Tissue-specific clocks in Arabidopsis show asymmetric

Nature 515, 419-422 DOI: 10.1038/nature13919

Citation Report

#	Article	IF	CITATIONS
1	Leaf veins share the time of day. Nature, 2014, 515, 352-353.	13.7	3
2	Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues. Nature Plants, 2015, 1, 15163.	4.7	61
3	Circadian clocks: Who knows where the time goes. Nature Plants, 2015, 1, 15172.	4.7	3
4	Entrainment of Cellular Circadian Rhythms in Lactuca sativa L. Leaf by Spatially Controlled Illuminations. Journal of Biosensors & Bioelectronics, 2015, 06, .	0.4	4
5	Developmental mechanism underpinning leaf shape evolution. Plant Morphology, 2015, 27, 43-50.	0.1	0
6	Nutrient homeostasis within the plant circadian network. Frontiers in Plant Science, 2015, 6, 299.	1.7	59
7	Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. Frontiers in Plant Science, 2015, 6, 376.	1.7	46
8	Planting molecular functions in an ecological context with Arabidopsis thaliana. ELife, 2015, 4, .	2.8	50
9	Circadian rhythms synchronise intracellular calcium dynamics and ATP production for facilitatingArabidopsispollen tube growth. Plant Signaling and Behavior, 2015, 10, e1017699.	1.2	3
10	Interactions between circadian clocks and photosynthesis for the temporal and spatial coordination of metabolism. Frontiers in Plant Science, 2015, 6, 245.	1.7	87
11	A comparison of high-throughput techniques for assaying circadian rhythms in plants. Plant Methods, 2015, 11, 32.	1.9	14
12	Evolutionary Relationships Among Barley and Arabidopsis Core Circadian Clock and Clock-Associated Genes. Journal of Molecular Evolution, 2015, 80, 108-119.	0.8	59
13	The Cell-Intrinsic Circadian Clock Is Dispensable for Lymphocyte Differentiation and Function. Cell Reports, 2015, 11, 1339-1349.	2.9	77
14	The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 2015, 6, 7641.	5.8	119
15	Circadian clock gene <i>LATE ELONGATED HYPOCOTYL</i> directly regulates the timing of floral scent emission in <i>Petunia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9775-9780.	3.3	93
16	A Hierarchical Multi-oscillator Network Orchestrates the Arabidopsis Circadian System. Cell, 2015, 163, 148-159.	13.5	147
17	Genome-wide identification of CCA1 targets uncovers an expanded clock network in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4802-10.	3.3	230
18	Photoperiodism: The Calendar of Plants. , 2015, , 191-229.		2

ITATION REDO

#	Article	IF	CITATIONS
19	Photoperiod sensitivity of the <i>Arabidopsis</i> circadian clock is tissue-specific. Plant Signaling and Behavior, 2015, 10, e1010933.	1.2	14
20	Integrating circadian dynamics with physiological processes in plants. Nature Reviews Genetics, 2015, 16, 598-610.	7.7	402
21	Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System. PLoS Computational Biology, 2016, 12, e1004748.	1.5	30
22	Meselect – A Rapid and Effective Method for the Separation of the Main Leaf Tissue Types. Frontiers in Plant Science, 2016, 7, 1701.	1.7	16
23	The sun doesn't shine equally on everyone. New Phytologist, 2016, 211, 377-378.	3.5	1
24	Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks. New Phytologist, 2016, 212, 136-149.	3.5	91
25	Rapid and simple isolation of vascular, epidermal and mesophyll cells from plant leaf tissue. Nature Protocols, 2016, 11, 1388-1395.	5.5	22
26	Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural and Molecular Biology, 2016, 23, 1061-1069.	3.6	226
27	Silencing <i>Nicotiana attenuata <scp>LHY</scp></i> and <i><scp>ZTL</scp></i> alters circadian rhythms in flowers. New Phytologist, 2016, 209, 1058-1066.	3.5	71
28	Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature, 2016, 532, 375-379.	13.7	209
29	Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 2016, 91, 691-702.	2.0	70
30	Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends in Genetics, 2016, 32, 674-686.	2.9	140
31	Regulation of Stomatal Defense by Air Relative Humidity. Plant Physiology, 2016, 172, 2021-2032.	2.3	41
32	The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harbor Perspectives in Biology, 2016, 8, a027748.	2.3	154
33	Diurnal changes in the histone H3 signature H3K9ac H3K27ac H3S28p are associated with diurnal gene expression in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 2557-2569.	2.8	31
35	Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. Plant Cell, 2016, 28, 2755-2769.	3.1	56
36	Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles. Science Advances, 2016, 2, e1600500.	4.7	69
37	Do Plants Have a Central Tissue Correspond to the Brain in Animals as a Hub of Circadian Clock Network?. Seibutsu Butsuri, 2016, 56, 033-035.	0.0	0

