CITATION REPORT List of articles citing

ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts

DOI: 10.1002/anie.201408990 Angewandte Chemie - International Edition, 2014, 53, 14235-9

Source: https://exaly.com/paper-pdf/59053183/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
788	Controlled Synthesis of N-Doped Carbon Nanospheres with Tailored Mesopores through Self-Assembly of Colloidal Silica. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15191-6	16.4	148
787	Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. <i>Advanced Functional Materials</i> , 2015 , 25, 5768-5777	15.6	328
786	Chitosan Waste-Derived Co and N Co-doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction. 2015 , 2, 1806-1812		43
7 ⁸ 5	Controlled Synthesis of N-Doped Carbon Nanospheres with Tailored Mesopores through Self-Assembly of Colloidal Silica. 2015 , 127, 15406-15411		43
784	Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. 2015 , 27, 4695-701		326
783	From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. 2015 , 27, 5010-6		1016
782	Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction. 2015 , 5, 70010-70016		26
781	Porous Co nanobeads/rGO nanocomposites derived from rGO/Co-metal organic frameworks for glucose sensing. 2015 , 220, 1056-1063		51
780	A graphene-directed assembly route to hierarchically porous CoNx/C catalysts for high-performance oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16867-16873	13	135
779	Metal®rganic framework®raphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15838-15842	13	95
778	Enhanced CO2 capture capacities and efficiencies with N-doped nanoporous carbons synthesized from solvent-modulated, pyridinedicarboxylate-containing Zn-MOFs. 2015 , 17, 8015-8020		9
777	Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. 2015 , 137, 5555-62		543
776	MetalBrganic frameworks and their derived nanostructures for electrochemical energy storage and conversion. <i>Energy and Environmental Science</i> , 2015 , 8, 1837-1866	35.4	1246
775	IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction. 2015 , 7, 11956-61		70
774	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. 2015 , 7, 9394-8		48
773	A luminescent dye@MOF as a dual-emitting platform for sensing explosives. 2015, 51, 17521-4		81
772	Structural Evolution from Metal © rganic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. 2015 , 27, 7610-7618		181

(2016-2015)

771	Bimetal Drganic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. <i>ACS Catalysis</i> , 2015 , 5, 7068-7076	13.1	361
770	MOF-Derived Porous Co3O4 Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries. 2015 , 54, 8159-61		122
769	NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. <i>Nano Research</i> , 2015 , 8, 3472-3479	10	35
768	Honeycomb-like nitrogen-doped porous carbon supporting Pt nanoparticles as enzyme mimic for colorimetric detection of cholesterol. 2015 , 221, 1515-1522		37
767	High-performance oxygen reduction electrocatalysts derived from uniform cobaltBdenine assemblies. 2015 , 17, 120-130		53
766	Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. 2015 , 95, 113-124		39
765	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19657-19661	13	40
764	Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. 2016 , 6, 116	;	84
763	PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. <i>Journal of Power Sources</i> , 2016 , 326, 43-49	8.9	61
762	Sulfur-Enriched Conjugated Polymer Nanosheet Derived Sulfur and Nitrogen co-Doped Porous Carbon Nanosheets as Electrocatalysts for Oxygen Reduction Reaction and ZincAir Battery. <i>Advanced Functional Materials</i> , 2016 , 26, 5893-5902	15.6	189
761	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2048-52	16.4	230
760	Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. 2016 , 12, 1900-8		50
759	Self-Sacrificial Template-Directed Synthesis of Metal Drganic Framework-Derived Porous Carbon for Energy-Storage Devices. 2016 , 3, 668-674		42
758	Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1178-82	16.4	295
757	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 2563-2570	35.4	183
756	Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. 2016 , 28, 1668	-74	558
755	Biomimetische superhydrophobe/superoleophile hoch fluorierte Graphenoxid-ZIF-8-Komposite füdie & Wasser-Trennung. 2016 , 128, 1193-1197		12
754	Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO Sensors. <i>ACS Applied Materials & Amp: Interfaces</i> , 2016 , 8, 35454-35463	9.5	165

Non-precious Metal Oxide and Metal-free Catalysts for Energy Storage and Conversion. **2016**, 243-320

75 ²	Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage. 2016 , 3, 247-255	15
751	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO2. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6447-6455	33
750	N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zincalir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8602-8609	99
749	Efficiency and long-term durability of a nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluorination-assisted nanotube-substitution for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9184-9195	16
748	ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. 2016 , 26, 241-247	60
747	Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. 2016 , 106, 74-83	164
746	Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9370-9374	68
745	Constructing nitrogen-doped nanoporous carbon/graphene networks as promising electrode materials for supercapacitive energy storage. 2016 , 6, 28451-28457	15
744	Enhanced Cathodic Oxygen Reduction and Power Production of Microbial Fuel Cell Based on Noble-Metal-Free Electrocatalyst Derived from Metal-Organic Frameworks. 2016 , 6, 1501497	207
743	A hollow spherical doped carbon catalyst derived from zeolitic imidazolate framework nanocrystals impregnated/covered with iron phthalocyanines. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7859-7868	30
742	Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction. 2016 , 25, 100-109	103
74 ¹	ZIF-8@Polyvinylpyrrolidone Nanocomposites Based N-Doped Porous Carbon for Highly Efficient Oxygen Reduction Reaction in Alkaline Solution. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H459-H464	12
74º	Fe/IRMOF-3 derived porous carbons as non-precious metal electrocatalysts with high activity and stability towards oxygen reduction reaction. 2016 , 205, 53-61	41
739	Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries. 2016 , 8, 11398-402	51
738	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. 2016 , 106, 9-19	23
737	Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. 2016 , 52, 8087-90	48
736	Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts. 2016 , 49, 1873-83	158

(2016-2016)

735	derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15536-15545	13	65
734	Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional PolyPorphyrin. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 25875-25880	9.5	33
733	Nanosized inorganic porous materials: fabrication, modification and application. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16756-16770	13	34
73 ²	A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal®rganic framework for efficient water-splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16057-16063	13	116
731	MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries. 2016 , 40, 9679-9683		24
730	Three-dimensional porous metallitrogen doped carbon nanostructure as a superior non-precious electrocatalyst in oxygen reduction reaction. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 43, 170-176	6.3	15
729	Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. 2016 , 30, 93-102		216
728	Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 29373-29382	9.5	105
727	Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10800-5	16.4	1397
726	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. <i>ACS Applied Materials & District Materials</i>	9.5	160
725	Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. 2016 , 128, 10958-10963		259
724	Upcycling of nonporous coordination polymers: controllable-conversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13468-13475	13	24
723	A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass. 2016 , 11, 268		20
722	High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts. 2016 , 9, 1986-95		85
721	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. <i>Nano Research</i> , 2016 , 9, 2445-2457	10	32
720	Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. 2016 , 236, 28-37		67
719	A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. 2016 , 18, 5957-5961		101
718	Iron and nitrogen co-doped hierarchical porous graphitic carbon for a high-efficiency oxygen reduction reaction in a wide range of pH. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14364-14370	13	41

717	A High-Performance Base-Metal Approach for the Oxidative Esterification of 5-Hydroxymethylfurfural. <i>ChemCatChem</i> , 2016 , 8, 2907-2911	43
716	Single-step aqueous synthesis of AuPt alloy nanodendrites with superior electrocatalytic activity for oxygen reduction and hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 6.7 2016 , 41, 18193-18202	35
715	Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene. <i>Dalton Transactions</i> , 2016 , 45, 15595-15602	17
714	Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis. 2016 , 6, 69033-69039	55
713	Cobalt Oxide and Cobalt-Graphitic Carbon Core-Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. 2016 , 3, 1600060	92
712	Highly doped and exposed Cu(I)N active sites within graphene towards efficient oxygen reduction for zinc batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 3736-3745	. 288
711	ZIF-67 Derived Co3O4/rGO Electrodes for Electrochemical Detection of H2O2 with High Sensitivity and Selectivity. 2016 , 1, 5727-5732	12
710	Highly efficient metal-free electrocatalysts toward oxygen reduction derived from carbon nanotubes@polypyrrole coreEhell hybrids. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18008-18014	22
709	NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. 2016 , 6, 23667	70
708	ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions. 2016 , 6, 28847	48
707	FeP embedded in N, P dual-doped porous carbon nanosheets: an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18723-1872	9 108
706	Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids. 2016 , 6, 27805	16
7°5	Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18470-18477	80
704	Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction. 2016 , 28, 2337-44	381
703	A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. 2016 , 28, 4606-13	178
702	Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction. 2016 , 28, 6391-8	354
701	Metal-Organic Frameworks Help Conducting Polymers Optimize the Efficiency of the Oxygen Reduction Reaction in Neutral Solutions. 2016 , 3, 1600047	26
700	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. 2016 , 128, 2088-2092	53

(2016-2016)

699	Metal B rganic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. 2016 , 6, 6365-6371		55	
698	Controlled growth of a metalBrganic framework on gold nanoparticles. 2016 , 18, 5262-5266		16	
697	A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 16649-55	9.5	12	
696	Nitrogen-doped porous carbon derived from a bimetallic metalorganic framework as highly efficient electrodes for flow-through deionization capacitors. <i>Journal of Materials Chemistry A</i> , 2016, 4, 10858-10868	13	135	
695	Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal-Organic Framework for a Supercapacitor. 2016 , 55, 6552-62		67	
694	A versatile strategy to fabricate MOFs/carbon material integrations and their derivatives for enhanced electrocatalysis. 2016 , 6, 7728-7735		21	
693	Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. 2016 , 18, 4095-101		79	
692	Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. <i>Energy and Environmental Science</i> , 2016 , 9, 1320-1326	35.4	652	
691	Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. 2016 , 45, 517-31		665	
690	Porous N-doped graphitic carbon assembled one-dimensional hollow structures as high performance electrocatalysts for ORR. 2016 , 6, 12467-12471		7	
689	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2016 , 311, 137-143	8.9	62	
688	Outstanding capacitive performance of reticular porous carbon/graphene sheets with superhigh surface area. 2016 , 190, 923-931		27	
687	Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-N(x). 2016 , 138, 3570-8		1219	
686	Interlocked multi-armed carbon for stable oxygen reduction. 2016 , 52, 5520-2		18	
685	Nanoconfined nitrogen-doped carbon-coated MnO nanoparticles in graphene enabling high performance for lithium-ion batteries and oxygen reduction reaction. 2016 , 7, 4284-4290		112	
684	Hierarchically Porous N-doped Carbon Derived from ZIF-8 Nanocomposites for Electrochemical Applications. 2016 , 196, 699-707		152	
683	Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. 2016 , 7, 1690-1695		590	
682	Hierarchical Metal-Free Nitrogen-Doped Porous Graphene/Carbon Composites as an Efficient Oxygen Reduction Reaction Catalyst. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 1415-23	9.5	98	

681	Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe3C nanoparticles and bamboo-like carbon nanotubes. 2016 , 8, 959-64		41
680	CeO nanowires self-inserted into porous CoO frameworks as high-performance "noble metal free" hetero-catalysts. 2016 , 7, 1109-1114		63
679	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. <i>Energy and Environmental Science</i> , 2016 , 9, 357-390	35.4	387
678	Transition metallitrogenlarbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. <i>Nano Research</i> , 2017 , 10, 1449-1470	10	122
677	A facile strategy to fabricate nitrogen-doped graphene aerogel-supported Fe3N nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. 2017 , 41, 1755-1764		18
676	Lamellar Metal Organic Framework-Derived Fe-N-C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 5272-5278	9.5	78
675	Efficient Synthesis of Nitrogen- and Sulfur-co-Doped Ketjenblack with a Single-Source Precursor for Enhancing Oxygen Reduction Reaction Activity. 2017 , 23, 3674-3682		19
674	Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination. 2017 , 7, 39789		64
673	Effects of composition and nanostructuring of palladium selenide phases, Pd4Se, Pd7Se4 and Pd17Se15, on ORR activity and their use in MgBir batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4660-4670	13	32
672	Thermally Converted CoO Nanoparticles Embedded into N-Doped Carbon Layers as Highly Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. <i>ChemCatChem</i> , 2017 , 9, 1503-1510	5.2	27
671	A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. 2017 , 33, 334-342		288
670	Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. 2017 , 53, 2044-2047		42
669	Nickellobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5594-5600	13	101
668	Self-supported Co3O4 wire-penetrated-cage hybrid arrays with enhanced supercapacitance properties. 2017 , 19, 1459-1463		9
667	Topochemical Reaction of Exfoliated Layered Cobalt(II) Hydroxide for the Synthesis of Ultrapure Co3O4 as an Oxygen Reduction Catalyst. 2017 , 2017, 2184-2189		10
666	Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors. 2017 , 7, 43084		61
665	A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction. 2017 , 7, 43366		27
664	Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction. <i>Advanced Functional Materials</i> , 2017 , 27, 1606190	15.6	182

