<i>p</i> oumaroylâ€<scp>C</scp>o<scp>A</scp>:macts specifically in the lignin biosynthetic pathway in <i distachyon</i>

Plant Journal 77, 713-726 DOI: 10.1111/tpj.12420

Citation Report

#	Article	IF	CITATIONS
1	Mutation of the Inducible <i>ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2</i> Alters Lignin Composition and Improves Saccharification Â. Plant Physiology, 2014, 166, 1956-1971.	2.3	63
2	Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 2014, 12, 1174-1192.	4.1	96
3	Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone. Science, 2014, 344, 90-93.	6.0	337
4	Identification and suppression of the <i>pâ€</i> coumaroyl CoA:hydroxycinnamyl alcohol transferase in <i>Zea mays</i> L Plant Journal, 2014, 78, 850-864.	2.8	72
5	Impact of the Brown-Midrib <i>bm</i> 5 Mutation on Maize Lignins. Journal of Agricultural and Food Chemistry, 2014, 62, 5102-5107.	2.4	37
6	<scp>BAHD</scp> or <scp>SCPL</scp> acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytologist, 2015, 208, 695-707.	3.5	145
7	Bioethanol: Feedstock Alternatives, Pretreatments, Lignin Chemistry, and the Potential for Green Value-Added Lignin Co-Products. Journal of Environmental Analytical Chemistry, 2015, 02, .	0.3	6
8	Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis. Frontiers in Energy Research, 2015, 3, .	1.2	40
9	The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genetics, 2015, 11, e1005471.	1.5	92
10	Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase. Frontiers in Plant Science, 2015, 6, 446.	1.7	30
11	Effects of <i>PHENYLALANINE AMMONIA LYASE</i> (<i>PAL</i>) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in <i>Brachypodium</i> . Journal of Experimental Botany, 2015, 66, 4317-4335.	2.4	146
12	Brachypodium Cell Wall Mutant with Enhanced Saccharification Potential Despite Increased Lignin Content. Bioenergy Research, 2015, 8, 53-67.	2.2	15
13	Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in <i>Brachypodium distachyon</i> . Journal of Experimental Botany, 2015, 66, 4295-4304.	2.4	43
14	The cell biology of lignification in higher plants. Annals of Botany, 2015, 115, 1053-1074.	1.4	505
15	Naturally p-Hydroxybenzoylated Lignins in Palms. Bioenergy Research, 2015, 8, 934-952.	2.2	99
16	High-Throughput Method for Determining the Sugar Content in Biomass with Pyrolysis Molecular Beam Mass Spectrometry. Bioenergy Research, 2015, 8, 964-972.	2.2	15
17	LACCASE5 Is Required for Lignification of the <i>Brachypodium distachyon</i> Culm. Plant Physiology, 2015, 168, 192-204.	2.3	71
18	<i>Brachypodium distachyon</i> as a Genetic Model System. Annual Review of Genetics, 2015, 49, 1-20.	3.2	79

#	Article	IF	CITATIONS
19	Brachypodium distachyon as a Model Species to Understand Grass Cell Walls. Plant Genetics and Genomics: Crops and Models, 2015, , 197-217.	0.3	2
20	Engineering monolignol p-coumarate conjugates into Poplar and Arabidopsis lignins. Plant Physiology, 2015, 169, pp.00815.2015.	2.3	47
21	Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass and Bioenergy, 2015, 81, 322-338.	2.9	227
22	Using 2D NMR spectroscopy to assess effects of UV radiation on cell wall chemistry during litter decomposition. Biogeochemistry, 2015, 125, 427-436.	1.7	29
23	Lignification: different mechanisms for a versatile polymer. Current Opinion in Plant Biology, 2015, 23, 83-90.	3.5	86
24	Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Frontiers in Chemistry, 2016, 4, 45.	1.8	279
25	BdCESA7, BdCESA8, and BdPMT Utility Promoter Constructs for Targeted Expression to Secondary Cell-Wall-Forming Cells of Grasses. Frontiers in Plant Science, 2016, 7, 55.	1.7	10
26	Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. Frontiers in Plant Science, 2016, 7, 1476.	1.7	40
27	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 2016, 128, 8296-8354.	1.6	159
28	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8164-8215.	7.2	1,576
29	Maize Tricin-Oligolignol Metabolites and their Implications for Monocot Lignification. Plant Physiology, 2016, 171, pp.02012.2016.	2.3	55
30	Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development. Plant and Cell Physiology, 2016, 57, 2058-2075.	1.5	20
31	Cell wall chemical characteristics of wholeâ€crop cereal silages harvested at three maturity stages. Journal of the Science of Food and Agriculture, 2016, 96, 3604-3612.	1.7	11
32	Tricinâ€lignins: occurrence and quantitation of tricin in relation to phylogeny. Plant Journal, 2016, 88, 1046-1057.	2.8	118
33	Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2016, 2, e1600393.	4.7	147
34	Lignin biosynthesis: Tyrosine shortcut in grasses. Nature Plants, 2016, 2, 16080.	4.7	37
35	Building the wall: recent advances in understanding lignin metabolism in grasses. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	29
36	Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology, 2016, 37, 190-200.	3.3	333

