2.2 & 43 \\
\hline 366 & The ratio potassiumâ€єoâ€magnesium intake and high blood pressure. European Journal of Clinical Investigation, 2019, 49, el3093. & 1.7 & 4 \\
\hline 367 & An expert recommendation on salt intake and blood pressure management in Chinese patients with hypertension: A statement of the Chinese Medical Association Hypertension Professional Committee. Journal of Clinical Hypertension, 2019, 21, 446-450. & 1.0 & 17 \\
\hline 368 & Performance of 24 -hour urinary creatinine excretion-estimating equations in relation to measured 24-hour urinary creatinine excretion in hospitalized hypertensive patients. Scientific Reports, 2019, 9, 3593. & 1.6 & 11 \\
\hline 369 & Errors in application of the Kawasaki formula to estimate sodium intake and false interpretation of data misclassify the relationship of sodium intake with mortality. International Journal of Epidemiology, 2019, 48, 1017-1019. & 0.9 & 0 \\
\hline 370 & Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ: British Medical Journal, 2019, 364, I772. & 2.4 & 85 \\
\hline 371 & Urinary Sodium Excretion, Blood Pressure, and Risk of Future Cardiovascular Disease and Mortality in Subjects Without Prior Cardiovascular Disease. Hypertension, 2019, 73, 1202-1209. & 1.3 & 54 \\
\hline 372 & Effect of two dosages of sodium chloride intake on the blood pressure response to caffeinated coffee in humans <i>in vivo</i>. International Journal of Food Sciences and Nutrition, 2019, 70, 1014-1019. & 1.3 & 2 \\
\hline 374 & Low-Sodium Intake: A Risk Factor for Stroke?. Mayo Clinic Proceedings, 2019, 94, 728-729. & 1.4 & 2 \\
\hline
\end{tabular}
375 Urinary Potassium Excretion and Progression of CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 330-340.

2.250
376 Molecular mechanisms for the regulation of blood pressure by potassium. Current Topics in
Membranes, 2019, 83, 285-313.0.5
12High Throughput Complementary Analysis and Quantitation of Metabolites by MALDI- and Silicon377 Nanopost Array-Laser Desorption/lonization-Mass Spectrometry. Analytical Chemistry, 2019, 91,3.232
3951-3958.
Lactobacillus rhamnosus GG strain mitigated the development of obstructive sleep apnea-induced
hypertension in a high salt diet via regulating TMAO level and CD4+ T cell induced-type I inflammation.
Biomedicine and Pharmacotherapy, 2019, 112, 108580.Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from379 the European Salt Action Network. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29,1.168
107-114.
380 Hypertension. Annals of Internal Medicine, 2019, 170, ITC65. ..... 2.0 ..... 10
388 Latin American Consensus on the management of hypertension in the patient with diabetes and the metabolic syndrome. Journal of Hypertension, 2019, 37, 1126-1147.of Clinical Hypertension, 2019, 21, 307-323.
390 Potassium: poison or panacea in chronic kidney disease?. Nephrology Dialysis Transplantation, 2019, 34, 175-180.
\(391 \begin{aligned} & \text { Long-term low salt diet increases blood pressure by activation of the renin-angiotensin and } \\ & \text { sympathetic nervous systems. Clinical and Experimental Hypertension, 2019, 41, 739-746. }\end{aligned}\)
392 Assessing whether a spot urine specimen c ..... 20
\(393 \begin{aligned} & \text { Sodium in the microenvironment } \\ & \text { Immunology, 2019, 19, 243-254. }\end{aligned}\) 100
394 Role of Dietary K <sup>+</sup> in Natriuresis, Blood Pressure Reduction, Cardiovascular Protection, and Renoprotection. Hypertension, 2019, 73, 15-23.
1.3 ..... 51Evaluation of sodium intake for the prediction of cardiovascular events in Japanese high-risk patients:the ESPRIT Study. Hypertension Research, 2019, 42, 233-240.

\(1.5 \quad 8\)The association between serum sodium concentration, hypertension and primary cardiovascular1.012events: a retrospective cohort study. Journal of Human Hypertension, 2019, 33, 69-77.

Meat intake and incidence of cardiovascular disease in Japanese patients with type 2 diabetes: analysis
1.8 of the Japan Diabetes Complications Study (JDCS). European Journal of Nutrition, 2019, 58, 281-290.

