Economics of saltâ€induced land degradation and resto

Natural Resources Forum 38, 282-295

DOI: 10.1111/1477-8947.12054

Citation Report

#	Article	IF	CITATIONS
1	Global Bioeconomy in the Conflict Between Biomass Supply and Demand. Industrial Biotechnology, 2015, 11, 308-315.	0.5	36
2	Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resources Research, 2015, 51, 3419-3436.	1.7	140
3	Tropical rainforest response to marine sky brightening climate engineering. Geophysical Research Letters, 2015, 42, 2951-2960.	1.5	21
4	Comprehensive phenotypic analysis of rice (<i>Oryza sativa</i>) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54.	2.6	77
5	Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana. PLoS ONE, 2015, 10, e0128866.	1.1	56
6	Economics of sustainable land management. Current Opinion in Environmental Sustainability, 2015, 15, 9-19.	3.1	36
7	Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 2015, 76, 25-40.	1.8	186
8	Expressing AtNHX1 in barley (Hordium vulgare L.) does not improve plant performance under saline conditions. Plant Growth Regulation, 2015, 77, 289-297.	1.8	22
9	Soils, agriculture and food security: the interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability, 2015, 15, 25-34.	3.1	59
10	New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. Journal of Theoretical Biology, 2015, 383, 7-11.	0.8	18
11	Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Science, 2015, 241, 109-119.	1.7	189
12	Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage. Molecular Breeding, 2015, 35, 1.	1.0	26
13	Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 2015, 157, 31-38.	2.4	134
14	Evaluation of Salt Affected Soils for Rice (Oryza Sativa) Production in Ndungu Irrigation Scheme Same District, Tanzania. Sustainable Agriculture Research, 2016, 6, 24.	0.2	6
15	Halophytic Plant Diversity of Unique Habitats in Turkey., 2016,, 291-315.		29
16	Multifaceted Impacts of Sustainable Land Management in Drylands: A Review. Sustainability, 2016, 8, 177.	1.6	40
17	Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis. Frontiers in Plant Science, 2016, 7, 1071.	1.7	16
18	Genotypic Variation for Salinity Tolerance in Cenchrus ciliaris L Frontiers in Plant Science, 2016, 7, 1090.	1.7	22

#	Article	IF	Citations
19	Halophytes As Bioenergy Crops. Frontiers in Plant Science, 2016, 7, 1372.	1.7	68
21	Extremophyte adaptations to salt and water deficit stress. Functional Plant Biology, 2016, 43, v.	1.1	10
22	Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 2016, 108, 2189-2200.	0.9	228
24	Tree Plantations in Saline Environments: Ecosystem Services, Carbon Sequestration and Climate Change Mitigation. Advances in Agroforestry, 2016, , 181-195.	0.8	1
25	Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environmental and Experimental Botany, 2016, 128, 39-50.	2.0	26
26	The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Molecular Phylogenetics and Evolution, 2016, 100, 135-147.	1.2	10
27	Alleviating salt stress in tomato seedlings using <i>Arthrobacter</i> and <i>Bacillus megaterium</i> isolated from the rhizosphere of wild plants grown on saline–alkaline lands. International Journal of Phytoremediation, 2016, 18, 1113-1121.	1.7	57
28	Optimal control solutions to sodic soil reclamation. Advances in Water Resources, 2016, 91, 37-45.	1.7	14
29	Reclamation of Salt-Affected Soils: Socioeconomic Impact Assessment. , 2016, , 489-505.		1
30	Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery. The Arabidopsis Book, 2016, 14, e0185.	0.5	48
31	Identification and Characterization of Salt Tolerance of Wheat Germplasm Using a Multivariable Screening Approach. Journal of Agronomy and Crop Science, 2016, 202, 472-485.	1.7	128
32	Agroforestry for Ecological Restoration of Salt-Affected Lands. , 2016, , 161-182.		11
33	Policy Note: Reversing Salt-Induced Land Degradation Requires Integrated Measures. Water Economics and Policy, 2016, 02, 1671001.	0.3	7
34	Cooperative effects of sand application and flushing during the sensitive stages of rice on its yield in a hard saline–sodic soil. Plant Production Science, 2016, 19, 468-478.	0.9	6
35	The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agricultural Water Management, 2016, 177, 77-94.	2.4	32
36	Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 2016, 7, 13342.	5.8	218
37	A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Scientific Reports, 2016, 6, 31686.	1.6	47
38	Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three <i>Brassica</i> species. Physiologia Plantarum, 2016, 158, 135-151.	2.6	58

#	Article	IF	Citations
39	Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology, 2016, 43, 75.	1.1	76
40	Rethinking the sustainability of Israel's irrigation practices in the Drylands. Water Research, 2016, 90, 387-394.	5.3	131
41	<i>Nax</i> loci affect SOS1-like Na ⁺ /H ⁺ exchanger expression and activity in wheat. Journal of Experimental Botany, 2016, 67, 835-844.	2.4	95
42	Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regulation, 2016, 80, 23-36.	1.8	202
43	On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 2016, 67, 1015-1031.	2.4	135
44	The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma, 2017, 254, 1725-1734.	1.0	15
45	Learning from Nonâ€Linear Ecosystem Dynamics Is Vital for Achieving Land Degradation Neutrality. Land Degradation and Development, 2017, 28, 2308-2314.	1.8	31
46	Reclamation of Sodic Soils in India: An Economic Impact Assessment. , 2017, , 257-274.		2
47	Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 2017, 11, 219-231.	1.4	36
48	Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research, 2017, 24, 12700-12712.	2.7	352
49	Phytoremediation of Salt-Impacted Soils and Use of Plant Growth-Promoting Rhizobacteria (PGPR) to Enhance Phytoremediation., 2017,, 19-51.		20
50	Current Trends and Emerging Challenges in Sustainable Management of Salt-Affected Soils: A Critical Appraisal. , 2017, , 1-40.		10
51	Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 2017, 256, 170-185.	1.7	259
52	Amelioration of saline–sodic soil with gypsum can increase yield and nitrogen use efficiency in rice–wheat cropping system. Archives of Agronomy and Soil Science, 2017, 63, 1267-1280.	1.3	33
53	Abiotic Stresses in Agriculture: An Overview. , 2017, , 3-8.		24
54	Ameliorating Salt Stress in Crops Through Plant Growth-Promoting Bacteria. , 2017, , 549-575.		3
55	Sustainable use of salt-degraded and abandoned farms for forage production using halophytic grasses. Crop and Pasture Science, 2017, 68, 483.	0.7	16
56	2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Scientific Reports, 2017, 7, 10443.	1.6	57

#	ARTICLE	IF	Citations
57	Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 2017, 15, 450-459.	1.9	144
58	Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Plant Physiology and Biochemistry, 2017, 121, 128-139.	2.8	37
59	Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. Physiology and Molecular Biology of Plants, 2017, 23, 517-528.	1.4	20
60	Evaluating physiological responses of plants to salinity stress. Annals of Botany, 2017, 119, 1-11.	1.4	833
61	Effects of Abiotic Stress in Crop Production. , 2017, , 165-180.		31
62	Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States. Environmental Science & Environmental Science & 2017, 51, 14472-14482.	4.6	64
63	Biochar Mitigates Salinity Stress in Plants. , 2017, , 153-182.		4
64	Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in Plant Science, 2017, 8, 172.	1.7	574
65	Genetic Diversity of Salt Tolerance in Miscanthus. Frontiers in Plant Science, 2017, 8, 187.	1.7	26
66	Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions. Frontiers in Plant Science, 2017, 08, 435.	1.7	73
67	Identification of Putative Transmembrane Proteins Involved in Salinity Tolerance in Chenopodium quinoa by Integrating Physiological Data, RNAseq, and SNP Analyses. Frontiers in Plant Science, 2017, 8, 1023.	1.7	47
68	Editorial: Salinity Tolerance in Plants: Mechanisms and Regulation of Ion Transport. Frontiers in Plant Science, 2017, 8, 1795.	1.7	40
69	Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. Frontiers in Plant Science, 2017, 8, 1985.	1.7	16
70	Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer. Hydrology, 2017, 4, 1.	1.3	30
71	Trade-Offs in Multi-Purpose Land Use under Land Degradation. Sustainability, 2017, 9, 2196.	1.6	24
72	Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. Functional Plant Biology, 2017, 44, 1147.	1.1	21
73	Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Australian Journal of Botany, 2017, 65, 573.	0.3	16
74	Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop and Pasture Science, 2018, 69, 163.	0.7	17

#	Article	IF	Citations
75	A paddy on sodic varved sediment and plant life constraints, NE Spain. Catena, 2018, 164, 50-61.	2.2	3
76	Seed treatment with nanoâ€iron (<scp>III</scp>) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 2018, 204, 577-587.	1.7	99
77	Global-scale patterns and determinants of cropping frequency in irrigation dam command areas. Global Environmental Change, 2018, 50, 110-122.	3 . 6	18
78	Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants., 2018,, 85-136.		52
79	Plant Hormones as Key Regulators in Plant-Microbe Interactions Under Salt Stress. Microorganisms for Sustainability, 2018, , 165-182.	0.4	9
80	Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. Microorganisms for Sustainability, 2018, , 127-163.	0.4	38
81	Photosynthesis and salinity: are these mutually exclusive?. Photosynthetica, 2018, 56, 366-381.	0.9	61
82	The best salt solution parameter to describe seed/seedling responses to saline and sodic salts. Plant and Soil, 2018, 426, 313-325.	1.8	20
83	Plant salt tolerance and Na+ sensing and transport. Crop Journal, 2018, 6, 215-225.	2.3	182
84	Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, 2018, 56, 750-762.	0.9	24
85	Adaptive Mechanisms of Soybean Grown on Saltâ€Affected Soils. Land Degradation and Development, 2018, 29, 1054-1064.	1.8	63
86	Comprehensive evaluating of wild and cultivated emmer wheat (Triticum turgidum L.) genotypes response to salt stress. Plant Growth Regulation, 2018, 84, 261-273.	1.8	17
87	Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theoretical and Applied Genetics, 2018, 131, 513-524.	1.8	42
88	Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions. Land Degradation and Development, 2018, 29, 1065-1073.	1.8	222
89	Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice, 2018, 11, 66.	1.7	36
90	Effect of 24-epibrassinolide on UCB1 pistachio rootstock under salinity stress. Acta Horticulturae, 2018, , 177-184.	0.1	2
92	Soil microbial activity and community structure as affected by exposure to chloride and chloride-sulfate salts. Journal of Arid Land, 2018, 10, 737-749.	0.9	5
93	Vegetation Controls on Dryland Salinity. Geophysical Research Letters, 2018, 45, 11,669.	1.5	25

