Hemostatic strategies for traumatic and surgical bleedi

Journal of Biomedical Materials Research - Part A 102, 4182-4194 DOI: 10.1002/jbm.a.35052

Citation Report

#	Article	IF	CITATIONS
1	Overtube-assisted endoscopic application of oxidized cellulose to achieve hemostasis in anastomotic ulcer bleeding. Gastrointestinal Endoscopy, 2014, 80, 917-918.	0.5	2
2	Development of Synthetic Plateletâ€Activating Hydrogel Matrices to Induce Local Hemostasis. Advanced Functional Materials, 2015, 25, 6606-6617.	7.8	43
3	Using absorbable chitosan hemostatic sponges as a promising surgical dressing. International Journal of Biological Macromolecules, 2015, 75, 322-329.	3.6	102
4	Chitosan-Coated Diatom Silica as Hemostatic Agent for Hemorrhage Control. ACS Applied Materials & Interfaces, 2016, 8, 34234-34243.	4.0	155
5	Preparation of a partially carboxymethylated cotton gauze and study of its hemostatic properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 407-416.	1.5	16
6	Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations. ACS Applied Materials & Interfaces, 2016, 8, 12674-12683.	4.0	168
7	Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS Nano, 2016, 10, 9957-9973.	7.3	39
8	Combination of gelatin and tranexamic acid offers improved haemostasis and safe use on internal hemorrhage control. RSC Advances, 2016, 6, 95189-95198.	1.7	15
9	Chitosan–PVA monodisperse millimeter-sized spheres prepared by electrospraying reduce the thromboembolic risk in hemorrhage control. Journal of Materials Chemistry B, 2017, 5, 3686-3696.	2.9	27
10	Synthesis and properties of poly(DEX-GMA/AAc) microgel particle as a hemostatic agent. Journal of Materials Chemistry B, 2017, 5, 3697-3705.	2.9	25
11	A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure. Journal of Materials Chemistry B, 2017, 5, 5668-5678.	2.9	92
12	Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Materials Science and Engineering C, 2017, 77, 411-419.	3.8	74
13	Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomaterials Science, 2017, 5, 2357-2368.	2.6	172
14	Quaternary Ammonium Groups Modified Starch Microspheres for Instant Hemorrhage Control. Colloids and Surfaces B: Biointerfaces, 2017, 159, 937-944.	2.5	42
15	Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents. ACS Applied Materials & Interfaces, 2017, 9, 31381-31392.	4.0	95
16	Comparative Evaluation of Biological Performance, Biosecurity, and Availability of Cellulose-Based Absorbable Hemostats. Clinical and Applied Thrombosis/Hemostasis, 2018, 24, 566-574.	0.7	20
17	Enhancing clot properties through fibrin-specific self-cross-linked PEG side-chain microgels. Colloids and Surfaces B: Biointerfaces, 2018, 166, 89-97.	2.5	15
18	Thrombin‣oaded Poly(butylene succinate)â€Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 2018, 303, 1700395.	1.7	27

#	Article	IF	CITATIONS
19	Improved Mechanical Properties of Poly(butylene succinate) Membrane by Co-electrospinning with Gelatin. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1063-1069.	2.0	17
20	Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydrate Polymers, 2018, 184, 154-163.	5.1	159
21	Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-IPN cryogel dressing for hemostatic application. Bioactive Materials, 2018, 3, 370-384.	8.6	60
22	Emerging Nanoclay Composite for Effective Hemostasis. Advanced Functional Materials, 2018, 28, 1704452.	7.8	106
23	Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss. Advanced Healthcare Materials, 2018, 7, e1701086.	3.9	94
24	Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS Applied Materials & Interfaces, 2018, 10, 13304-13316.	4.0	287
25	Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International Journal of Biological Macromolecules, 2018, 107, 463-469.	3.6	34