15
\[
\begin{aligned}
& \text { Electrolyte minerals intake and cardiovascular health. Critical Reviews in Food Science and } \\
& \text { Nutrition } 2019597375-2385
\end{aligned}
\]
\[
5.4
\]
\[
24
\]

399 Tackling Chronic Disease in the Gulf Region: Swings and Roundabouts. Global Heart, 2020, 11, 447.

\footnotetext{
400
Autonomic activity and its relationship with the endogenous cardiotonic steroid marinobufagenin:
the African-PREDICT study. Nutritional Neuroscience, 2020, 23, 849-859.
}
1.5
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 401 & What methods have been used to estimate salt intake? A systematic review. International Journal of Food Sciences and Nutrition, 2020, 71, 22-35. & 1.3 & 6 \\
\hline 402 & Estimating 24-Hour Urinary Sodium Excretion From Spot Urine Samples in Chronic Kidney Disease Patients. , 2020, 30, 11-21. & & 11 \\
\hline 403 & Association of cardiovascular risk factor clustering and prehypertension among adultsī1/4šResults from the China health and retirement longitudinal study baseline. Clinical and Experimental Hypertension, 2020, 42, 315-321. & 0.5 & 1 \\
\hline 404 & Modifiable risk factors, cardiovascular disease, and mortality in 155 â€ 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet, The, 2020, 395, 795-808. & 6.3 & 935 \\
\hline 405 & Dietary Potassium Intake Remains Low and Sodium Intake Remains High, and Most Sodium is Derived from Home Food Preparation for Chinese Adults, 1991 â€" 2015 Trends. Journal of Nutrition, 2020, 150, 1230-1239. & 1.3 & 52 \\
\hline 406 & A Systematic Review of the Sources of Dietary Salt Around the World. Advances in Nutrition, 2020, 11, 677-686. & 2.9 & 121 \\
\hline 407 & Sodium Excretion and Cardiovascular Outcomes in African American Patients With CKD: Findings From the African American Study of Kidney Disease and Hypertension. Kidney Medicine, 2020, 2, 80-82. & 1.0 & 2 \\
\hline 408 & Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiological Reviews, 2020, 100, 321-356. & 13.1 & 104 \\
\hline 409 & Is too much salt harmful? Yes. Pediatric Nephrology, 2020, 35, 1777-1785. & 0.9 & 16 \\
\hline 410 & Current Data on Dietary Sodium, Arterial Structure and Function in Humans: A Systematic Review. Nutrients, 2020, 12, 5. & 1.7 & 13 \\
\hline 411 & Causal associations between urinary sodium with body mass, shape and composition: a Mendelian randomization study. Scientific Reports, 2020, 10, 17475. & 1.6 & 10 \\
\hline 412 & Sodium and Potassium Intake in Residents of Retirement Homes. Nutrients, 2020, 12, 2725. & 1.7 & 3 \\
\hline 413 & Evidence-Based Policy Making for Public Health Interventions in Cardiovascular Diseases: Formally Assessing the Feasibility of Clinical Trials. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006378. & 0.9 & 5 \\
\hline 414 & No Uâ€turn on sodium reduction. Journal of Clinical Hypertension, 2020, 22, 2156-2160. & 1.0 & 4 \\
\hline
\end{tabular}
424
425

> Identification of Genetic Factors Underlying the Association between Sodium Intake Habits and Hypertension Risk. Nutrients, 2020, 12, 2580.

Determinants of renal oxygen metabolism during low \(\mathrm{Na}+\) diet: effect of angiotensin II AT 1 and aldosterone receptor blockade. Journal of Physiology, 2020, 598, 5573-5587.