#	Article	IF	CITATIONS
94	Salinity stress-responsive transcription factors in the liverwort <i>Marchantia polymorpha</i> . Plant Biotechnology, 2018, 35, 281-284.	0.5	9
95	Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review. , 2018, , 57-106.		18
96	Hydroxyl radical scavenging by cerium oxide nanoparticles improves <i>Arabidopsis</i> salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano, 2018, 5, 1567-1583.	2,2	147
97	Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 2018, 69, 1679-1692.	2.4	102
98	Assessment of organic amendments for improving coastal saline soil. Land Degradation and Development, 2018, 29, 3204-3211.	1.8	59
99	The combination of arbuscular mycorrhizal fungi inoculation (<i>Glomus versiforme</i>) and 28â€homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (<i>Cucumis sativus</i>) L.) under salinity. Ecology and Evolution, 2018, 8, 5724-5740.	0.8	39
100	Revealing mechanisms of salinity tissue tolerance in succulent halophytes: <scp>A</scp> case study for <scp><i>Carpobrotus rossi</i>>/i></scp> . Plant, Cell and Environment, 2018, 41, 2654-2667.	2.8	33
101	High‑magnesium waters and soils: Emerging environmental and food security constraints. Science of the Total Environment, 2018, 642, 1108-1117.	3.9	57
102	Fructans of the saline world. Biotechnology Advances, 2018, 36, 1524-1539.	6.0	32
103	Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 2018, 215, 89-101.	2.5	47
104	Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf. Frontiers in Plant Science, 2018, 9, 417.	1.7	57
105	Threeâ€dimensional mapping of soil salinity in the southern coastal area of Laizhou Bay, China. Land Degradation and Development, 2018, 29, 3772-3782.	1.8	11
106	A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. Agronomy, 2018, 8, 23.	1.3	46
107	Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation. Sensors, 2018, 18, 616.	2.1	17
108	Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of saltâ€degraded soils. Land Degradation and Development, 2018, 29, 3812-3822.	1.8	82
109	An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. Journal of Experimental Botany, 2018, 69, 4945-4960.	2.4	77
110	Epibrassinolide Application Regulates Some Key Physio-biochemical Attributes As Well As Oxidative Defense System in Maize Plants Grown Under Saline Stress. Journal of Plant Growth Regulation, 2018, 37, 1244-1257.	2.8	22
111	Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. Science of the Total Environment, 2018, 645, 721-732.	3.9	36

#	Article	IF	Citations
112	Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environmental and Experimental Botany, 2018, 153, 10-20.	2.0	34
113	Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses. BMC Genomics, 2018, 19, 599.	1.2	47
114	Plant Metabolomics in a Changing World: Metabolite Responses to Abiotic Stress Combinations. , 0, , .		7
115	Corn and Soybean Yield Response to Salinity Influenced by Soil Texture. Agronomy Journal, 2018, 110, 1243-1253.	0.9	31
116	Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sensing, 2018, 10, 159.	1.8	68
117	Comparison of <i>Distichlis spicata </i> and <i> Suaeda aegyptiaca </i> in response to water salinity: Candidate halophytic species for saline soils remediation. International Journal of Phytoremediation, 2018, 20, 995-1006.	1.7	9
118	Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley. Compendium of Plant Genomes, 2018, , 259-286.	0.3	8
119	Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environmental and Experimental Botany, 2018, 156, 48-61.	2.0	45
120	Variation in Plant Bioactive Compounds and Antioxidant Activities Under Salt Stress., 2018, , 77-101.		3
121	Method for Improving Leaching Efficiency of Coastal Subsurface Drainage Systems. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	0.6	10
122	Modeling Sugar Beet Response to Different Combinations of On-Farm Water Management Practices Under Semi-arid Sub-tropical Environment. Sugar Tech, 2019, 21, 122-134.	0.9	2
123	Salinity and crop yield. Plant Biology, 2019, 21, 31-38.	1.8	457
124	Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. Protoplasma, 2019, 256, 181-191.	1.0	31
125	Control of xylem Na ⁺ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiologia Plantarum, 2019, 165, 619-631.	2.6	50
126	Supplemental calcium nitrate mitigates NaCl-induced biochemical, physiological, and antioxidant changes in sesame. International Journal of Vegetable Science, 2019, 25, 3-26.	0.6	3
127	Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi Journal of Biological Sciences, 2019, 26, 1053-1060.	1.8	18
128	Use of Potassium Fertilization to Ameliorate the Adverse Effects of Saline-sodic Stress Condition (EC _w : SAR _w Levels) in Rice (<i>Oryza Sativa</i> L.). Communications in Soil Science and Plant Analysis, 2019, 50, 1975-1985.	0.6	10
129	Soil and the intensification of agriculture for global food security. Environment International, 2019, 132, 105078.	4.8	617

#	ARTICLE	IF	Citations
130	Responses of Foreign GA3 Application on Seedling Growth of Castor Bean (Ricinus communis L.) under Salinity Stress Conditions. Agronomy, 2019, 9, 274.	1.3	15
131	ASSESSMENT OF SOLUTE TRANSPORT AND DISTRIBUTION UNDER DRY DRAINAGE CONDITIONS USING A PHYSICAL MODEL. Irrigation and Drainage, 2019, 68, 797-807.	0.8	3
132	The Search for the Meaning of Soil Health: Lessons from Human Health and Ecosystem Health. Sustainability, 2019, 11, 3697.	1.6	8
134	Effects of Arbuscular Mycorrhiza Fungi on the Growth Characteristics, Root Morphology, and Ion Distribution of Pyrus betulaefolia Bunge under Saline-Alkaline Stress. Forest Science, 0, , .	0.5	6
135	Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. Rice, 2019, 12, 24.	1.7	57
136	Xylem–phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress. New Phytologist, 2019, 224, 644-662.	3.5	25
137	Effect of Salinity on Physiological Processes in Plants. Soil Biology, 2019, , 237-262.	0.6	19
138	The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. Soil Biology, 2019, , 303-327.	0.6	5
139	Identification, Evaluation, and Domestication of Alternative Crops for Saline Environments. , 2019, , 505-536.		10
140	Tree-based Systems for Enhancing Environmental Services of Saline Environments. , 2019, , 461-502.		7
141	Transcriptome analysis of rice-seedling roots under soil–salt stress using RNA-Seq method. Plant Biotechnology Reports, 2019, 13, 567-578.	0.9	37
142	Short-term leachability of salts from Atriplex-derived biochars. Science of the Total Environment, 2019, 688, 701-707.	3.9	5
143	Genetic sources for the development of salt tolerance in crops. Plant Growth Regulation, 2019, 89, 1-17.	1.8	43
144	Complete Genome Sequence of the Plant Growth-Promoting Bacterium (i>Hartmannibacter diazotrophicus (i>Strain E19 (sup >T (sup > International Journal of Genomics, 2019, 2019, 1-12.	0.8	17
145	Microbial approaches in management and restoration of marginal lands. , 2019, , 295-305.		2
146	Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L Journal of Plant Physiology, 2019, 243, 153055.	1.6	7
147	Assessing salt-stress tolerance in barley. Universitas Scientiarum, 2019, 24, 91-109.	0.2	6
149	The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biology and Biochemistry, 2019, 138, 107607.	4.2	47

#	Article	IF	CITATIONS
150	Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling and Behavior, 2019, 14, 1665455.	1.2	113
151	Plant and Soil Responses to the Combined Application of Organic Amendments and Inorganic Fertilizers in Degraded Sodic Soils of Indo-Gangetic Plains. Communications in Soil Science and Plant Analysis, 2019, 50, 2640-2654.	0.6	18
152	Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Advances in Agronomy, 2019, 158, 1-130.	2.4	68
153	Evaluation of Some Rhodes Grass (Chloris gayana) Genotypes for Their Salt Tolerance, Biomass Yield and Nutrient Composition. Applied Sciences (Switzerland), 2019, 9, 143.	1.3	13
154	Enhancing Food Security and Climate Change Resilience in Degraded Land Areas by Resilient Crops and Agroforestry. Climate Change Management, 2019, , 283-297.	0.6	5
155	Ecosystem-based Adaptation (EbA) practices in smallholder agriculture; emerging evidence from rural Pakistan. Journal of Cleaner Production, 2019, 218, 673-684.	4.6	29
156	Characterising dryland salinity in three dimensions. Science of the Total Environment, 2019, 682, 190-199.	3.9	34
157	Engineering and Biological Approaches for Drainage of Irrigated Lands. , 2019, , 537-577.		2
158	Root vacuolar Na ⁺ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant Journal, 2019, 100, 55-67.	2.8	80
159	Soil salinity and land use-land cover interactions with soil carbon in a salt-affected irrigation canal command of Indo-Gangetic plain. Catena, 2019, 180, 392-400.	2.2	38
160	Quinoa: In Perspective of Global Challenges. Agronomy, 2019, 9, 176.	1.3	49
161	Salt Stress Responses and Tolerance in Wheat. , 2019, , 89-127.		1
162	Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 2019, 9, 6892.	1.6	32
163	Physiological Responses of Wheat to Environmental Stresses. , 2019, , 31-61.		9
164	Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat. , 2019, , 393-420.		12
165	Soil Salinity Variations in an Irrigation Scheme during a Period of Extreme Dry and Wet Cycles. Soil Systems, 2019, 3, 35.	1.0	4
166	Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiology and Molecular Biology of Plants, 2019, 25, 837-846.	1.4	37
167	Municipal Solid Waste Compost Improves Crop Productivity in Saline-Sodic Soil: A Multivariate Analysis of Soil Chemical Properties and Yield Response. Communications in Soil Science and Plant Analysis, 2019, 50, 1013-1029.	0.6	16

#	Article	IF	CITATIONS
168	miR393s regulate salt stress response pathway in <i>Arabidopsis thaliana</i> through scaffold protein RACK1A mediated ABA signaling pathways. Plant Signaling and Behavior, 2019, 14, 1600394.	1.2	27
169	Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. Frontiers in Plant Science, 2019, 10, 370.	1.7	47
170	Current states and challenges of salt-affected soil remediation by cyanobacteria. Science of the Total Environment, 2019, 669, 258-272.	3.9	104
171	Lipid content and fatty acid profile of selected halophytic plants reveal a promising source of renewable energy. Biomass and Bioenergy, 2019, 124, 25-32.	2.9	32
172	Influence of <scp><i>Acacia dealbata</i></scp> Link bark extracts on the growth of <scp><i>Allium cepa</i></scp> L. plants under high salinity conditions. Journal of the Science of Food and Agriculture, 2019, 99, 4072-4081.	1.7	11
173	Interactive Regimes of Reduced Irrigation and Salt Stress Depressed Tomato Water Use Efficiency at Leaf and Plant Scales by Affecting Leaf Physiology and Stem Sap Flow. Frontiers in Plant Science, 2019, 10, 160.	1.7	30
174	Five-Year Experimental Study on Effectiveness and Sustainability of a Dry Drainage System for Controlling Soil Salinity. Water (Switzerland), 2019, 11, 111.	1,2	17
175	Perspective: a healthy planet for healthy people. Global Sustainability, 2019, 2, .	1.6	10
176	Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Frontiers in Plant Science, 2019, 10, 1336.	1.7	179
177	Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench). Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	13
178	Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors, 2019, 19, 4814.	2.1	44
179	Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Microbiology, 2019, 10, 2791.	1.5	312
180	Salt stress and mungbean [<i>Vigna radiata</i> (L.) Wilczek]: effects, physiological perspective and management practices for alleviating salinity. Archives of Agronomy and Soil Science, 2019, 65, 1287-1301.	1.3	25
181	Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal, 2019, 97, 148-163.	2.8	219
182	Mepiquat chloride-priming induced salt tolerance during seed germination of cotton (Gossypium) Tj ETQq0 0 0 rg Experimental Botany, 2019, 159, 168-178.	gBT /Overl 2.0	ock 10 Tf 50 35
183	Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 2019, 36, 96-104.	3.1	49
184	Suitable management options to improve the productivity of rice cultivars under salinity stress. Archives of Agronomy and Soil Science, 2019, 65, 1093-1106.	1.3	5
185	Proteomic evaluation of the freshly isolated cyanobionts from Azolla microphylla exposed to salinity stress. Symbiosis, 2019, 77, 249-256.	1.2	16