663	Cu2ZnSnS4AuAg Heterodimers and Their Enhanced Catalysis for Oxygen Reduction Reaction. 2017 , 121, 6712-6720		9
662	Retracted Article: A facile strategy to fabricate nitrogen-doped graphene aerogel supported Fe3N nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. 2017 ,		
661	Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. <i>Journal of Power Sources</i> , 2017 , 343, 458-4	4 8 69	81
660	Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. 2017 , 167, 39-43		70
659	Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 9699-9709	9.5	134
658	Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 6472-6481	6.7	12
657	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. <i>Coordination Chemistry Reviews</i> , 2017 , 337, 80-96	23.2	225
656	Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8. <i>Chemical Engineering Journal</i> , 2017 , 323, 203-211	14.7	80
655	In Situ Formation of Hierarchical Porous Fe,CoN-Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. 2017 , 4, 2005-2011		7
654	Nitrogen-doped porous carbon derived from Fe-MIL nanocrystals as an electrocatalyst for efficient oxygen reduction. 2017 , 7, 22610-22618		21
653	Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. 2017 , 46, 2660-2677		697
652	Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction. 2017 , 7, 1700363		228
651	Co3O4@Co Nanoparticles Embedded Porous N-Rich Carbon Matrix for Efficient Oxygen Reduction. 2017 , 34, 1700074		11
650	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. 2017 , 37, 98-107		110
649	Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction. <i>ACS Applied Materials & Discrete Materials & D</i>	9.5	85
648	Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. <i>ACS Catalysis</i> , 2017 , 7, 469-479	13.1	255
647	Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2017 , 341, 68-74	8.9	39
646	A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. <i>Dalton Transactions</i> , 2017 , 46, 9344-9348	4.3	39

645	Cobalt-phthalocyanine-derived ultrafine Co 3 O 4 nanoparticles as high-performance anode materials for lithium ion batteries. 2017 , 414, 398-404		13
644	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. 2017 , 7, 1700518		406
643	MOF-templated nitrogen-doped porous carbon materials as efficient electrocatalysts for oxygen reduction reactions. 2017 , 4, 1231-1237		12
642	In Situ Coupling FeM (M = Ni, Co) with Nitrogen-Doped Porous Carbon toward Highly Efficient Trifunctional Electrocatalyst for Overall Water Splitting and Rechargeable ZnAir Battery. 2017 , 1, 1700	020	102
641	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. 2017 , 8, 49-58		56
640	Co-Co3O4@carbon coreBhells derived from metalBrganic framework nanocrystals as efficient hydrogen evolution catalysts. <i>Nano Research</i> , 2017 , 10, 3035-3048	10	76
639	MOF-Templated Assembly Approach for Fe C Nanoparticles Encapsulated in Bamboo-Like N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. 2017 , 23, 12125-12130		56
638	Graphene oxide/coreBhell structured metalBrganic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10182-10189	13	128
637	Multiple Interfaces Structure Derived from MetalDrganic Frameworks for Excellent Electromagnetic Wave Absorption. 2017 , 34, 1700006		62
636	Bifunctional Oxygen Electrocatalysis through Chemical Bonding of Transition Metal Chalcogenides on Conductive Carbons. 2017 , 7, 1602217		73
635	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. 2017 , 117, 6225-6331		2919
634	A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na Storage. 2017 , 13, 1604045		32
633	Metal-Organic Framework-Templated Catalyst: Synergy in Multiple Sites for Catalytic CO Fixation. 2017 , 10, 1898-1903		74
632	Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8360-8366	13	24
631	Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. 2017 , 490, 576-586		25
630	A Polymetallic Metal-Organic Framework-Derived Strategy toward Synergistically Multidoped Metal Oxide Electrodes with Ultralong Cycle Life and High Volumetric Capacity. <i>Advanced Functional Materials</i> , 2017 , 27, 1605332	15.6	90
629	Activating Basal Planes and S-Terminated Edges of MoS2 toward More Efficient Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2017 , 27, 1604943	15.6	104
628	Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks. 2017 , 29, 1604898		597

627	Major Role of Surface Area in Perovskite Electrocatalysts for Alkaline Systems. 2017 , 4, 468-471		6
626	Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. <i>Chemical Engineering Journal</i> , 2017 , 314, 50-58	7	218
625	Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. 2017 , 114, 250-260		94
624	Highly Efficient Magnetic Nitrogen-Doped Porous Carbon Prepared by One-Step Carbonization Strategy for Hg Removal from Water. <i>ACS Applied Materials & Damp; Interfaces</i> , 2017 , 9, 2550-2559		52
623	In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. 2017 , 243, 1231-1239		30
622	Nanoporous carbon derived from a functionalized metal-organic framework as a highly efficient oxygen reduction electrocatalyst. 2017 , 9, 862-868		52
621	Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2017 , 11, 347-357	7	306
620	Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. 2017 , 224, 49-55		46
619	Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. 2017 , 41, 600-608		107
618	Rupturing Cotton Microfibers into Mesoporous Nitrogen-Doped Carbon Nanosheets as Metal-Free Catalysts for Efficient Oxygen Electroreduction. 2017 , 5, 9709-9717		19
617	Porphyrinic coordination lattices with fluoropillars. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21189-21195		13
616	Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 41303-41313		49
615	MoS2 Thin Sheet Growing on Nitrogen Self-Doped Mesoporous Graphic Carbon Derived from ZIF-8 with Highly Electrocatalytic Performance on Hydrogen Evolution Reaction. 2017 , 5, 10240-10247		32
614	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23170-23178		47
613	MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 37813-3782 $2^{0.5}$		76
612	Two-Dimensional Mesoporous Carbon Doped with FeN Active Sites for Efficient Oxygen Reduction. <i>ACS Catalysis</i> , 2017 , 7, 7638-7646	ι	75
611	Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. 2017 , 29, 1703614		522
610	Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction. 2017 , 13, 1702002		138

609	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal-Nitrogen Bonding. <i>ACS Applied Materials & Discrete Section</i> , 9, 38499-3850	6 ^{9.5}	33
608	W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media. 2017 , 7, 5733-5740		9
607	N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. 2017 , 40, 462-470		158
606	Synthesis of Core/Shell ZnO/rGO Nanoparticles by Calcination of ZIF-8/rGO Composites and Their Photocatalytic Activity. 2017 , 2, 4946-4954		51
605	An electrochemical sensor based on metal-organic framework-derived porous carbon with high degree of graphitization for electroanalysis of various substances. 2017 , 251, 71-80		38
604	Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors. <i>ACS Applied Materials & Dioxide</i> 9, 35040-35047	9.5	84
603	High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches. 2017 , 53, 10784-10787		88
602	Coassembly and high ORR performance of monodisperse Pt nanocrystals with a mesopore-rich nitrogen-doped graphene aerogel. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17544-17548	13	25
601	Recent advances in air electrodes for ZnBir batteries: electrocatalysis and structural design. 2017 , 4, 945-976		174
600	Influence of nitrogen doping on the electrocatalytic activity of Ni-incorporated carbon nanofibers toward urea oxidation. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 21741-21750	6.7	33
599	Metal-Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media. 2017 , 10, 3019-3024		73
598	Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. 2017 , 13, 1701143		125
597	Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction. 2017 , 507, 154-161		35
596	Solvent-Induced Cadmium(II) Metal-Organic Frameworks with Adjustable Guest-Evacuated Porosity: Application in the Controllable Assembly of MOF-Derived Porous Carbon Materials for Supercapacitors. 2017 , 23, 15680-15693		32
595	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. <i>Chemical Engineering Journal</i> , 2017 , 330, 736-745	14.7	71
594	A novel composite (FMC) to serve as a durable 3D-clam-shaped bifunctional cathode catalyst for both primary and rechargeable zinc-air batteries. 2017 , 62, 1216-1226		31
593	Nitrogen-Doped Porous Graphdiyne: A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 29744-29752	9.5	131
592	A "Nanopore Lithography" Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44740-44755	9.5	28

591	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. 2017 , 3, eaap9252		639
590	Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. 2017 , 8, 15341		794
589	Boron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide Biosensor. 2017 , 2, 1700224		15
588	Metal-Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Description of Materials &</i>	35	50
587	Substrate-Assisted in Situ Confinement Pyrolysis of Zeolitic Imidazolate Frameworks to Nitrogen-Doped Hierarchical Porous Carbon Nanoframes with Superior Lithium Storage. <i>ACS</i> Applied Materials & amp; Interfaces, 2017 , 9, 42845-42855	.5	12
586	A N,P-co-doped 3D graphene/cobalt-embedded electrocatalyst for the oxygen reduction reaction. 2017 , 41, 15236-15243		3
585	A graphene-based porous carbon material as a stationary phase for gas chromatographic separations. 2017 , 7, 32126-32132		11
584	A Facile Activation Strategy for an MOF-Derived Metal-Free Oxygen Reduction Reaction Catalyst: Direct Access to Optimized Pore Structure and Nitrogen Species. <i>ACS Catalysis</i> , 2017 , 7, 6082-6088	3.1	141
583	Nonprecious Electrocatalysts for Li?Air and Zn?Air Batteries: Fundamentals and recent advances 2017 , 11, 29-55		10
582	Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 889-898	1.8	138
581	Nitrogen-Doped Hierarchical Porous Carbons Derived from Sodium Alginate as Efficient Oxygen Reduction Reaction Electrocatalysts. <i>ChemCatChem</i> , 2017 , 9, 809-815	.2	32
580	Nano Metal-Organic Framework-Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. 2017 , 23, 5631-5651		80
579	Advancements in rationally designed PGM-free fuel cell catalysts derived from metal b rganic frameworks. 2017 , 4, 20-37		111
578	Nitrogen-doped carbon with a high degree of graphitization derived from biomass as high-performance electrocatalyst for oxygen reduction reaction. 2017 , 396, 986-993		57
577	Synthesis of RGO/Cu8S5/PPy Composite Nanosheets with Enhanced Peroxidase-Like Activity for Sensitive Colorimetric Detection of H2O2 and Phenol. 2017 , 34, 1600233		28
576	Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. 2017 , 7, 1602002		137
575	Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. 2017 , 693, 964-969		36
574	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. 2017 , 31, 331-350		257

573	Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal 0 rganic frameworks for supercapacitor electrodes. 2017 , 52, 446-457		35
572	A new lanthanum(III) complex containing acetyl-acetone and 1-imidazole. 2017 , 73, 1739-1742		1
571	Anchoring Iron-EDTA Complex on Graphene toward the Synthesis of Highly Efficient Fe-N-C Oxygen Reduction Electrocatalyst for Fuel Cells. 2018 , 36, 287-292		15
570	Web-Like Interconnected Carbon Networks from NaCl-Assisted Pyrolysis of ZIF-8 for Highly Efficient Oxygen Reduction Catalysis. 2018 , 14, e1704169		77
569	Redox-active and semi-conducting donor\(\text{Bcceptor conjugated microporous polymers as metal-free ORR catalysts. \(\text{Journal of Materials Chemistry A, \textbf{2018}, 6, 5587-5591\)	13	47
568	Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metalBrganic frameworks for enhanced electrocatalytic oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5752-5761	13	88
567	MetalBrganic framework-derived porous materials for catalysis. <i>Coordination Chemistry Reviews</i> , 2018 , 362, 1-23	23.2	524
566	Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis. 2018 , 132, 580-588		52
565	A versatile CeO/CoO coated mesh for food wastewater treatment: Simultaneous oil removal and UV catalysis of food additives. 2018 , 137, 144-152		26
564	Ancient Chemistry "PharaohN Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Appl</i>	9.5	52
563	MnO-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries. 2018 , 5, 171824		8
562	Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for LiD2 battery. 2018 , 53, 4395-4405		15
561	ZnO @ N-doped porous carbon/Co 3 ZnC coreBhell heterostructures with enhanced electromagnetic wave attenuation ability. <i>Chemical Engineering Journal</i> , 2018 , 342, 364-371	14.7	47
560	Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 343, 78-85	14.7	42
559	3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/FeC for efficient oxygen reduction reaction and supercapacitor. 2018 , 10, 9252-9260		69
558	Development of 3D interconnected carbon materials derived from Zn-MOF-74@carbon nanofiber web as an efficient metal-free electrocatalyst for oxygen reduction. 2018 , 135, 35-43		37
557	Medulla tetrapanacis-derived O/N co-doped porous carbon materials for efficient oxygen reduction electrocatalysts and high-rate supercapacitors. 2018 , 272, 88-96		30
556	3D, Mutually Embedded MOF@Carbon Nanotube Hybrid Networks for High-Performance Lithium-Sulfur Batteries. 2018 , 8, 1800013		147