426 Kidney Is Essential for Blood Pressure Modulation by Dietary Potassium. Current Cardiology Reports, 2020, 22, 124.

Preliminary evidence of effects of potassium chloride on a metabolomic path to diabetes and

Analysis of the dietary factors associated with suspected pediatric nonalcoholic fatty liver disease
437 and potential liver fibrosis：Korean National Health and Nutrition Examination Survey 2014－2017．BMC
Pediatrics，2020，20， 121.
\begin{tabular}{|c|c|c|c|}
\hline 438 & Sodium Handling and Interaction in Numerous Organs．American Journal of Hypertension，2020，33， 687－694． & 1.0 & 20 \\
\hline 439 & Abnormal circadian rhythm of urinary sodium excretion correlates closely with hypertension and target organ damage in Chinese patients with CKD．International Journal of Medical Sciences，2020，17， 702－711． & 1.1 & 5 \\
\hline 440 & Mendelian Randomization Analysis Reveals a Causal Effect of Urinary Sodium／Urinary Creatinine Ratio on Kidney Function in Europeans．Frontiers in Bioengineering and Biotechnology，2020，8， 662. & 2.0 & 3 \\
\hline 441 & Sodium Intake and Chronic Kidney Disease．International Journal of Molecular Sciences，2020，21， 4744. & 1.8 & 60 \\
\hline 442 & Sodium and healthâ€＂concordance and controversy．BMJ，The，2020，369，m2440． & 3.0 & 54 \\
\hline 443 & The impact of the glucagonâ€like peptideâ€⿻コ一冖又 receptor agonist liraglutide on natriuretic peptides in heart failure patients with reduced ejection fraction with and without type 2 diabetes．Diabetes，Obesity and Metabolism，2020，22，2141－2150． & 2.2 & 16 \\
\hline 444 & Estimated 24－Hour Urinary Sodium Excretion and Incident Cardiovascular Disease and Mortality Among 398628 Individuals in UK Biobank．Hypertension，2020，76，683－691． & 1.3 & 21 \\
\hline
\end{tabular}

445 The Role of Infant Sex on Human Milk Composition．Breastfeeding Medicine，2020，15，341－346． 0.817
Trace elements，polycyclic aromatic hydrocarbons，mineral composition，and FT－IR characterization of
unrefined sea and rock salts：environmental interactions．Environmental Science and Pollution
Research，2020，27，10857－10868．
Heart Disease and Stroke Statisticsâ€＂2020 Update：A Report From the American Heart Association．
447 Circulation，2020，141，e139－e596．
448 Potassium Intake in India：Opportunity for Mitigating Risks of High－Sodium Diets．American Journal of Preventive Medicine，2020，58，302－312．
\(1.6 \quad 6\)1.119
450 Interpretation of Population Health Metrics．Hypertension，2020，75，603－614． ..... 1.3 ..... 13

Separating the effects of 24 －hour urinary chloride and sodium excretion on blood pressure and risk

High－salt diet inhibits tumour growth in mice via regulating myeloid－derived suppressor cell

Reduced 24-h Sodium Excretion Is Associated With a Disturbed Plasma Acylcarnitine Profile in


456 Long-term potassium intake and associated renal and cardiovascular outcomes in the clinical setting.
2.3 Clinical Nutrition, 2020, 39, 3671-3676.

12

457 The WNK signaling pathway and salt-sensitive hypertension. Hypertension Research, 2020, 43, 733-743.
1.5

26
Interactive effect of high sodium intake with increased serum triglycerides on hypertension. PLoS
458 ONE, 2020, 15, e0231707.

