The collagen scaffold with collagen binding BDNF enhant facilitating peripheral nerve infiltrating and ingrowth in transection

Spinal Cord 52, 867-873 DOI: 10.1038/sc.2014.173

Citation Report

#	Article	IF	CITATIONS
1	Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?. Brain Research, 2015, 1619, 36-71.	1.1	84
2	Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring. PLoS ONE, 2016, 11, e0149206.	1.1	13
3	Training Neural Stem Cells on Functional Collagen Scaffolds for Severe Spinal Cord Injury Repair. Advanced Functional Materials, 2016, 26, 5835-5847.	7.8	58
4	Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF. Scientific Reports, 2016, 6, 32292.	1.6	29
5	Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion. Scientific Reports, 2016, 6, 20563.	1.6	31
6	Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Scientific Reports, 2017, 7, 43559.	1.6	61
7	Neurotrophic Factors Used to Treat Spinal Cord Injury. Vitamins and Hormones, 2017, 104, 405-457.	0.7	54
8	Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials, 2017, 137, 73-86.	5.7	106
9	Brain-derived and glial cell line-derived neurotrophic factor fusion protein immobilization to laminin. Experimental and Therapeutic Medicine, 2017, 13, 178-186.	0.8	8
10	Effects of <i>Angelica</i> Extract on Schwann Cell Proliferation and Expressions of Related Proteins. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-9.	0.5	5
11	Taxol-modified collagen scaffold implantation promotes functional recovery after long-distance spinal cord complete transection in canines. Biomaterials Science, 2018, 6, 1099-1108.	2.6	50
12	Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Science China Life Sciences, 2018, 61, 115-117.	2.3	20
13	Astrocyte spreading and migration on aggrecan–laminin dot gradients. Biointerphases, 2018, 13, 01A401.	0.6	2
14	Collagen Type I: A Versatile Biomaterial. Advances in Experimental Medicine and Biology, 2018, 1077, 389-414.	0.8	52
15	3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. Journal of Pineal Research, 2018, 65, e12516.	3.4	70
16	Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BioMed Research International, 2018, 2018, 1-19.	0.9	57
17	Transplantation of adult spinal cord tissue: Transection spinal cord repair and potential clinical translation. Science China Life Sciences, 2019, 62, 870-872.	2.3	6
18	Fibroadhesive scarring of grafted collagen scaffolds interferes with implant–host neural tissue integration and bridging in experimental spinal cord injury. International Journal of Energy Production and Management, 2019, 6, 75-87	1.9	17

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials, 2019, 214, 119230.	5.7	32
20	A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plasticity, 2019, 2019, 1-26.	1.0	28
21	Transplantation of adult spinal cord grafts into spinal cord transected rats improves their locomotor function. Science China Life Sciences, 2019, 62, 725-733.	2.3	16
22	Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomaterialia, 2019, 86, 312-322.	4.1	83
23	Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials, 2019, 197, 20-31.	5.7	82
24	Allotransplantation of adult spinal cord tissues after complete transected spinal cord injury: Long-term survival and functional recovery in canines. Science China Life Sciences, 2020, 63, 1879-1886.	2.3	9
25	A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair. Biomaterials, 2020, 243, 119941.	5.7	63
26	Directional axonal regrowth induced by an aligned fibrin nanofiber hydrogel contributes to improved motor function recovery in canine L2 spinal cord injury. Journal of Materials Science: Materials in Medicine, 2020, 31, 40.	1.7	24
28	Engineering Oriented Scaffolds for Directing Neuronal Regeneration. , 2021, , 125-152.		0
29	Scar tissue removal-activated endogenous neural stem cells aid Taxol-modified collagen scaffolds in repairing chronic long-distance transected spinal cord injury. Biomaterials Science, 2021, 9, 4778-4792.	2.6	12
30	Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. International Journal of Pharmaceutics, 2021, 601, 120559.	2.6	24
31	Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regeneration Research, 2019, 14, 1352.	1.6	85
32	Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regeneration Research, 2020, 15, 1686.	1.6	54
33	Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. , 2016, 7, 75.		34
35	Advances in Biomaterialâ€Based Spinal Cord Injury Repair. Advanced Functional Materials, 2022, 32, 2110628.	7.8	37
36	Sustained delivery of neurotrophic factors to treat spinal cord injury. Translational Neuroscience, 2021, 12, 494-511.	0.7	17
37	Are Cell-Based Therapies Safe and Effective in the Treatment of Neurodegenerative Diseases? A Systematic Review with Meta-Analysis. Biomolecules, 2022, 12, 340.	1.8	16
38	A SIRPαFc Fusion Protein Conjugated With the Collagen-Binding Domain for Targeted Immunotherapy of Non-Small Cell Lung Cancer. Frontiers in Immunology, 2022, 13, 845217.	2.2	8

#	Article	IF	CITATIONS
40	Application of Collagen-Based Scaffolds for the Treatment of Spinal Cord Injuries in Animal Models: A Literature Update. Cureus, 2022, , .	0.2	1
41	Axonal pathfinding during the development of the nervous system. , 2023, 1, 13-23.		5
42	The advent of a pan-collagenous CLOVIS POINT for pathotropic targeting and cancer gene therapy, a retrospective. Frontiers in Molecular Medicine, 0, 3, .	0.6	0