#	Article	IF	CITATIONS
37	Hydroxycinnamate Synthesis and Association with Mediterranean Corn Borer Resistance. Journal of Agricultural and Food Chemistry, 2016, 64, 539-551.	2.4	19
38	Unlocking the potential of lignocellulosic biomass through plant science. New Phytologist, 2016, 209, 1366-1381.	3.5	177
39	Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, 2016, , .	0.3	22
40	Mutation in <i>Brachypodium</i> caffeic acid <i>O</i> -methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. Journal of Experimental Botany, 2016, 67, 227-237.	2.4	49
41	Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of <i>p-</i> Coumaroyl-CoA:Monolignol Transferase PMT. Plant Physiology, 2016, 170, 1358-1366.	2.3	89
42	Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence. Plant Science, 2016, 242, 310-329.	1.7	12
43	Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 2017, 246, 337-349.	1.6	76
44	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
45	Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. Plant Physiology, 2017, 174, 972-985.	2.3	89
46	Evolution of Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , 3-27.	0.3	4
46 47	Evolution of Setaria. Plant Genetics and Genomics: Crops and Models, 2017, , 3-27. Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016.	0.3	4 84
	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and		
47	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016. Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes	2.3	84
47 48	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016. Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the	2.3 0.9	84 6
47 48 49	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016. Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i>	2.3 0.9 2.3	84 6 99
47 48 49 50	Silencing <i>CHALCONE SYNTHASE </i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016. Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> Plant Physiology, 2017, 175, 1058-1067.	2.3 0.9 2.3 2.3	84 6 99 34
47 48 49 50 51	Silencing <i>CHALCONE SYNTHASE </i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016. Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039. Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> Plant Physiology, 2017, 175, 1058-1067. Chemical Pulping Advantages of Zipâ€lignin Hybrid Poplar. ChemSusChem, 2017, 10, 3565-3573. The effects of various lignocelluloses and lignins on physiological responses of a lower termite,	2.3 0.9 2.3 2.3 3.6	 84 6 99 34 45

#	Article	IF	CITATIONS
55	Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues. Journal of Agricultural and Food Chemistry, 2018, 66, 1279-1284.	2.4	14
56	Lignin modification in planta for valorization. Phytochemistry Reviews, 2018, 17, 1305-1327.	3.1	67
57	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	3.5	91
58	Reductive Cleavage Method for Quantitation of Monolignols and Lowâ€Abundance Monolignol Conjugates. ChemSusChem, 2018, 11, 1600-1605.	3.6	45
59	Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnology, 2018, 18, 54.	1.7	38
60	Evaluation of Feruloylated and <i>p</i> -Coumaroylated Arabinosyl Units in Grass Arabinoxylans by Acidolysis in Dioxane/Methanol. Journal of Agricultural and Food Chemistry, 2018, 66, 5418-5424.	2.4	32
61	Genetic engineering of trees: progress and new horizons. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 341-376.	0.9	47
62	Response of cell-wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus. Planta, 2018, 248, 1213-1229.	1.6	7
63	Commelinid Monocotyledon Lignins Are Acylated by <i>p</i> -Coumarate. Plant Physiology, 2018, 177, 513-521.	2.3	51
64	Downregulation of pâ€ <i><scp>COUMAROYL ESTER</scp> 3â€<scp>HYDROXYLASE</scp></i> in rice leads to altered cell wall structures and improves biomass saccharification. Plant Journal, 2018, 95, 796-811.	2.8	65
65	Enhancing the Antioxidant Activity of Technical Lignins by Combining Solvent Fractionation and Ionic‣iquid Treatment. ChemSusChem, 2019, 12, 4799-4809.	3.6	24
66	The lignin toolbox of the model grass Setaria viridis. Plant Molecular Biology, 2019, 101, 235-255.	2.0	28
67	Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 2019, 142, 111840.	2.5	15
68	Rice Genome-Scale Network Integration Reveals Transcriptional Regulators of Grass Cell Wall Synthesis. Frontiers in Plant Science, 2019, 10, 1275.	1.7	14
69	The unexpected malleability of lignin. Nature Plants, 2019, 5, 128-128.	4.7	6
70	Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Communications Biology, 2019, 2, 22.	2.0	35
71	Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Scientific Reports, 2019, 9, 8800.	1.6	24
72	Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy. ACS Sustainable Chemistry and Engineering, 2019, 7, 10616-10622.	3.2	8