ARTICLE IF CITATIONS # A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response 39 2.3 115 Regulators in Arabidopsis. Plant Physiology, 2016, 170, 528-539. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. Annual 8.6 Review of Plant Biology, 2016, 67, 595-618. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs. Plant and Cell Physiology, 2016, 57, 41 60 1.5 1085-1097. Age-associated circadian period changes in Arabidopsis leaves. Journal of Experimental Botany, 2016, 2.4 67, 2665-2673. Importance of epidermal clocks for regulation of hypocotyl elongation through PIF4 and IAA29. Plant 43 1.2 10 Signaling and Behavior, 2016, 11, e1143999. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. Plant Cell, 2016, 28, 696-711. 3.1 Tissue-specific circadian clocks in plants. Current Opinion in Plant Biology, 2016, 29, 44-49. 45 3.5 55 Tissue-specific regulation of flowering by photoreceptors. Cellular and Molecular Life Sciences, 2016, 2.4 46 73, 829-839. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. 47 0.9 41 Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 84-94. Parallel analysis of <i>Arabidopsis </i>circadian clock mutants reveals different scales of 1.5 transcriptome and proteome regulation. Open Biology, 2017, 7, 160333. <i>EARLY FLOWERING3</i> Redundancy Fine-Tunes Photoperiod Sensitivity. Plant Physiology, 2017, 173, 49 2.326 2253-2264. The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in 50 5.8 54 Arabidopsis. Nature Communications, 2017, 8, 15235 Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies. Plant 51 1.9 26 Methods, 2017, 13, 25. Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles. Scientific Reports, 2017, 7, 317. 1.6 <i>CIRCADIAN CLOCK ASSOCIATED1</i> (<i>CCA1</i>) and the Circadian Control of Stomatal Aperture. 53 2.351 Plant Physiology, 2017, 175, 1864-1877. Multicellularity enriches the entrainment of <i>Arabidopsis</i> circadian clock. Science Advances, 54 2017, 3, e17Ó0808. Time is honey: circadian clocks of bees and flowers and how their interactions may influence 55 ecological communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 1.8 66 372, 20160256. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global 1.1 Transcriptomic Analysis. Genome Biology and Evolution, 2017, 9, 2170-2190.

