Extracellular Vesicles Released from Mesenchymal Stro Tubular Cells and Inhibit ATP Depletion Injury

Stem Cells and Development 23, 1809-1819

DOI: 10.1089/scd.2013.0618

Citation Report

#	Article	IF	CITATIONS
1	Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27575.	5 . 5	28
2	Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion. Cancer Informatics, 2015, 14s3, CIN.S18965.	0.9	58
3	Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. Journal of Heart and Lung Transplantation, 2015, 34, 1481-1488.	0.3	19
4	Exogenous oxytocin modulates human myometrial microRNAs. American Journal of Obstetrics and Gynecology, 2015, 213, 65.e1-65.e9.	0.7	23
5	AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. Journal of the American Society of Nephrology: JASN, 2015, 26, 2349-2360.	3.0	212
6	Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Research and Therapy, 2015, 6, 153.	2.4	164
7	Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 2015, 34, 541-53.	4.9	87
8	Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30. Stem Cells International, 2016, 2016, 1-12.	1.2	116
9	Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells International, 2016, 2016, 1-17.	1.2	179
10	Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS ONE, 2016, 11, e0159163.	1.1	22
11	Extracellular vesicles in renal tissue damage and regeneration. European Journal of Pharmacology, 2016, 790, 83-91.	1.7	63
12	Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiological Reviews, 2016, 96, 1127-1168.	13.1	251
13	Mesenchymal Stem Cells in Kidney Repair. Methods in Molecular Biology, 2016, 1416, 89-107.	0.4	43
14	Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Microvesicles: Two Potential Therapeutic Strategies. Stem Cells and Development, 2016, 25, 203-213.	1.1	39
15	Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. International Journal of Obesity, 2016, 40, 102-111.	1.6	95
16	Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 2017, 13, 226-243.	5.6	129
17	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	1.6	159
18	Transplantation of bone marrow-derived MSCs improves renal function and Na++K+-ATPase activity in rats with renovascular hypertension. Cell and Tissue Research, 2017, 369, 287-301.	1.5	20

#	Article	IF	Citations
19	Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Scientific Reports, 2017, 7, 15560.	1.6	123
20	Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury. Journal of Cellular and Molecular Medicine, 2017, 21, 3381-3393.	1.6	102
21	HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells. American Journal of Physiology - Renal Physiology, 2017, 313, F906-F913.	1.3	110
22	The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Research and Therapy, 2017, 8, 24.	2.4	117
23	Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine. Stem Cells Translational Medicine, 2017, 6, 405-418.	1.6	25
24	Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Research and Therapy, 2017, 8, 273.	2.4	148
25	Mesenchymal Stem/Stromal Cells as Biological Factories. , 2017, , 121-154.		1
26	Non-coding RNAs in Mesenchymal Stem Cell-Derived Extracellular Vesicles: Deciphering Regulatory Roles in Stem Cell Potency, Inflammatory Resolve, and Tissue Regeneration. Frontiers in Genetics, 2017, 8, 161.	1.1	90
27	Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages. Frontiers in Immunology, 2017, 8, 881.	2.2	46
28	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Roles in Tumor Growth, Progression, and Drug Resistance. Stem Cells International, 2017, 2017, 1-12.	1.2	60
29	Mesenchymal Stromal Cells for Acute Renal Injury., 2017,, 1085-1095.		0
30	Mesenchymal Stem Cell-derived Extracellular Vesicles for Renal Repair. Current Gene Therapy, 2017, 17, 29-42.	0.9	87
31	Stem cell extracellular vesicles and kidney injury. Stem Cell Investigation, 2017, 4, 90-90.	1.3	37
32	Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid- \hat{l}^2 oligomers. Journal of Biological Chemistry, 2018, 293, 1957-1975.	1.6	146
33	Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Research and Therapy, 2018, 9, 63.	2.4	557
34	Extracellular vesicles as immune mediators in response to kidney injury. American Journal of Physiology - Renal Physiology, 2018, 314, F9-F21.	1.3	12
35	Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Research and Therapy, 2018, 9, 320.	2.4	204
36	To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Frontiers in Pharmacology, 2018, 9, 1199.	1.6	131