26	Zeoliteâ€loaded alginateâ€chitosan hydrogel beads as a topical hemostat. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1662-1671.	1.6	50
27	Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomaterials Science, 2018, 6, 3318-3331.	2.6	104
28	Urushiol-functionalized mesoporous silica nanoparticles and their self-assembly into a Janus membrane as a highly efficient hemostatic material. Nanoscale, 2018, 10, 22818-22829.	2.8	49
29	Shape-adaptive composite foams with high expansion and absorption used for massive hemorrhage control and irregular wound treatment. Applied Materials Today, 2018, 13, 228-241.	2.3	43
30	Porous electrospun starch rich polycaprolactone blend nanofibers for severe hemorrhage. International Journal of Biological Macromolecules, 2018, 118, 1276-1283.	3.6	41
31	Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydrate Polymers, 2018, 200, 624-632.	5.1	31
32	Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo. ACS Biomaterials Science and Engineering, 2018, 4, 2541-2551.	2.6	69
33	Synergistic enhancement of hemostatic performance of mesoporous silica by hydrocaffeic acid and chitosan. International Journal of Biological Macromolecules, 2019, 139, 1203-1211.	3.6	39
34	Synthesizing Functional Biomacromolecular Wet Adhesives with Typical Gel–Sol Transition and Shear-Thinning Features. ACS Biomaterials Science and Engineering, 2019, 5, 4293-4301.	2.6	13
35	Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. Journal of Materials Chemistry B, 2019, 7, 4997-5010.	2.9	24
36	Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110367.	2.5	23

#	Article	IF	CITATIONS
37	Recent Advances in Hemostasis at the Nanoscale. Advanced Healthcare Materials, 2019, 8, e1900823.	3.9	60
38	Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 2019, 99, 220-235.	4.1	64
39	Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesives. ACS Applied Materials & Interfaces, 2019, 11, 38373-38384.	4.0	36
40	Platelet-derived nanovesicles for hemostasis without release of pro-inflammatory cytokines. Biomaterials Science, 2019, 7, 856-859.	2.6	21
41	Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomaterials Science, 2019, 7, 31-50.	2.6	73
42	Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydrate Polymers, 2019, 222, 115012.	5.1	69
43	Peptide-Functionalized Amino Acid-Derived Pseudoprotein-Based Hydrogel with Hemorrhage Control and Antibacterial Activity for Wound Healing. Chemistry of Materials, 2019, 31, 4436-4450.	3.2	115
44	Topical tranexamic acid inhibits fibrinolysis more effectively when formulated with selfâ€propelling particles. Journal of Thrombosis and Haemostasis, 2019, 17, 1645-1654.	1.9	9
45	Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications. Materials, 2019, 12, 1628.	1.3	44
46	Calcium ion–exchange cross-linked porous starch microparticles with improved hemostatic properties. International Journal of Biological Macromolecules, 2019, 134, 435-444.	3.6	29
47	Cuboidal tethered cyclodextrin frameworks tailored for hemostasis and injured vessel targeting. Theranostics, 2019, 9, 2489-2504.	4.6	34
48	Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS Applied Bio Materials, 2019, 2, 2295-2316.	2.3	29
49	Systemically Administered Hemostatic Nanoparticles for Identification and Treatment of Internal Bleeding. ACS Biomaterials Science and Engineering, 2019, 5, 2563-2576.	2.6	21
50	Improving the adhesion, flexibility, and hemostatic efficacy of a sprayable polymer blend surgical sealant by incorporating silica particles. Acta Biomaterialia, 2019, 90, 205-216.	4.1	36
51	Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. International Journal of Biological Macromolecules, 2019, 129, 936-943.	3.6	73
52	Fabrication of porous starch microspheres by electrostatic spray and supercritical CO2 and its hemostatic performance. International Journal of Biological Macromolecules, 2019, 123, 1-9.	3.6	25