555	Controllable Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis. 2018 , 14, e170420	7	71
554	Carbazole-decorated covalent triazine frameworks: Novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction. 2018 , 362, 1-9		68
553	Crab Shell-Templated Fe and N Co D oped Mesoporous Carbon Nanofibers as a Highly Efficient Oxygen Reduction Reaction Electrocatalyst. 2018 , 3, 3722-3730		4
552	Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO Electrochemical Reduction. <i>ACS Applied Materials & District Materials & </i>	9.5	79
551	Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confinement Pyrolysis. 2018 , 14, e1704461		31
550	Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. 2018 , 12, 277-283		130
549	New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. 2018 , 24, 6950-6957		18
548	Nitrogen-doped carbon nanoflower with superior ORR performance in both alkaline and acidic electrolyte and enhanced durability. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 4311-4320	6.7	24
547	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. <i>ACS Nano</i> , 2018 , 12, 1949-1958	16.7	255
546	Activation of Molecular Oxygen Using Durable Cobalt Encapsulated with Nitrogen-Doped Graphitic Carbon Shells for Aerobic Oxidation of Lignin-Derived Alcohols. 2018 , 24, 4653-4661		13
545	3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions. <i>ACS Applied Materials & District Materials</i> (2018), 10, 7180-7190	9.5	37
544	Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. 2018 , 61, 686-696		8
543	3D Carbon Electrocatalysts In Situ Constructed by Defect-Rich Nanosheets and Polyhedrons from NaCl-Sealed Zeolitic Imidazolate Frameworks. <i>Advanced Functional Materials</i> , 2018 , 28, 1705356	15.6	180
542	Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage. <i>ACS Nano</i> , 2018 , 12, 1990-2000	16.7	166
541	Recent Advancements in Transition Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction Reaction. 2018 , 30, 1217-1228		52
540	Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries. 2018, 5, 1700691		430
539	Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3926-3932	13	105
538	Kern-Schale-Strukturierung rein metallischer Aerogele fileine hocheffiziente Nutzung von Platin fildie Sauerstoffreduktion. 2018 , 130, 3014-3018		7

537	Interface engineered in situ anchoring of CoS nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries. 2018 , 10, 2649-2657		53
536	Facile Metal Coordination of Active Site Imprinted Nitrogen Doped Carbons for the Conservative Preparation of Non-Noble Metal Oxygen Reduction Electrocatalysts. 2018 , 8, 1701771		42
535	Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1704537	15.6	414
534	MOF-Derived Bifunctional Cu P Nanoparticles Coated by a N,P-Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. 2018 , 30, 1703711		371
533	Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2963-2966	16.4	116
532	Metal-organic framework-derived hierarchical ZnO/NiO composites: Morphology, microstructure and electrochemical performance. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 62, 250-257	6.3	30
531	Polymer nanosheets derived porous carbon nanosheets as high efficient electrocatalysts for oxygen reduction reaction. 2018 , 516, 9-15		10
530	MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. 2018 , 53, 4913-4926		35
529	Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon. <i>ACS Catalysis</i> , 2018 , 8, 1186-1191	13.1	392
528	Nitrogen-doped porous carbon from ionic liquid@Al-metal-organic framework: A prominent adsorbent for purification of both aqueous and non-aqueous solutions. <i>Chemical Engineering Journal</i> , 2018 , 338, 107-116	14.7	49
527	From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10731-10739	13	79
526	Hierarchically Porous Co and N-Codoped Carbon Hollow Structure Derived from PS@ZIF-67 as an Electrocatalyst for Oxygen Reduction. 2018 , 3, 4831-4837		13
525	Bifunctional 3D n-doped porous carbon materials derived from paper towel for oxygen reduction reaction and supercapacitor. 2018 , 63, 621-628		23
524	Preparation of double-shell Co9S8/Fe3O4 embedded in S/N co-decorated hollow carbon nanoellipsoid derived from Bi-Metal organic frameworks for oxygen evolution reaction. <i>Journal of Power Sources</i> , 2018 , 391, 59-66	8.9	22
523	Hierarchically porous carbon microspheres with fully open and interconnected super-macropores for air cathodes of Zn-Air batteries. 2018 , 136, 54-62		23
522	Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 14602-14613	9.5	40
521	Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. 2018 , 61, 915-925		14
520	Incorporation of Fe3C and Pyridinic N Active Sites with a Moderate N/C Ratio in FeN Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. 2018 , 1, 1801-1810		35

519	A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction. <i>ACS Nano</i> , 2018 , 12, 3042-3051	16.7	88
518	Solar-to-Hydrogen Energy Conversion Based on Water Splitting. 2018 , 8, 1701620		285
517	Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. 2018 , 6, 10-18		139
516	Nitrogen-Enriched Carbon Nanofiber Aerogels Derived from Marine Chitin for Energy Storage and Environmental Remediation. 2018 , 6, 177-185		62
515	A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery. 2018 , 427, 396-404		22
5 1 4	Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. 2018 , 509, 245-253		111
513	Metal Drganic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. 2018 , 8, 1701416		74
512	MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. 2018 , 10, 75-84		118
511	CuMOF-Derived Cu/Cu2O Nanoparticles and CuNxCy Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in AlAir Battery. 2018 , 6, 413-421		81
510	A nitrogen-doped electrocatalyst from metal-organic framework-carbon nanotube composite. 2018 , 33, 538-545		13
509	DUT-58 (Co) Derived Synthesis of Co Clusters as Efficient Oxygen Reduction Electrocatalyst for Zinc-Air Battery. 2018 , 2, 1700086		12
508	N/S/B-doped graphitized carbon encased Fe species as a highly active and durable catalyst towards oxygen reduction reaction. 2018 , 514, 108-116		21
507	Polyelectrolyte Capping As Straightforward Approach toward Manipulation of Diffusive Transport in MOF Films. 2018 , 34, 425-431		5
506	Conductive Porous Network of Metal Drganic Frameworks Derived Cobalt-Nitrogen-doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc Air Batteries. <i>ChemCatChem</i> , 2018 , 10, 1336-1343	5.2	12
505	Nanomaterials derived from metal b rganic frameworks. 2018 , 3,		689
504	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metallitrogenlarbon catalysts for alkaline membrane fuel cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 776-804	13	257
503	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. 2018 , 61, 228-235		23
502	The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. 2018 , 263, 21-27		21

501	Electroless deposition of Co(Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 53-63	3
500	General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage. 2018 , 5, 78-85	32
499	Bifunctional Electrocatalysts (Co9S8@NSC) Derived from a Polymer-metal Complex for the Oxygen Reduction and Oxygen Evolution Reactions. 2018 , 5, 355-361	21
498	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for High-Performance Electrocatalysis. <i>ChemCatChem</i> , 2018 , 10, 1241-1247	3
497	Mesoporous LaMnO3+[perovskite from spraypyrolysis with superior performance for oxygen reduction reaction and ZnBir battery. 2018 , 43, 81-90	50
496	High-quality graphene sheets decorated with ZIF-8 nanocrystals. 2018 , 262, 68-76	10
495	Highly efficient photo-Fenton degradation of methyl orange facilitated by slow light effect and hierarchical porous structure of Fe2O3-SiO2 photonic crystals. <i>Applied Catalysis B: Environmental</i> , 21.8 2018 , 237, 1160-1167	63
494	Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by Metal-Organic Framework for Oxygen Reduction Reactions. 2018 , 8, 607	15
493	Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. 2018 , 42, 18678-18689	4
492	Cobalt and nitrogen co-doped hierarchically porous carbon nanostructure: a bifunctional electrocatalyst for oxygen reduction and evolution reactions. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24078-24085	46
491	Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24979-24987	28
490	Fe-Doped Metal-Organic Frameworks-Derived Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F1278-F1285	10
489	Nitrogen-doped graphene aerogel with an open structure assisted by in-situ hydrothermal restructuring of ZIF-8 as excellent Pt catalyst support for methanol electro-oxidation. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 21899-21907	12
488	Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. 2018 , 185, 501	8
487	Boosting Electrocatalytic Oxygen Evolution Performance of Ultrathin Co/Ni-MOF Nanosheets via Plasmon-Induced Hot Carriers. <i>ACS Applied Materials & Discrete Materials & Discrete</i>	49
486	Electrostatically regulated ternary-doped carbon foams with exposed active sites as metal-free oxygen reduction electrocatalysts. 2018 , 10, 19498-19508	11
485	Nitrogen-, Oxygen- and Sulfur-Doped Carbon-Encapsulated Ni3S2 and NiS CoreBhell Architectures: Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction Reactions. 2018 , 6, 15582-15590	42
484	Graphitized Mesoporous Carbon Derived from ZIF-8 for Suppressing Sulfation in Lead Acid Battery and Dendritic Lithium Formation in Lithium Ion Battery. <i>Journal of the Electrochemical Society</i> , 2018 , 3.9 165, A2978-A2984	8

483	PtTe Monolayer: Two-Dimensional Electrocatalyst with High Basal Plane Activity toward Oxygen Reduction Reaction. 2018 , 140, 12732-12735	56
482	Thermal Conversion of MOF@MOF: Synthesis of an N-Doped Carbon Material with Excellent ORR Performance. 2018 , 83, 1044-1051	14
481	Novel ECD@ZIF-8 Nanoparticles-Doped Poly(-phenylene isophthalamide) (PMIA) Thin-Film Nanocomposite (TFN) Membrane for Organic Solvent Nanofiltration (OSN). 2018 , 3, 11770-11787	25
480	Nitrogen-Doped Microporous Carbons Derived from Pyridine Ligand-Based Metal-Organic Complexes as High-Performance SO Adsorption Sorbents. <i>ACS Applied Materials & amp; Interfaces</i> , 9.5 2018 , 10, 37407-37416	15
479	Amperometric Glucose Sensing at Nanomolar Level Using MOF-Encapsulated TiO Platform. 2018 , 3, 14634-14	46 4∮
478	MOF-Derived Porous NiP/Graphene Composites with Enhanced Electrochemical Properties for Sensitive Nonenzymatic Glucose Sensing. <i>ACS Applied Materials & Description</i> (2018), 10, 39151-39160 ^{9.5}	85
477	Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. 2018 , 130, 16749-16753	41
476	Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. <i>Angewandte Chemie - International</i> 16.4 <i>Edition</i> , 2018 , 57, 16511-16515	190
475	Sepia-Derived N, P Co-doped Porous Carbon Spheres as Oxygen Reduction Reaction Electrocatalyst and Supercapacitor. 2018 , 6, 16032-16038	51
474	Fe/Co Double Hydroxide/Oxide Nanoparticles on N-Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasi-Solid-State ZincAir Batteries. 2018 , 8, 1801836	70
473	Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers. 2018 , 54, 11431-11434	6
472	Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale. ACS Applied Materials & amp; Interfaces, 2018, 10, 33619-33629 9.5	27
471	Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis. 2018 , 54, 11048-11051	17
47°	A boron imidazolate framework with mechanochromic and electrocatalytic properties. 2018 , 5, 1151-1155	36
469	Control of Micro- and Mesopores in Carbon Nanofibers and Hollow Carbon Nanofibers Derived from Cellulose Diacetate via Vapor Phase Infiltration of Diethyl Zinc. 2018 , 6, 13844-13853	12
468	Designing Porous Structures and Active Sites in Carbon-Based Electrocatalysts. 2018 , 77-99	
467	Electrosynthesis of Well-Defined Metal-Organic Framework Films and the Carbon Nanotube Network Derived from Them toward Electrocatalytic Applications. <i>ACS Applied Materials & amp; Interfaces,</i> 2018 , 10, 34494-34501	31
466	Exploring Indium-Based Ternary Thiospinel as Conceivable High-Potential Air-Cathode for Rechargeable ZnAir Batteries. 2018 , 8, 1802263	164