		CITATION REPORT		
#	Article	IF	Сітатіс	DNS
57	The Use of Grafting to Study Systemic Signaling in Plants. Plant and Cell Physiology, 2017, 58	, 1291-1301. 1.5	81	
58	The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledor leaf movement in Arabidopsis thaliana. Plant Methods, 2017, 13, 2.	n and 1.9	9	
59	Real-time monitoring of PtaHMGB activity in poplar transactivation assays. Plant Methods, 20	17, 13, 50. 1.9	9	
60	Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS Is a Hub for Signal Integration. Plant Physiology, 2017, 173, 5-15.	2.3	253	
61	Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal I Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrog Fertilizer. Frontiers in Plant Science, 2017, 8, 442.	V2 jen 1.7	43	
62	Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barl International Journal of Molecular Sciences, 2017, 18, 1828.	ey. 1.8	27	
63	Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-bir protein AtGRP7. Genome Biology, 2017, 18, 204.	ıding 3.8	3 87	
64	<scp>OST</scp> 1â€mediated <scp>BTF</scp> 3L phosphorylation positively regulates <scp: during plant cold responses. EMBO Journal, 2018, 37, .</scp: 	→CBF s 3.5	5 134	
65	Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illumin typeâ€specific transcription factor networks. Plant Journal, 2018, 94, 215-231.	ate cell 2.8	3 110	
66	Targeted Recruitment of the Basal Transcriptional Machinery by LNK Clock Components Cont Circadian Rhythms of Nascent RNAs in Arabidopsis. Plant Cell, 2018, 30, 907-924.	rols the 3.1	. 48	
67	Plant Ribonomics: Proteins in Search of RNA Partners. Trends in Plant Science, 2018, 23, 352-3	365. 4.8	3 24	
68	Entrainment of <scp>A</scp> rabidopsis roots to the light:dark cycle by light piping. Plant, Cel Environment, 2018, 41, 1742-1748.	l and 2.8	3 39	
69	Diel pattern of circadian clock and storage protein gene expression in leaves and during seed in cowpea (Vigna unguiculata). BMC Plant Biology, 2018, 18, 33.	illing 1.6	0 14	
70	The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabido Developmental Cell, 2018, 45, 101-113.e4.	opsis. 3.1	. 71	
71	Root Development. Methods in Molecular Biology, 2018, , .	0.4	4 3	
72	Long-Term In Vivo Imaging of Luciferase-Based Reporter Gene Expression in Arabidopsis Roots in Molecular Biology, 2018, 1761, 177-190.	. Methods 0.4	4 15	
73	Oscillator networks with tissue-specific circadian clocks in plants. Seminars in Cell and Developmental Biology, 2018, 83, 78-85.	2.8	3 20	
74	Circadian clock during plant development. Journal of Plant Research, 2018, 131, 59-66.	1.2	54	

#	Article	IF	CITATIONS
75	Functional Mapping of Plant Growth in Arabidopsis thaliana. , 2018, , .		0
78	Transcription Factors in theÂPineapple Genome. Plant Genetics and Genomics: Crops and Models, 2018, , 183-194.	0.3	0
79	Detection and Utilization of Biological Rhythms in Plant Factories. , 2018, , 367-384.		1
80	Long-term monitoring of bioluminescence circadian rhythms of cells in a transgenic <i>Arabidopsis</i> mesophyll protoplast culture. Plant Biotechnology, 2018, 35, 291-295.	0.5	7
81	Scientific Technologies Based on the Circadian Clock in Plant Factories. Shokubutsu Kankyo Kogaku, 2018, 30, 20-27.	0.1	0
82	A fibreâ€optic pipeline lets the root circadian clock see the light. Plant, Cell and Environment, 2018, 41, 1739-1741.	2.8	3
83	Dependence and independence of the root clock on the shoot clock in Arabidopsis. Genes and Genomics, 2018, 40, 1063-1068.	0.5	13
84	Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. ELife, 2018, 7, .	2.8	90
85	Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells. Methods in Molecular Biology, 2018, 1830, 141-148.	0.4	7
86	Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 341.	1.7	7
87	Ion Channels Regulate Nyctinastic Leaf Opening in Samanea saman. Current Biology, 2018, 28, 2230-2238.e7.	1.8	23
88	BIG Regulates Dynamic Adjustment of Circadian Period in <i>Arabidopsis thaliana</i> . Plant Physiology, 2018, 178, 358-371.	2.3	27
89	Auxin Contributes to the Intraorgan Regulation of Gene Expression in Response to Shade. Plant Physiology, 2018, 177, 847-862.	2.3	12
90	Specialized Plastids Trigger Tissue-Specific Signaling for Systemic Stress Response in Plants. Plant Physiology, 2018, 178, 672-683.	2.3	55
91	Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biology, 2019, 17, e3000407.	2.6	38
92	Circadian Network Interactions with Jasmonate Signaling and Defense. Plants, 2019, 8, 252.	1.6	14
94	Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. Plant Cell, 2019, 31, 325-345.	3.1	30
95	The Clock Gene TOC1 in Shoots, Not Roots, Determines Fitness of <i>Nicotiana attenuata</i> under Drought Plant Physiology 2019 181 305-318	2.3	15