53	Blood interactions with nano- and microfibers: Recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomaterialia, 2019, 84, 63-76.	4.1	66
54	Injectable Nano Whitlockite Incorporated Chitosan Hydrogel for Effective Hemostasis. ACS Applied Bio Materials, 2019, 2, 865-873.	2.3	53

#	Article	IF	CITATIONS
55	A PEG-Lysozyme hydrogel harvests multiple functions as a fit-to-shape tissue sealant for internal-use of body. Biomaterials, 2019, 192, 392-404.	5.7	89
56	Preparation of a novel asymmetric wettable chitosan-based sponge and its role in promoting chronic wound healing. Carbohydrate Polymers, 2020, 227, 115296.	5.1	104
57	Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide). Chinese Journal of Polymer Science (English Edition), 2020, 38, 63-71.	2.0	4
58	Oxidized cellulose-based hemostatic materials. Carbohydrate Polymers, 2020, 230, 115585.	5.1	116
59	Clay incorporated wet laid wood pulp based wound dressing for severe hemorrhage. Journal of the Textile Institute, 2020, 111, 821-825.	1.0	2
60	Safety evaluation of a low-heat producing zeolite granular hemostatic dressing in a rabbit femoral artery hemorrhage model. Journal of Biomaterials Applications, 2020, 34, 988-997.	1.2	11
61	Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage. International Journal of Biological Macromolecules, 2020, 154, 1185-1193.	3.6	41
62	Absorbable nanocomposites composed of mesoporous bioglass nanoparticles and polyelectrolyte complexes for surgical hemorrhage control. Materials Science and Engineering C, 2020, 109, 110556.	3.8	11
63	Comprehensive assessment of Nile tilapia skin collagen sponges as hemostatic dressings. Materials Science and Engineering C, 2020, 109, 110532.	3.8	42
64	Calcium functioned carboxymethylated cotton fabric for hemostatic wound dressing. Cellulose, 2020, 27, 10139-10149.	2.4	12
65	Hemostatic nanotechnologies for external and internal hemorrhage management. Biomaterials Science, 2020, 8, 4396-4412.	2.6	49
66	Dual functionalized chitosan based composite hydrogel for haemostatic efficacy and adhesive property. Carbohydrate Polymers, 2020, 247, 116757.	5.1	41
67	How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy. Langmuir, 2020, 36, 8357-8366.	1.6	9
68	Hydrogel-Tissue Adhesion Using Blood Coagulation Induced by Silica Nanoparticle Coatings. ACS Applied Bio Materials, 2020, 3, 8808-8819.	2.3	10
69	Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. Journal of Photochemistry and Photobiology B: Biology, 2020, 210, 111978.	1.7	28
70	Development of a Nonwoven Hemostatic Dressing Based on Unbleached Cotton: A De Novo Design Approach. Pharmaceutics, 2020, 12, 609.	2.0	9
71	Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. Biomacromolecules, 2020, 21, 3678-3692.	2.6	25
72	A novel injectable starch-based tissue adhesive for hemostasis. Journal of Materials Chemistry B, 2020, 8, 8282-8293.	2.9	44

#	Article	IF	CITATIONS
73	Rapid hemostatic chitosan/cellulose composite sponge by alkali/urea method for massive haemorrhage. International Journal of Biological Macromolecules, 2020, 164, 2769-2778.	3.6	41
74	Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 926.	2.0	45
75	Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000905.	3.9	194
76	Zinc Metal–Organic Framework@Chitin Composite Sponge for Rapid Hemostasis and Antibacterial Infection. ACS Sustainable Chemistry and Engineering, 2020, 8, 18915-18925.	3.2	34
77	Degradable porous carboxymethyl chitin hemostatic microspheres. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1369-1384.	1.9	16
78	Use of hemostatic agents for surgical bleeding in laparoscopic partial nephrectomy: Biomaterials perspective. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3099-3123.	1.6	10
79	Green preparation of hierarchically structured hemostatic epoxy-amine sponge. Chemical Engineering Journal, 2020, 397, 125445.	6.6	27