#	Article	IF	CITATIONS
186	Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiological Research, 2019, 219, 66-73.	2.5	61
187	Rice Responses and Tolerance to Salt Stress. , 2019, , 791-819.		17
188	Extracts from Yeast and Carrot Roots Enhance Maize Performance under Seawater-Induced Salt Stress by Altering Physio-Biochemical Characteristics of Stressed Plants. Journal of Plant Growth Regulation, 2019, 38, 966-979.	2.8	90
189	Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiology and Molecular Biology of Plants, 2019, 25, 473-483.	1.4	15
190	Agricultural water pollution: key knowledge gaps and research needs. Current Opinion in Environmental Sustainability, 2019, 36, 20-27.	3.1	200
191	Phytoremediation., 2019,, 1-49.		30
192	Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta, 2019, 249, 1037-1051.	1.6	10
193	Effects of Salinity on Rice and Rice Weeds. , 2019, , 159-176.		3
194	Nitrogen addition can improve seedling establishment of Nâ€sensitive species in degraded saline soils. Land Degradation and Development, 2019, 30, 119-127.	1.8	7
195	Protective Role of Silicon (Si) Against Combined Stress of Salinity and Boron (B) Toxicity by Improving Antioxidant Enzymes Activity in Rice. Silicon, 2019, 11, 2193-2197.	1.8	61
196	Microbe-based Inoculants: Role in Next Green Revolution. , 2020, , 191-246.		26
197	Modeling water and salinity risks to viticulture under prolonged sustained deficit and saline water irrigation. Journal of Water and Climate Change, 2020, 11, 901-915.	1.2	5
198	Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. International Journal of Phytoremediation, 2020, 22, 334-341.	1.7	12
199	Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety, 2020, 187, 109814.	2.9	63
200	Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. Journal of Experimental Botany, 2020, 71, 653-668.	2.4	82
201	Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant Biosystems, 2020, 154, 544-552.	0.8	10
202	Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology, 2020, 29, 125-133.	0.9	16
203	Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 2020, 50, 1085-1115.	6.6	40

#	Article	IF	CITATIONS
204	Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, 2020, 43, 28-35.	0.9	69
205	Re-imagining the driver–pressure–state–impact–response framework from an equity and inclusive development perspective. Sustainability Science, 2020, 15, 503-520.	2.5	40
206	Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 2020, 227, 105832.	2.4	185
207	Quantitative evaluation of pore characteristics of sodic soils reclaimed by flue gas desulphurization gypsum using Xâ€ray computed tomography. Land Degradation and Development, 2020, 31, 545-556.	1.8	8
208	Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Science of the Total Environment, 2020, 711, 135062.	3.9	55
209	OsNHAD is a chloroplast membrane-located transporter required for resistance to salt stress in rice (Oryza sativa). Plant Science, 2020, 291, 110359.	1.7	6
210	Shedding light on response of Triticum aestivum cv. Kharchia Local roots to long-term salinity stress through transcriptome profiling. Plant Growth Regulation, 2020, 90, 369-381.	1.8	36
211	Combined NaCl and DTT diminish harmful ER-stress effects in the sorghum seedlings CSF 20 variety. Plant Physiology and Biochemistry, 2020, 147, 223-234.	2.8	7
212	Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Functional Ecology, 2020, 34, 2075-2086.	1.7	75
213	Salinity-induced concomitant increases in soil ammonia volatilization and nitrous oxide emission. Geoderma, 2020, 361, 114053.	2.3	37
214	Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environmental Monitoring and Assessment, 2020, 192, 697.	1.3	26
215	Phenazine-Producing Rhizobacteria Promote Plant Growth and Reduce Redox and Osmotic Stress in Wheat Seedlings Under Saline Conditions. Frontiers in Plant Science, 2020, 11, 575314.	1.7	19
216	The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration. Plant Physiology, 2020, 184, 2107-2119.	2.3	11
217	Micronutrients enhance macronutrient effects in a metaâ€analysis of grassland arthropod abundance. Global Ecology and Biogeography, 2020, 29, 2273-2288.	2.7	18
218	Root-mediated acidification and resistance to low calcium improve wheat (Triticum aestivum) performance in saline-sodic conditions. Plant Physiology and Biochemistry, 2020, 156, 201-208.	2.8	7
219	NADPH oxidases and the evolution of plant salinity tolerance. Plant, Cell and Environment, 2020, 43, 2957-2968.	2.8	49
220	Biomass Production of Various Halophytes. , 2020, , 1-13.		0
221	Comparison of soil and hydroponic cultivation systems for spinach irrigated with brackish water. Scientia Horticulturae, 2020, 274, 109616.	1.7	12

#	Article	IF	CITATIONS
222	Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. Journal of Experimental Botany, 2020, 71, 6159-6173.	2.4	9
223	Modelling the salt accumulation and leaching processes in arid agricultural areas with a new mass balance model. Journal of Hydrology, 2020, 591, 125329.	2.3	20
224	Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 2020, 26, 69-82.	4.4	130
225	Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules, 2020, 10, 959.	1.8	125
226	Existence, extraction, and behaviour of some elements in the system of water - soil $\hat{a} \in \text{``plant.}$ International Journal of Environmental Analytical Chemistry, 2022, 102, 7911-7927.	1.8	1
227	Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	180
228	Evaluating the Contribution of Growth, Physiological, and Ionic Components Towards Salinity and Drought Stress Tolerance in Jatropha curcas. Plants, 2020, 9, 1574.	1.6	34
229	Adaptation Strategies of Halophytic Barley Hordeum marinum ssp. marinum to High Salinity and Osmotic Stress. International Journal of Molecular Sciences, 2020, 21, 9019.	1.8	17
230	The vanishing legacy of soil salinity data from irrigated districts: A case study from Spain and a call for action. Advances in Agronomy, 2020, , 325-355.	2.4	6
231	Linking the plant stress responses with RNA helicases. Plant Science, 2020, 299, 110607.	1.7	24
232	Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Frontiers in Microbiology, 2020, 11, 1666.	1.5	87
233	Salinity Management in the Murray–Darling Basin, Australia. Water (Switzerland), 2020, 12, 1829.	1.2	22
234	Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Scientific Reports, 2020, 10, 12740.	1.6	87
235	Rehabilitation of saline soil with biogas digestate, humic acid, calcium humate and their amalgamations. Communications in Soil Science and Plant Analysis, 2020, 51, 1707-1724.	0.6	9
236	Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiology and Molecular Biology of Plants, 2020, 26, 1569-1582.	1.4	20
237	Influence of Rice Husk Biochar and Compost Amendments on Salt Contents and Hydraulic Properties of Soil and Rice Yield inÂSalt-Affected Fields. Agronomy, 2020, 10, 1101.	1.3	29
238	Secondary Metabolites From Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Frontiers in Microbiology, 2020, 11, 567768.	1.5	83
239	Modeling the Effects of Irrigation Water Salinity on Growth, Yield and Water Productivity of Barley in Three Contrasted Environments. Agronomy, 2020, 10, 1459.	1.3	11

#	Article	IF	CITATIONS
240	Optimization of Irrigation and Leaching Depths Considering the Cost of Water Using WASH $_1D/2D$ Models. Water (Switzerland), 2020, 12, 2549.	1.2	4
241	When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in Plant Science, 2020, 11, 553087.	1.7	83
242	Largeâ€Scale Desalination and the External Impact on Irrigationâ€Water Salinity: Economic Analysis for the Case of Israel. Water Resources Research, 2020, 56, e2019WR025657.	1.7	12
243	Produced water's impact on soil properties: Remediation challenges and opportunities. , 2020, 3, e20042.		6
244	Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice, 2020, 13, 55.	1.7	68
245	Chitosan Modified Biochar Increases Soybean (Glycine max L.) Resistance to Salt-Stress by Augmenting Root Morphology, Antioxidant Defense Mechanisms and the Expression of Stress-Responsive Genes. Plants, 2020, 9, 1173.	1.6	50
246	Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica. Biologia Futura, 2020, 71, 301-312.	0.6	15
247	Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies, 2020, 13, 3714.	1.6	37
248	Risk Assessment of Irrigation-Related Soil Salinization and Sodification in Mediterranean Areas. Water (Switzerland), 2020, 12, 3569.	1.2	18
249	The science of Soil Security and Food Security. Soil Security, 2020, 1, 100002.	1.2	37
250	The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 2020, 180, 104254.	2.0	13
251	Physiological, Biochemical, and Metabolic Responses to Short and Prolonged Saline Stress in Two Cultivated Cardoon Genotypes. Plants, 2020, 9, 554.	1.6	23
252	The seventh macronutrient: how sodium shortfall ramifies through populations, food webs and ecosystems. Ecology Letters, 2020, 23, 1153-1168.	3.0	80
253	Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology, 2020, 155, 103674.	2.1	121
254	Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa (Medicago sativa L.). International Journal of Molecular Sciences, 2020, 21, 3361.	1.8	21
255	Abiotic stress–induced programmed cell death in plants. , 2020, , 1-24.		9
256	Combination of traits at two developmental stages under salt stress as a measure of tolerance in a reciprocally crossed rice (Oryza sativa) population. Crop and Pasture Science, 2020, 71, 334.	0.7	5
257	Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. South African Journal of Botany, 2020, 132, 395-402.	1.2	25