		CITATION REPORT		
#	Article		IF	CITATIONS
96	A high-throughput delayed fluorescence method reveals underlying differences in the co circadian rhythms in Triticum aestivum and Brassica napus. Plant Methods, 2019, 15, 51	ntrol of	1.9	17
97	Identification and characterization of pineapple leaf IncRNAs in crassulacean acid metab photosynthesis pathway. Scientific Reports, 2019, 9, 6658.	olism (CAM)	1.6	17
98	Interactive roles of chromatin regulation and circadian clock function in plants. Genome 2019, 20, 62.	Biology,	3.8	26
99	PRR5, 7Âand 9 positively modulate TOR signaling-mediated root cell proliferation by rep ZINC FINGER 1 in Arabidopsis. Nucleic Acids Research, 2019, 47, 5001-5015.	ressing TANDEM	6.5	38
100	Overexpression of Wild Arachis Lipocalin Enhances Root-Knot Nematode Resistance in P Roots. Plant Molecular Biology Reporter, 2019, 37, 74-86.	eanut Hairy	1.0	6
101	The Phloem as a Mediator of Plant Growth Plasticity. Current Biology, 2019, 29, R173-R	.81.	1.8	32
102	The Plant Circadian Oscillator. Biology, 2019, 8, 14.		1.3	128
103	croFGD: Catharanthus roseus Functional Genomics Database. Frontiers in Genetics, 201	9, 10, 238.	1.1	41
104	Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidops and seedlings. Plant Journal, 2019, 99, 176-194.	sis organs	2.8	59
105	Organellar carbon metabolism is coordinated with distinct developmental phases of second New Phytologist, 2019, 222, 1832-1845.	ondary xylem.	3.5	11
106	Plant nyctinasty – who will decode the â€~Rosetta Stone'?. New Phytologist, 2019	, 223, 107-112.	3.5	15
107	Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhy enhancer–enhancer interactions. Genes and Development, 2019, 33, 294-309.	rthmic	2.7	103
108	Evolutionary Insight into the Clock-Associated PRR5 Transcriptional Network of Flowerin Scientific Reports, 2019, 9, 2983.	g Plants.	1.6	13
109	Alternative Splicing of Circadian Clock Genes Correlates With Temperature in Field-Grow Frontiers in Plant Science, 2019, 10, 1614.	n Sugarcane.	1.7	20
110	Annual transcriptome dynamics in natural environments reveals plant seasonal adaptatic Plants, 2019, 5, 74-83.	on. Nature	4.7	109
111	On the move through time $\hat{a} \in \hat{a}$ a historical review of plant clock research. Plant Biology,	2019, 21, 13-20.	1.8	13
112	CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in v Arabidopsis thaliana. Methods, 2020, 178, 63-71.	ivo in	1.9	14
113	Combining GAL4 GFP enhancer trap with split luciferase to measure spatiotemporal proi in Arabidopsis. Plant Journal, 2020, 102, 187-198.	noter activity	2.8	10