80	Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111168.	2.5	41
81	<p>In-situ Electrospinning for Intestinal Hemostasis</p> . International Journal of Nanomedicine, 2020, Volume 15, 3869-3875.	3.3	6
82	Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110951.	2.5	8
83	Hydroxybutyl Chitosan Centered Biocomposites for Potential Curative Applications: A Critical Review. Biomacromolecules, 2020, 21, 1351-1367.	2.6	32
84	Hemostatic agents for prehospital hemorrhage control: a narrative review. Military Medical Research, 2020, 7, 13.	1.9	59
85	Design and Preparation of New Multifunctional Hydrogels Based on Chitosan/Acrylic Polymers for Drug Delivery and Wound Dressing Applications. Polymers, 2020, 12, 1473.	2.0	40
86	3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chemical Engineering Journal, 2020, 388, 124169.	6.6	114
87	Self-assembling RATEA16 peptide nanofiber designed for rapid hemostasis. Journal of Materials Chemistry B, 2020, 8, 1897-1905.	2.9	29
88	Surface-Adaptive and On-Demand Antibacterial Sponge for Synergistic Rapid Hemostasis and Wound Disinfection. ACS Biomaterials Science and Engineering, 2020, 6, 1776-1786.	2.6	32
89	Composite Hemostatic Nonwoven Textiles Based on Hyaluronic Acid, Cellulose, and Etamsylate. Materials, 2020, 13, 1627.	1.3	9
90	Morphology-controllable cellulose/chitosan sponge for deep wound hemostasis with surfactant and pore-foaming agent. Materials Science and Engineering C, 2021, 118, 111408.	3.8	34

#	Article	IF	CITATIONS
91	Layer-by-layer coating of carboxymethyl chitosan-gelatin-alginate on cotton gauze for hemostasis and wound healing. Surface and Coatings Technology, 2021, 406, 126644.	2.2	50
92	An anti-inflammatory gelatin hemostatic agent with biodegradable polyurethane nanoparticles for vulnerable brain tissue. Materials Science and Engineering C, 2021, 121, 111799.	3.8	14
93	Rapid hemostasis by nanofibers of polyhydroxyethyl methacrylate/polyglycerol sebacic acid: An in vitro / in vivo study. Journal of Applied Polymer Science, 2021, 138, 49785.	1.3	10
94	Blood-clotting model and simulation analysis of polyvinyl alcohol–chitosan composite hemostatic materials. Journal of Materials Chemistry B, 2021, 9, 5465-5475.	2.9	8
95	Different Forms of Chitosan and Its Derivatives as Hemostatic Agent and Tissue Sealants. Advances in Polymer Science, 2021, , 1-28.	0.4	4
96	Thrombin-Loaded TA-CaCO ₃ Microspheres as a Budget, Adaptable, and Highly Efficient Hemostatic. ACS Applied Bio Materials, 2021, 4, 1030-1037.	2.3	9
97	Facile and green approach towards biomass-derived hydrogel powders with hierarchical micro-nanostructures for ultrafast hemostasis. Journal of Materials Chemistry B, 2021, 9, 6678-6690.	2.9	18
98	Preparation and application of quick hemostatic gauze based on biomimetic mineralized thrombin. Biomaterials Science, 2021, 9, 6098-6107.	2.6	10
99	Chitosan–Platelet Interactions. Advances in Polymer Science, 2021, , 319-342.	0.4	2
100	Hemostatic materials in wound care. Burns and Trauma, 2021, 9, tkab019.	2.3	42
101	Hemostatic strategies for uncontrolled bleeding: A comprehensive update. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1465-1477.	1.6	44
102	Nâ€dodecylated chitosan/graphene oxide composite cryogel for hemostasis and antibacterial treatment. Journal of Applied Polymer Science, 2021, 138, 50572.	1.3	9
103	Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Research, 2021, 14, 3309-3318.	5.8	12
104	<scp>Electrospun</scp> polylactic acid nanofiber membranes containing <i><scp>Capparis spinosa</scp> L</i> . extracts for potential wound dressing applications. Journal of Applied Polymer Science, 2021, 138, 50800.	1.3	12
105	Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules, 2021, 22, 2272-2283.	2.6	35
106	Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics, 2021, 13, 753.	2.0	17