#	Article	IF	CITATIONS
258	Low Salinity Improves Photosynthetic Performance in Panicum antidotale Under Drought Stress. Frontiers in Plant Science, 2020, 11, 481.	1.7	34
259	Melatonin improves rice salinity stress tolerance by <scp>NADPH</scp> oxidaseâ€dependent control of the plasma membrane K ⁺ transporters and K ⁺ homeostasis. Plant, Cell and Environment, 2020, 43, 2591-2605.	2.8	93
260	Ca2+/Na+ Ratio as a Critical Marker for Field Evaluation of Saline-Alkaline Tolerance in Alfalfa (Medicago sativa L.). Agronomy, 2020, 10, 191.	1.3	9
261	Ursolic Acid Limits Salt-Induced Oxidative Damage by Interfering With Nitric Oxide Production and Oxidative Defense Machinery in Rice. Frontiers in Plant Science, 2020, 11, 697.	1.7	20
262	Phenotypic and physiological responses to salt exposure in <i>Sorghum</i> reveal diversity among domesticated landraces. American Journal of Botany, 2020, 107, 983-992.	0.8	7
263	Microbial Secondary Metabolites: Effectual Armors to Improve Stress Survivability in Crop Plants. , 2020, , 47-70.		0
264	A Regionalised Life Cycle Assessment Model to Globally Assess the Environmental Implications of Soil Salinization in Irrigated Agriculture. Environmental Science & Environmental Science, 2020, 54, 3082-3090.	4.6	13
265	Physiological and Anatomical Mechanisms in Wheat to Cope with Salt Stress Induced by Seawater. Plants, 2020, 9, 237.	1.6	47
266	Experimental study and numerical simulation of soil water and salt transport under dry drainage conditions. Environmental Earth Sciences, 2020, 79, 1.	1.3	3
267	Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress. Tree Physiology, 2020, 40, 652-666.	1.4	14
268	Tissue-specific changes in the RNA structurome mediate salinity response in <i>Arabidopsis</i> . Rna, 2020, 26, 492-511.	1.6	25
269	Seed germination responses for varying KNO3 and NaNO3 stress in Trifolium alexandrinum. L cultivars. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101618.	1.5	5
270	Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds. Journal of Arid Land, 2020, 12, 283-293.	0.9	12
271	Soil salinity risk in a climate change scenario and its effect on crop yield. , 2020, , 351-396.		32
272	Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration. Scientific Reports, 2020, 10, 5819.	1.6	54
273	Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. Journal of Hydrology, 2020, 587, 125000.	2.3	18
274	Arbuscular mycorrhiza influences carbonâ€use efficiency and grain yield of wheat grown under pre― and postâ€anthesis salinity stress. Plant Biology, 2020, 22, 863-871.	1.8	26
275	Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. Frontiers in Plant Science, 2020, 11, 265.	1.7	31

#	Article	IF	CITATIONS
276	Salt stress tolerance and small RNA. , 2020, , 191-207.		6
277	Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 2021, 51, 791-825.	6.6	129
278	Optimizing irrigation and fertilization can improve degraded saline soils and increase wheat grain yield. Land Degradation and Development, 2021, 32, 494-504.	1.8	5
279	Soil salinity prediction based on scale-dependent relationships with environmental variables by discrete wavelet transform in the Tarim Basin. Catena, 2021, 196, 104939.	2.2	22
280	Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiologia Plantarum, 2021, 172, 587-602.	2.6	71
281	lon homeostasis for salinity tolerance in plants: a molecular approach. Physiologia Plantarum, 2021, 171, 578-594.	2.6	63
282	Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India. Agricultural Water Management, 2021, 243, 106492.	2.4	44
283	Soil sodicity is more detrimental than salinity for quinoa (<i>Chenopodium quinoa</i> Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 2021, 207, 59-73.	1.7	41
284	Foliar enrichment of potassium and boron overcomes salinity barriers to improve growth and yield potential of cotton (<i>Gossypium hirsutum</i> L.). Journal of Plant Nutrition, 2021, 44, 438-454.	0.9	12
285	Effects of silicon on some morphological and physiological traits of rose <i>(Rosa chinensis</i>) var.) Tj ETQq1 1	0.784314	rgBT /Overlo
286	Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 2021, 280, 111736.	3.8	219
287	Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Industrial Crops and Products, 2021, 160, 113105.	2.5	14
288	Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS. Environmental and Experimental Botany, 2021, 182, 104328.	2.0	43
289	Salinity and the reclamation of salinized lands. , 2021, , 193-208.		12
290	Nexus among rice production and environmental factors in the coastal region of Bangladesh: a stochastic modeling approach for future forecasting. Modeling Earth Systems and Environment, 2021, 7, 1121-1131.	1.9	3
291	Increasing Potato Yields: A Conundrum. , 2021, , 125-193.		1
293	Production and Salinity Tolerance of Fodder Beet (Beta vulgaris L. ssp. Maritima). , 0, , .		1
294	Halophytes as an Option for the Restoration of Degraded Areas and Landscaping. , 2021, , 2795-2810.		1

#	Article	IF	CITATIONS
295	<i>In vitro</i> Germination and Early Vegetative Growth of Five Tomato (<i>Solanum lycopersicum</i> L.) Varieties under Salt Stress Conditions. American Journal of Plant Sciences, 2021, 12, 796-817.	0.3	8
296	Exogenous Zinc Induced NaCl Tolerance in Okra <i>(Abelmoschus Esculentus)</i>) by Ameliorating Osmotic Stress and Oxidative Metabolism. Communications in Soil Science and Plant Analysis, 2021, 52, 743-755.	0.6	11
297	Dimensions of climate change and its consequences on ecosystem functioning., 2021, , 109-149.		2
298	Biomass Production of Various Halophytes. , 2021, , 2211-2223.		1
299	Role of AM Fungi and PGPR in Alleviating Stress Responses and Inducing Defense Mechanism. , 2021, , 355-371.		0
300	Evolution of Plant Na+-P-Type ATPases: From Saline Environments to Land Colonization. Plants, 2021, 10, 221.	1.6	6
301	Nanoparticles for improving and augmenting plant functions., 2021,, 171-227.		5
302	Dual Microbial Inoculation, a Game Changer? – Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Frontiers in Microbiology, 2020, 11, 600576.	1.5	40
303	Physiological introspection of leaf photochemical activity and antioxidant metabolism in selected indigenous finger millet genotypes in relation to drought stress. Cereal Research Communications, 2021, 49, 607-618.	0.8	3
304	Role of cyanobacteria inÂgreen remediation. , 2021, , 187-210.		5
305	Carbon and nitrogen metabolism in rice cultivars affected by salt-alkaline stress. Crop and Pasture Science, 2021, 72, 372-382.	0.7	7
306	Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 2021, , 1-191.	2.4	151
307	Recurrent Selection with Low Herbicide Rates and Salt Stress Decrease Sensitivity of Echinochloa colona to Imidazolinone. Agriculture (Switzerland), 2021, 11, 187.	1.4	1
308	Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. Journal of Plant Growth Regulation, 2022, 41, 781-795.	2.8	40
309	Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2021, 159, 113-122.	2.8	46
310	Influence of salinity stress on morphological, nutritional and physiological attributes in different cultivars of Prunus amygdalus L Journal of Plant Nutrition, 2021, 44, 1758-1769.	0.9	6
311	The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS ONE, 2021, 16, e0246493.	1.1	46
312	Dietary sodium levels affect grasshopper growth and performance. Ecosphere, 2021, 12, e03392.	1.0	14

#	Article	IF	CITATIONS
313	Soil Water Potentials and Sweet Sorghum under Salinity. Communications in Soil Science and Plant Analysis, 2021, 52, 1149-1160.	0.6	3
314	A Plant Based Modified Biostimulant (Copper Chlorophyllin), Mediates Defense Response in Arabidopsis thaliana under Salinity Stress. Plants, 2021, 10, 625.	1.6	11
316	Grapevine salt tolerance. Australian Journal of Grape and Wine Research, 2021, 27, 149-168.	1.0	27
317	Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Journal of the Saudi Society of Agricultural Sciences, 2021, 20, 190-197.	1.0	15
318	Production of Betacyanins in Transgenic Nicotiana tabacum Increases Tolerance to Salinity. Frontiers in Plant Science, 2021, 12, 653147.	1.7	9
319	Regulation of Plant Responses to Salt Stress. International Journal of Molecular Sciences, 2021, 22, 4609.	1.8	361
320	Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. Journal of Fungi (Basel, Switzerland), 2021, 7, 314.	1.5	35
321	The Role of Trichoderma Species in Plants Response to Salt Stress. Asian Journal of Research in Crop Science, 0, , 28-43.	0.2	6
322	Salt Removal by Combining a Permanent Skip Furrow Irrigation and Salt Removal Sheet. Frontiers in Agronomy, 2021, 3, .	1.5	0
323	Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework. Hydrology and Earth System Sciences, 2021, 25, 1993-2008.	1.9	4
324	Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health, 2022, 44, 257-272.	1.8	18
325	Pressmud alleviates soil sodicity stress in a rice–wheat rotation: Effects on soil properties, physiological adaptation and yieldâ€related traits. Land Degradation and Development, 2021, 32, 2735-2748.	1.8	20
326	Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Frontiers in Microbiology, 2021, 12, 650771.	1.5	28
327	Transcriptome analysis of a Triticum aestivum landrace (Roshan) in response to salt stress conditions. Plant Genetic Resources: Characterisation and Utilisation, 2021, 19, 261-274.	0.4	2
328	Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. International Journal of Molecular Sciences, 2021, 22, 4840.	1.8	14
329	Sodium addition increases leaf herbivory and fungal damage across four grasslands. Functional Ecology, 2021, 35, 1212-1221.	1.7	15
331	Menadione sodium bisulphite regulates physiological and biochemical responses to lessen salinity effects on wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2021, 27, 1135-1152.	1.4	11
332	Evaluation of quantitative and qualitative sustainability of aquifers by groundwater footprint methodology: case study: West Azerbaijan Province, Iran. Environmental Monitoring and Assessment, 2021, 193, 368.	1.3	7