459 Sodium Imbalance in Mice Results Primarily in Compensatory Gene Regulatory Responses in Kidney and Colon, but Not in Taste Tissue. Nutrients, 2020, 12, 995.
\(1.7 \quad 7\)
460 Estimation of salt intake assessed by 24-h urinary sodium level among adults speaking different
Inwardly rectifying potassium channel 5.1: Structure, function, and possible roles in diseases. Genes
and Diseases, 2021, 8, 272-278.
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 473 & The burden of hypertension in Ecuador: a systematic review and meta-analysis. Journal of Human Hypertension, 2021, 35, 389-397. & 1.0 & 4 \\
\hline 474 & Sodium and health: another challenge to the current dogma. European Heart Journal, 2021, 42, 2116-2118. & 1.0 & 9 \\
\hline 475 & Hyperkalemia and Hypertension Post Organ Transplantation â€" A Management Challenge. American Journal of the Medical Sciences, 2021, 361, 106-110. & 0.4 & 2 \\
\hline 476 & Higher Intakes of Potassium and Magnesium, but Not Lower Sodium, Reduce Cardiovascular Risk in the Framingham Offspring Study. Nutrients, 2021, 13, 269. & 1.7 & 17 \\
\hline 477 & Heart Disease and Stroke Statisticsâ€"2021 Update. Circulation, 2021, 143, e254-e743. & 1.6 & 3,444 \\
\hline 478 & A New Method to Estimate Dietary Sodium Intake From a Spot Urine Sample: Context and Caution. American Journal of Hypertension, 2021, 34, 686-688. & 1.0 & 1 \\
\hline 479 & Salt Consumption and Myocardial Infarction: Is Limited Salt Intake Beneficial?. Cureus, 2021, 13, el3072. & 0.2 & 0 \\
\hline 480 & Levels of dietary sodium intake: diverging associations with arterial stiffness and atheromatosis. Hellenic Journal of Cardiology, 2021, 62, 439-446. & 0.4 & 8 \\
\hline 481 & Sodium Intake and Incidence of Diabetes Complications in Elderly Patients with Type 2 Diabetesâ€"Analysis of Data from the Japanese Elderly Diabetes Intervention Study (J-EDIT). Nutrients, 2021, 13, 689. & 1.7 & 7 \\
\hline 483 & Application of countryâ€specific Cloborisk score to estimate next 10 years risk of cardiovascular diseases and its associated predictors among postmenopausal rural women of Bangladesh: A crossâ€sectional study in a primary care setting. Lifestyle Medicine, 2021, 2, e32. & 0.3 & 4 \\
\hline 484 & Association between the transtubular potassium gradient and progression of chronic kidney disease: results from KNOW-CKD. Journal of Nephrology, 2021, 34, 2063-2072. & 0.9 & 0 \\
\hline 485 & Positive and Negative Aspects of Sodium Intake in Dialysis and Non-Dialysis CKD Patients. Nutrients, 2021, 13, 951. & 1.7 & 8 \\
\hline 486 & Improving Analytical Performance of <scp>Laserấinduced</scp> Breakdown Spectroscopy for Strontium, the Minor Impurity Element, in Salts Using Multiple <scp>Filterâ€Paper</scp> Sampling. Bulletin of the Korean Chemical Society, 2021, 42, 779-785. & 1.0 & 10 \\
\hline 487 & Familial genetic and environmental risk profile and high blood pressure event: a prospective cohort of cardio-metabolic and genetic study. Blood Pressure, 2021, 30, 196-204. & 0.7 & 7 \\
\hline
\end{tabular}

Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and

Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Advances in

496 WNKs are potassium-sensitive kinases. American Journal of Physiology - Cell Physiology, 2021, 320,

Sodium and Health Outcomes: Ascertaining Valid Estimates in Research Studies. Current Atherosclerosis Reports, 2021, 23, 35.
2.0

0
,
499 \begin{tabular}{l} 
Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Canadian \\
Journal of Cardiology, 2021, 37, 733-743.
\end{tabular}
500 Urinary sodium and potassium excretion and cerebrovascular health: a multimodal imaging study.
501 The association of carotid artery atherosclerosis with the estimated excretion levels of urinary
501 sodium and potassium and their ratio in Chinese adults. Nutrition Journal, 2021, \(20,50\).

Salt and potassium intake evaluated with spot urine and brief questionnaires in combination with
510 blood pressure control status in hypertensive outpatients in a real-world setting. Hypertension
\begin{tabular}{ll}
513 & \begin{tabular}{l} 
Activation of the kidney sodium chloride cotransporter by the \(\hat{12} 2\)-adrenergic receptor agonist \\
salbutamol increases blood pressure. Kidney International, 2021, 100, 321-335.
\end{tabular} \\
\hline 2.6
\end{tabular}

514 High dietary potassium causes ubiquitin-dependent degradation of the kidney sodium-chloride cotransporter. Journal of Biological Chemistry, 2021, 297, 100915.
1.6
\begin{tabular}{ll} 
\# & ARTICLE \\
528 & \begin{tabular}{l} 
Mechanisms of Dietary Sodium-Induced Impairments in Endothelial Function and Potential \\
Countermeasures. Nutrients, 2021, 13, 270.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
The Ongoing Sodium Controversy â€ Between PuRE and NutriCode. International Journal for Vitamin \\
and Nutrition Research, 2017, 87, 322-329.
\end{tabular}
539 The relationship among cardiac structure, dietary salt and aldosterone in patients with primary aldosteronism. Oncotarget, 2017, 8, 73187-73197.

