Allopolyploidy, diversification, and the Miocene grassla

Proceedings of the National Academy of Sciences of the Unite 111, 15149-15154

DOI: 10.1073/pnas.1404177111

Citation Report

#	Article	IF	CITATIONS
1	The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biology, 2015, 15, 297.	3.6	46
2	A revised infrageneric classification of <i>Dimeria</i> R. Br. (Poaceae: Andropogoneae). Bangladesh Journal of Plant Taxonomy, 2015, 22, 47-54.	0.2	4
4	Flowering Plants. Monocots. , 2015, , .		144
5	Phylogenetic analysis of <i>Saccharum s.l</i> . (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species. American Journal of Botany, 2015, 102, 248-263.	1.7	46
6	Environmental niche variation and evolutionary diversification of the <i>Brachypodium distachyon</i> grass complex species in their native circumâ€Mediterranean range. American Journal of Botany, 2015, 102, 1073-1088.	1.7	73
7	Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus <i>Sorghum</i> . Annals of Botany, 2015, 116, 291-299.	2.9	23
8	A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 2015, 53, 117-137.	3.1	431
9	<i>Brachypodium distachyon</i> as a Genetic Model System. Annual Review of Genetics, 2015, 49, 1-20.	7.6	79
10	Polyploidy and Plant Breeding. , 2015, , 201-223.		0
11	Resolving deep relationships of PACMAD grasses: a phylogenomic approach. BMC Plant Biology, 2015, 15, 178.	3.6	55
12	The Genus Brachypodium as a Model for Perenniality and Polyploidy. Plant Genetics and Genomics: Crops and Models, 2015, , 313-325.	0.3	5
13	Plant Breeding in the Omics Era. , 2015, , .		46
14	Synthesis and Functions of Jasmonates in Maize. Plants, 2016, 5, 41.	3.5	92
15	Recreating Stable Brachypodium hybridum Allotetraploids by Uniting the Divergent Genomes of B. distachyon and B. stacei. PLoS ONE, 2016, 11, e0167171.	2.5	16
16	Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology, 2016, 30, 159-165.	7.1	390
17	Elucidating modes of activation and herbicide resistance by sequence assembly and molecular modelling of the Acetolactate synthase complex in sugarcane. Journal of Theoretical Biology, 2016, 407, 184-197.	1.7	9
18	Genomeâ€wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant Journal, 2016, 85, 424-436.	5.7	56
19	Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid	1.7	98

#	Article	IF	CITATIONS
20	Complete chloroplast genomes of <i>Saccharum spontaneum</i> , <i>Saccharum officinarum</i> and <i>Miscanthus floridulus</i> (Panicoideae: Andropogoneae) reveal the plastid view on sugarcane origins. Systematics and Biodiversity, 2016, 14, 548-571.	1.2	34
21	Polyploidy and the proteome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 896-907.	2.3	39
22	A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution, 2016, 8, evw060.	2.5	117
23	Sister chromatid separation and monopolar spindle organization in the first meiosis as two mechanisms of unreduced gametes formation in wheat–rye hybrids. Plant Reproduction, 2016, 29, 199-213.	2.2	15
24	Has the connection between polyploidy and diversification actually been tested?. Current Opinion in Plant Biology, 2016, 30, 25-32.	7.1	80
25	Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, 2016, , .	0.3	22
26	Of dups and dinos: evolution at the K/Pg boundary. Current Opinion in Plant Biology, 2016, 30, 62-69.	7.1	64
27	Anderson's and Stebbins' Prophecy Comes True: Genetic Exchange in Fluctuating Environments. Systematic Botany, 2016, 41, 4-16.	0.5	25
28	Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae–Andropogoneae): Taxonomic implications and evidence of interspecific hybridization. Molecular Phylogenetics and Evolution, 2016, 99, 155-167.	2.7	17
29	Against all odds: reconstructing the evolutionary history of Scrophularia (Scrophulariaceae) despite high levels of incongruence and reticulate evolution. Organisms Diversity and Evolution, 2017, 17, 323-349.	1.6	21
30	Macruropyxis fulva sp. nov., a new rust (Pucciniales) infecting sugarcane in southern Africa. Australasian Plant Pathology, 2017, 46, 63-74.	1.0	11
31	Unraveling the evolutionary dynamics of ancient and recent polyploidization events in Avena (Poaceae). Scientific Reports, 2017, 7, 41944.	3.3	20
32	Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evolutionary Biology, 2017, 17, 30.	3.2	18
33	The effects of genome duplications in a community context. New Phytologist, 2017, 215, 57-69.	7.3	68
34	The evolutionary significance of polyploidy. Nature Reviews Genetics, 2017, 18, 411-424.	16.3	1,288
35	Herbicide targets and detoxification proteins in sugarcane: from gene assembly to structure modelling. Genome, 2017, 60, 601-617.	2.0	3
36	Multilocus phylogenetic reconstruction informing polyploid relationships of Aconitum subgenus Lycoctonum (Ranunculaceae) in China. Plant Systematics and Evolution, 2017, 303, 727-744.	0.9	8
37	Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. Plant Physiology, 2017, 175, 828-847.	4.8	56