#	Article	IF	CITATIONS
333	Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants. Plant Physiology and Biochemistry, 2021, 162, 667-676.	2.8	25
334	Salinization Threats to Agriculture across the North Sea Region. , 2021, , 71-92.		3
335	Genetic mapping of the early responses to salt stress in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 107, 544-563.	2.8	22
336	Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	92
337	Effects of salinity stress on seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	13
338	Hydrochemistry and Evolution of Water Quality in a Context of Aridity and Increasing Agriculture in Three River Sub-Basins of Santiago Island (Cape Verde). Geosciences (Switzerland), 2021, 11, 263.	1.0	1
339	Effects of drip and alternate furrow method of irrigation on cotton yield and physical water productivity: A case study from farmers' field of Bhavnagar district of Gujarat, India. Journal of Applied and Natural Science, 2021, 13, 677-685.	0.2	1
340	Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. Frontiers in Plant Science, 2021, 12, 665439.	1.7	16
341	Salt resistance of interspecific crosses of domesticated and wild rice species. Journal of Plant Nutrition and Soil Science, 2021, 184, 492-507.	1.1	5
342	Field evaluation of a polymer sealant for canal seepage reduction. Agricultural Water Management, 2021, 252, 106898.	2.4	8
343	Effect of mineral and organic amendments on rice growth and yield in saline soils. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 29-37.	1.0	11
344	Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life, 2021, 11, 545.	1.1	81
345	Soil microbiome-mediated salinity tolerance in poplar plantlets is source-dependent. Chemosphere, 2021, 272, 129600.	4.2	15
346	Rewilding crops for climate resilience: economic analysis and <i>de novo</i> domestication strategies. Journal of Experimental Botany, 2021, 72, 6123-6139.	2.4	52
347	Mapping of a major QTL for salinity tolerance at the bud burst stage in rice (Oryza sativa L) using a high-density genetic map. Euphytica, 2021, 217, 1.	0.6	6
348	Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress. Plants, 2021, 10, 1544.	1.6	13
349	A model of coppice biomass recovery for mallee-form eucalypts. New Forests, 2022, 53, 449-468.	0.7	0
350	Effects of Crop–Hedgerow Intercropping on the Soil Physicochemical Properties and Crop Yield on Sloping Cultivated Lands in a Purple Soil of Southwestern China. Forests, 2021, 12, 962.	0.9	4

#	Article	IF	CITATIONS
351	Changes in Intraspecific Diversity of the Arbuscular Mycorrhizal Community Involved in Plant–Plant Interactions Between Sporobolus robustus Kunth and Prosopis juliflora (Swartz) DC Along an Environmental Gradient. Microbial Ecology, 2021, , 1.	1.4	2
352	A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Communications Biology, 2021, 4, 851.	2.0	32
353	Seed Treatment with Biostimulants Extracted from Weeping Willow (Salix babylonica) Enhances Early Maize Growth. Plants, 2021, 10, 1449.	1.6	11
354	Regulatory short <scp>RNAs</scp> : A decade's tale for manipulating salt tolerance in plants. Physiologia Plantarum, 2021, 173, 1535-1555.	2.6	6
355	Chemical weathering and gully erosion causing land degradation in a complex river basin of Eastern India: an integrated field, analytical and artificial intelligence approach. Natural Hazards, 2022, 110, 847-879.	1.6	22
356	Managing sodic soils for better productivity and farmers' income by integrating use of salt tolerant rice varieties and matching agronomic practices. Field Crops Research, 2021, 270, 108192.	2.3	11
357	Overview of the Role of Rhizobacteria in Plant Salt Stress Tolerance. Agronomy, 2021, 11, 1759.	1.3	31
358	The Alkali Tolerance of Broomcorn Millet (Panicum miliaceum L.) at the Germination and Seedling Stage: The Case of 296 Broomcorn Millet Genotypes. Frontiers in Plant Science, 2021, 12, 711429.	1.7	8
360	Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land. International Journal of Phytoremediation, 2022, 24, 507-517.	1.7	9
361	Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian Journal of Agronomy, 2021, 16 , .	0.4	18
362	High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions. Frontiers in Plant Science, 2021, 12, 634311.	1.7	10
363	Combined effects of salinity and nitrogen levels on some physiological and biochemical aspects at the halophytic forage legume <i>Sulla carnosa</i> . Archives of Agronomy and Soil Science, 2023, 69, 119-134.	1.3	3
364	Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms. Plant Physiology and Biochemistry, 2021, 166, 314-327.	2.8	14
365	Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants. Journal of Applied Phycology, 2021, 33, 3761-3778.	1.5	21
366	Combined Treatment of a Pyroligneous Solution and Soluble Calcium Enhances Cotton Growth Through Improving Soil Quality in Saline-Alkali Soils. Journal of Soil Science and Plant Nutrition, 0, , 1.	1.7	1
367	Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP. Planta, 2021, 254, 77.	1.6	2
368	Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 2021, 220, 103689.	4.0	104
369	Is economics of restoration helping with decision-making challenges? Insights guided by bibliometrics. Environmental Development, 2021, 40, 100674.	1.8	2

#	Article	IF	Citations
370	Rapid Accumulation of Proline Enhances Salinity Tolerance in Australian Wild Rice Oryza australiensis Domin. Plants, 2021, 10, 2044.	1.6	34
371	The genome sequence provides insights into salt tolerance of <i>Achnatherum splendens</i> (Gramineae), a constructive species of alkaline grassland. Plant Biotechnology Journal, 2022, 20, 116-128.	4.1	18
372	Pretreatment with 24-Epibrassinolide Synergistically Protects Root Structures and Chloroplastic Pigments and Upregulates Antioxidant Enzymes and Biomass in Na+-Stressed Tomato Plants. Journal of Plant Growth Regulation, 2022, 41, 2869-2885.	2.8	14
373	Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation. Environmental Geochemistry and Health, 2023, 45, 171-185.	1.8	19
374	Accumulation of compatible solutes in rice (Oryza sativa L.) cultivars by inoculation of endophytic plant growth promoting bacteria to alleviate salt stress. Applied Biological Chemistry, 2021, 64, .	0.7	17
375	Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Microbiology Spectrum, 2021, 9, e0027921.	1.2	21
376	Interactive Effect of Organic and Inorganic Amendments along with Plant Growth Promoting Rhizobacteria on Ameliorating Salinity Stress in Maize., 0,,.		0
377	Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. Plant Physiology and Biochemistry, 2021, 167, 22-30.	2.8	21
378	Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions by modulating ionic and oxidative stress responses. Environmental Pollution, 2021, 287, 117348.	3.7	29
379	Estimation of exchangeable sodium percentage from sodium adsorption ratio of salt-affected soils using traditional and dilution extracts, saturation percentage, electrical conductivity, and generalized regression neural networks. Catena, 2021, 205, 105466.	2.2	19
380	Freshwater availability status across countries for human and ecosystem needs. Science of the Total Environment, 2021, 792, 148230.	3.9	54
381	Evaluation of coastal farming under salinization and optimized fertilization strategies in China. Science of the Total Environment, 2021, 797, 149038.	3.9	12
382	An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 2021, 191, 104606.	2.0	49
383	Interaction of pyrolysed and un-pyrolysed organic materials enhances carbon accumulation in soil irrigated with water of variable electrical conductivity. Soil and Tillage Research, 2022, 215, 105193.	2.6	5
384	The role of soil microorganisms in plant adaptation to abiotic stresses: Current scenario and future perspectives., 2022,, 233-278.		2
385	Role of \hat{I}^2 -aminobutyric acid in generating stress-tolerant and climate-resilient plants. , 2022, , 459-469.		0
386	Genomics-based approaches to improve abiotic stress tolerance in plants: Present status and future prospects., 2022,, 195-219.		0
387	Entangling the interaction between essential and nonessential nutrients: implications for global food security., 2022,, 1-25.		0

#	Article	IF	CITATIONS
388	Methyl Jasmonate and Brassinosteroids: Emerging Plant Growth Regulators in Plant Abiotic Stress Tolerance and Environmental Changes., 2021, , 173-195.		7
389	Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants. Planta, 2021, 253, 24.	1.6	18
390	Occurrence of fungal diseases in faba bean (Vicia faba L.) under salt and drought stress. European Journal of Plant Pathology, 2021, 159, 385-398.	0.8	13
391	Genome-wide association among soybean accessions for the genetic basis of salinity-alkalinity tolerance during germination. Crop and Pasture Science, 2021, 72, 255.	0.7	5
392	Extracellular Polymeric Substances from Agriculturally Important Microorganisms., 2021,, 217-234.		1
394	Regulation of salinity stress by hydrogen sulfide in plants. , 2021, , 213-227.		2
395	Structural and Functional Genomics of Chenopodium quinoa. Compendium of Plant Genomes, 2021, , 81-105.	0.3	2
396	Soil Quality Assessment of Salinized Farmland Neighboring a Chinese Oil Exploitation Area. SSRN Electronic Journal, 0, , .	0.4	0
397	Halophytes as an Option for the Restoration of Degraded Areas and Landscaping. , 2020, , 1-16.		1
398	Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. Sustainable Development and Biodiversity, 2019, , 279-335.	1.4	12
399	Involvement of Microbes in Different Abiotic Stress Environments of Cropping Lands., 2020,, 441-479.		1
402	Soil Salinity: Historical Perspectives and a World Overview of the Problem. , 2018, , 43-53.		173
403	Soil-Plant and Microbial Interaction in Improving Salt Stress. , 2019, , 217-235.		3
404	Plant Growth Regulators and Salt Stress: Mechanism of Tolerance Trade-Off., 2019,, 91-111.		17
406	Abiotic Stress and Applications of Omics Approaches to Develop Stress Tolerance in Agronomic Crops. , 2020, , 557-578.		4
407	Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress. Microorganisms for Sustainability, 2020, , 151-178.	0.4	1
408	Brassicaceae Plants Response and Tolerance to Salinity. , 2020, , 203-228.		3
409	Rhizoremediation: A Sustainable Approach to Improve the Quality and Productivity of Polluted Soils. Microorganisms for Sustainability, 2019, , 33-66.	0.4	7

#	Article	IF	CITATIONS
410	Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101636.	1.5	31
411	Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends in Biotechnology, 2020, 38, 1385-1396.	4.9	225
412	Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Scientific Reports, 2020, 10, 22327.	1.6	14
415	QTL Mapping and Candidate Gene Analysis for Alkali Tolerance in Japonica Rice at the bud Stage Based on Linkage Mapping and Genome-Wide Association Study. Rice, 2020, 13, 48.	1.7	36
416	Fluoride in Groundwater: Mobilization, Trends, and Remediation. , 2016, , 339-349.		6
417	In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance. PLoS ONE, 2016, 11, e0159349.	1.1	53
418	Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity. Agriculture, 2017, 63, 142-150.	0.2	2
419	Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 2019, 8, 94-109.	0.2	18
420	Physiological response of chickpea (Cicer arietinum L.) at early seedling stage under salt stress conditions. Legume Research, 2019, , .	0.0	8
421	Interação de agroecossistema consorciado com palma-sorgo em ambiente semiárido: uma revisão. Journal of Environmental Analysis and Progress, 2020, 5, 069-087.	0.0	3
422	Effects of Exogenous Application of Osmotic Adjustment Substances on Growth, Pigment Concentration, and Physiological Parameters of Dracaena sanderiana Sander under Different Levels of Salinity. Agronomy, 2020, 10, 125.	1.3	14
423	Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens, 2020, 9, 117.	1.2	24
424	Quantitative Evaluation and Uncertainty Assessment on Geostatistical Simulation of Soil Salinity Using Electromagnetic Induction Technique. Journal of Environmental Protection, 2016, 07, 844-854.	0.3	5
426	Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture (Switzerland), 2021, 11, 983.	1.4	64
427	Salting the Earth: Intentional Application of Common Salt to Australian Farmland during the Nineteenth Century. Heritage, 2021, 4, 3806-3822.	0.9	0
428	Assessment of physiological, biochemical and yield responses of wheat plants under natural saline and non-saline field conditions. Physiology and Molecular Biology of Plants, 2021, 27, 2315-2331.	1.4	2
429	Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. International Journal of Molecular Sciences, 2021, 22, 11461.	1.8	17
431	Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. International Journal of Molecular Sciences, 2021, 22, 10733.	1.8	7 5