465	Noble metal-free Co@N-doped carbon nanotubes as efficient counter electrode in dye-sensitized solar cells. 2018 , 174, 225-230	16
464	Zingiber striolatum diels derived O/N dual-doped porous carbon for high performance oxygen reduction reaction and energy storage. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 18270-18278 ^{6.7}	5
463	Hierarchical Flowerlike Highly Synergistic Three-Dimensional Iron Tungsten Oxide Nanostructure-Anchored Nitrogen-Doped Graphene as an Efficient and Durable Electrocatalyst for 9.5 Oxygen Reduction Reaction. ACS Applied Materials & Company Interfaces, 2018, 10, 32220-32232	25
462	2D Zn-Hexamine Coordination Frameworks and Their Derived N-Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage. 2018 , 8, 1800569	115
461	Electronic and Defective Engineering of Electrospun CaMnO3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable ZincAir Batteries. 2018 , 8, 1800612	171
460	Use of plant based analytes for the synthesis of NiO nanoparticles in catalyzing electrochemical H2O2 production. 2018 , 823, 9-19	9
459	Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable ZnAir Battery. 2018 , 8, 1800955	114
458	NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14299-14306	96
457	Novel Nanomaterials as Electrocatalysts for Fuel Cells. 2018 , 169-204	2
456	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. 2018 , 459-541	
455	Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. 2018 , 5, 065602	20
455 454	absorption materials. 2018 , 5, 065602 Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for	20
	absorption materials. 2018 , 5, 065602 Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for	
454	Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable NaD2 batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2833-2838 Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction	; 25
454 453	absorption materials. 2018, 5, 065602 Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable NaD2 batteries. Energy and Environmental Science, 2018, 11, 2833-2838 Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction Electrocatalysis: A Review. 2018, 8, 301 Three-dimensionally hierarchical Co3O4/Carbon composites with high pseudocapacitance	25 22 29
454 453 452	Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable NaD2 batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2833-2838 Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction Electrocatalysis: A Review. 2018 , 8, 301 Three-dimensionally hierarchical Co3O4/Carbon composites with high pseudocapacitance contribution for enhancing lithium storage. 2018 , 283, 1269-1276 PdCu nanoalloy immobilized in ZIF-derived N-doped carbon/graphene nanosheets: Alloying effect	22 29
454 453 452 451	absorption materials. 2018, 5, 065602 Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable NaD2 batteries. Energy and Environmental Science, 2018, 11, 2833-2838 Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction Electrocatalysis: A Review. 2018, 8, 301 Three-dimensionally hierarchical Co3O4/Carbon composites with high pseudocapacitance contribution for enhancing lithium storage. 2018, 283, 1269-1276 PdCu nanoalloy immobilized in ZIF-derived N-doped carbon/graphene nanosheets: Alloying effect on catalysis. Chemical Engineering Journal, 2018, 353, 311-318 MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen	25 22 29 7 37

(2018-2018)

447	A Roadmap for Achieving Sustainable Energy Conversion and Storage: Graphene-Based Composites Used Both as an Electrocatalyst for Oxygen Reduction Reactions and an Electrode Material for a Supercapacitor. 2018 , 11, 167	16
446	ZnO nano-cages derived from ZIF-8 with enhanced anti mycobacterium-tuberculosis activities. 2018 , 766, 619-625	17
445	Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 16230-16239	13
444	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. 2018 , 8, 1801257	157
443	N, P, S co-doped hollow carbon polyhedra derived from MOF-based core\(\begin{align*}{c} \text{hell nanocomposites for capacitive deionization.} \) Journal of Materials Chemistry A, 2018 , 6, 15245-15252	185
442	Heteroatom-doped nanoporous carbon from recyclable lobata and its dual activities for oxygen reduction and hydrogen evolution reactions 2018 , 8, 24392-24398	
441	Crystalline-Water/Coordination Induced Formation of 3D Highly Porous Heteroatom-Doped Ultrathin Carbon Nanosheet Networks for Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2018 , 10, 4562-4568	13
440	Advanced Hierarchical Vesicular Carbon Co-Doped with S, P, N for High-Rate Sodium Storage. 2018 , 5, 1800241	177
439	Carbon Thin-Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. 2018 , 30, 6014-6025	53
438	Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. 2018 , 154, 457-464	30
437	Tuning Cobalt and Nitrogen Co-Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction. 2018 , 11, 3631-3639	16
436	Robust Synthesis of High-Performance N-Graphite Hollow Nanocatalysts Based on the Ostwald Ripening Mechanism for Oxygen Reduction Reaction Electrocatalysis. 2018 , 35, 1800266	1
435	Highly efficient ZIF-8/graphene oxide derived N-doped carbon sheets as counter electrode for dye-sensitized solar cells. 2018 , 286, 212-218	21
434	Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. <i>Chemical Engineering Journal</i> , 2018 , 350, 164-172	85
433	Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. 2018 , 30, e1802011	344
432	Ultrathin, highly branched carbon nanotube cluster with outstanding oxygen electrocatalytic performance. 2018 , 282, 224-232	22
431	Lewis-Basic Lanthanide Metal-Organic Framework-Derived Versatile Multi-Active-Site Synergistic Catalysts for Oxygen Reduction Reaction. <i>ACS Applied Materials & Design Communication Co</i>	27
430	Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22311-22319	184

429	Hyperporous-Carbon-Supported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. 2018 , 13, 2671-2676		12
428	Formation of N-rich Hierarchically Porous Carbon via Direct Growth ZIF-8 on C3N4 Nanosheet with Enhancing Electrochemical Performance. 2018 , 3, 6440-6449		9
427	Gold-Nanoparticle-Encapsulated ZIF-8 for a Mediator-Free Enzymatic Glucose Sensor by Amperometry. 2018 , 1, 3600-3607		44
426	In situ anchoring of metal nanoparticles in the N-doped carbon framework derived from conjugated microporous polymers towards an efficient oxygen reduction reaction. 2018 , 8, 3572-3579		24
425	Three 3D Co(ii) cluster-based MOFs constructed from polycarboxylate acids and bis(imidazole) ligands and their derivatives: magnetic properties and catalytic performance for the ORR. <i>Dalton Transactions</i> , 2019 , 48, 13369-13377	4.3	14
424	MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. 2019 , 10, 4974-4979		21
423	Nitrogen-doped Carbon Nanofibers Network Derived from Bacterial Cellulose for the Oxygen Reduction Reaction. 2019 , 48, 1188-1191		2
422	Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. 2019 , 12, 4165-4169		17
421	Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors. 2019 , 848, 113348		13
420	Tunable doping of N and S in carbon nanotubes by retarding pyrolysis-gas diffusion to promote electrocatalytic hydrogen evolution. 2019 , 55, 10011-10014		6
419	Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO in Mild Conditions. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	31
418	Medulla stachyuri-derived iron and nitrogen co- doped 2D porous carbon-flakes for highly efficient oxygen reduction electrocatalysis and supercapacitors. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 21726-21737	6.7	1
417	Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. 2019 , 494, 101-110		22
416	Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. 2019 , 153, 609-616		15
415	Boosting High-Rate Li-S Batteries by an MOF-Derived Catalytic Electrode with a Layer-by-Layer Structure. 2019 , 6, 1802362		55
414	Realization of Oxygen Reduction and Evolution Electrocatalysis by In Situ Stabilization of Co Nanoparticles in a Redox-Active Donor-Acceptor Porous Organic Polymer. 2019 , 6, 3756-3763		10
413	Building metal-functionalized porous carbons from microporous organic polymers for CO2 capture and conversion under ambient conditions. 2019 , 9, 4422-4428		10
412	Metal-organic framework-derived materials for electrochemical energy applications. 2019 , 1, 100001		333

(2019-2019)

411	Interconnected nanoporous carbon structure delivering enhanced mass transport and conductivity toward exceptional performance in supercapacitor. <i>Journal of Power Sources</i> , 2019 , 435, 226811	8.9	16
410	N-Doped Carbon Aerogel Derived from a Metal-Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction. 2019 , 14, 3642-3647		12
409	A Facile Route for Constructing Effective Cu-N Active Sites for Oxygen Reduction Reaction. 2019 , 26, 4070		13
408	Fe azaphthalocyanine unimolecular layers (Fe AzULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes. 2019 , 11,		15
407	High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical Growth of Polybromides. 2019 , 31, e1904524		37
406	MetalBrganic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1964-1988	13	118
405	Modulating Catalytic Performance of Metal Drganic Framework Composites by Localized Surface Plasmon Resonance. <i>ACS Catalysis</i> , 2019 , 9, 11502-11514	13.1	37
404	Porosity-Induced High Selectivity for CO2 Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. <i>ACS Catalysis</i> , 2019 , 9, 11579-11588	13.1	52
403	In Situ Growing Triethanolamine-Functionalized Metal-Organic Frameworks on Two-Dimensional Carbon Nanosheets for Electrochemiluminescent Immunoassay. 2019 , 4, 2351-2357		19
402	An MOF-derived copper@nitrogen-doped carbon composite: the synergistic effects of N-types and copper on selective CO2 electroreduction. 2019 , 9, 5668-5675		26
401	UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. 2019 , 323, 134777		15
400	Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22242-22247	13	59
399	Efficient nitrogen-doped porous carbon/carbon nanotube-supported Co3O4/Co catalysts for oxygen reduction reactions in alkaline media. 2019 , 851, 113478		8
398	MXene-Based Co, N-Codoped Porous Carbon Nanosheets Regulating Polysulfides for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 38654-386	5 8 2 ⁵	35
397	Anchoring a Co/2-methylimidazole complex on ion-exchange resin and its transformation to Co/N-doped carbon as an electrocatalyst for the ORR. 2019 , 9, 578-582		9
396	NH-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. 2019 , 10, 2111-2117		24
395	Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: a promising bisphenol-A remediation material. 2019 , 6, 809-819		29
394	Boosting Electrochemical CO2 Reduction on Metal©rganic Frameworks via Ligand Doping. 2019 , 131, 4081-4085		52

393	Boosting Electrochemical CO Reduction on Metal-Organic Frameworks via Ligand Doping. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4041-4045	16.4	108
392	An efficient carbon-based ORR catalyst from low-temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3544-3551	13	64
391	From Supramolecular Species to Self-Templated Porous Carbon and Metal-Doped Carbon for Oxygen Reduction Reaction Catalysts. 2019 , 131, 5017-5021		6
390	From Supramolecular Species to Self-Templated Porous Carbon and Metal-Doped Carbon for Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4963-4967	16.4	47
389	N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 239-248	21.8	95
388	Single-source precursor synthesis of nitrogen-doped porous carbon for high-performance electrocatalytic ORR application. 2019 , 45, 8354-8361		3
387	Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. 2019 , 285, 607-616		27
386	Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study. 2019 , 146, 348-363		49
385	Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. <i>Journal of Power Sources</i> , 2019 , 414, 383-392	8.9	26
384	Nitrogen- and iodine-doped microporous carbon derived from a hydrogen-bonded organic framework: an efficient metal-free electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9587-9592	13	26
383	High Efficiency FeNi-Metal-Organic Framework Grown In-situ on Nickel Foam for Electrocatalytic Oxygen Evolution. 2019 , 4, 5988-5994		7
382	Mechanochemical assisted synthesis of heteroatoms inherited highly porous carbon from biomass for electrochemical capacitor and oxygen reduction reaction electrocatalysis. 2019 , 317, 1-9		26
381	Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr reduction. 2019 , 553, 372-381		52
380	Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117888	21.8	59
379	Paper-based porous graphene/single-walled carbon nanotubes supported Pt nanoparticles as freestanding catalyst for electro-oxidation of methanol. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117886	21.8	24
378	Reliable and valid pyrite electrocatalysts supported on nitrogen-doped porous carbon sheets for advanced lithium sulfur batteries. <i>Journal of Power Sources</i> , 2019 , 435, 226778	8.9	13
377	Confined Pyrolysis of ZIF-8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. <i>Small Methods</i> , 2019 , 3, 1900277	12.8	21
376	Efficient oxygen reduction on sandwich-like metal@N-C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets. 2019 , 11, 12610-12618		16

