The Effects of Peroneal Nerve Functional Electrical Stin Orthosis in Patients With Chronic Stroke

Neurorehabilitation and Neural Repair 28, 688-697 DOI: 10.1177/1545968314521007

Citation Report

#	Article	IF	CITATIONS
1	Clinical Practice Guideline for Stroke Rehabilitation in Korea. Brain & Neurorehabilitation, 2009, 2, 1.	0.4	27
2	Stroke Rehabilitation in China Today. International Journal of Physical Medicine & Rehabilitation, 2014, s3, .	0.5	1
3	Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restorative Neurology and Neuroscience, 2015, 33, 795-807.	0.4	29
4	Peroneal Stimulation for Foot Drop After Stroke. American Journal of Physical Medicine and Rehabilitation, 2015, 94, 649-664.	0.7	53
5	Effectiveness of Single Functional Electrical Stimulation in Neurological Patients with Ankle-Foot Orthoses. Journal of Novel Physiotherapies, 2015, 06, .	0.1	0
6	Changes in center of pressure displacement with the use of a foot drop stimulator in individuals with stroke. Clinical Biomechanics, 2015, 30, 755-761.	0.5	26
7	Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 100.	2.4	25
8	Long-Term Follow-up to a Randomized Controlled Trial Comparing Peroneal Nerve Functional Electrical Stimulation to an Ankle Foot Orthosis for Patients With Chronic Stroke. Neurorehabilitation and Neural Repair, 2015, 29, 911-922.	1.4	62
10	Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Physical Medicine and Rehabilitation Clinics of North America, 2015, 26, 729-745.	0.7	96
11	Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. Journal of Neurology, 2015, 262, 1601-1612.	1.8	46
12	Restoring mobility after stroke: first kinematic results from a pilot study with a hybrid drop foot stimulator. Musculoskeletal Surgery, 2016, 100, 223-229.	0.7	6
13	Influence of skill and exercise training parameters on locomotor recovery during stroke rehabilitation. Current Opinion in Neurology, 2016, 29, 677-683.	1.8	35
14	Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury. Cells Tissues Organs, 2016, 202, 6-22.	1.3	5
15	Control of Stroke-Related Genu Recurvatum With Prolonged Timing of Dorsiflexor Functional Electrical Stimulation: A Case Study. Journal of Neurologic Physical Therapy, 2016, 40, 209-215.	0.7	7
16	Reducing The Cost of Transport and Increasing Walking Distance After Stroke. Neurorehabilitation and Neural Repair, 2016, 30, 661-670.	1.4	54
17	Neuromuscular structure of the tibialis anterior muscle for functional electrical stimulation. Surgical and Radiologic Anatomy, 2017, 39, 77-83.	0.6	26
19	Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study. Clinical Rehabilitation, 2017, 31, 1583-1591.	1.0	26
20	Neurophysiology and neural engineering: a review. Journal of Neurophysiology, 2017, 118, 1292-1309.	0.9	30