#	Article	IF	CITATIONS
432	Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. Sustainability, 2021, 13, 10986.	1.6	76
433	Levels of Landscape Resilience. , 2022, , 43-95.		O
434	Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine) Tj ETQq0 0	0 rgBT /C 1.7	verlock 10 ⁻ 14
435	Genotype x Environment Interactions and Selection Environments. , 2016, , 207-232.		O
436	Scientific Breeding in the Twentieth Century and Future Goals. , 2016, , 39-71.		1
437	MORPHOLOGICAL CHANGES IN Portulaca oleracea L. UNDER SALT STRESS., 2017,,.		0
438	Mitigation of Climate Change Impacts through Treatment and Management of Low Quality Water for Irrigation in Pakistan. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 84-101.	0.3	0
439	Eco-Economics in Cities and Rural Areas. Baltic Journal of Real Estate Economics and Construction Management, 2018, 6, 88-99.	0.4	4
440	Modelling water and salinity risks to almonds under sustained deficit and saline water irrigation. Acta Horticulturae, 2018, , 169-176.	0.1	0
441	Bazı Tarla Bitkilerinin Tuz Stresine Gösterdikleri Adaptasyon Mekanizmaları. KahramanmaraÅŸ Sütçü Ä Üniversitesi Tarım Ve Doğa Dergisi, 2018, 21, 800-808.	mam 0.2	10
445	Differences in salt tolerance between diploid and autotetraploid lines of Lolium multiflorum at the germination and vegetative stages. Zemdirbyste, 2019, 106, 329-336.	0.3	1
446	Nanotechnology in Wheat Production and Protection. Environmental Chemistry for A Sustainable World, 2020, , 165-194.	0.3	10
448	Salicylic Acid-Mediated Salt Stress Tolerance in Plants. , 2020, , 1-38.		5
449	Tuzlu ve Sodik Arazilerde Islah ve Tarımsal Faaliyetler Sonrası Arazi Tahribatının Dengelenmesinin İzlenmesi. TÃ1⁄4rkiye Tarımsal AraÅŸtırmalar Dergisi, 0, , .	0.5	2
450	Metabolomics Analyses Reveal Metabolites Affected by Plant Growth-Promoting Endophytic Bacteria in Roots of the Halophyte Mesembryanthemum crystallinum. International Journal of Molecular Sciences, 2021, 22, 11813.	1.8	13
451	Comparison of Salt Exclusion in Muscadine and Interspecific Hybrid Grapes Using a Greenhouse Screening Procedure. HortTechnology, 2021, 31, 771-779.	0.5	3
452	Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species <i>Nitraria sibirica </i> Pall Tree Physiology, 2021, 41, 1264-1277.	1.4	22
453	Crosstolerant Effect of Salt Priming and Viral Infection on Nicotiana Benthamiana. Eurasian Journal of Applied Biotechnology, 2020, , .	0.0	0

#	Article	IF	Citations
454	Mitigation of Climate Change Impacts Through Treatment and Management of Low Quality Water for Irrigation in Pakistan. , 2020, , $1181-1198$.		0
455	Efficient Barley Breeding. , 2020, , 309-364.		2
457	Applying Risk Indices to Assess and Manage Soil Salinization and Sodification in Crop Fields within a Mediterranean Hydro-Agricultural Area. Water (Switzerland), 2021, 13, 3070.	1.2	3
458	Overview of Salt-Affected Areas in Latin America: Physical, Social and Economic Perspectives. , 2021, , 3-36.		3
459	Soil Degradation Processes, Causes, and Assessment Approaches. Encyclopedia of the UN Sustainable Development Goals, 2021, , 928-939.	0.0	1
462	Using By- Product of Yeast Production (CMS) and Micronutrients for Improving the Yield and Quality of Some Field Crops under Saline Stress Conditions. Asian Journal of Plant Sciences, 2020, 19, 429-437.	0.2	1
463	What determines the time to gypsum adoption to remediate irrigated salt-affected agricultural lands? Evidence from Punjab, Pakistan. Soil and Tillage Research, 2022, 217, 105266.	2.6	2
464	Choline Chloride Mediates Salinity Tolerance in Cluster Bean (<i>Cyamopsis tetragonoloba</i> L.) by Improving Growth, Oxidative Defense, and Secondary Metabolism. Dose-Response, 2021, 19, 155932582110550.	0.7	3
465	Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants, 2021, 27, 2605-2619.	1.4	12
466	Application of Native or Exotic Arbuscular Mycorrhizal Fungi Complexes and Monospecific Isolates from Saline Semi-Arid Mediterranean Ecosystems Improved Phoenix dactylifera's Growth and Mitigated Salt Stress Negative Effects. Plants, 2021, 10, 2501.	1.6	4
467	Diurnal and seasonal gas exchange characteristics of Jatropha curcas leaves. Vegetos, 0, , 1.	0.8	0
468	Determination of threshold soil salinity with consideration of salinity stress alleviation by applying nitrogen in the arid region. Irrigation Science, 2022, 40, 283-296.	1.3	7
469	Key Cannabis Salt-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Varieties. Agronomy, 2021, 11, 2338.	1.3	7
470	Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses. Journal of Soil Science and Plant Nutrition, 2023, 23, 152-162.	1.7	11
472	TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. Journal of Proteomics, 2022, 253, 104457.	1.2	6
473	Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere, 2022, 32, 223-245.	2.1	55
474	Salinity-induced changes in the morphology, physiology, and anatomy of seeds and seedlings of smooth narra (Pterocarpus indicus Willd. f. indicus). Biodiversitas, 2020, 21, .	0.2	2
477	Long-Term Effect of Alkali and Partially Neutralized Irrigation Water on Soil Quality. Journal of Soil Science and Plant Nutrition, 2022, 22, 1252-1266.	1.7	5

#	Article	IF	CITATIONS
478	Nickel tolerance and phytoremediation potential of quinoa are modulated under salinity: multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health, 2022, 44, 1409-1424.	1.8	6
479	Salt Stress and Plant Molecular Responses. , 0, , .		4
480	Potassium transporters and their evolution in plants under salt stress. , 2022, , 63-83.		4
481	Ethanol Treatment Enhances Physiological and Biochemical Responses to Mitigate Saline Toxicity in Soybean. Plants, 2022, 11, 272.	1.6	22
482	Application of Gypsum or Sulfuric Acid Improves Physiological Traits and Nutritional Status of Rice in Calcareous Saline-Sodic Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 1846-1858.	1.7	9
483	Potassium and Humic Acid Synergistically Increase Salt Tolerance and Nutrient Uptake in Contrasting Wheat Genotypes through Ionic Homeostasis and Activation of Antioxidant Enzymes. Plants, 2022, 11, 263.	1.6	18
484	Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC Plant Biology, 2022, 22, 31.	1.6	7
485	Hydrogen sulfideâ€mediated mitigation and its integrated signaling crosstalk during salinity stress. Physiologia Plantarum, 2022, 174, e13633.	2.6	20
486	Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. Journal of Plant Growth Regulation, 2023, 42, 539-553.	2.8	31
487	Microorganism rhizosphere interactions and their impact on the bioremediation of saline soils: a review. International Journal of Environmental Science and Technology, 2022, 19, 12775-12790.	1.8	2
488	Use of remote sensing to evaluate the effects of environmental factors on soil salinity in a semi-arid area. Science of the Total Environment, 2022, 815, 152524.	3.9	21
489	Molecular Cloning and Characterization of SaCLCd, SaCLCf, and SaCLCg, Novel Proteins of the Chloride Channel Family (CLC) from the Halophyte Suaeda altissima (L.) Pall. Plants, 2022, 11, 409.	1.6	8
490	Transcriptome Analysis of Bread Wheat Genotype KRL3-4 Provides a New Insight Into Regulatory Mechanisms Associated With Sodicity (High pH) Tolerance. Frontiers in Genetics, 2021, 12, 782366.	1.1	4
491	Restoration of Degraded Sodic Soils through Silvipastoral Systems in Indoâ€Gangetic Plains. Land Degradation and Development, 0, , .	1.8	5
492	Farklı Tuz Konsantrasyonlarında Semiz Otu (Portulaca oleracea) ve Kamışsı Yumak (Festuca) Tj ETQq0 (European Journal of Science and Technology, 0, , .	0 0 rgBT /0 0.5	Overlock 10 T 0
493	Salicylic Acid Improves Nitrogen Fixation, Growth, Yield and Antioxidant Defence Mechanisms in Chickpea Genotypes Under Salt Stress. Journal of Plant Growth Regulation, 2022, 41, 2034-2047.	2.8	29
496	Soil salination processes and management. , 2022, , .		0
497	Brassinosteroids: A Wonder Growth Regulator to Alleviate Abiotic Stresses in Plants. Advances in Science, Technology and Innovation, 2022, , 97-110.	0.2	0

#	Article	IF	CITATIONS
498	Designing Genomic Solutions to Enhance Abiotic Stress Resistance in Flax., 2022,, 251-283.		2
499	Signaling molecules and transcriptional reprogramming for stomata operation under salt stress. Advances in Botanical Research, 2022, , .	0.5	0
500	Resistance to NaCl salinity is positively correlated with iron and zinc uptake potential of wheat genotypes. Crop and Pasture Science, 2022, 73, 546-555.	0.7	5
501	Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience. Earth, 2022, 3, 245-258.	0.9	3
502	Plant salt tolerance: <scp>ACC</scp> deaminaseâ€producing endophytes change plant proteomic profiles. Environmental Microbiology, 2022, , .	1.8	1
503	Blending Irrigation Water Sources with Different Salinities and the Economic Damage of Salinity: The Case of Israel. Water (Switzerland), 2022, 14, 917.	1.2	4
504	Enhancing Irrigation Salinity Stress Tolerance and Increasing Yield in Tomato Using a Precision Engineered Protein Hydrolysate and Ascophyllum nodosum-Derived Biostimulant. Agronomy, 2022, 12, 809.	1.3	14
505	Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na+/K+ Balance and Endogenous GAs and ABA Homeostasis. International Journal of Molecular Sciences, 2022, 23, 3293.	1.8	28
506	Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: multivariate comparison of physiological and oxidative stress attributes. Journal of Soils and Sediments, 2022, 22, 1446-1459.	1.5	15
507	Plant Growth-Promoting Halobacteria and Their Ability to Protect Crops from Abiotic Stress: An Eco-Friendly Alternative for Saline Soils. Agronomy, 2022, 12, 804.	1.3	17
508	Combining Genome-Wide Association Study and Gene-Based Haplotype Analysis to Identify Candidate Genes for Alkali Tolerance at the Germination Stage in Rice. Frontiers in Plant Science, 2022, 13, 887239.	1.7	9
509	Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 2022, 217, 26-40.	1.9	6
510	Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land, 2021, 10, 1377.	1.2	12
511	Ability of Sesuvium portulacastrum to Accumulate Sodium and Potassium from Saline Media. Asian Journal of Plant Sciences, 2021, 21, 99-105.	0.2	0
512	Saline Toxicity and Antioxidant Response in Oryza sativa: An Updated Review., 2022,, 79-102.		3
513	Insights into Physiological, Biochemical and Molecular Responses in Wheat under Salt Stress. , 0, , .		3
522	Microbial behavior, responses toward salinity stress, mechanism of microbe-mediated remediation for sustainable crop production., 2022, , 103-127.		1
523	Contrasting effects of aridity and seasonality on global salinization. Nature Geoscience, 2022, 15, 375-381.	5.4	17