#	Article	IF	CITATIONS
37	The potential role of exosomes in the diagnosis and therapy of ischemic diseases. Cytotherapy, 2018, 20, 1204-1219.	0.3	23
38	Mesenchymal Stem Cell Microvesicles Restore Protein Permeability Across Primary Cultures of Injured Human Lung Microvascular Endothelial Cells. Stem Cells Translational Medicine, 2018, 7, 615-624.	1.6	90
39	Vesicles bearing gifts: the functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1430-F1443.	1.3	17
40	Mesenchymal stem cell–derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. Journal of Heart and Lung Transplantation, 2019, 38, 1306-1316.	0.3	52
41	miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies. Stem Cell Research and Therapy, 2019, 10, 281.	2.4	32
42	Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 2381.	1.8	40
43	Stem Cell Therapies in Kidney Diseases: Progress and Challenges. International Journal of Molecular Sciences, 2019, 20, 2790.	1.8	55
44	Platelets, endothelial cells and leukocytes contribute to the exerciseâ€triggered release of extracellular vesicles into the circulation. Journal of Extracellular Vesicles, 2019, 8, 1615820.	5. 5	163
45	Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Research and Therapy, 2019, 10, 119.	2.4	23
46	L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser ⁴⁰ : An Alternative Route for Dopamine Synthesis and Modulation of Na ⁺ /K ⁺ -ATPase in Kidney Cells. Kidney and Blood Pressure Research, 2019, 44, 1-11.	0.9	9
47	Potential and Therapeutic Efficacy of Cell-based Therapy Using Mesenchymal Stem Cells for Acute/chronic Kidney Disease. International Journal of Molecular Sciences, 2019, 20, 1619.	1.8	74
48	Acute kidney injury overview: From basic findings to new prevention and therapy strategies. , 2019, 200, 1-12.		102
49	Renal Repair and Recovery., 2019,, 154-159.e2.		1
50	Extracellular RNA in renal diseases. ExRNA, 2019, 1, .	1.0	4
51	Induced pluripotent stem cellâ€derived extracellular vesicles: A novel approach for cellâ€free regenerative medicine. Journal of Cellular Physiology, 2019, 234, 8455-8464.	2.0	38
52	BMSCs protect against renal ischemiaâ€reperfusion injury by secreting exosomes loaded with miRâ€199aâ€5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. FASEB Journal, 2019, 33, 5440-5456.	0.2	67
53	Exosomes in nephrology. , 2020, , 257-283.		3
54	Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opinion on Biological Therapy, 2020, 20, 125-140.	1.4	62

#	Article	IF	Citations
55	Regeneration-Related Functional Cargoes in Mesenchymal Stem Cell-Derived Small Extracellular Vesicles. Stem Cells and Development, 2020, 29, 15-24.	1.1	9
56	Exosomes from Bone Marrow Mesenchymal Stem Cells Can Alleviate Early Brain Injury After Subarachnoid Hemorrhage Through miRNA129-5p-HMGB1 Pathway. Stem Cells and Development, 2020, 29, 212-221.	1.1	46
57	Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics, 2020, 10, 999.	1.3	34
58	Role of miRNAs in conveying message of stem cells via extracellular vesicles. Experimental and Molecular Pathology, 2020, 117, 104569.	0.9	10
59	Stem Cells and Extracellular Vesicles: Biological Regulators of Physiology and Disease., 2020,,.		0
60	Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clinical and Experimental Nephrology, 2020, 24, 1103-1121.	0.7	6
61	Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Science OA, 2020, 6, FSO627.	0.9	13
62	Extracellular vesicles for treatment of solid organ ischemia–reperfusion injury. American Journal of Transplantation, 2020, 20, 3294-3307.	2.6	35
63	Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model. Cells, 2020, 9, 453.	1.8	29
64	The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 89.	1.8	32
65	Regenerative abilities of mesenchymal stem cells via acting as an ideal vehicle for subcellular component delivery in acute kidney injury. Journal of Cellular and Molecular Medicine, 2020, 24, 4882-4891.	1.6	11
66	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. Biology, 2021, 10, 172.	1.3	31
67	Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Frontiers in Immunology, 2020, 11, 591065.	2.2	110
68	Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials, 2021, 269, 120633.	5.7	59
69	Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Human Corneal Endothelial Cells from Endoplasmic Reticulum Stress-Mediated Apoptosis. International Journal of Molecular Sciences, 2021, 22, 4930.	1.8	25
70	The Nephroprotective Properties of Extracellular Vesicles in Experimental Models of Chronic Kidney Disease: a Systematic Review. Stem Cell Reviews and Reports, 2022, 18, 902-932.	1.7	9
72	Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sciences, 2021, 278, 119510.	2.0	8
73	Mesenchymal Stem Cell-Derived Exosomes as an Emerging Paradigm for Regenerative Therapy and Nano-Medicine: A Comprehensive Review. Life, 2021, 11, 784.	1.1	17