ATION RED

#	Article	IF	CITATIONS
21	Can kinesio tape be used as an ankle training method in the rehabilitation of the stroke patients?. Complementary Therapies in Clinical Practice, 2017, 27, 46-51.	0.7	28
23	Neuromodulation in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1663-1676.	1.4	45
24	Effects of Functional Electrical Stimulation on Reducing Falls and Improving Gait Parameters in Multiple Sclerosis and Stroke. PM and R, 2017, 9, 339.	0.9	18
25	Wireless, accelerometry-triggered functional electrical stimulation of the peroneal nerve in spastic paresis: A randomized, controlled pilot study. Assistive Technology, 2017, 29, 99-105.	1.2	3
26	An exploratory study of gait and functional outcomes after neuroprosthesis use in children with hemiplegic cerebral palsy. Disability and Rehabilitation, 2017, 39, 2277-2285.	0.9	12
27	A decision support system for electrode shaping in multi-pad FES foot drop correction. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 66.	2.4	22
28	Gait Rehabilitation Using Functional Electrical Stimulation. The Japanese Journal of Rehabilitation Medicine, 2017, 54, 19-22.	0.0	0
29	Management of Gait Impairments in Chronic Unilateral Upper Motor Neuron Lesions. JAMA Neurology, 2018, 75, 751.	4.5	17
30	Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Archives of Physical Medicine and Rehabilitation, 2018, 99, 1011-1022.e1.	0.5	63
31	Introducing a Surgical Procedure for an Implantable FES Device and Its Outcome. Biosystems and Biorobotics, 2018, , 399-414.	0.2	0
32	Examination of Factors Related to the Effect of Improving Gait Speed With Functional Electrical Stimulation Intervention for Stroke Patients. PM and R, 2018, 10, 798-805.	0.9	12
33	A Backward Walking Training Program to Improve Balance and Mobility in Acute Stroke: A Pilot Randomized Controlled Trial. Journal of Neurologic Physical Therapy, 2018, 42, 12-21.	0.7	53
34	Motor Neuroprostheses. , 2018, 9, 127-148.		6
35	The influence of early or delayed provision of ankle-foot orthoses on pelvis, hip and knee kinematics in patients with sub-acute stroke: A randomized controlled trial. Gait and Posture, 2018, 63, 260-267.	0.6	18
36	Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges. Mechatronics, 2018, 53, 241-250.	2.0	34
37	Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-analysis providing direction for future research. Journal of Rehabilitation Medicine, 2018, 50, 129-139.	0.8	32
38	Functional Electrical Stimulation for Return of Function After Stroke. , 2018, , 1137-1145.		2
39	Neuromuscular Electrical Stimulation Applications. , 2019, , 432-439.e3.		2

#	Article	IF	CITATIONS
40	Neuroprosthetics. , 2019, , 241-253.		3
41	The impact of varying interphase interval on neuromuscular electrical stimulation-induced quadriceps femoris muscle performance and perceived discomfort. Physiotherapy Theory and Practice, 2021, 37, 1117-1125.	0.6	1
42	A foot drop compensation device based on surface multi-field functional electrical stimulation—Usability study in a clinical environment. Journal of Rehabilitation and Assistive Technologies Engineering, 2019, 6, 205566831986214.	0.6	4
43	Orthotists' and physical therapists' perspectives on quality of care indicators for persons with custom ankle-foot orthoses. Assistive Technology, 2019, 33, 1-11.	1.2	5
44	Neuromodulation for Functional Electrical Stimulation. Physical Medicine and Rehabilitation Clinics of North America, 2019, 30, 301-318.	0.7	15
45	Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurgical Review, 2019, 42, 227-241.	1.2	19
46	Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome. Annals of Physical and Rehabilitation Medicine, 2020, 63, 195-201.	1.1	17
47	Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Journal of Neurologic Physical Therapy, 2020, 44, 49-100.	0.7	176
48	The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clinical Rehabilitation, 2020, 34, 145-159.	1.0	22
49	Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2557-2565.	2.7	4
50	Ankle-foot orthoses and continuous functional electrical stimulation improve walking speed after stroke: a systematic review and meta-analyses of randomized controlled trials. Physiotherapy, 2020, 109, 43-53.	0.2	8
51	These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 139.	2.4	43
52	Motor Neuroprosthesis for Promoting Recovery of Function After Stroke. Stroke, 2020, 51, e119-e120.	1.0	5
53	Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries—A Systematic Review. Frontiers in Neurology, 2020, 11, 337.	1.1	15
54	Motor neuroprosthesis for promoting recovery of function after stroke. The Cochrane Library, 2020, 1, CD012991.	1.5	5
55	Walking Faster and Farther With a Soft Robotic Exosuit: Implications for Post-Stroke Gait Assistance and Rehabilitation. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 108-115.	1.7	64
56	Identifying Instruments to Assess Care Quality for Individuals With Custom Ankle Foot Orthoses: A Scoping Review. Archives of Physical Medicine and Rehabilitation, 2021, 102, 709-734.	0.5	2
57	Clinical effectiveness of peroneal nerve functional electrical stimulation in chronic stroke patients with hemiplegia (PLEASURE): A multicentre, prospective, randomised controlled trial. Clinical Rehabilitation, 2021, 35, 367-377.	1.0	4