107	A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. International Journal of Biological Macromolecules, 2021, 178, 296-305.	3.6	42
108	Graphene-based hemostatic sponge. Chinese Chemical Letters, 2022, 33, 703-713.	4.8	12

#	Article	IF	CITATIONS
109	Polyelectrolyte complex based nanofibrous aggregates for fast hemostasis. Materials Today Communications, 2021, 27, 102364.	0.9	2
110	Cellulose fibers-reinforced self-expanding porous composite with multiple hemostatic efficacy and shape adaptability for uncontrollable massive hemorrhage treatment. Bioactive Materials, 2021, 6, 2089-2104.	8.6	49
111	Emerging approaches to pre-hospital hemorrhage control: a narrative review. Annals of Translational Medicine, 2021, 9, 1192-1192.	0.7	21
112	Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 2021, 28, 8899-8937.	2.4	14
113	Experimental Substantiation of Autoplasma Application as a Haemostatic Agent in Endoscopic Operations in the Digestive Tract. Serbian Journal of Experimental and Clinical Research, 2022, 23, 309-313.	0.2	1
114	Haemostatic materials for wound healing applications. Nature Reviews Chemistry, 2021, 5, 773-791.	13.8	371
115	Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomedical Microdevices, 2021, 23, 43.	1.4	11
116	Polysaccharides composite materials for rapid hemostasis. Journal of Drug Delivery Science and Technology, 2021, 66, 102890.	1.4	11
117	Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion. Composites Part B: Engineering, 2021, 223, 109134.	5.9	27
118	Two novel heteroglycan with coagulant activity from flowers of Cercis chinensis Bunge. Journal of Molecular Structure, 2021, 1243, 130756.	1.8	7
119	An in situ catechol functionalized ε-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis. International Journal of Biological Macromolecules, 2021, 191, 714-726.	3.6	24
120	The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing. Biomaterials Science, 2021, 9, 5951-5964.	2.6	19
121	Injectable keratin hydrogels as hemostatic and wound dressing materials. Biomaterials Science, 2021, 9, 4169-4177.	2.6	44
122	Fabricating poly(vinyl alcohol)/gelatin composite sponges with high absorbency and water-triggered expansion for noncompressible hemorrhage and wound healing. Journal of Materials Chemistry B, 2021, 9, 1568-1582.	2.9	44
123	Preparation and characterization of carboxymethylated cotton fabrics as hemostatic wound dressing. International Journal of Biological Macromolecules, 2020, 160, 18-25.	3.6	22
124	Characterization and Evaluation of the Pro-Coagulant and Immunomodulatory Activities of Polysaccharides from <i>Bletilla striata</i> . ACS Omega, 2021, 6, 656-665.	1.6	18
125	Traumatic Bleeding Detection Based on Fusion of 3D Shape and Local Texture Features. Journal of Clinical and Medical Images and Short Reports, 2021, 05, .	0.0	0
126	Platelet transfusion: A study of methods of preparation, storage, quality control, and indications of whole blood-derived platelet concentrates. International Journal of Blood Transfusion and Immunohematology, 2019, 9, 1.	0.4	1

#	Article	IF	CITATIONS
127	Multi-Scale Photoacoustic Assessment of Wound Healing Using Chitosan–Graphene Oxide Hemostatic Sponge. Nanomaterials, 2021, 11, 2879.	1.9	9
128	Experimental Substantiation of Autoplasma Application as a Haemostatic Agent in Endoscopic Operations in the Digestive Tract. Serbian Journal of Experimental and Clinical Research, 2020, .	0.2	1
129	Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy. Applied Materials Today, 2022, 26, 101290.	2.3	23
130	Poly(<i>N</i> -vinyl imidazole) Cross-Linked β-Cyclodextrin Hydrogel for Rapid Hemostasis in Severe Renal Arterial Hemorrhagic Model. Biomacromolecules, 2021, 22, 5256-5269.	2.6	17