375	Ultraporous nitrogen-rich carbon nanosheets derived from the synergy of eutectic liquid and zeolitic imidazolate for energy applications. <i>Journal of Power Sources</i> , 2019 , 434, 126678	8.9	6
374	Carbon composite membrane derived from MIL-125-NH MOF for the enhanced extraction of emerging pollutants. 2019 , 231, 510-517		15
373	Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. 2019 , 16, 146-168		47
372	N, P, S tri-doped hollow carbon nanosphere as a high-efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. 2019 , 490, 47-55		24
371	Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6. 2019 , 378, 120761		25
370	Homogenous Meets Heterogenous and Electro-Catalysis: Iron-Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications. <i>ChemCatChem</i> , 2019 , 11, 3602-3625	5.2	16
369	Porous NII catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. 2019 , 150, 475-484		36
368	Thermally Robust Porous Bimetallic (Ni Pt) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 21435-21444	9.5	9
367	Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23878-23885	13	29
366	Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. 2019 , 202, 354-361		33
365	Highly Efficient Fe NC Electrocatalyst for Oxygen Reduction Derived from CoreBhell-Structured Fe(OH)3@Zeolitic Imidazolate Framework. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3194-3203	6.1	23
364	A facile and controllable, deep eutectic solvent aided strategy for the synthesis of graphene encapsulated metal phosphides for enhanced electrocatalytic overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13455-13459	13	17
363	Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. <i>Coordination Chemistry Reviews</i> , 2019 , 393, 48-78	23.2	123
362	An ingenious approach for ZIFs derived N-doped hierarchical porous carbon hybrids with FeCo alloy nanoparticles as efficient bifunctional oxygen electrocatalysts. 2019 , 487, 496-502		20
361	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H2S Selective Oxidation. 2019 , 2, 3780-3792		25
360	An innovative catalyst of nickel-palladium alloy nanocrystals embedded nitrogen-doped graphene for efficient oxygen reduction reaction. 2019 , 797, 314-324		12
359	Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 18295-18304	9.5	21
358	Metal®rganic Frameworks as Electro-Catalysts for Oxygen Reduction Reaction in Electrochemical Technologies. 2019 , 48, 4127-4137		10

357	Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. <i>Nano Research</i> , 2019 , 12, 2318-2323	10	30
356	S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. 2019 , 275, 167-173		14
355	Unraveling the high-activity nature of FeNC electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between FeN4 and Fe4N. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11792-118	3631	55
354	Regulating the allocation of N and P in codoped graphene via supramolecular control to remarkably boost hydrogen evolution. <i>Energy and Environmental Science</i> , 2019 , 12, 2697-2705	35.4	45
353	Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. 2019 , 15, 100109		11
352	Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent. 2019 , 274, 199-206		7
351	N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction. 2019 , 274, 237-242		22
350	Cobalt Phosphate Nanoparticles Embedded Nitrogen and Phosphorus-Codoped Graphene Aerogels as Effective Electrocatalysts for Oxygen Reduction. 2019 , 6,		4
349	Rational design of three-phase interfaces for electrocatalysis. <i>Nano Research</i> , 2019 , 12, 2055-2066	10	86
348	Porous NiCo2S4/Co9S8 Microcubes Templated by Sacrificial ZnO Spheres as an Efficient Bifunctional Oxygen Electrocatalyst. 2019 , 3, 1800167		13
347	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. 2019, 6, 2600-2614		28
346	Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates. 2019 , 114, 161-16	9	33
345	Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. 2019 , 546, 113-121		31
344	Metal©rganic Frameworks for High-Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. 2019 , 2, 591-626		29
343	Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. 2019 , 62, 417-429		34
342	Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. 2019 , 376, 32-42		54
341	MOF/CC-derivatives with trace amount of cobalt oxides as efficient electrocatalysts for oxygen reduction reaction. 2019 , 30, 989-994		10
340	Carbon-Based Nanostructures Vertically Arrayed on Layered Lanthanum Oxycarbonate as Highly Efficient Catalysts for Oxygen Reduction Reactions. <i>ACS Applied Materials & Distriction Action Action Action Materials & Distriction Action Materials & Distriction Action Materials & Distriction Action Control Materials & Distriction Carbon Control Materials & Distriction Carbon C</i>	9.5	8

339	Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. 2019 , 15, e1900470	127
338	Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics. 2019 , 4, 893-900	24
337	Pure nitrogen-doped graphene aerogel with rich micropores yields high ORR performance. 2019 , 242, 1-5	17
336	A Green In Situ Synthesis of Hybrid Graphene-Based Zeolitic Imidazolate Framework-8 Nanofillers Using Recycling Mother Liquor. 2019 , 797, 48-54	5
335	Binding Energy Optimization Strategy Inducing Enhanced Catalytic Performance on MIL-100(FeNi) To Catalyze Water Oxidation Directly. 2019 , 7, 7496-7501	20
334	MetalBrganic framework derived CoN-reduced graphene oxide as electrode materials for rechargeable LiD2 batteries. 2019 , 43, 7574-7581	4
333	Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8. <i>Chemical Engineering Journal</i> , 2019 , 371, 796-803	71
332	Hollow CoO Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage. 2019 , 58, 3416-3424	14
331	Biomass Derived Graphene-Like Carbons for Electrocatalytic Oxygen Reduction Reaction. 2019 , 5, 682-689	27
330	Ni-Co-MoSx ball-in-ball hollow nanospheres as Pt-free bifunctional catalysts for high-performance solar cells and hydrogen evolution reactions. <i>Chemical Engineering Journal</i> , 2019 , 368, 202-211	42
329	N-Doped Porous Carbon Derived by Direct Carbonization of Metal©rganic Complexes Crystal Materials for SO2 Adsorption. 2019 , 19, 1973-1984	21
328	Transition Metal Mitrogen Carbon (MMC) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. 2019 , 3, 16	48
327	Biomass-derived porous carbon supported CoCoO yolk-shell nanoparticles as enhanced multifunctional electrocatalysts. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 6525-6534	16
326	Nitrogen-Rich, Well-Dispersed Nanoporous Carbon Materials for Super-Efficient Oxygen Reduction Reaction. 2019 , 6, 1894-1900	3
325	Progress and challenges of graphene oxide/metal-organic composites. <i>Coordination Chemistry Reviews</i> , 2019 , 387, 262-272	62
324	MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni-Co-S Nanoparticles for Supercapacitors and Lithium Ion Batteries. 2019 , 58, 3916-3924	53
323	A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. 2019 , 186, 191	31
322	Boosting the oxygen reduction activity of a nano-graphene catalyst by charge redistribution at the graphene-metal interface. 2019 , 11, 5038-5047	14

321	Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries. 2019 , 43, 1892-1902		51
320	Highly Transparent, Flexible, and Mechanically Strong Nanopapers of Cellulose Nanofibers @Metal-Organic Frameworks. 2019 , 25, 3515-3520		47
319	Graphene based non-noble metal catalyst for oxygen reduction reaction. 2019 , 384, 012057		
318	Polymer-Mediated Self-Assembly of Amorphous Metal@rganic Complexes toward Fabrication of Three-Dimensional Graphene Supported CoP Nanoparticle-Embedded N-Doped Carbon as a Superior Hydrogen Evolution Catalyst. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8851-8861	6.1	16
317	Porous g-CN covered MOF-derived nanocarbon materials for high-performance supercapacitors 2019 , 9, 39076-39081		11
316	Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. 2019 , 25, 16358-16365		15
315	Tunable and convenient synthesis of highly dispersed Fe-N catalysts from graphene-supported Zn-Fe-ZIF for efficient oxygen reduction in acidic media 2019 , 9, 42236-42244		4
314	Doped porous carbon nanostructures with N Co O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. 2019 , 463, 386-394		10
313	Porous Organic-Polymer-Derived Nitrogen-Doped Porous Carbon Nanoparticles for Efficient Oxygen Reduction Electrocatalysis and Supercapacitors. 2019 , 7, 2236-2244		19
312	Ultralow Loading Cobalt-Based Nanocatalyst for Benign and Efficient Aerobic Oxidation of Allylic Alcohols and Biobased Olefins. 2019 , 7, 1901-1908		7
311	Functionalization of the support material based on N-doped carbon-reduced graphene oxide and its influence on the non-enzymatic detection of glucose. 2019 , 780, 98-106		19
310	Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells. 2019 , 469, 404-413		15
309	Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. 2019 , 143, 728-735		20
308	Ni(II)-Dimeric Complex-Derived Nitrogen-Doped Graphitized Carbon-Encapsulated Nickel Nanoparticles: Efficient Trifunctional Electrocatalyst for Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. 2019 , 7, 2187-2199		31
307	Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-B-O@Co3O4 electrocatalyst for oxygen evolution reaction. 2019 , 299, 213-221		14
306	SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution. 2019 , 300, 45-52		24
305	Biomolecule-derived N/S co-doped CNT-graphene hybrids exhibiting excellent electrochemical activities. <i>Journal of Power Sources</i> , 2019 , 413, 408-417	8.9	60
304	Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. 2019 , 2019, 2040-2057		15

303	Structure regulation of amino acids derived nitrogen doped porous carbon nanosheet through facile solid state assembly method. 2019 , 277, 36-44	7
302	Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. 2019 , 142, 269-277	38
301	Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. 2019 , 142, 518-527	15
300	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. 2019 , 25, 88-111	118
299	Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. <i>Nano Research</i> , 2019 , 12, 177-182	19
298	Synthesis of nitrogen-doped mesoporous carbon nanosheets for oxygen reduction electrocatalytic activity enhancement in acid and alkaline media. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4423-443	1 ¹⁵
297	Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. 2019 , 278, 280-288	22
296	Oxidizing Vacancies in Nitrogen-Doped Carbon Enhance Air-Cathode Activity. 2019 , 31, e1803339	39
295	Tailor-made metal-nitrogen-carbon bifunctional electrocatalysts for rechargeable Zn-air batteries via controllable MOF units. 2019 , 17, 46-61	42
294	In-situ fabrication of nitrogen-doped carbon nanosheets containing highly dispersed single iron atoms for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2019 , 412, 125-133	73
293	Built-in electric field-assisted charge separation over carbon dots-modified Bi2WO6 nanoplates for photodegradation. 2019 , 465, 164-171	39
292	Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction. 2019 , 535, 415-424	23
291	Highly reversible ZnO@ZIFB-derived nitrogen-doped carbon in the presence of fluoroethylene carbonate for high-performance lithium-ion battery anode. 2019 , 773, 960-969	31
290	Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. 2019 , 327, 366-373	28
289	Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced activity toward oxygen reduction reaction. <i>Applied Catalysis B:</i> 21.8 <i>Environmental</i> , 2020 , 260, 118192	27
288	Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. 2020 , 44, 106-114	35
287	Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives. 2020 , 156, 77-92	102
286	Pd-ZIF-L-GO ternary nanolaminates for enhanced heterogeneous catalysis. 2020 , 7, 015001	4

285	Porous Materials for Catalysis. 2020 , 115-137		7
284	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. 2020 , 157, 55-63		35
283	Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications. 2020 , 13, 1629-1636		12
282	Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. <i>Chemical Engineering Journal</i> , 2020 , 384, 123324	14.7	54
281	2D Nitrogen-Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long-Life Rechargeable ZnAir Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1906081	15.6	122
2 80	Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. 2020 , 816, 152684		11
279	A General Approach to Direct Growth of Oriented Metal-Organic Framework Nanosheets on Reduced Graphene Oxides. 2020 , 7, 1901480		14
278	Advantageous Configurative Heteroatoms-Doped Carbon Foams Design and Application for Ultrahigh-Powered ZnAir Batteries. 2020 , 8, 731-738		4
277	Metal Drganic Framework-Based Materials for Energy Conversion and Storage. 2020 , 5, 520-532		149
276	Tuning Lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118534	21.8	49
275	Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118570	21.8	85
274	Controlled formation of porous CuCoO nanorods with enhanced oxidase and catalase catalytic activities using bimetal-organic frameworks as templates. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 188, 110764	6	17
273	ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range. 2020 , 182, 109059		23
272	Facile fabrication of ZIF-derived graphene-based 2D Zn/Co oxide hybrid for high-performance supercapacitors. <i>Journal of Energy Storage</i> , 2020 , 27, 101165	7.8	27
271	Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol. 2020 , 3, 257-263		27
270	Bimodal Heterogeneous Functionality in Redox-Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. 2020 , 26, 3810-3817		7
269	Design and synthesis of carbon-based catalysts for zinclir batteries. 2020 , 161-190		
268	MetalBrganic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2934-2961	13	93

(2020-2020)