\(0.8 \quad 6\)
540 Analogy between non-alcoholic steatohepatitis (NASH) and hypertension: a stepwise patient-tailored approach for NASH treatment. Annals of Gastroenterology, 2018, 31, 296-304.
0.4 ..... 7
\(0.6 \quad 2\)
Association between sodium intake and lower urinary tract symptoms: does less sodium intake have a favorable effect or not?. Translational Andrology and Urology, 2020, 9, 1135-1145. 541\(0.6 \quad 2\)Sodium Intake, Circulating Microvesicles and Cardiovascular Outcomes in Type 2 Diabetes. Current542 Diabetes Reviews, 2019, 15, 435-445.\(0.6 \quad 1\)0.920
544 Enhancing Effects of Herbs on the Salty Taste Perception of Saline. Journal of Nutritional Science and Vitaminology, 2020, 66, 325-330. ..... 0.23

\footnotetext{
54619. Epidemiological aspects underlying the association between dietary salt intake and hypertension.
Human Health Handbooks, \(2017,399-413\).
}0.11

561 Essen nach Herzenslust. , 2017, , 125-137.
0
563 Salt and Hypertension. Updates in Hypertension and Cardiovascular Protection, 2018, , 675-693. 0.1 ..... 0
564 4. æ„éŠ. Nihon Toseki Igakkai Zasshi, 2019, 52, 763-767. ..... 0.2

o
565 Hypertension and Unlikely Causality in the Association Between Soft Drink Consumption and
Mortality. JAMA Internal Medicine, 2020, 180, 335. 2.6 ..... 0The Effects of Two Intervention Strategies to Reduce the Intake of Salt and the Sodium-To-Potassium
566 Ratio on Cardiovascular Risk Factors. A 4-Month Randomised Controlled Study among Healthy ..... 1.7
567 313-328.


580 From salt to hypertension, what is missed?. Journal of Clinical Hypertension, 2021, 23, 2033-2041. 1.06
581 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk. New England Journal of
Medicine, 2022, 386, 252-263. 3.9 ..... 140
Strategy for sodium-salt substitution: On the relationship between hypertension and dietary intake of cations. Food Research International, 2022, 156, 110822. ..... 8582
583 Heart Disease and Stroke Statisticsâ€"2022 Update: A Report From the American Heart Association. Circulation, 2022, 145, CIR0000000000001052. ..... 1.6
2,561Associations of Adherence to the DASH Diet and the Mediterranean Diet With All-Cause Mortality inSubjects With Various Glucose Regulation States. Frontiers in Nutrition, 2022, 9, 828792.
1.68
585 The effect of sodium restriction on io \(\begin{gathered}\text { Investigation, 2022, 45, 1121-1138. }\end{gathered}\)1.85
Effect of a low-salt diet on chronic kidney disease outcomes: a systematic review and meta-analysis.0.812Development of machine learning prediction models to explore nutrients predictive of593 cardiovascular disease using Canadian linked population-based data. Applied Physiology, Nutrition andMetabolism, 2022, 47, 529-546.594 Salt Substitute and Cardiovascular Events and Death. New England Journal of Medicine, 2021, 385,2491-2494.
596 Urinary Potassium Excretion and Progression From Advanced CKD to Kidney Failure. Canadian Journal of Kidney Health and Disease, 2022, 9, 205435812210845.
\(0.6 \quad 2\)
598 Nutrient Intake and Impact of the Consumption of Two Street Foods (Garba and Rice Eggplant Sauce) inHumans. Food and Nutrition Sciences (Print), 2022, 13, 195-210.
\(0.2 \quad 0\)
599 Sodium and Health: Old Myths and a Controversy Based on Denial. Current Nutrition Reports, 2022, 11, 172-184.
\(2.1 \quad 32\)
600 Potassium and the kidney: a reciprocal relationship with clinical relevance. Pediatric Nephrology,
0.9 ..... 9
2022, 37, 2245-2254.
\(\square\)0.4

The association of arterial stiffness with estimated excretion levels of urinary sodium and potassium and their ratio in Chinese adults. Journal of Human Hypertension, 2023, 37, 292-299.