#	ARTICLE	IF	CITATIONS
524	Distribution and Potential Uses of Halophytes within the Gulf Cooperation Council States. Agronomy, 2022, 12, 1030.	1.3	9
525	Mining Beneficial Genes for Salt Tolerance From a Core Collection of Rice Landraces at the Seedling Stage Through Genome-Wide Association Mapping. Frontiers in Plant Science, 2022, 13, 847863.	1.7	3
526	A Perspective on Developing a Plant †Holobiont†M for Future Saline Agriculture. Frontiers in Microbiology, 2022, 13, .	1.5	3
527	Hardwood modified and unmodified biochar amendments used for saline alkali soil remediation: phosphorus availability and its plant uptake. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
528	Climate resilient integrated soil–crop management (CRISCM) for salt affected wheat agri–food production systems. Science of the Total Environment, 2022, 837, 155843.	3.9	6
529	Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana. Plants, 2022, 11, 1287.	1.6	5
530	Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation. Agricultural Water Management, 2022, 269, 107640.	2.4	10
531	Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 2022, 203, 104775.	1.2	60
532	Đ'Đ¿Đ»Đ¸Đ² Đ°Đ²ĐµÑ€Đ¼ĐµĐºÑ,Đ¸Đ½Đ²Đ¼Ñ−ÑĐ½Đ¸Ñ Đ¿Đ¾Đ»Ñ−Ñ"ÑƒĐ½ĐºÑ†Ñ−Đ¾Đ½Đ°Đ»ÑŒĐ½	็วปิ _ง ฟิ.o ปิ±โ	Ñ –Đ ¾ÑÑ,Đ,Đ
533	Climate Change and Its Adverse Impacts on Plant Growth in South Asia: Current Status and Upcoming Challenges. Phyton, 2022, 91, 695-711.	0.4	9
534	Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes, 2022, 10, 17.	1.7	14
536	Cultivation of Two Barnyard Varieties Improves Physicochemical Properties of Saline-Alkali Land through Mediating Rhizospheric Microbiome and Metabolome. Agronomy, 2022, 12, 1322.	1.3	4
537	Photosynthesis and salt cations adsorption response of spring maize (<i>Zea mays</i> L.) to salinity stress caused by different drip irrigation regimes in an arid saline area, Northwest China. Journal of Agronomy and Crop Science, 0, , .	1.7	1
538	Towards Sustainable Application of Wastewater in Agriculture: A Review on Reusability and Risk Assessment. Agronomy, 2022, 12, 1397.	1.3	9
539	Plant growth-promoting characteristics of halotolerant endophytic bacteria isolated from Sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. of Ethiopian rift valley lakes. Archives of Microbiology, 2022, 204, .	1.0	8
540	Nutrient uptake, physiological responses and growth of tobacco (Nicotiana tabacum L.) in soil under composite salt stress. Pedosphere, 2022, 32, 893-904.	2.1	2
541	Natural circumstances and farm labor supply adjustment: the response of the farm labor supply to permanent and transitory natural events. Environment, Development and Sustainability, 2023, 25, 9935-9961.	2.7	1
542	Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. Phenomics, 2023, 3, 1-21.	0.9	3

#	Article	IF	CITATIONS
543	Salinity effects on rice, rice weeds, and strategies to secure crop productivity and effective weed control. A review. Agronomy for Sustainable Development, 2022, 42, .	2.2	4
544	Suffer or Survive: Decoding Salt-Sensitivity of Lemongrass and Its Implication on Essential Oil Productivity. Frontiers in Plant Science, 0, 13, .	1.7	11
545	Global Land-Use Development Trends: Traditional Cultural Landscapes Under Threat. Landscape Series, 2022, , 129-199.	0.1	2
546	Potential of tree legumes in agroforestry systems and soil conservation. , 2022, , 461-482.		4
547	Raising crops for dry and saline lands: Challenges and the way forward. Physiologia Plantarum, 2022, 174, .	2.6	4
549	Halotolerant Bacillus altitudinis WR 10 improves salt tolerance in wheat via a multi-level mechanism. Frontiers in Plant Science, $0,13,.$	1.7	8
550	Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. Frontiers in Plant Science, 0, 13 , .	1.7	26
551	OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice. Journal of Genetics and Genomics, 2022, 49, 766-775.	1.7	16
552	Genetics of yield component traits under salt stress at flowering stage and selection of salt tolerant pre-breeding lines for rice improvement. Genetica, 0, , .	0.5	1
553	Restoring Soil Functions and Agroecosystem Services Through Phytotechnologies. Frontiers in Soil Science, 0, 2, .	0.8	3
554	Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Frontiers in Microbiology, 0, 13, .	1.5	54
555	Assessment of soil salinity status under different land-use conditions in the semiarid region of Northeastern Brazil. Ecological Indicators, 2022, 141, 109139.	2.6	12
556	Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of the Total Environment, 2022, 843, 156946.	3.9	105
557	Salinity and medicinal plants: Challenges and strategies for production. Scientific Electronic Archives, 2022, 15, .	0.1	2
558	Do Gibberellins Mediate Growth Responses of the Halophytic Woody Prosopis Strombulifera (Lam.) Benth Plants Exposed to Different Sodium Salts?. Journal of Plant Growth Regulation, 0, , .	2.8	0
559	Comparative effects of different kinds of biochar on ammonia volatilization and chemical properties of saline soil. Archives of Agronomy and Soil Science, 2023, 69, 1600-1613.	1.3	4
560	Identification and Characterisation of the Salt Tolerant Phosphate-Solubilising Bacterial Isolates for Enhancing Soil Fertility. Asia-Pacific Journal of Rural Development, 2022, 32, 37-53.	1.0	1
561	Assessing soil quality for rehabilitation of salt-affected agroecosystem: A comprehensive review. Frontiers in Environmental Science, 0, 10, .	1.5	12

#	Article	IF	CITATIONS
563	Sustainable utilization of coal combustion fly ash in the management of hydro-physical properties and productivity of reclaimed sodic soil. Journal of Soils and Sediments, 0, , .	1.5	1
564	Effects of Exogenous Melatonin on Root Physiology, Transcriptome and Metabolome of Cotton Seedlings under Salt Stress. International Journal of Molecular Sciences, 2022, 23, 9456.	1.8	17
565	Climate Change and Land Degradation. Springer Briefs in Geography, 2022, , 59-65.	0.1	0
566	Salt Affected Soils: Global Perspectives. Environmental Science and Engineering, 2022, , 107-129.	0.1	2
567	Comparing Essentiality of SOS1-Mediated Na+ Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. International Journal of Molecular Sciences, 2022, 23, 9900.	1.8	5
568	A C2-Domain Abscisic Acid-Related Gene, IbCAR1, Positively Enhances Salt Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam.). International Journal of Molecular Sciences, 2022, 23, 9680.	1.8	5
569	Biotic and Abiotic Stress Factors Induce Microbiome Shifts and Enrichment of Distinct Beneficial Bacteria in Tomato Roots. Phytobiomes Journal, 2022, 6, 276-289.	1.4	7
570	A comprehensive analysis of Trehalose-6-phosphate synthase (TPS) gene for salinity tolerance in chickpea (Cicer arietinum L.). Scientific Reports, 2022, 12, .	1.6	2
571	The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy, 2022, 12, 2266.	1.3	29
572	Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, $0,13,.$	1.5	11
573	Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches. Sustainability, 2022, 14, 11876.	1.6	12
574	Salinity Tolerance, Ion Accumulation Potential and Osmotic Adjustment In Vitro and In Planta of Different Armeria maritima Accessions from a Dry Coastal Meadow. Plants, 2022, 11, 2570.	1.6	6
575	A practical and economical strategy to mitigate salinity stress through seed priming. Frontiers in Environmental Science, 0 , 10 , .	1.5	5
576	Comparative proteomic analysis of saline tolerant, phosphate solubilizing endophytic Pantoea sp., and Pseudomonas sp. isolated from Eichhornia rhizosphere. Microbiological Research, 2022, 265, 127217.	2.5	9
577	Insight into calcium signalling in salt stress response. South African Journal of Botany, 2022, 151, 1-8.	1.2	12
578	绿豆ç§è"资æ°è‹—期è€ç›æ€§é‰´å®šåБè€ç›ç§è"ç›é€‰. Acta Agronomica Sinica(China), 2021, 48, 367-379.	. 0.1	0
579	Land Degradation Neutrality for Achieving Climate Resilience in Agriculture., 2022,, 405-418.		0
580	Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Frontiers in Plant Science, 0, 13, .	1.7	9