#	Article	IF	CITATIONS
114	<i>SUPPRESSOR OF MAX2 1â€LIKE 5</i> promotes secondary phloem formation during radial stem growth. Plant Journal, 2020, 102, 903-915.	2.8	19
115	Time-Series Single-Cell RNA-Seq Data Reveal Auxin Fluctuation during Endocycle. Plant and Cell Physiology, 2020, 61, 243-254.	1.5	10
116	Light―and temperatureâ€entrainable circadian clock in soybean development. Plant, Cell and Environment, 2020, 43, 637-648.	2.8	52
117	Attenuated TOR signaling lengthens circadian period in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2020, 15, 1710935.	1.2	14
118	The circadian clock coordinates plant development through specificity at the tissue and cellular level. Current Opinion in Plant Biology, 2020, 53, 65-72.	3.5	21
119	Chromatin Dynamics and Transcriptional Control of Circadian Rhythms in Arabidopsis. Genes, 2020, 11, 1170.	1.0	9
120	The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2020, 62, 1880-1895.	4.1	26
121	The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing. Plant Cell, 2020, 32, 3124-3138.	3.1	112
122	The Transcriptional Network in the Arabidopsis Circadian Clock System. Genes, 2020, 11, 1284.	1.0	42
123	Coexpression Analysis Reveals Dynamic Modules Regulating the Growth and Development of Cirri in the Rattans (Calamus simplicifolius and Daemonorops jenkinsiana). Frontiers in Genetics, 2020, 11, 378.	1.1	4
124	The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis. Plant Physiology, 2020, 183, 317-330.	2.3	36
125	<i>TOC1</i> in <i>Nicotiana attenuata</i> regulates efficient allocation of nitrogen to defense metabolites under herbivory stress. New Phytologist, 2020, 228, 1227-1242.	3.5	9
126	The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nature Communications, 2020, 11, 1053.	5.8	72
127	Molecular investigation of organâ€autonomous expression of Arabidopsis circadian oscillators. Plant, Cell and Environment, 2020, 43, 1501-1512.	2.8	15
128	A mobile ELF4 delivers circadian temperature information from shoots to roots. Nature Plants, 2020, 6, 416-426.	4.7	73
129	Rhythms of Transcription in Field-Grown Sugarcane Are Highly Organ Specific. Scientific Reports, 2020, 10, 6565.	1.6	16
130	<i>PRR9</i> and <i>PRR7</i> negatively regulate the expression of EC components under warm temperature in roots. Plant Signaling and Behavior, 2021, 16, 1855384.	1.2	8
131	Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. Plant Science, 2021, 303, 110786.	1.7	22

#	Article	IF	Citations
132	<scp>GmLCLs</scp> negatively regulate <scp>ABA</scp> perception and signalling genes in soybean leaf dehydration response. Plant, Cell and Environment, 2021, 44, 412-424.	2.8	22
133	Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell, 2021, 33, 511-530.	3.1	162
134	An auxin-regulable oscillatory circuit drives the root clock in <i>Arabidopsis</i> . Science Advances, 2021, 7, .	4.7	46
135	Post-Translational Mechanisms of Plant Circadian Regulation. Genes, 2021, 12, 325.	1.0	22
137	The singularity response reveals entrainment properties of the plant circadian clock. Nature Communications, 2021, 12, 864.	5.8	13
138	Spatial Organization and Coordination of the Plant Circadian System. Genes, 2021, 12, 442.	1.0	12
139	The Phosphofructokinase Isoform AtPFK5 Is a Novel Target of Plastidic Thioredoxin-f-Dependent Redox Regulation. Antioxidants, 2021, 10, 401.	2.2	2
140	Detection of Uncoupled Circadian Rhythms in Individual Cells of <i>Lemna minor</i> using a Dual-Color Bioluminescence Monitoring System. Plant and Cell Physiology, 2021, 62, 815-826.	1.5	11
141	Circadian Clock in Arabidopsis thaliana Determines Flower Opening Time Early in the Morning and Dominantly Closes Early in the Afternoon. Plant and Cell Physiology, 2021, 62, 883-893.	1.5	10
142	Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science, 2021, 372, .	6.0	74
143	Layers of crosstalk between circadian regulation andÂenvironmental signalling in plants. Current Biology, 2021, 31, R399-R413.	1.8	19
144	A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Communications Biology, 2021, 4, 580.	2.0	5
146	Unstable Phase Response Curves Shown by Spatiotemporal Patterns in the Plant Root Circadian Clock. Journal of Biological Rhythms, 2021, 36, 432-441.	1.4	0
147	Reactive oxygen species homeostasis and circadian rhythms in plants. Journal of Experimental Botany, 2021, 72, 5825-5840.	2.4	18
148	The Cell Division Cycle of Euglena gracilis Indicates That the Level of Circadian Plasticity to the External Light Regime Changes in Prolonged-Stationary Cultures. Plants, 2021, 10, 1475.	1.6	1
149	Time Will Tell: Intercellular Communication in the Plant Clock. Trends in Plant Science, 2021, 26, 706-719.	4.3	21
150	Circadian rhythms driving a fastâ€paced root clock implicate speciesâ€specific regulation in Medicago truncatula. Journal of Integrative Plant Biology, 2021, 63, 1537-1554.	4.1	9
151	Cut the noise or couple up: Coordinating circadian and synthetic clocks. IScience, 2021, 24, 103051.	1.9	7