131	Chitin/corn stalk pith sponge stimulated hemostasis with erythrocyte absorption, platelet activation, and Ca2+-binding capabilities. Carbohydrate Polymers, 2022, 284, 118953.	5.1	11
132	Engineering a naturally derived hemostatic sealant for sealing internal organs. Materials Today Bio, 2022, 13, 100199.	2.6	26
133	Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material. Materials Today Chemistry, 2022, 23, 100735.	1.7	17
134	Antibacterial Sericin Cryogels Promote Hemostasis by Facilitating the Activation of Coagulation Pathway and Platelets. Advanced Healthcare Materials, 2022, 11, e2102717.	3.9	14
135	Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics, 2021, 13, 2127.	2.0	29
136	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, .	5.4	156
136 137	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042.	5.4 2.0	156 16
136 137 138	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017.	5.4 2.0 4.0	156 16 30
136 137 138 139	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187.	5.42.04.02.0	156 16 30 29
136 137 138 139	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187. Rapid hemostasis and high bioactivity ceriumâ€containing mesoporous bioglass for hemostatic materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1255-1264.	 5.4 2.0 4.0 2.0 1.6 	156 16 30 29 8
 136 137 138 139 140 141 	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187. Rapid hemostasis and high bioactivity ceriumâ€containing mesoporous bioglass for hemostatic materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1255-1264. An injectable hemostatic PEG-based hydrogel with on-demand dissolution features for emergency care. Acta Biomaterialia, 2022, 145, 106-121.	 5.4 2.0 4.0 2.0 1.6 4.1 	156 16 30 29 8 29
 136 137 138 139 140 141 142 	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187. Rapid hemostasis and high bioactivity ceriumâ€containing mesoporous bioglass for hemostatic materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1255-1264. An injectable hemostatic PEG-based hydrogel with on-demand dissolution features for emergency care. Acta Biomaterialia, 2022, 145, 106-121. Addressing the Shortcomings of Polyphenol-Derived Adhesives: Achievement of Long Shelf Life for Effective Hemostasis. ACS Applied Materials & amp; Interfaces, 2022, 14, 25115-25125.	 5.4 2.0 4.0 2.0 1.6 4.1 4.0 	156 16 30 29 8 29 29
 136 137 138 139 140 141 142 143 	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, . A robust polyacrylic acid/chitosan cryogel for rapid hemostasis. Science China Technological Sciences, 2022, 65, 1029-1042. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & amp; Interfaces, 2022, 14, 16006-16017. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187. Rapid hemostasis and high bioactivity ceriumâ€containing mesoporous bioglass for hemostatic materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1255-1264. An injectable hemostatic PEC-based hydrogel with on-demand dissolution features for emergency care. Acta Biomaterialia, 2022, 145, 106-121. Addressing the Shortcomings of Polyphenol-Derived Adhesives: Achievement of Long Shelf Life for Effective Hemostasis. ACS Applied Materials & amp; Interfaces, 2022, 14, 25115-25125. Silk Fibroin Based Formulations as Potential Hemostatic Agents. ACS Biomaterials Science and Engineering, 2022, 8, 2654-2663.	 5.4 2.0 4.0 2.0 1.6 4.1 4.0 2.6 	156 16 30 29 8 29 29 18

	C	CITATION REPORT		
#	Article	IF	Сіта	TIONS
145	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-1290)3. 23	.0 79	
146	Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics, 2022, 7, 77.	1.5	2	
147	Chitosan-based composites reinforced with antibacterial flexible wood membrane for rapid hemostasis. International Journal of Biological Macromolecules, 2022, 215, 450-464.	3.6	; 9	
148	Rapid in situ hepatic hemostasis using a P34HB/tranexamic acid fibrous membrane delivered by a handheld electrospinning apparatus. Journal of Polymer Research, 2022, 29, .	1.2	0	