#	Article	IF	CITATIONS
74	Extracellular vesicles derived from mesenchymal stem cells as a potential therapeutic agent in acute kidney injury (AKI) in felines: review and perspectives. Stem Cell Research and Therapy, 2021, 12, 504.	2.4	10
75	When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Frontiers in Medicine, 2021, 8, 728496.	1.2	14
76	Regenerative potential of stem-cell-derived extracellular vesicles. , 2022, , 189-199.		1
77	Extracellular RNA in kidney disease: moving slowly but surely from bench to bedside. Clinical Science, 2020, 134, 2893-2895.	1.8	5
78	Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS ONE, 2020, 15, e0242276.	1.1	11
79	Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine. Current Stem Cell Research and Therapy, 2019, 14, 482-494.	0.6	105
80	Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. International Journal of Molecular Sciences, 2021, 22, 11406.	1.8	7
81	Mesenchymal Stem (Stromal) Cell Communications in Their Niche and Beyond: The Role of Extra Cellular Vesicles and Organelle Transfer in Lung Regeneration. , 2019, , 229-229.		O
82	Cell-derived Secretome for the Treatment of Renal Disease. Childhood Kidney Diseases, 2019, 23, 67-76.	0.1	1
83	Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. American Journal of Translational Research (discontinued), 2019, 11, 2887-2907.	0.0	37
85	Extracellular vesicles in kidney transplantation: a state-of-the-art review. Kidney International, 2022, 101, 485-497.	2.6	11
86	Renoprotective effects of extracellular vesicles: A systematic review. Gene Reports, 2022, 26, 101491.	0.4	8
87	Extracellular Vesicles in Redox Signaling and Metabolic Regulation in Chronic Kidney Disease. Antioxidants, 2022, 11, 356.	2.2	9
89	Potential Therapeutic Effect and Mechanisms of Mesenchymal Stem Cells-Extracellular Vesicles in Renal Fibrosis. Frontiers in Cell and Developmental Biology, 2022, 10, 824752.	1.8	7
90	Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Frontiers in Immunology, 2022, 13, 849891.	2.2	9
91	Ex-vivo Kidney Machine Perfusion: Therapeutic Potential. Frontiers in Medicine, 2021, 8, 808719.	1.2	28
92	Strategies for Engineering Exosomes and Their Applications in Drug Delivery. Journal of Biomedical Nanotechnology, 2021, 17, 2271-2297.	0.5	12
93	Regeneration and Diagnosis of Kidney Disease Using Exosomes. Jentashapir Journal of Cellular and Molecular Biology, 2021, 12, .	0.1	3

#	Article	IF	CITATIONS
94	Advances in study on exosomes and their applications in kidney diseases. Journal of Central South University (Medical Sciences), 2020, 45, 440-448.	0.1	1
95	Sphingosine 1â€Phosphate Prevents Human Embryonic Stem Cell Death Following Ischemic Injury. European Journal of Lipid Science and Technology, 0, , 2200019.	1.0	0
96	Extracellular vesicle-induced cyclic AMP signaling. Cellular Signalling, 2022, 95, 110348.	1.7	1
97	Ferulic Acid Combined With Bone Marrow Mesenchymal Stem Cells Attenuates the Activation of Hepatic Stellate Cells and Alleviates Liver Fibrosis. Frontiers in Pharmacology, 0, 13, .	1.6	1
98	Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-181d protect rats against renal fibrosis by inhibiting KLF6 and the NF- \hat{l}^2 B signaling pathway. Cell Death and Disease, 2022, 13, .	2.7	8
99	An Overview of Current Research on Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Bibliometric Analysis From 2009 to 2021. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	17
100	What Does Not Kill Mesangial Cells Makes it Stronger? The Response of the Endoplasmic Reticulum Stress and the O-GlcNAc Signaling to ATP Depletion. SSRN Electronic Journal, 0, , .	0.4	0
101	Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
102	Effects of Hypoxia on RNA Cargo in Extracellular Vesicles from Human Adipose-Derived Stromal/Stem Cells. International Journal of Molecular Sciences, 2022, 23, 7384.	1.8	8
103	Cellular Interplay Through Extracellular Vesicle miR-184 Alleviates Corneal Endothelium Degeneration. Ophthalmology Science, 2022, 2, 100212.	1.0	3
104	CD73-Adenosinergic Axis Mediates the Protective Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Ischemic Renal Damage in a Rat Model of Donation after Circulatory Death. International Journal of Molecular Sciences, 2022, 23, 10681.	1.8	5
105	Circulating and urinary microRNAs profile for predicting renal recovery from severe acute kidney injury. Journal of Intensive Care, 2022, 10, .	1.3	4
106	Stem Cells: Use in Nephrology. , 2022, , 29-67.		O
107	What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sciences, 2022, 311, 121070.	2.0	3
108	miR-21-5p in extracellular vesicles obtained from adipose tissue-derived stromal cells facilitates tubular epithelial cell repair in acute kidney injury. Cytotherapy, 2023, 25, 310-322.	0.3	9
109	Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines, 2022, 10, 2822.	1.4	8
110	Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. Journal of Controlled Release, 2023, 355, 685-708.	4.8	7
111	The Interplay Between Metabolites and MicroRNAs in Aqueous Humor to Coordinate Corneal Endothelium Integrity. Ophthalmology Science, 2023, 3, 100299.	1.0	2

#	Article	IF	CITATIONS
112	HYPOTHERMIC PERFUSION OF THE KIDNEY: FROM RESEARCH TO CLINICAL PRACTICE. , 2023, 1, 79-91.		0
113	A review on renal autologous cell transplantation: an investigational approach towards chronic kidney disease. International Urology and Nephrology, 0, , .	0.6	O
119	Current advances and challenges in stem cell–based therapy for chronic kidney disease. , 2024, , 399-413.		0