267	Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal-organic frameworks for lithium-ion batteries. 2020 , 31, 145402	11
266	N configuration control of N-doped carbon for stabilizing Cu nanoparticles: The synergistic effects on oxy-carbonylation of methanol. 2020 , 158, 836-845	6
265	Electrochemical detection of thiamethoxam in food samples based on CoO Nanoparticle@Graphitic carbon nitride composite. 2020 , 189, 110035	17
264	Metal-Organic Frameworks Based Porous Carbons for Oxygen Reduction Reaction Electrocatalysts for Fuel Cell Applications. 2020 , 251-284	2
263	Microporous Solids En Route to Heterogeneous Electrocatalysis: The Oxygen Reduction Reaction. 2020 , 8, 1900964	2
262	Metal-organic framework membranes: From synthesis to electrocatalytic applications. 2020 , 31, 2189-2201	31
261	Core-shell structured ZnCo/NC@MoS2 electrocatalysts for tunable hydrogen evolution reaction. 2020 , 331, 135445	46
260	Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2020 , 450, 227659	16
259	Enhanced Photocatalytic Activity and Electrochemical Behaviour Towards Hg(II) of CeO2:Ag Nanocomposite. 2020 , 49, 7568-7580	4
258	High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. 2020 , 11, 5025	84
257	Interface Engineering of Binder-Free Earth-Abundant Electrocatalysts for Efficient Advanced Energy Conversion. 2020 , 13, 4795-4811	15
256	One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu sensing. 2020 , 12, 4058-4063	7
255	Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. 2020, 36, 662-679	17
254	S element-doped synergistically well-mixed MOFs as highly efficient oxygen precipitation electrocatalyst. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 24333-24340 6.7	12
253	Self-Supported Mesoporous Iron Phosphide with High Active-Site Density for Electrocatalytic Hydrogen Evolution in Acidic and Alkaline Media. 2020 , 7, 4943-4948	3
252	Zeolitic Imidazolate Framework-Derived Ordered Pt E e Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. 2020 , 34, 11527-11535	15
251	Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. 2020 , 12, 18497-18522	31
250	Embedding activated carbon nanospheres into polymer-derived porous carbon networks to boost electrocatalytic oxygen reduction. 2020 , 56, 9791-9794	2

249	Cobalt-nitrogen-carbon nanotube co-implanted activated carbon as efficient cathodic oxygen reduction catalyst in microbial fuel cells. 2020 , 876, 114498		3
248	Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18079-18086	13	25
247	Facile and template-free strategy to construct N, P co-doped porous carbon nanosheets as a highly efficient electrocatalyst towards oxygen reduction reaction. 2020 , 877, 114732		6
246	Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO2. 2020 , 1, 2286-2292		1
245	Integrating Conductivity, Captivity, and Immobility Ability into N/O Dual-Doped Porous Carbon Nanocage Anchored with CNT as an Effective Se Host for Advanced K-Se Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 2003871	15.6	21
244	Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction. 2020 , 116, 106758		13
243	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. 2020 , 132, 13121-13	127	5
242	Transparent Cu2\(\mathbb{R}\)Se@N-doped carbon nanosheets as a cathode for Co(III/II)-mediated bifacial dye-sensitized solar cells. 2020 , 201, 693-700		11
241	Defect-enriched hollow porous CoN-doped carbon for oxygen reduction reaction and Zn-Air batteries. 2020 , 167, 188-195		33
240	Nano-spatially confined Pdtu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9545-9553	13	14
239	Template assisted synthesis of Ni,N co-doped porous carbon from Ni incorporated ZIF-8 frameworks for electrocatalytic oxygen reduction reaction. 2020 , 44, 12343-12354		9
238	Fishnet-like superstructures constructed from ultrafine and ultralong Ni-MOF nanowire arrays directionally grown on highly rough and conductive scaffolds: synergistic activating effect for efficient and robust alkaline water oxidation activity. 2020 , 529, 147030		4
237	Carbonization temperature effects on adsorption performance of metal-organic framework derived nanoporous carbon for removal of methylene blue from wastewater; experimental and spectrometry study. 2020 , 108, 107999		17
236	Electrospun carbon nanofiber decorated with Co-Ni alloy nanoparticles as a bifunctional electrocatalyst for Zn-ir battery. 2020 , 275, 128135		2
235	Rigorous and reliable operations for electrocatalytic nitrogen reduction. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119325	21.8	28
234	A post-synthesis surface reconstructed carbon aerogel as an enhanced oxygen reduction reaction catalyst for zinclir batteries. 2020 , 10, 5288-5297		4
233	Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes. 2020 , 601, 117934		20
232	1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst. 2020 , 828, 154435		14

(2020-2020)

231	framework as an excellent bifunctional catalyst for zinclir battery. <i>Journal of Power Sources</i> , 2020 , 452, 227841	8.9	24	
230	Organodiphosphonate Metal-Organic Frameworks Derived Ni-P@C Catalyst for Hydrogenation of Furfural. 2020 , 5, 2271-2278		3	
229	Visible-light driven degradation of tetracycline hydrochloride and 2,4-dichlorophenol by film-like N-carbon@N-ZnO catalyst with three-dimensional interconnected nanofibrous structure. 2020 , 392, 122331		24	
228	Mild-Temperature Solution-Assisted Encapsulation of Phosphorus into ZIF-8 Derived Porous Carbon as Lithium-Ion Battery Anode. 2020 , 16, e1907141		23	
227	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. 2020 , 8, 3328-3335		6	
226	Highly Efficient Oxygen Reduction Reaction Electrocatalysts FeCoNC Derived from Two Metallomacrocycles and N-doped Porous Carbon Materials. 2020 , 7, 865-872		6	
225	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. 2020 , 20, 1403-1409		50	
224	1D MOF-Derived N-Doped Porous Carbon Nanofibers Encapsulated with Fe3C Nanoparticles for Efficient Bifunctional Electrocatalysis. 2020 , 2020, 581-589		14	
223	Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. 2020 , 10, 1498-1506		17	
222	Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. 2020 , 27, 96-108		32	
221	Recent advances in pristine tri-metallic metal-organic frameworks toward the oxygen evolution reaction. 2020 , 12, 4816-4825		44	
220	Hemin@carbon dot hybrid nanozymes with peroxidase mimicking properties[for dual[[colorimetric and fluorometric] sensing of hydrogen peroxide, glucose and xanthine. 2020 , 187, 132		19	
219	Bottom-Up Fabrication of a Sandwich-Like Carbon/Graphene Heterostructure with Built-In FeNC Dopants as Non-Noble Electrocatalyst for Oxygen Reduction Reaction. 2020 , 15, 432-439		9	
218	A cobalt hydroxide nanosheet-mediated synthesis of core-shell-type MnCoO spinel nanocubes as efficient oxygen electrocatalysts. <i>Dalton Transactions</i> , 2020 , 49, 1652-1659	4.3	4	
217	Applications of metalorganic framework-derived materials in fuel cells and metal-air batteries. <i>Coordination Chemistry Reviews</i> , 2020 , 409, 213214	23.2	97	
216	Recent Advances on Metal Organic Framework Derived Catalysts for Electrochemical Oxygen Reduction Reaction. 2020 , 231-278		5	
215	Heteroatom- and metalloid-doped carbon catalysts for oxygen reduction reaction: a mini-review. 2020 , 26, 1563-1589		22	
214	Recent Advances in Noble-Metal-Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions. 2020 , 15, 1791-1807		6	

213	PtCo/N-doped carbon sheets derived from a simple pyrolysis of graphene oxide/ZIF-67/H2PtCl6 composites as an efficient catalyst for methanol electro-oxidation. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 12766-12776	6.7	10
212	Controlling the morphology of metal-organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. 2020 , 49, 3348-3422		104
211	Advances in metal-organic framework coatings: versatile synthesis and broad applications. 2020 , 49, 3142-3186		167
210	New Task-Specific and Reusable ZIF-like Grafted HPWO Catalyst for the Effective Esterification of Free Fatty Acids. 2020 , 5, 9999-10010		15
209	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13021-13027	16.4	89
208	Graphene-like porous carbon nanosheets for ultra-high rate performance supercapacitors and efficient oxygen reduction electrocatalysts. <i>Journal of Power Sources</i> , 2020 , 456, 227999	8.9	18
207	3D Holey-Graphene Architecture Expedites Ion Transport Kinetics to Push the OER Performance. 2020 , 10, 2001005		22
206	Recent progress on MOF-derived carbon materials for energy storage. 2020 , 2, 176-202		76
205	Facile synthesis 2D hierarchical structure of ultrahigh nitrogen-doped porous carbon graphene nanosheets as high-efficiency lithium-ion battery anodes. 2020 , 251, 123043		6
204	Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. 2021 , 66, 186-192		16
203	Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: Efficient adsorption for tetracycline and optimizing of response surface model. 2021 , 402, 123498		51
202	Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. <i>Chemical Engineering Journal</i> , 2021 , 403, 126312	14.7	110
201	Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. 2021 , 251, 117107		21
200	Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. <i>Chemical Engineering Journal</i> , 2021 , 421, 127863	14.7	41
199	Metal-organic framework-derived porous carbon templates for catalysis. 2021 , 73-121		
198	Light-driven enzymatic nanosystem for highly selective production of formic acid from CO2. Chemical Engineering Journal, 2021, 420, 127649	14.7	9
197	ZIF-8@ZIF-67derived ZnCo2O4@nitrogendoped carbon/carbon nanotubes wrapped by a carbon layer: a stable oxygen reduction catalyst with a competitive strength in acid media. 2021 , 19, 100574		4
196	Hollow Carbon-Based Nanoarchitectures Based on ZIF: Inward/Outward Contraction Mechanism and Beyond. 2021 , 17, e2004142		21

(2021-2021)

195	ZIF-8-derived N-doped porous carbon coated reduced graphene oxide as ultrasensitive platform and its application for electrochemical sensing. 2021 , 857, 157604		3
194	In situ formation of reduced graphene oxide@Co3O4-N-doped carbon and its structure-function relationship for glucose sensing. 2021 , 539, 148235		6
193	High-sorption terpyridine-graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. 2021 , 13, 10490-10499		4
192	Efficient utilization of crude bio-oil: the synthesis of nitrogen-doped hierarchically porous carbon as electrocatalysts for the oxygen reduction reaction. 2021 , 5, 3884-3894		2
191	Multi-Scale Design of Metal Drganic Framework-Derived Materials for Energy Electrocatalysis. 2003410		21
190	ZEUS (ZIF-based electrochemical ultrasensitive screening) device for isopentane analytics with focus on lung cancer diagnosis 2021 , 11, 20519-20528		2
189	Tunable metalBrganic framework nanoarrays on carbon cloth constructed by a rational self-sacrificing template for efficient and robust oxygen evolution reactions.		2
188	Phase control of ultrafine FeSe nanocrystals in a N-doped carbon matrix for highly efficient and stable oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3464-3471	3	4
187	Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. <i>Journal of Materials Chemistry A</i> ,	3	24
186	Porous rGO/ZnSe/CoSe2 dispersed in PEDOT:PSS as an efficient counter electrode for dye-sensitized solar cells. 2021 , 5, 2702-2714		11
185	MetalBrganic framework-based materials for full cell systems: a review. 2021 , 9, 11030-11058		6
184	One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metalBrganic frameworks for enhanced photochemical properties. 2021 , 4, 150-161		37
183	In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for ZnBir batteries. 2021 , 9, 11252-11260		0
182	MOF-derived Core-Shell CoP@NC@TiO2 Composite as a High-Performance Anode Material for Li-ion Batteries. 2021 , 16, 322-328		6
181	Maximizing the Active Site Densities of Single-Atomic Fe N C Electrocatalysts for High-Performance Anion Membrane Fuel Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1459-1466	.1	7
180	Structural engineering of metal b rganic framework derived tin sulfides for advanced Li/Na storage. Journal of Materials Chemistry A, 2021 , 9, 11381-11396	3	9
179	N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5751-5758	3	17
178	Mono-Doped Carbon Nanofiber Aerogel as a High-Performance Electrode Material for Rechargeable Zinc-Air Batteries. 2021 , 8, 829-838		4

177	Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. 2021 , 32, 816-821		19
176	Carbon-nanotube-entangled Co,N-codoped carbon nanocomposite for oxygen reduction reaction. 2021 , 32, 205402		2
175	2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. 2021 , 331, 129371		23
174	Cobalt Nanoparticle-Decorated LDH/ZIF-Derived Porous Nanoplatelets for Fischer Tropsch Synthesis. 2021 , 4, 3734-3741		O
173	Porous Carbon Nanosheets Derived from ZIF-8 Treated with KCl as Highly Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2021 , 9, 2100035		5
172	Constructing Hierarchically Porous N-Doped Carbons Derived from Poly(ionic liquids) with the Multifunctional Fe-Based Template for CO Adsorption. 2021 , 6, 7186-7198		3
171	A Gas-Phase Migration Strategy to Synthesize Atomically Dispersed Mn-N-C Catalysts for Zn-Air Batteries <i>Small Methods</i> , 2021 , 5, e2100024	12.8	12
170	Micro/Nano-Scaled Metal-Organic Frameworks and Their Derivatives for Energy Applications. 2003970		12
169	A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 615, 126218	5.1	6
168	Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. 2021 , 10, 714-728		9
167	Ni-N-Doped Carbon-Modified Reduced Graphene Oxide Catalysts for Electrochemical CO2 Reduction Reaction. 2021 , 11, 561		1
166	Comparison of different activated agents on biomass-derived graphene towards the hybrid nanocomposites with zeolitic imidazolate framework-8 for room temperature hydrogen storage. 2021 , 9, 105118		4
165	Integrated Three-Dimensional Carbon Nanopolyhedron/Metal Sulfides: An Efficient Electrocatalyst Toward Oxygen Reduction Reaction. 2021 , 9,		1
164	Carbon-based nonprecious metal electrocatalysts derived from MOFs for oxygen-reduction reaction. 2021 , 45, 15676-15738		5
163	Ion-Induced Formation of Hierarchical Porous Nitrogen-Doped Carbon Materials with Enhanced Oxygen Reduction. <i>ChemCatChem</i> , 2021 , 13, 3112-3118	5.2	О
162	A Novel Phosphide Derived From Metal-Organic Frameworks as Cost-Effective Electrocatalyst for Oxygen Evolution Reaction. 2022 , 19,		
161	Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications. 2021 , 14,		6
160	Metal © rganic Frameworks for Photo/Electrocatalysis. 2021 , 2, 2100033		47