149	An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydrate Polymers, 2022, 296, 119924.	5.1	. 19	
150	Design of nanoconstructs that exhibit enhanced hemostatic efficiency and bioabsorbability. Nanoscale, 2022, 14, 10738-10749.	2.8	3 5	
151	Application of chitosan-based materials in surgical or postoperative hemostasis. Frontiers in Materials, 0, 9, .	1.2	2 7	
152	Fabrication, characterization and efficacy evaluation of natural gum-based bioactive haemostatic gauzes with antibacterial properties. Journal of Biomaterials Applications, 0, , 088532822211243.	1.2	1	
154	Multifunctionalized alginate/polydopamine cryogel for hemostasis, antibacteria and promotion of wound healing. International Journal of Biological Macromolecules, 2023, 224, 1373-1381.	3.6	5 19	
155	Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Materials Today Bio, 2022, 17, 100468.	2.6	5 10	
156	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	5 31	
157	Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science, 2022, 14, 29-53.	3.7	7 22	
158	Bio-inspired adhesive hydrogel for wound healing. , 2023, 1, 65-72.		5	
160	Design of Adhesive Hemostatic Hydrogels Guided by the Interfacial Interactions with Tissue Surface. Advanced NanoBiomed Research, 2023, 3, .	1.7	2	
161	Wound Healing Properties of Natural Products: Mechanisms of Action. Molecules, 2023, 28, 598.	1.7	19	
162	Advances in the development and optimization strategies of the hemostatic biomaterials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	n 2.0) 8	
163	A wet-adhesive carboxymethylated yeast β-glucan sponge with radical scavenging, bacteriostasis and anti-inflammatory functions for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 230, 123158.	d 3.6	5 5	
164	Gelatin/calcium chloride electrospun nanofibers for rapid hemostasis. Biomaterials Science, 2023, 11 2158-2166.	, 2.0	5 9	

#	Article	IF	CITATIONS
165	A bio-polymeric scaffold incorporated with p-Coumaric acid enhances diabetic wound healing by modulating MMP-9 and TGF-β3 expression. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113280.	2.5	1
166	The effect of molecular weight and chemical structure of cross-linkers on the properties of redox-responsive hyaluronic acid hydrogels. International Journal of Biological Macromolecules, 2023, 238, 124285.	3.6	2
167	Sustainable sepiolite-based composites for fast clotting and wound healing. , 2023, 149, 213402.		4
168	Polysaccharides based rapid self-crosslinking and wet tissue adhesive hemostatic powders for effective hemostasis. Carbohydrate Polymers, 2023, 312, 120819.	5.1	14
169	Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydrate Polymers, 2023, 311, 120780.	5.1	12
170	A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds. , 2023, 150, 213424.		4
171	Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 233, 123532.	3.6	14
172	Yeast cell templated porous hollow silica spheres for rapid hemostasis accompanied by antibacterial action. Biomaterials Science, 2023, 11, 3104-3113.	2.6	2
173	Multifunctional and Tunable Coacervate Powders to Enable Rapid Hemostasis and Promote Infected Wound Healing. Biomacromolecules, 2023, 24, 1839-1854.	2.6	9
174	Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. Advanced Materials, 2023, 35, .	11.1	5
175	Mussel-inspired nanoparticle composite hydrogels for hemostasis and wound healing. Frontiers in Chemistry, 0, 11, .	1.8	6
176	Oxidized cellulose-based reaction mimicking thyroidal recurrence of disease: a case report and literature review. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , .	0.3	0
178	Introductory Aspects of Carboxymethyl Chitosan Derivatives. Advances in Polymer Science, 2023, , .	0.4	0
203	Recent studies on biocomposites and its impact toward enabling technology. , 2024, , 1-22.		0