#	Article	IF	CITATIONS
73	Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. Biotechnology for Biofuels, 2019, 12, 111.	6.2	28
74	Lignin engineering to improve saccharification and digestibility in grasses. Current Opinion in Biotechnology, 2019, 56, 223-229.	3.3	56
75	Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology, 2019, 56, 230-239.	3.3	440
76	Lignin structure and its engineering. Current Opinion in Biotechnology, 2019, 56, 240-249.	3.3	533
77	Os <scp>MYB</scp> 108 lossâ€ofâ€function enriches <i>p</i> â€coumaroylated and tricin lignin units in rice cell walls. Plant Journal, 2019, 98, 975-987.	2.8	57
78	Tailor-made trees: engineering lignin for ease of processing and tomorrow's bioeconomy. Current Opinion in Biotechnology, 2019, 56, 147-155.	3.3	44
79	Wood-lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal, 2019, 112, 228-240.	2.6	216
80	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	2.8	40
81	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	3.5	185
82	Polyploidy Affects Plant Growth and Alters Cell Wall Composition. Plant Physiology, 2019, 179, 74-87.	2.3	134
83	Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends in Plant Science, 2020, 25, 66-79.	4.3	154
84	Overexpression of a <i>Prefoldin β</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	4.1	17
85	Genome-wide characterization of the laccase gene family in Setaria viridis reveals members potentially involved in lignification. Planta, 2020, 251, 46.	1.6	46
86	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
87	MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology, 2020, 24, 100174.	2.3	21
88	Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. Frontiers in Plant Science, 2020, 11, 617020.	1.7	10
89	Improved analysis of arabinoxylan-bound hydroxycinnamate conjugates in grass cell walls. Biotechnology for Biofuels, 2020, 13, 202.	6.2	14
90	Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, 19, 865-906.	3.1	182

#	Article	IF	CITATIONS
91	Phenolic cross-links: building and de-constructing the plant cell wall. Natural Product Reports, 2020, 37, 919-961.	5.2	111
92	Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams. ChemSusChem, 2020, 13, 2012-2024.	3.6	54
93	Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. Plant Science, 2020, 296, 110466.	1.7	21
94	Grass secondary cell walls, <i>Brachypodium distachyon</i> as a model for discovery. New Phytologist, 2020, 227, 1649-1667.	3.5	40
95	Strategies for the production of biochemicals in bioenergy crops. Biotechnology for Biofuels, 2020, 13, 71.	6.2	30
96	Suppression of a BAHD acyltransferase decreases <i>p</i> â€coumaroyl on arabinoxylan and improves biomass digestibility in the model grass <i>Setaria viridis</i> . Plant Journal, 2021, 105, 136-150.	2.8	27
97	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	2.9	8
98	Fabrication of lignin-based hydrogels and their applications. , 2021, , 371-394.		1
100	Structural Characteristics of the Guaiacyl-Rich Lignins From Rice (Oryza sativa L.) Husks and Straw. Frontiers in Plant Science, 2021, 12, 640475.	1.7	28
101	Understanding the Role of <i>Populus</i> ECERIFERUM2-Likes in the Biosynthesis of Very-Long-Chain Fatty Acids for Cuticular Waxes. Plant and Cell Physiology, 2021, 62, 827-838.	1.5	6
102	Overexpression of a Sugarcane BAHD Acyltransferase Alters Hydroxycinnamate Content in Maize Cell Wall. Frontiers in Plant Science, 2021, 12, 626168.	1.7	11
103	Stacking AsFMT overexpression with BdPMT loss of function enhances monolignol ferulate production in BrachypodiumÂdistachyon. Plant Biotechnology Journal, 2021, 19, 1878-1886.	4.1	5
104	Catalytic function, mechanism, and application of plant acyltransferases. Critical Reviews in Biotechnology, 2022, 42, 125-144.	5.1	18
105	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	1.7	49
106	Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants, 2021, 7, 1288-1300.	4.7	30
107	<i>p</i> -Coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification. Plant Physiology, 2021, 187, 1374-1386.	2.3	15
108	Structure and Characteristics of Lignin. Springer Series on Polymer and Composite Materials, 2020, , 17-75.	0.5	10
110	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	2.8	79