#	Article	IF	CITATIONS
38	Subgenome Dominance in an Interspecific Hybrid, Synthetic Allopolyploid, and a 140-Year-Old Naturally Established Neo-Allopolyploid Monkeyflower. Plant Cell, 2017, 29, 2150-2167.	6.6	260
39	A New Allopolyploid Species of <i>Saccharum</i> (Poaceae ―Andropogoneae) from South America, with Notes on its Cytogenetics. Systematic Botany, 2017, 42, 507-515.	0.5	4
40	Phylogenomics of Andropogoneae (Panicoideae: Poaceae) of Mainland Southeast Asia. Systematic Botany, 2017, 42, 418-431.	0.5	31
41	Polyploidy as a Factor in the Evolution of the <i>Bouteloua curtipendula</i> Complex (Poaceae:) Tj ETQq1 1 0.78	84314 rgB⁻ 0.5	ſ/gverlock
42	Allohexaploid speciation of the two closely related species Myriophyllum spicatum and M. sibiricum (Haloragaceae). Aquatic Botany, 2017, 142, 105-111.	1.6	7
43	Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the non-fertile †Sunshine' cultivar from other accessions. Industrial Crops and Products, 2017, 108, 629-635.	5.2	11
44	Constraining the timing of whole genome duplication in plant evolutionary history. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170912.	2.6	47
45	Nextâ€generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio singleâ€molecule sequencing. New Phytologist, 2017, 213, 413-429.	7.3	77
46	The recent and rapid spread of <i>Themeda triandra</i> . Botany Letters, 2017, 164, 327-337.	1.4	22
47	Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. PLoS ONE, 2017, 12, e0169992.	2.5	33
48	Polyploid Arabidopsis species originated around recent glaciation maxima. Current Opinion in Plant Biology, 2018, 42, 8-15.	7.1	64
49	Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). American Journal of Botany, 2018, 105, 631-640.	1.7	25
50	Impact of wholeâ€genome duplication events on diversification rates in angiosperms. American Journal of Botany, 2018, 105, 348-363.	1.7	270
51	Phylogeny and Evolution of the Neotropical Radiation of <i>Lachemilla</i> (Rosaceae): Uncovering a History of Reticulate Evolution and Implications for Infrageneric Classification. Systematic Botany, 2018, 43, 17-34.	0.5	33
52	Evidence for Allopolyploid Speciation in <i>Nymphoides</i> (Menyanthaceae). Systematic Botany, 2018, 43, 117-129.	0.5	10
53	Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods. Systematic Biology, 2018, 67, 127-144.	5.6	75
54	Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytologist, 2018, 217, 855-870.	7.3	85
55	Disparity, diversity, and duplications in the Caryophyllales. New Phytologist, 2018, 217, 836-854.	7.3	51