159	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4Ito Al3+ and an electrochromic Al ion battery. 2021 , 39, 412-412	22
158	Facile synthesis and electrocatalytic performance for oxygen reduction of boron-doped carbon catalysts on graphene sheets. 2021 , 21, 328	4
157	Highly Stable, Low-Cost Metal-Free Oxygen Reduction Reaction Electrocatalyst Based on Nitrogen-Doped Pseudo-Graphite. 2021 , 35, 10146-10155	1
156	Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries. 2021 , 13, 137	22
155	Sn(101) Derived from Metal-Organic Frameworks for Efficient Electrocatalytic Reduction of CO. 2021 , 60, 9653-9659	2
154	Effective Poly (Cyclotriphosphazene-Co-4,4NSulfonyldiphenol)@rGO Sheets for Tetracycline Adsorption: Fabrication, Characterization, Adsorption Kinetics and Thermodynamics. <i>Nanomaterials</i> 5.4, 2021 , 11,	2
153	Ball milling-assisted synthesis and electrochemical performance of porous carbon with controlled morphology and graphitization degree for supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 38, 102496 $^{7.8}$	4
152	Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications. 2021 , 591, 463-473	24
151	A review of graphene-oxide/metalBrganic framework composites materials: characteristics, preparation and applications. 2021 , 28, 1837	1
150	Fabrication of biodegradable cellulose acetate/MOF-derived porous carbon nanocomposite adsorbent for methylene blue removal from aqueous solutions. 2021 , 299, 122180	5
149	Machine Learning-Guided Discovery of Underlying Decisive Factors and New Mechanisms for the Design of Nonprecious Metal Electrocatalysts. <i>ACS Catalysis</i> , 2021 , 11, 9798-9808	16
148	Constructing Active Sites from Atomic-Scale Geometrical Engineering in Spinel Oxide Solid Solutions for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts. 2021 , 8, e2101653	7
147	Designing Tubular Architectures Composed of Hollow N-Doped Carbon Polyhedrons for Improved Supercapacitance. 2021 , 8, 2100805	3
146	Metal-Organic Framework Derived Nanostructured Bifunctional Electrocatalysts for Water Splitting. 2021 , 8, 3782	0
145	Stable CuO with variable valence states cooperated with active Co as catalyst/co-catalyst for oxygen reduction/methanol oxidation reactions. 2021 , 593, 345-358	8
144	Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. 2021 , 594, 593-603	10
143	Tetrameric and Polymeric Zn(II) Coordination Complexes of 4-Diallylaminobenzoic Acid and Their Applications in the Electroreduction of CO2 and Schottky Diode Behavior. 2021 , 21, 5240-5250	3
142	Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. <i>Coordination Chemistry</i> 23.2 <i>Reviews</i> , 2021 , 441, 213954	12

141	Ru-Co-Mn trimetallic alloy nanocatalyst driving bifunctional redox electrocatalysis. 1		4
140	Emergent hierarchical porosity by ZIF-8/GO nanocomposite increases oxygen electroreduction activity of Pt nanoparticles. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 32858-32870	6.7	O
139	Monodispersed Ni active sites anchored on N-doped porous carbon nanosheets as high-efficiency electrocatalyst for hydrogen peroxide sensing. 2021 , 1179, 338812		1
138	One-step carbonization of ZIF-8 in Mn-containing ambience to prepare Mn, N co-doped porous carbon as efficient oxygen reduction reaction electrocatalyst. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	3
137	N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
136	MOF/PCP-based Electrocatalysts for the Oxygen Reduction Reaction. 1		6
135	Heteroatoms doped yolk-shell hierarchically porous carbon derived from ZIF-8 for electrochemical sensing. 2021 , 183, 291-300		4
134	Metal-organic framework assembly derived hierarchically ordered porous carbon for oxygen reduction in both alkaline and acidic media. <i>Chemical Engineering Journal</i> , 2021 , 430, 132762	14.7	2
133	N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn-air batteries. 2021 , 562, 150114		3
132	Study of carbon dioxide sequestration and electricity generation by a new hybrid bioenergy system with the novelty catalyst. 2021 , 197, 117366		
131	Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor. 2021 , 225, 109256		6
130	Development of lithium hydroxide-metal organic framework-derived porous carbon composite materials for efficient low temperature thermal energy storage. 2021 , 328, 111455		O
129	Review of electrochemical oxidation desulfurization for fuels and minerals. 2021 , 305, 121562		9
128	Single-atom Co-N-C catalyst for efficient Hg0 oxidation at low temperature. <i>Chemical Engineering Journal</i> , 2022 , 428, 132660	14.7	4
127	A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: Identification of active sites for adsorption and activation of CO2 molecules. <i>Chemical Engineering Journal</i> , 2022 , 428, 131323	14.7	5
126	Direct synthesis of highly porous interconnected carbon nanosheets from sodium D-isoascorbic acid for the simultaneous determination of catechol and hydroquinone. 2021 , 45, 1721-1726		O
125	Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. 2021 , 12, 5737-5766		22
124	Preparation of Ag/AgCl/ZnO and Study on Its Photocatalytic Performance. 2021 , 10, 31-40		

123	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc-air batteries. 2021 , 13, 10862-10870		6
122	Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers via electrospinning processes towards electrocatalytic water splitting: a review. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11961-12002	13	11
121	The role of metal@rganic porous frameworks in dual catalysis. 2021 , 8, 3618-3658		5
120	Hollow Polyhedron-Modified Graphene Oxide Membranes for Organic Solvent Nanofiltration with Enhanced Permeance. 2020 , 3, 5874-5880		8
119	Biomass chitin-derived honeycomb-like nitrogen-doped carbon/graphene nanosheet networks for applications in efficient oxygen reduction and robust lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11789-11799	13	62
118	Surficial nanoporous carbon with high pyridinic/pyrrolic N-Doping from sp3/sp2-N-rich azaacene dye for lithium storage. 2017 , 7, 53770-53777		3
117	Unprecedented capacitive deionization performance of interconnected ironBitrogen-doped carbon tubes in oxygenated saline water. 2020 , 7, 1404-1412		114
116	Tri-(Fe/F/N)-doped porous carbons as electrocatalysts for the oxygen reduction reaction in both alkaline and acidic media. 2020 , 12, 18826-18833		9
115	Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices. 2020 , 7, 2621-2628		3
114	Zeolitic-imidazolate Framework (ZIF)@ZnCo-ZIF Core-shell Template Derived Co, N-doped Carbon Catalysts for Oxygen Reduction Reaction. 2018 ,		14
	ZIF-67-derived flower-like ZnIn2S4@CoS2 heterostructures for photocatalytic hydrogen		
113	production. 2021 , 45, 20289-20295		1
113			2
	production. 2021 , 45, 20289-20295 Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced		
112	Production. 2021, 45, 20289-20295 Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced Electrocatalytic Hydrogen Evolution. 2021, 6, 10092-10096 Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile		2
112	Production. 2021, 45, 20289-20295 Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced Electrocatalytic Hydrogen Evolution. 2021, 6, 10092-10096 Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile Competitive Carbonization-Etching Strategy for High-Performance Energy Storage. 2021, e2104375 Active Site Engineering in CoP@NC/Graphene Heterostructures Enabling Enhanced Hydrogen		3
112 111 110	Production. 2021, 45, 20289-20295 Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced Electrocatalytic Hydrogen Evolution. 2021, 6, 10092-10096 Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile Competitive Carbonization-Etching Strategy for High-Performance Energy Storage. 2021, e2104375 Active Site Engineering in CoP@NC/Graphene Heterostructures Enabling Enhanced Hydrogen Evolution. 2021, 60, 16761-16768 MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen		3
112 111 110 109	Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced Electrocatalytic Hydrogen Evolution. 2021, 6, 10092-10096 Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile Competitive Carbonization-Etching Strategy for High-Performance Energy Storage. 2021, e2104375 Active Site Engineering in CoP@NC/Graphene Heterostructures Enabling Enhanced Hydrogen Evolution. 2021, 60, 16761-16768 MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. 2021, 67, 391-391 Rapid degradation of p-arsanilic acid and simultaneous removal of the released arsenic species by		2 3 1 5

105	A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. 2022 , 196, 113686		4
104	Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. <i>ACS Catalysis</i> , 14032-14037	13.1	10
103	Co/N-Codoped Carbon Nanotube Hollow Polyhedron Hybrid Derived from Salt-Encapsulated Core Shell ZIF-8@ZIF-67 for Highly Efficient Oxygen Reduction Reaction. <i>SSRN Electronic Journal</i> ,	1	
102	MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. <i>Chemical Engineering Journal</i> , 2022 , 431, 134171	14.7	3
101	Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage. 2022 , 242, 122972		5
100	Applications of metalBrganic frameworkBraphene composite materials in electrochemical energy storage. 2022 , 32, 100332		7
99	Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants 2021 , 610, 24-34		3
98	In-situ construction of porous carbon on embedded N-doped MXene nanosheets composite for simultaneous determination of 4-aminophenol and Acetaminophen. 2022 , 175, 107067		1
97	ZIF-8 Derived 3D Nitrogen-Doped Porous Carbon as Pt Catalyst Support for Electrocatalytic Oxidation of Glucose. <i>SSRN Electronic Journal</i> ,	1	
96	In-Situ Encapsulation of FeCo Alloy in Nitrogen-Doped Carbon Framework as Advanced Bifunctional Cathode Catalysts for Zn-Air Batteries. <i>SSRN Electronic Journal</i> ,	1	
95	Pyridine-grafted nitrogen-doped carbon nanotubes achieving efficient electroreduction of CO2 to CO within a wide electrochemical window. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1852-1860	13	1
94	Fe/Co/N-C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction 2022 , 12, 2425-2435		О
93	Co/N-codoped carbon nanotube hollow polyhedron hybrid derived from salt-encapsulated core-shell ZIF-8@ZIF-67 for efficient oxygen reduction reaction. 2022 , 904, 164083		3
92	A novel electrocatalyst based on Fe-ZIF-PPY nanocomposite for oxygen reduction reaction in air-breathing direct-ethanol fuel cell. 2022 , 584, 152529		1
91	2D vertical heterostructure membranes for lanthanide separation. 2022 , 100769		3
90	Highly Active and Stable Fe/Co/N Co-doped Carbon-Anchored Pd Nanoparticles for Oxygen Reduction Reaction <i>ACS Applied Materials & Samp; Interfaces</i> , 2022 ,	9.5	2
89	Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR ACS Applied Materials & Description of Applied Materials & Description of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR ACS	9.5	4
88	Highly Porous Iron-Doped Nitrogen © arbon Framework on Reduced Graphene Oxide as an Excellent Oxygen Reduction Catalyst for Proton-Exchange Membrane Fuel Cells. <i>ACS Applied Energy Materials</i> ,	6.1	1