#	Article	IF	CITATIONS
111	Active Transport of Lignin Precursors into Membrane Vesicles from Lignifying Tissues of Bamboo. Plants, 2021, 10, 2237.	1.6	9
112	Regulation of Lignin Biosynthesis Through RNAi in Aid of Biofuel Production. , 2015, , 185-201.		0
113	Impact of Expressing <i>p</i> -Coumaryl Transferase in <i>Medicago sativa</i> L. on Cell Wall Chemistry and Digestibility. American Journal of Plant Sciences, 2016, 07, 2553-2569.	0.3	5
114	High-Biomass Sorghums as a Feedstock for Renewable Fuels and Chemicals. , 2020, , 723-754.		1
115	ToF-SIMS imaging reveals that <i>p</i> -hydroxybenzoate groups specifically decorate the lignin of fibres in the xylem of poplar and willow. Holzforschung, 2021, 75, 452-462.	0.9	21
116	Differential Gene Expression of <i>Brachypodium distachyon</i> Roots Colonized by <i>Gluconacetobacter diazotrophicus</i> and the Role of <i>BdCESA8</i> in the Colonization. Molecular Plant-Microbe Interactions, 2021, 34, 1143-1156.	1.4	3
118	Identification and characterization of a set of monocot BAHD monolignol transferases. Plant Physiology, 2022, 189, 37-48.	2.3	10
119	Integrating lignin depolymerization with microbial funneling processes using agronomically relevant feedstocks. Green Chemistry, 2022, 24, 2795-2811.	4.6	20
120	Lignin synthesis and bioengineering approaches toward lignin modification. Advances in Botanical Research, 2022, , 41-96.	0.5	2
121	Unconventional lignin monomers—Extension of the lignin paradigm. Advances in Botanical Research, 2022, , 1-39.	0.5	13
122	Ferulic and coumaric acids in the cereal grain: Occurrence, biosynthesis, biological and technological functions. Advances in Botanical Research, 2022, , 169-213.	0.5	1
123	Genome-Wide Identification of BAHD Superfamily and Functional Characterization of Bornyl Acetyltransferases Involved in the Bornyl Acetate Biosynthesis in Wurfbainia villosa. Frontiers in Plant Science, 2022, 13, 860152.	1.7	5
124	Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 2022, 63, 744-754.	1.5	12
125	<i>p</i> HBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology, 2022, 188, 1014-1027.	2.3	18
153	Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. Plant Science, 2022, 321, 111325.	1.7	10
154	Brachypodium: 20 years as a grass biology model system; the way forward?. Trends in Plant Science, 2022, 27, 1002-1016.	4.3	21
155	Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. Journal of Experimental Botany, 2022, 73, 6307-6333.	2.4	6
156	Lignin p-Hydroxybenzoylation Is Negatively Correlated With Syringyl Units in Poplar. Frontiers in Plant Science, 0, 13, .	1.7	7

#	Article	IF	CITATIONS
157	CRISPR/Cas9 suppression of OsAT10, a rice BAHD acyltransferase, reduces p-coumaric acid incorporation into arabinoxylan without increasing saccharification. Frontiers in Plant Science, 0, 13, .	1.7	4
158	Multi-omic characterization of bifunctional peroxidase 4-coumarate 3-hydroxylase knockdown in Brachypodium distachyon provides insights into lignin modification-associated pleiotropic effects. Frontiers in Plant Science, 0, 13, .	1.7	0
159	Evolution of <i>p</i> â€coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist, 2023, 237, 251-264.	3.5	10
160	Outstanding questions on xylan biosynthesis. Plant Science, 2022, 325, 111476.	1.7	16
161	"Exclusive―update: <i>p</i> -coumaroylation of lignin not restricted to commelinid monocots. Plant Physiology, 0, , .	2.3	0
162	Downregulation of barley ferulate 5-hydroxylase dramatically alters straw lignin structure without impact on mechanical properties. Frontiers in Plant Science, 0, 13, .	1.7	6
163	Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. Frontiers in Plant Science, 0, 13, .	1.7	9
164	Valorization of lignin through reductive catalytic fractionation of fermented corn stover residues. Bioresource Technology, 2023, 373, 128752.	4.8	11
166	Modulation of lignin biosynthesis for drought tolerance in plants. Frontiers in Plant Science, 0, 14, .	1.7	12