#	Article	IF	CITATIONS
152	Stochastic simulation of a model for circadian rhythms in plants. Journal of Theoretical Biology, 2021, 527, 110790.	0.8	2
153	Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. Plant Cell, 2021, 33, 475-491.	3.1	23
154	Circadian Rhythms in Stomata: Physiological and Molecular Aspects. , 2015, , 231-255.		14
155	Monitoring circadian rhythms of individual cells in plants. Journal of Plant Research, 2018, 131, 15-21.	1.2	12
163	High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation. Plant Cell, 2015, 27, 2743-69.	3.1	195
164	Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed. PLoS ONE, 2016, 11, e0148256.	1.1	5
165	Spatiotemporal Analysis of Localized Circadian Arrhythmias in Plant Roots. Environmental Control in Biology, 2018, 56, 93-97.	0.3	3
166	Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. ELife, 2019, 8, .	2.8	25
168	High Spatial Resolution Luciferase Imaging of the Arabidopsis thaliana Circadian Clock. Methods in Molecular Biology, 2022, 2398, 47-55.	0.4	2
169	Agrobacterium-Mediated Seedling Transformation to Measure Circadian Rhythms in Arabidopsis. Methods in Molecular Biology, 2022, 2398, 57-64.	0.4	2
171	Universality in kinetic models of circadian rhythms in \$\$Arabidopsis,,thaliana\$\$. Journal of Mathematical Biology, 2021, 83, 51.	0.8	1
172	Measurement of Luciferase Rhythms in Soybean Hairy Roots. Methods in Molecular Biology, 2022, 2398, 65-73.	0.4	1
176	Distinct Plastids Trigger Local Signaling for Systemic Stress Response in Plants. SSRN Electronic Journal, 0, , .	0.4	0
179	Utilization Techniques of Circadian Clock. Shokubutsu Kankyo Kogaku, 2019, 31, 189-197.	0.1	1
189	The biology of time: dynamic responses of cell types to developmental, circadian, and environmental cues. Plant Journal, 2021, , .	2.8	8
190	Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Computational and Structural Biotechnology Journal, 2022, 20, 598-607.	1.9	5
191	An endogenous basis for synchronisation characteristics of the circadian rhythm in proliferating <i>Lemna minor</i> plants. New Phytologist, 2022, 233, 2203-2215.	3.5	7
192	Abscisic Acid Machinery Is under Circadian Clock Regulation at Multiple Levels. Stresses, 2022, 2, 65-78.	1.8	5