608 Potassium Effects on NCC Are Attenuated during Inhibition of Cullin E3â€"Ubiquitin Ligases. Cells, 2022, 11, 95.
    SEVEN-YEAR SURVIVAL AND ASSOCIATIONS OF RISK FACTORS WITH ALL-CAUSE AND CARDIOVASCULAR
609 MORTALITY AMONG RURAL RESIDENTS OF SAMARA REGION. Ekologiya Cheloveka (Human Ecology), 2021,
\(0.2 \quad 1\)
    28, 23-29.
610 Association of Urinary Potassium Excretion with Blood Pressure Variability and Cardiovascular
Outcomes in Patients with Pre-Dialysis Chronic Kidney Disease. Nutrients, 2021, 13, 4443.

Association of rheumatoid arthritis and high sodium intake with major adverse cardiovascular
611 events: a cross-sectional study from the seventh Korean National Health and Nutrition Examination
\(0.8 \quad 1\)
Survey. BMJ Open, 2021, 11, e056255.

612 Adding salt to foods and hazard of premature mortality. European Heart Journal, 2022, 43, 2878-2888.
\(1.0 \quad 30\)

\section*{620 \\ 2022 World Hypertension League, Resolve To Save Lives and International Society of Hypertension \\ dietary sodium (salt) global call to action. Journal of Human Hypertension, 2023, 37, 428-437.}
1.0

Urinary potassium excretion and mortality risk in community-dwelling individuals with and without obesity. American Journal of Clinical Nutrition, 2022, 116, 741-749.

622 Salt, hypertension and cardiovascular outcomes. , 2022, , .

\section*{Association of Dietary Habits with the Estimated 24-hour Urinary Salt Excretion and}

623 Sodium-to-potassium Ratio among Parents of Infants Who Underwent a Health Checkup: Baseline Data of a Cluster Randomized Intervention Study. The Japanese Journal of Nutrition and Dietetics, 2022, 80,
0.1
o 105-115.
Results of a 7 -year prospective follow-up in the Interepid study: factors influencing all-cause and
625 cardiovascular mortality in rural residents of Russia and the Kyrgyz Republic. Russian Journal of
0.4 Cardiology, 2022, 27, 4999.

626 Effects of Short-Term Potassium Chloride Supplementation in Patients with CKD. Journal of the American Society of Nephrology: JASN, 2022, 33, 1779-1789.
3.0

34

Comparison of Coronary Risk Factor and Nutrient Intake Status of Patients with Chronic Kidney
627 Disease and Normal Subjects : Data Obtained from the 2015-2019 Korea National Health and Nutrition
\(0.0 \quad 0\) Examination Survey. The Korean Journal of Community Living Science, 2022, 33, 189-203.

629 Inverse Salt Sensitivity of Blood Pressure: Mechanisms and Potential Relevance for Prevention of Cardiovascular Disease. Current Hypertension Reports, 2022, 24, 361-374.
1.5

11

> 630 Using Controlled Feeding Study for Biomarker Development in Regression Calibration for Disease Association Estimation. Statistics in Biosciences, 2023, 15, 57-113.