#	Article	IF	CITATIONS
581	Integration of QTL Mapping and Whole Genome Sequencing Identifies Candidate Genes for Alkalinity Tolerance in Rice (Oryza sativa). International Journal of Molecular Sciences, 2022, 23, 11791.	1.8	7
582	Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnology and Genetic Engineering Reviews, 0, , 1-37.	2.4	26
583	Seed priming with ZNPs reduced expression of salinity tolerance genes in Glycine max L. and improved yield traits. Acta Agriculturae Slovenica, 2022 , 118 , 1 .	0.2	0
584	Comprehensive Evaluation of Morpho-Physiological and Ionic Traits in Wheat (Triticum aestivum L.) Genotypes under Salinity Stress. Agriculture (Switzerland), 2022, 12, 1765.	1.4	5
585	Exogenous Melatonin Counteracts Salinity and Cadmium Stress via Photosynthetic Machinery and Antioxidant Modulation in Solanum lycopersicum L. Journal of Plant Growth Regulation, 2023, 42, 6332-6348.	2.8	7
586	Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sensing Applications: Society and Environment, 2022, 28, 100847.	0.8	2
587	Exploring farmers' perception, knowledge, and management techniques of salt-affected soils to enhance rice production on small land holdings in Tanzania. Cogent Food and Agriculture, 2022, 8, .	0.6	2
588	Synthesis of nano-gypsum: A computational approach to encounter soil salinity and land degradation. Computational and Theoretical Chemistry, 2022, 1217, 113909.	1.1	3
589	Biochar: A New Emerging Tool to Mitigate Abiotic Stresses and Its Effect on Soil Properties. , 2022, , 97-108.		0
590	Interactive salinity and water stress severely reduced the growth, stress tolerance, and physiological responses of guava (Psidium Guajava L.). Scientific Reports, 2022, 12, .	1.6	7
591	Does land use change, waterlogging, and salinity impact on sustainability of agriculture and food security? Evidence from southwestern coastal region of Bangladesh. Environmental Monitoring and Assessment, 2023, 195, .	1.3	10
592	Techno-economic evaluation of recharge structure as localized drainage option for sustainable crop production in sodic agro-ecosystems. , 2020, 90, 212-219.		2
593	Agricultural Land Degradation in Spain. Handbook of Environmental Chemistry, 2022, , .	0.2	1
594	Agricultural Land Degradation in India. Handbook of Environmental Chemistry, 2022, , 219-257.	0.2	1
595	Rice: Role and Responses Under Abiotic Stress. , 2022, , 125-147.		1
596	Characteristics of bHLH transcription factors and their roles in the abiotic stress responses of horticultural crops. Scientia Horticulturae, 2023, 310, 111710.	1.7	13
597	Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta. Agricultural Water Management, 2023, 276, 108032.	2.4	4
598	Mechanistic Insights into Mulching and Plant Physiological Attributes Under Abiotic Stresses. , 2022, , 103-121.		0

#	Article	IF	CITATIONS
599	Improving Wheat Salt Tolerance for Saline Agriculture. Journal of Agricultural and Food Chemistry, 2022, 70, 14989-15006.	2.4	4
600	Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC Plant Biology, 2022, 22, .	1.6	5
601	Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype (Phaseolus) Tj ETQq $0\ 0\ 0$ rg Science, $0, 13, .$	BT /Overlo 1.7	ock 10 Tf 50 6 2
602	Screening of Rhizosphere Microbes of Salt-Tolerant Plants and Developed Composite Materials of Biochar Micro-Coated Soil Beneficial Microorganisms. Sustainability, 2022, 14, 16724.	1.6	1
603	Saline soil organic matter characteristics in aggregate size fractions after amelioration through straw and nitrogen application. Land Degradation and Development, 0, , .	1.8	0
604	Cell-Type-Specific Length and Cytosolic pH Response of Superficial Cells of Arabidopsis Root to Chronic Salinity. Plants, 2022, 11, 3532.	1.6	5
605	Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions. Agronomy, 2022, 12, 3084.	1.3	8
606	Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. Plants, 2022, 11, 3450.	1.6	7
607	Nanopriming of Barley Seedsâ€"A Shotgun Approach to Improve Germination under Salt Stress Conditions by Regulating of Reactive Oxygen Species. Plants, 2023, 12, 405.	1.6	4
608	Soil Salinity and Climate Change: Microbiome-Based Strategies for Mitigation of Salt Stress to Sustainable Agriculture. Climate Change Management, 2023, , 191-243.	0.6	4
609	Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. International Journal of Plant Biology, 2023, 14, 104-119.	1.1	4
610	Role of Phenolic Metabolites in Salinity Stress Management in Plants. , 2023, , 353-368.		O
611	Mangroves: An Underutilized Gene Pool to Combat Salinity. Sustainable Development and Biodiversity, 2023, , 215-259.	1.4	2
612	Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. Plants, 2023, 12, 412.	1.6	4
613	A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields. Agricultural Water Management, 2023, 277, 108115.	2.4	6
614	Approaches in stress mitigation of plants. , 2023, , 1-25.		0
615	Multiomics strategies for alleviation of abiotic stresses in plants. , 2023, , 1-35.		0
616	Biostimulants Promote the Sedimentation of Salts to Restore Tomato Plant Growth Under Salt Stress. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0

#	Article	IF	Citations
617	Ethylene as a modulator of redox reaction. , 2023, , 171-179.		0
618	Glycine Betaine. Journal of Pharmacy and Nutrition Sciences (discontinued), 0, 12, 139-156.	0.2	0
619	Exogenous Melatonin Application Induced Morpho-Physiological and Biochemical Regulations Conferring Salt Tolerance in Ranunculus asiaticus L Horticulturae, 2023, 9, 228.	1.2	9
620	Global transfer of salinization on irrigated land: Complex network and endogenous structure. Journal of Environmental Management, 2023, 336, 117592.	3.8	5
621	Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China. Agriculture (Switzerland), 2023, 13, 750.	1.4	3
622	Improving abiotic stress tolerance of forage grasses – prospects of using genome editing. Frontiers in Plant Science, 0, 14, .	1.7	7
623	Differential Effect of Heat Stress on Drought and Salt Tolerance Potential of Quinoa Genotypes: A Physiological and Biochemical Investigation. Plants, 2023, 12, 774.	1.6	8
624	Valuable Materials from Olive Mill Wastewater. Springer Water, 2023, , 61-83.	0.2	0
625	Mitigating soil salinity stress with titanium gypsum and biochar composite materials: Improvement effects and mechanism. Chemosphere, 2023, 321, 138127.	4.2	12
626	Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L Frontiers in Microbiology, 0, 14 , .	1.5	2
627	Understanding the Interaction and Potential of Halophytes and Associated Microbiome for Bio-saline Agriculture. Journal of Plant Growth Regulation, 2023, 42, 6601-6619.	2.8	3
628	Microbial Alleviation of Abiotic and Biotic Stresses in Rice. Sustainable Agriculture Reviews, 2023, , 243-268.	0.6	0
629	Application of Beet Sugar Byproducts Improves Maize Growth and Salt Redistribution in Saline Soils. Journal of Soil Science and Plant Nutrition, 2023, 23, 2152-2161.	1.7	3
630	Automated delineation of salt-affected lands and their progress in coastal India using Google Earth Engine and machine learning techniques. Environmental Monitoring and Assessment, 2023, 195, .	1.3	0
631	Effects of foliage-applied exogenous \hat{i} -aminobutyric acid on seedling growth of two rice varieties under salt stress. PLoS ONE, 2023, 18, e0281846.	1,1	2
632	Enhancing maize grain yield under saltâ€affected field conditions using saltâ€resistant maize hybrids and higher planting density. Journal of Plant Nutrition and Soil Science, 2023, 186, 259-265.	1.1	0
633	Salt-Affected Soils and Their Management in the Middle East and North Africa (MENA) Region: A Holistic Approach., 2023,, 13-45.		3
634	Trichoderma-mediated abiotic stress mitigation in plants: Current status and prospects. , 2023, , 151-172.		0

#	Article	IF	CITATIONS
635	Multimechanism Collaborative Superior Antioxidant CDzymes To Alleviate Salt Stress-Induced Oxidative Damage in Plant Growth. ACS Sustainable Chemistry and Engineering, 2023, 11, 4237-4247.	3.2	4
636	Environmental effects of irrigation. , 2023, , 266-276.		0
637	Silica and Biochar Amendments Improve Cucumber Growth under Saline Conditions. Soil Systems, 2023, 7, 26.	1.0	0
638	Transcriptomic Analysis of Salicylic Acid Promoting Seed Germination of Melon under Salt Stress. Horticulturae, 2023, 9, 375.	1.2	3
639	Priming Potato Plants with Melatonin Protects Stolon Formation under Delayed Salt Stress by Maintaining the Photochemical Function of Photosystem II, Ionic Homeostasis and Activating the Antioxidant System. International Journal of Molecular Sciences, 2023, 24, 6134.	1.8	2
640	Performance valuation of onion (Allium cepa L.) genotypes under different levels of salinity for the development of cultivars suitable for saline regions. Frontiers in Plant Science, 0, 14, .	1.7	2
641	Salinity-Triggered Responses in Plant Apical Meristems for Developmental Plasticity. International Journal of Molecular Sciences, 2023, 24, 6647.	1.8	4
642	Engineering Approach for Production of Arbuscular Mycorrhizal Inoculum Adapted to Saline Soil Management. Stresses, 2023, 3, 404-423.	1.8	1
643	Tree-based farming systems for improving productivity and ecosystem services in saline environments of dry regions: An overview. , 2023 , 1 , 100003 .		0
644	An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions. Frontiers in Plant Science, 0, 14, .	1.7	2
646	Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports, 2023, 42, 961-974.	2.8	16
655	The comparison of Brackish water treatment using local filter materials and reverse osmosis filters. AIP Conference Proceedings, 2023, , .	0.3	0
658	The Function of Hydrogen Sulfide in Plant Responses to Salinity and Drought: New Insights. Signaling and Communication in Plants, 2023, , 143-165.	0.5	0
667	Emerging Roles of Plant Growth Promoting Rhizobacteria in Salt Stress Alleviation: Applications in Sustainable Agriculture. Rhizosphere Biology, 2023, , 397-437.	0.4	0
677	Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. Journal of Zhejiang University: Science B, O, , .	1.3	0
695	Current understanding of genomics, transcriptomics, proteomics, and metabolomics of crop plants under salt stress., 2023,, 303-326.		0
704	Green Synthesis and Application of Biogenic Nanomaterials as a Blueprint in Mitigation of Abiotic Stress in Crop Plants: A Conceptual Review., 2023,, 155-182.		0
708	Impacts of Climate Alterations on the Biosynthesis of Defensive Natural Products., 2023,, 141-169.		0

#	Article	IF	Citations
713	Phytohormones-Assisted Management of Salinity Impacts in Plants. , 0, , .		0
714	Living with Abiotic Stress from a Plant Nutrition Perspective in Arid and Semi-arid Regions. , 2023, , 127-155.		O
716	Alleviation of Salinity Stress by Microbes. , 2023, , 145-174.		0
721	Introduction to "Salinity Resilience and Sustainable Crop Production Under Climate Change― Earth and Environmental Sciences Library, 2023, , 3-25.	0.3	O
722	Salinity and Its Impact on Sustainable Crop Production. Earth and Environmental Sciences Library, 2023, , 29-92.	0.3	1
729	Groundwater Salinization in Kuwait: A Major Threat to Indigenous Ecosystems. , 2023, , 171-196.		O
730	Prospective of Agricultural Farming in Kuwait and Energy-Food-Water-Climate Nexus., 2023,, 363-391.		0
737	Marker-assisted selection in plant breeding for stress tolerance. , 2024, , 371-387.		O
740	Dealing with the impact of climate change-induced drought on the management of soil salinity under irrigated agriculture. Advances in Agronomy, 2024, , 67-124.	2.4	0
757	Plant growth–promoting fungi in plants: Insights from stress tolerance mechanism. , 2024, , 469-511.		0
760	Plant Breeding Using the CRISPR-Cas9 System for Food Security and Facing Climate Change. , 2024, , 149-181.		0