#	Article	IF	CITATIONS
58	Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 2021, 64, 101388.	1.1	34
59	Device customization with novel adhesive electrode. IOP Conference Series: Materials Science and Engineering, 2021, 1091, 012012.	0.3	0
60	A Clinical Practice Guideline for the Use of Ankle-Foot Orthoses and Functional Electrical Stimulation Post-Stroke. Journal of Neurologic Physical Therapy, 2021, 45, 112-196.	0.7	19
62	Personalized 3D exergames for in-home rehabilitation after stroke: a pilot study. Disability and Rehabilitation: Assistive Technology, 2023, 18, 704-713.	1.3	4
63	Low Cost, User-Controlled Peroneal Stimulator for Foot Drop in Patients With Stroke. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 279-303.	0.3	0
64	Clinical outcome measures to evaluate the effects of orthotic management post-stroke: a systematic review. Disability and Rehabilitation, 2022, 44, 3019-3038.	0.9	2
65	Neural Prostheses for Neurotrauma. , 2016, , 457-478.		1
66	Analysis of strategies used by hemiplegic stroke patients to achieve toe clearance. , 2016, 7, 111-118.		27
67	Rationale and design of the theRapeutic effects of peroneal nerve functionAl electrical stimuLation for Lower extremitY in patients with convalescent poststroke hemiplegia (RALLY) study: study protocol for a randomised controlled study. BMJ Open, 2019, 9, e026214.	0.8	5
68	Clinical Practice Guideline for Stroke Rehabilitation in Korea 2016. Brain & Neurorehabilitation, 2017, 10, .	0.4	25
69	A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions. PLoS ONE, 2018, 13, e0192094.	1.1	52
70	Clinical Efficacy of Functional Electrical Stimulation-assisted Rehabilitation Cycling on the Function of Lower Limbs in Patients with Stroke. Current Neurovascular Research, 2021, 18, 318-323.	0.4	3
71	Clinical Trial Protocol for Analyzing the Effect of the Intensity of FES-Based Therapy on Post-stroke Foot Drop. Biosystems and Biorobotics, 2017, , 655-659.	0.2	0
72	Functional Electrical Stimulation to Treat Foot Drop as a Result of an Upper Motor Neuron Lesion. , 2017, , 257-282.		1
73	Effects of Functional Electrical Stimulation for the Lower Extremity in Chronic Stroke Hemiplegic Patients. The Japanese Journal of Rehabilitation Medicine, 2017, 54, 570-573.	0.0	0
74	Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial. The Journal of Korean Physical Therapy, 2017, 29, 74-79.	0.1	5
75	Postoperative foot drop in patients receiving lung transplantation: increasing awareness and preventing risks. International Journal of Therapy and Rehabilitation, 2021, 28, 1-4.	0.1	1
76	Medical management and rehabilitation in posttraumatic common peroneal nerve palsy. Balneo and PRM Research Journal, 2022, , 496.	0.1	0

#	Article	IF	CITATIONS
77	The effects of virtual reality training on gait, balance, and upper extremity function in patients with stroke: A meta-analysis. Journal of Korean Physical Therapy Science, 2021, 28, 11-29.	0.3	0
79	Experiences of individuals with multiple sclerosis and stroke using transcutaneous foot drop electrical stimulators: a systematic review and meta-synthesis of qualitative studies. Disability and Rehabilitation, 2023, 45, 1923-1932.	0.9	1
80	Spatiotemporal, kinematic and kinetic assessment of the effects of a foot drop stimulator for home-based rehabilitation of patients with chronic stroke: a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	2.4	5
81	Gait Characteristics Following Stroke: A Prospective Crossover Study to Compare Ankle-Foot Orthosis with Functional Electrical Stimulation. Neurology India, 2022, 70, 1830.	0.2	2
82	Ankle dorsiflexion assist using a single sensor-based FES: Results from clinical study on patients with stroke. Journal of Neurosciences in Rural Practice, 0, 14, 48-54.	0.3	1
83	Conservative versus surgical treatment of foot drop in peroneal nerve entrapment: rationale and design of a prospective, multi-centre, randomized parallel-group controlled trial. Trials, 2022, 23, .	0.7	1
84	Effect of Functional Electrical Stimulation in Convalescent Stroke Patients: A Multicenter, Randomized Controlled Trial. Journal of Clinical Medicine, 2023, 12, 2638.	1.0	1
91	FES-Assisted Standing-up Motion Control Incorporating Center of Mass Motion. , 2023, , .		Ο