87	Photocatalytic CO2 reduction for C2-C3 oxy-compounds on ZIF-67 derived carbon with TiO2. <i>Journal of CO2 Utilization</i> , 2022 , 58, 101920	7.6	О
86	ReviewRecent Advances in Metal Organic Framework Derived Carbon Materials for Electrocatalytic Applications. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 036503	3.9	1
85	Oxygen Engineering Enables N-Doped Porous Carbon Nanofibers as Oxygen Reduction/Evolution Reaction Electrocatalysts for Flexible ZincAir Batteries. <i>ACS Catalysis</i> , 2022 , 12, 4002-4015	13.1	9
84	Oxygen-Rich Cobalt Nitrogen Carbon Porous Nanosheets for Bifunctional Oxygen Electrocatalysis. <i>Advanced Functional Materials</i> , 2200763	15.6	10
83	Adsorption of acetone and toluene by N-functionalized porous carbon derived from ZIF-8. <i>Journal of Industrial and Engineering Chemistry</i> , 2022 ,	6.3	0
82	A Novel Anderson-Evans Polyoxometalate-based Metal-organic Framework Composite for the Highly Selective Isolation and Purification of Cytochrome C from Porcine Heart <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 213, 112420	6	2
81	Hierarchical porous nitrogen-doped carbon material with Fe-NX as an excellent electrocatalyst for oxygen reduction reaction. <i>Catalysis Communications</i> , 2022 , 165, 106439	3.2	0
80	Multi-functional composite membrane with strong photocatalysis to effectively separate emulsified-oil/dyes from complex oily sewage. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 643, 128733	5.1	1
79	Precise control of selective hydrogenation of Hunsaturated aldehydes in water mediated by ammonia borane. <i>Applied Catalysis B: Environmental</i> , 2022 , 311, 121348	21.8	2
78	An Efficient Strategy toward Multichambered Carbon Nanoboxes with Multiple Spatial Confinement for Advanced Sodium-Sulfur Batteries <i>ACS Nano</i> , 2021 , 15, 20607-20618	16.7	5
77	Table_1.DOCX. 2019 ,		
76	Interpenetrated N-rich MOF derived vesicular N-doped carbon for high performance lithium ion battery <i>Dalton Transactions</i> , 2022 ,	4.3	
75	Effect of structural modifications on the oxygen reduction reaction properties of metal-organic framework-based catalysts. 2022 , 165-184		
74	Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. <i>Rare Metals</i> , 1	5.5	О
73	Iron Single Atoms Anchored on Nitrogen-Doped Carbon Matrix/Nanotube Hybrid Supports for Excellent Oxygen Reduction Properties <i>Nanomaterials</i> , 2022 , 12,	5.4	О
72	MIL-101(Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management. <i>Journal of Energy Storage</i> , 2022 , 52, 104827	7.8	O
71	Applications of metalBrganic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. <i>Coordination Chemistry Reviews</i> , 2022 , 466, 214602	23.2	5
70	Efficient capture of radioactive iodine by ZIF-8 derived porous carbon. <i>Journal of Environmental Radioactivity</i> , 2022 , 249, 106895	2.4	О

69	First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. <i>Energy and Environmental Science</i> ,	35.4	5
68	Fabrication of LiOH-metal organic framework derived hierarchical porous host carbon matrix composites for seasonal thermochemical energy storage. <i>Nano Research</i> ,	10	
67	Recent advances in metal-organic frameworks-derived carbon-based electrocatalysts for the oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2022 ,	6.7	2
66	Defective Fe 3 O 4- x Few-Atom Clusters Anchored on Nitrogen-Doped Carbon as Efficient Oxygen Reduction Electrocatalysts for High-Performance ZincAir Batteries. <i>Small Methods</i> , 2200207	12.8	1
65	Cellular scaffolds based on multiwalled carbon nanotubes interpenetrating conductive metal-organic frameworks as efficient eelectrocatalysts in microbial fuel cells. <i>Journal of Power Sources</i> , 2022 , 541, 231685	8.9	1
64	Nitrogen-Doped PtNi Catalysts on Polybenzimidazole-Functionalized Carbon Support for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2022 , 14, 26814-26823	9.5	2
63	Coupling nano-Fe3O4 with oxygen vacancies on a hypercrosslinked iron porphyrin-coated ZIF-8 as a high-efficiency oxygen reduction reaction electrocatalyst. <i>Applied Catalysis A: General</i> , 2022 , 642, 11871	≥ .1	
62	MOF-derived CoFe alloy nanoparticles encapsulated within N,O Co-doped multilayer graphitized shells as an efficient bifunctional catalyst for zincair batteries. <i>Journal of Materials Chemistry A</i> ,	13	1
61	Confinement of Nitrogen-Doped Porous Carbon between Graphene Layers as a Bifunctional Electrode for Zinc-Air Battery-Driven Capacitive Deionization. SSRN Electronic Journal,	1	
60	Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 6659	2.6	1
59	N, P-codoped molybdenum carbide nanoparticles loaded into N, P-codoped graphene for the enhanced electrocatalytic hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2022 ,	6.7	O
58	Copper-based non-precious metal catalysts derived from the in-situ and ex-situ loading of copper-bipyridine metal-organic framework on activated carbon for oxygen reduction reaction. <i>Journal of Chemical Sciences</i> , 2022 , 134,	1.8	O
57	A robust Ni@NCNT-C catalyst for highly efficient electrochemical CO2 reduction to CO over a wide potential range. <i>Chemical Engineering Journal</i> , 2022 , 450, 137962	14.7	О
56	Confinement of nitrogen-doped porous carbon between graphene layers as a bifunctional electrode for zinc-air battery-driven capacitive deionization. <i>Chemical Engineering Journal</i> , 2022 , 450, 138126	14.7	2
55	A critical review on cathode modification methods for efficient Electro-Fenton degradation of persistent organic pollutants. <i>Chemical Engineering Journal</i> , 2022 , 450, 137948	14.7	1
54	Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation. 2022 , 100029		1
53	Zn-Nx doping in carbon nanotubes boosts selective CO2 electroreduction to CO. ChemCatChem,	5.2	O
52	Metal©rganic Frameworks (MOFs) Derived Materials Used in ZnAir Battery. 2022 , 15, 5837		1

Recyclable Fe/S co-doped nanocarbon derived from metal®rganic framework as a peroxymonosulfate activator for efficient removal of 2,4-dichlorophenol.

50	Comparative study of Mn-ZIF-67 derived carbon (Mn-Co/C) and its rGO-based composites for the methanol oxidation. 2022 , 10, 108351	O
49	A systematic review on recent advances of metal organic frameworks-based nanomaterials for electrochemical energy storage and conversion. 2022 , 471, 214741	O
48	Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. 2022 , 473, 214817	1
47	Fe3C@C/C for catalytic ozonation of silicon-containing wastewater: Dual improvement of silicon resistance and catalytic effect. 2023 , 136, 65-77	1
46	Nacl-Induced Construction of Hierarchically Porous Fenc Electrocatalysts with Concave Dodecahedron Morphology for Acidic Oxygen Reduction.	O
45	Carbothermal redox reaction in constructing defective carbon as superior oxygen reduction catalysts. 2022 , 14, 14248-14254	O
44	Metal-organic framework in fuel cell technology: Fundamentals and application. 2022 , 135-189	O
43	Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. 2023 , 442, 130016	O
42	Oncocyte Membrane-Camouflaged Multi-Stimuli-Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy. 2022 , 14, 40633-4	10644
41	Intrinsic Carbon Defects for the Electrosynthesis of H2O2. 2022 , 13, 8914-8920	O
40	Doping oxygen triggered electrocatalytic activity of carbon interpenetrating networks in acid electrolyte. 2022 , 47, 33999-34011	O
39	Metal-organic frameworks derived Co/N-doped carbon nanonecklaces as high-efficient oxygen reduction reaction electrocatalysts. 2022 ,	2
38	Cobalt, sulfur, nitrogen co-doped carbon as highly active electrocatalysts towards oxygen reduction reaction. 2022 ,	O
37	Ultrafine PdCo bimetallic nanoclusters confined in N-doped porous carbon for the efficient semi-hydrogenation of alkynes. 2022 , 51, 16361-16370	O
36	Conjugated Microporous Poly(aniline) Enabled Hierarchical Porous Carbons for Hg(II) Adsorption. 2022 , 38, 13238-13247	2
35	MetalBrganic framework (MOF)/grapheneBxide (GO) nanocomposites materials: A potential formulation for anti-corrosive coatings- a review. 2022 ,	0
34	B, N co-doping graphene nanoribbons as effective oxygen reduction electrocatalyst.	O

33	Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: enhanced performance and synergistic mechanism. 2022 , 122136	O
32	A novel electrocatalyst composed of graphene oxide/graphitic carbon nitride and CuFe/N-C@Co nanoparticles-embedded in nitrogen-doped carbon nanotube for oxygen reduction reaction and supercapacitor. 2022 , 56, 106012	O
31	Engineering the electronic structure of high performance FeCo bimetallic cathode catalysts for microbial fuel cell application in treating wastewater. 2023 , 216, 114542	O
30	Zeolitic imidazolate framework-67derived cobalt-based catalysts for water splitting. 2022 , 26, 101210	O
29	A reverse electrodialysis cell-modified photocatalytic fuel cell for efficient electricity and hydrogen generation from the degradation of refractory organic pollutants. 2022 , 130443	O
28	Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. 2023 , 478, 214967	O
27	High-Density Frustrated Lewis Pair for High-Performance Hydrogen Evolution. 2203136	0
26	Zeolitic Imidazolate Framework Decorated Molybdenum Carbide Catalysts for Hydrodeoxygenation of Guaiacol to Phenol. 2022 , 12, 1605	1
25	Two-Dimensional Nanomaterial-Templated Composites. 2022 , 55, 3581-3593	1
24	Rare-Earth Doping Transitional Metal Phosphide for Efficient Hydrogen Evolution in Natural Seawater. 2200268	O
23	Ni(II) supramolecular gel-derived Ni(0) nanoclusters decorated with optimal N, O-doped graphitized carbon as bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. 2022 ,	O
22	Stereoassembly of ultrasmall Rh-decorated zeolite imidazolate framework-MXene heterostructures for boosted methanol oxidation reaction.	1
21	Metal Organic Framework Cubosomes.	O
20	MOF Derived Oxygen vacancy-rich Co/CoO@NC-CNTs hybrid Electrocatalyst for Oxygen Reduction Reaction.	O
19	Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. 2206239	2
18	Metal Organic Framework Cubosomes.	O
17	ZIF-8-templated synthesis of core-shell structured IPOP@MOF hybrid-derived nitrogen-doped porous carbon for efficient oxygen reduction electrocatalysis and supercapacitor. 2023 , 441, 141817	О
16	Facile synthesis of N-doping carbon-encapsulated metal catalyst for CO2 electroreduction to CO. 2023 , 614, 156281	O

CITATION REPORT

15	Achieving near-Pt hydrogen production on defect nanocarbon via the synergy between carbon defects and heteroatoms.	O
14	ZIF derived PtCo alloys-based nitrogen-doped Graphene as cathode catalyst for proton exchange membrane fuel cell. 2023 , 562, 232758	1
13	Metal-organic framework derived carbon-based electrocatalysis for hydrogen evolution reactions: A review. 2023 , 22, 100371	О
12	Assist of multi-walled carbon nanotubes toward metal@rganic framework chamfer cube-derived rambutan-like cobalt oxide@hollow chain and its application for non-enzymatic glucose sensing. 2023 , 624, 157155	o
11	Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions. 2023 , 80, 302-323	O
10	Efficient synergistic effect of trimetallic organic frameworks derived as bifunctional catalysis for the rechargeable zinc-air flow battery. 2023 , 205, 422-434	o
9	Highly Active Porous Carbon-Supported CoNi Bimetallic Catalysts for Four-Electron Reduction of Oxygen. 2023 , 37, 4026-4037	О
8	Unveiling Hidden Zeolitic Imidazolate Frameworks Guided by Intuition-Based Geometrical Factors. 2023 , 19,	o
7	FeCo-N encapsuled in nitrogen-doped carbon nanotubes as bifunctional electrocatalysts with a high stability for zinc air batteries. 2023 , 42, 1526-1534	O
6	Fabrication of Fe3C nanoparticles encapsulated in undoped graphite carbon and their catalysis for oxygen reduction. 2023 , 30, 35-48	o
5	ZIF-8-Derived Three-Dimensional Nitrogen-Doped Porous Carbon as a Pt Catalyst Support for Electrocatalytic Oxidation of Glucose in a Glucose Fuel Cell. 2023 , 6, 2886-2896	0
4	CoreBhell Nanostructures-Based Porous Carbon Nanomaterials for Oxygen Reduction Reaction. 2023 , 323-350	O
3	Optimizing d-Orbital Electronic Configuration via MetalMetal Oxide CoreBhell Charge Donation for Boosting Reversible Oxygen Electrocatalysis. 2300621	О
2	Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. 2023 , 1695, 463929	o
1	Graphene-Based Catalysts for Solar Fuels. 2023 , 205-246	O