#	Article	IF	CITATIONS
56	Evolutionary dynamism in bryophytes: Phylogenomic inferences confirm rapid radiation in the moss family Funariaceae. Molecular Phylogenetics and Evolution, 2018, 120, 240-247.	2.7	33
57	Global grass (<scp>P</scp> oaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 2018, 93, 1125-1144.	10.4	178
58	Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nature Communications, 2018, 9, 5089.	12.8	32
60	Dinoflagellates, a Unique Lineage for Retrogene Research. Frontiers in Microbiology, 2018, 9, 1556.	3.5	13
61	The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evolutionary Biology, 2018, 18, 76.	3.2	23
62	Assessing the Likelihood of Gene Flow From Sugarcane (Saccharum Hybrids) to Wild Relatives in South Africa. Frontiers in Bioengineering and Biotechnology, 2018, 6, 72.	4.1	6
63	Whole-Genome Duplication and Plant Macroevolution. Trends in Plant Science, 2018, 23, 933-945.	8.8	244
64	Origins of polyploidy in Paspalum stellatum and related species (Poaceae, Panicoideae, Paspaleae) inferred from phylogenetic and cytogenetic analyses. Botanical Journal of the Linnean Society, 2018, 188, 21-33.	1.6	2
65	Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches. Molecular Phylogenetics and Evolution, 2018, 127, 256-271.	2.7	28
66	Widespread ancient wholeâ€genome duplications in Malpighiales coincide with Eocene global climatic upheaval. New Phytologist, 2019, 221, 565-576.	7.3	86
67	Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evolutionary Biology, 2019, 19, 33.	3.2	48
68	Plastome phylogenomics of sugarcane and relatives confirms the segregation of the genus <i>Tripidium</i> (Poaceae: Andropogoneae). Taxon, 2019, 68, 246-267.	0.7	26
69	From pampa to puna: Biogeography and diversification of a group of Neotropical obligate grassland birds (<i>Anthus:</i> Motacillidae). Journal of Zoological Systematics and Evolutionary Research, 2019, 57, 485.	1.4	5
70	Ancient Polyploidy and Genome Evolution in Palms. Genome Biology and Evolution, 2019, 11, 1501-1511.	2.5	25
71	Extensive allopolyploidy in the neotropical genus <i>Lachemilla</i> (Rosaceae) revealed by <scp>PCR</scp> â€based target enrichment of the nuclear ribosomal <scp>DNA</scp> cistron and plastid phylogenomics. American Journal of Botany, 2019, 106, 415-437.	1.7	14
72	Nuclear phylogeny and hypothesized allopolyploidization events in the Subtribe Otachyriinae (Paspaleae, Poaceae). Systematics and Biodiversity, 2019, 17, 277-294.	1.2	6
73	Darwin review: angiosperm phylogeny and evolutionary radiations. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190099.	2.6	62
74	Specimen-based analysis of morphology and the environment in ecologically dominant grasses: the power of the herbarium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170403.	4.0	25

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
75	Polyploidy as a mechanism for surviving global change. New Phytologist, 2019, 221, 5-6.	7.3	28
76	Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Systematic Biology, 2020, 69, 445-461.	5.6	27
77	Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters, 2020, 23, 68-78.	6.4	106
78	Polyploidy promotes species diversification of <i>Allium</i> through ecological shifts. New Phytologist, 2020, 225, 571-583.	7.3	68
79	Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 2020, 125, 29-47.	2.9	53
80	Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. Molecular Plant, 2020, 13, 59-71.	8.3	178
81	Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. Annual Review of Plant Biology, 2020, 71, 741-765.	18.7	41
82	The endemic â€~sugar canes' of Madagascar (Poaceae, Saccharinae: Lasiorhachis) are close relatives of sorghum. Botanical Journal of the Linnean Society, 2020, 192, 148-164.	1.6	13
83	Phylogenomics enables biogeographic analysis and a new subtribal classification of Andropogoneae (Poaceae—Panicoideae). Journal of Systematics and Evolution, 2020, 58, 1003-1030.	3.1	31
84	Evolutionary dynamics of genome size in a radiation of woody plants. American Journal of Botany, 2020, 107, 1527-1541.	1.7	9
85	Phylogenomic analysis clarifies the evolutionary origin of <i>Coffea arabica</i> . Journal of Systematics and Evolution, 2021, 59, 953-963.	3.1	16
86	Did dysploid waves follow the pulses of whole genome duplications?. Plant Systematics and Evolution, 2020, 306, 1.	0.9	9
87	Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200962.	2.6	13
88	Sterile Spikelets Contribute to Yield in Sorghum and Related Grasses. Plant Cell, 2020, 32, 3500-3518.	6.6	19
89	Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). Journal of Systematics and Evolution, 2021, 59, 1198-1208.	3.1	21
90	Has the Polyploid Wave Ebbed?. Frontiers in Plant Science, 2020, 11, 251.	3.6	18
91	Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants, 2020, 6, 215-222.	9.3	88
92	Biomass yields, cytogenetics, fertility, and compositional analyses of novel bioenergy grass hybrids () Tj ETQq	1 1 0.784314 5.6	4 rgBT /Over