Dietary Patterns of 479 Indonesian Adults and Their Associations with Sodium and Potassium Intakes
1.7
o Estimated by Two 24-h Urine Collections. Nutrients, 2022, 14, 2905.
\begin{tabular}{|c|c|c|c|}
\hline 638 & Sex-specific associations between potassium intake, blood pressure, and cardiovascular outcomes: the EPIC-Norfolk study. European Heart Journal, 2022, 43, 2867-2875. & 1.0 & 11 \\
\hline 639 & Introduction of preventive nutrition based on local raw foodproducts for rotational employees in the Arctic region: a review. Marine Medicine, 2022, 8, 7-18. & 0.0 & 0 \\
\hline 640 & Multiple molecular mechanisms are involved in the activation of the kidney sodium-chloride cotransporter by hypokalemia. Kidney International, 2022, 102, 1030-1041. & 2.6 & 11 \\
\hline 641 & Dietary potassium intake, kidney function, and survival in a nationally representative cohort. American Journal of Clinical Nutrition, 2022, 116, 1123-1134. & 2.2 & 7 \\
\hline 642 & Eucommia ulmoides bark extract reduces blood pressure and inflammation by regulating the gut microbiota and enriching the Parabacteroides strain in high-salt diet and N(omega)-nitro-L-arginine methyl ester induced mice. Frontiers in Microbiology, 0, 13,. & 1.5 & 3 \\
\hline 643 & Lower urinary potassium excretion was associated with higher risk of cerebro-cardiovascular- and renal events in patients with hypertension under treatment with anti-hypertensive drugs. Journal of Cardiology, 2022, 80, 537-544. & 0.8 & 2 \\
\hline 644 & Blood pressure and the kidney cortex transcriptome response to high-sodium diet challenge in female nonhuman primates. Physiological Genomics, 2022, 54, 443-454. & 1.0 & 3 \\
\hline 645 & Salt, Not Always a Cardiovascular Enemy? A Mini-Review and Modern Perspective. Medicina (Lithuania), 2022, 58, 1175. & 0.8 & 5 \\
\hline 646 & Adherence to the dietary approaches to stop hypertension diet and all-cause mortality in patients with a history of heart failure. Frontiers in Nutrition, 0, 9,. & 1.6 & 0 \\
\hline
\end{tabular}
647 CHRONIC KIDNEY DISEASES: AN OVERVIEW OF MANAGEMENT AND TREATMENT STRATEGIES. Indian Drugs, 2022, 59, 7-20.
\(0.1 \quad 0\)
\(1.3 \quad 1\)
648 with Type 2 Diabetes: Results of the Dutch Diabetes and Lifestyle Cohort Twente (DIALECT). Journal of
1 Nutrition, 2022, 152, 2856-2864.

649 Pathophysiology and genetics of salt-sensitive hypertension. Frontiers in Physiology, 0, 13, .
1.3

12

> The effects of a 6-week controlled, hypocaloric ketogenic diet, with and without exogenous ketone
> salts, on cognitive performance and mood states in overweight and obese adults. Frontiers in Neuroscience, 0,16 , .
1.4

651 Mean population salt intake in Iran: A systematic review and metaâ€enalysis. Health Science Reports, 2022, 5, .

The impact of low-salt bread as a simple diet on hypertensive patients with cardiovascular comorbidities. Nutrition and Health, 0, , 026010602211381.
660 Are Uâ€shaped relationships between risk factors and outcomes artifactual?. Journal of Diabetes, 202
\(14,815-821\).
661 Kir4.2 mediates proximal potassium effects on glutaminase activity and kidney injury. Cell Reports,
662 Low Sodium Intake, Low Protein Intake, and Excess Mortality in an Older Dutch General Population
664 Heart Disease and Stroke Statisticsâ€"2023 Update: A Report From the American Heart Association. Circulation, 2023, 147, .

674 Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. , 2023, 30,
```

675 A New Understanding of Potassium's Influence Upon Human Health and Renal Physiology. , 2023, 30,

676 Sodium restriction and insulin resistance: A review of 23 clinical trials. Journal of Insulin Resistance, 2023, 6, .
$0.6 \quad 0$

Salt Reduction Using a Smartphone Application Based on an Artificial Intelligence System for Dietary
677 Assessment in Patients with Chronic Kidney Disease: A Single-Center Retrospective Cohort Study.
$0.5 \quad 0$
Kidney and Dialysis, 2023, 3, 139-151.
678 The association between sodium intake and coronary and carotid atherosclerosis in the general
The epithelial sodium channel in inflammation and blood pressure modulation. Frontiers in
Cardiovascular Medicine, $0,10$.

680 Chronic Kidney Disease Management in Developing Countries. , 2023, , 1-146.

681	Effects of a low-sodium diet in patients with idiopathic hyperaldosteronism: a randomized controlled trial. Frontiers in Endocrinology, 0, 14,.	1.5
682	High sodium intake does not worsen low potassiumâ€induced kidney damage. Physiological Reports, $2023,11,$.	0.7
Less sodium and more potassium to reduce cardiovascular risk. European Heart Journal Supplements, $2023,25, ~ B 108-B 110 . ~$	0.0	3

[^0]: Nut consumption is inversely associated with both cancer and total mortality in a Mediterranean
 804-811.