#	Article	IF	CITATIONS
193	Adaptive Diversification in the Cellular Circadian Behavior of <i>Arabidopsis</i> Leaf- and Root-Derived Cells. Plant and Cell Physiology, 2022, 63, 421-432.	1.5	3
194	Circadian clock in plants: Linking timing to fitness. Journal of Integrative Plant Biology, 2022, 64, 792-811.	4.1	26
195	Conservation of dynamic characteristics of transcriptional regulatory elements in periodic biological processes. BMC Bioinformatics, 2022, 23, 94.	1.2	3
196	Interspecific divergence of circadian properties in duckweed plants. Plant, Cell and Environment, 2022, 45, 1942-1953.	2.8	4
197	A spatial model of the plant circadian clock reveals design principles for coordinated timing. Molecular Systems Biology, 2022, 18, e10140.	3.2	10
198	The circadian clock ticks in plant stress responses. Stress Biology, 2022, 2, 1.	1.5	20
199	Sulfanilamide Regulates Flowering Time through Expression of the Circadian Clock Gene <i>LUX</i> . Plant and Cell Physiology, 2022, , .	1.5	3
200	Real-Time Monitoring of Key Gene Products Involved in Rice Photoperiodic Flowering. Frontiers in Plant Science, 2021, 12, 766450.	1.7	2
223	Noise reduction by upstream open reading frames. Nature Plants, 2022, 8, 474-480.	4.7	19
225	Heterologous expression of flowering locus T promotes flowering but does not affect diurnal movement in the legume <i>Lotus japonicus</i> . Plant Biotechnology, 2022, , .	0.5	0
227	The nature of the root clock at single cell resolution: Principles of communication and similarities with plant and animal pulsatile and circadian mechanisms. Current Opinion in Cell Biology, 2022, 77, 102102.	2.6	5
228	Spatially specific mechanisms and functions of the plant circadian clock. Plant Physiology, 2022, 190, 938-951.	2.3	8
231	PIF-independent regulation of growth by an evening complex in the liverwort Marchantia polymorpha. PLoS ONE, 2022, 17, e0269984.	1.1	1
233	A guiding role of the Arabidopsis circadian clock in cell differentiation revealed by time-series single-cell RNA sequencing. Cell Reports, 2022, 40, 111059.	2.9	9
234	Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula. Planta, 2022, 256, .	1.6	1
235	Keeping time in the dark: Potato diel and circadian rhythmic gene expression reveals tissueâ€specific circadian clocks. Plant Direct, 2022, 6, .	0.8	6
236	Clock-Controlled and Cold-Induced CYCLING DOF FACTOR6 Alters Growth and Development in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	3
237	Epidermal CCA1 and PMR5 contribute to nonhost resistance in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 2022, 86, 1623-1630.	0.6	1

#	Article	IF	CITATIONS
238	Circadian autonomy and rhythmic precision of the Arabidopsis female reproductive organ. Developmental Cell, 2022, 57, 2168-2180.e4.	3.1	2
239	A crosstalk of circadian clock and alternative splicing under abiotic stresses in the plants. Frontiers in Plant Science, 0, 13, .	1.7	3
242	Seasonal Changes in the Circadian Rhythm of Gas Released from Harvested Cucumbers. Natural Science, 2022, 14, 503-516.	0.2	2
244	Editorial: Plant circadian rhythms. Frontiers in Plant Science, 0, 13, .	1.7	0
245	Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport. Plant and Cell Physiology, 2023, 64, 352-362.	1.5	3
246	A bittersweet symphony: Metabolic signals in the circadian system. Current Opinion in Plant Biology, 2023, 73, 102333.	3.5	5
247	Limited water stress modulates expression of circadian clock genes in Brachypodium distachyon roots. Scientific Reports, 2023, 13, .	1.6	1
249	Potential Power of the Pyramidal Structure VII: Effects of Pyramid Power and Bio-Entanglement on the Circadian Rhythm of Biosensors. Natural Science, 2023, 15, 19-38.	0.2	1
250	Epidermal <scp>phyB</scp> requires <scp>RRC1</scp> to promote light responses by activating the circadian rhythm. New Phytologist, 0, , .	3.5	2
251	Plant domestication: setting biological clocks. Trends in Plant Science, 2023, 28, 597-608.	4.3	3
253	Identification of the global diurnal rhythmic transcripts, transcription factors and time-of-day specific cis elements in Chenopodium quinoa. BMC Plant Biology, 2023, 23, .	1.6	3
254	A molecular framework for grain number determination in barley. Science Advances, 2023, 9, .	4.7	10
257	A non-cell-autonomous circadian rhythm of bioluminescence reporter activities in individual duckweed cells. Plant Physiology, 2023, 193, 677-688.	2.3	2