#	Article	IF	CITATIONS
93	The genome of a cave plant, <i>Primulina huaijiensis</i> , provides insights into adaptation to limestone karst habitats. New Phytologist, 2020, 227, 1249-1263.	7.3	32
94	Resprouting grasses are associated with less frequent fire than seeders. New Phytologist, 2021, 230, 832-844.	7.3	24
95	Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe. Molecular Biology and Evolution, 2021, 38, 1695-1714.	8.9	21
96	Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biological Reviews, 2021, 96, 16-51.	10.4	123
97	Induced Polyploidy: A Tool for Forage Species Improvement. Agriculture (Switzerland), 2021, 11, 210.	3.1	9
99	Complex evolutionary history of two ecologically significant grass genera, <i>Themeda</i> and <i>Heteropogon</i> (Poaceae: Panicoideae: Andropogoneae). Botanical Journal of the Linnean Society, 2021, 196, 437-455.	1.6	10
100	Phylogeny, evolution and ecological speciation analyses of <i>Imperata</i> (Poaceae: Andropogoneae) in the Neotropics. Systematics and Biodiversity, 2021, 19, 526-543.	1.2	3
101	Rapid Evolution of Invasive Weeds Under Climate Change: Present Evidence and Future Research Needs. Frontiers in Agronomy, 2021, 3, .	3.3	34
102	Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31, 1245-1257.	5.5	29
103	Clarifying the type of the polyphyletic genus Schizachyrium (Poaceae: Andropogoneae). Kew Bulletin, 2021, 76, 327-331.	0.9	3
104	Transcriptomic exploration of a high sucrose mutant in comparison with the low sucrose mother genotype in sugarcane during sugar accumulating stage. GCB Bioenergy, 2021, 13, 1448-1465.	5.6	11
105	Chromosomal evolution in seagrasses: Is the chromosome number decreasing?. Aquatic Botany, 2021, 173, 103410.	1.6	5
106	HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets. Applications in Plant Sciences, 2021, 9, .	2.1	25
107	A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae:) Tj ETQq1 I Evolution, 2021, 161, 107161.	. 0.784314 rgl 2.7	BT /Overlock 30
108	Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System. Alpine Botany, 2022, 132, 29-50.	2.4	9
110	Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L Scientific Reports, 2021, 11, 18735.	3.3	14
111	Delimitation of the genus <i>Schizachyrium</i> (Poaceae, Andropogoneae) based on molecular and morphological data. Journal of Systematics and Evolution, 2022, 60, 319-330.	3.1	1
112	Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell, 2021, 33, 11-26.	6.6	325

#	Article	IF	CITATIONS
120	Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS ONE, 2017, 12, e0177896.	2.5	5
121	Checklist of the grasses of India. PhytoKeys, 0, 163, 1-560.	1.0	39
122	A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ, 2018, 6, e4299.	2.0	138
123	Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie. PeerJ, 2018, 6, e4394.	2.0	7
125	Genome evolution of the psammophyte <i>Pugionium</i> for desert adaptation and further speciation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
130	Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution, 2022, 166, 107323.	2.7	12
133	Molecular Phylogeny of Axonopus (Poaceae, Panicoideae, Paspaleae): Monophyly, Synapomorphies, and Taxonomic Implications for Infrageneric Classification and Species Complexes. Annals of the Missouri Botanical Garden, 2020, 105, 459-480.	1.3	2
134	Morphometric analysis of the Saccharum complex (Poaceae, Andropogoneae). Plant Systematics and Evolution, 2022, 308, .	0.9	4
135	A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant, 2022, 15, 755-777.	8.3	47
136	The Australasian grass flora in a global context. Journal of Systematics and Evolution, 2022, 60, 675-690.	3.1	4
137	Polyploidy in urban environments. Trends in Ecology and Evolution, 2022, 37, 507-516.	8.7	4
138	Where wholeâ€genome duplication is most beneficial: Adaptation of mangroves to a wide salinity range between land and sea. Molecular Ecology, 2023, 32, 460-475.	3.9	13
141	Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution, 2022, 60, 522-569.	3.1	35
142	Evolution of an intermediate C4 photosynthesis in the non-foliar tissues of the Poaceae. Photosynthesis Research, 2022, 153, 125-134.	2.9	3
143	Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae. Annals of Botany, 2023, 131, 199-214.	2.9	7
144	Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication. Systematic Biology, 2022, 71, 1348-1361.	5.6	10
148	Mitogenome selection in the evolution ofÂkey ecological strategies in the ancient hexapod class Collembola. Scientific Reports, 2022, 12, .	3.3	2
149	Hybridisation and chloroplast capture between distinct <i>Themeda triandra</i> lineages in Australia. Molecular Ecology, 2022, 31, 5846-5860.	3.9	7

#	Article	IF	CITATIONS
150	Phylogenomics and Systematics of Overlooked Mesoamerican and South American Polyploid Broad-Leaved Festuca Grasses Differentiate F. sects. Glabricarpae and Ruprechtia and F. subgen. Asperifolia, Erosiflorae, Mallopetalon and Coironhuecu (subgen. nov.). Plants, 2022, 11, 2303.	3.5	3
151	Frequent spontaneous structural rearrangements promote rapid genome diversification in a Brassica napus F1 generation. Frontiers in Plant Science, 0, 13, .	3.6	6
152	Testing the chilling―before droughtâ€ŧolerance hypothesis in Pooideae grasses. Molecular Ecology, 2023, 32, 772-785.	3.9	1
153	Molecular mechanisms of adaptive evolution in wild animals and plants. Science China Life Sciences, 2023, 66, 453-495.	4.9	22
154	Plant conservation assessment at scale: Rapid triage of extinction risks. Plants People Planet, 0, , .	3.3	0
155	Phylogenetic Relationships in the Group Caespitosa of Paspalum L. (Poaceae, Panicoideae, Paspaleae). Diversity, 2023, 15, 134.	1.7	1
156	The genome sequence and demographic history of <i>Przewalskia tangutica</i> (Solanaceae), an endangered alpine plant on the Qinghai–Tibet Plateau. DNA Research, 2023, 30, .	3.4	1
157	Deciphering complex reticulate evolution of Asian <i>Buddleja</i> (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. Annals of Botany, 2023, 132, 15-28.	2.9	3
160	Multispecies polyploidization, chromosome shuffling, and genome extraction in <i>Zea</i> / <i>Tripsacum</i> hybrids. Genetics, 2023, 223, .	2.9	1
161	A chromosome-level genome assembly for Erianthus fulvus provides insights into its biofuel potential and facilitates breeding for improvement of sugarcane. Plant Communications, 2023, 4, 100562.	7.7	4
163	Mitochondrial Genome Sequencing and Analysis of the Invasive <i>Microstegium vimineum</i> : A Resource for Systematics, Invasion History, and Management. International Journal of Plant Sciences, 2023, 184, 525-540.	1.3	0
164	Southern Hot Tropical Biomes. , 2023, , 23-64.		0
165	Phylogenomic Analyses Reveal an Allopolyploid Origin of Core Didymocarpinae (Gesneriaceae) Followed by Rapid Radiation. Systematic Biology, 0, , .	5.6	1
166	Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response. GigaScience, 2022, 12, .	6.4	0
167	New whole-genome alignment tools are needed for tapping into plant diversity. Trends in Plant Science, 2024, 29, 355-369.	8.8	2
168	The effects of climate change on cytotype distributions of endemic genera in the North American Coastal Plain. Plant Ecology and Diversity, 0, , 1-15.	2.4	0
169	Assessing the genetic diversity of Nymphoides peltata in the native and adventive range using microsatellite markers. Biological Invasions, 2023, 25, 3949-3963.	2.4	2
171	Reinstatement and expansion of the genus <i>Anatherum</i> (Andropogoneae, Panicoideae, Poaceae). Systematics and Biodiversity, 2023, 21, .	1.2	0

#	Article	IF	CITATIONS
172	A Review of the Diverse Genes and Molecules Involved in Sucrose Metabolism and Innovative Approaches to Improve Sucrose Content in Sugarcane. Agronomy, 2023, 13, 2957.	3.0	1
173	A genome assembly for Orinus kokonorica provides insights into the origin, adaptive evolution and further diversification of two closely related grass genera. Communications Biology, 2023, 6, .	4.4	0
175	Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nature Ecology and Evolution, 2024, 8, 519-535.	7.8	4
177	Defining autopolyploidy: Cytology, genetics, and taxonomy. American Journal of Botany, 0, , .	1.7	0