Molecular Modeling and Gas Permeation Properties of a Microporosity Composed of Ethanoanthracene and TrÃ

Macromolecules 47, 7900-7916 DOI: 10.1021/ma501469m

Citation Report

#	Article	IF	CITATIONS
3	Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. Macromolecules, 2014, 47, 8320-8327.	4.8	82
5	Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495, 130-168.	8.2	229
6	Tröger's Base ontaining Aromatic Polymers with Unexpected Properties Endowed by the Insertion of Alkyne Spacers. Macromolecular Chemistry and Physics, 2016, 217, 863-870.	2.2	11
7	Accessing Nâ€Stereogenicity through a Double Azaâ€Michael Reaction: Mechanistic Insights. Chemistry - A European Journal, 2016, 22, 390-403.	3.3	9
8	Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Journal of Membrane Science, 2016, 514, 114-124.	8.2	42
9	Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science, 2016, 520, 895-906.	8.2	34
10	Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Applied Materials & amp; Interfaces, 2016, 8, 27311-27321.	8.0	93
11	Highâ€Performance Polymers for Membrane CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2016, 22, 15980-15990.	3.3	112
12	A Current Position of Polyacetylenes Among Other Highly Permeable Membrane Materials. Polymer Reviews, 2017, 57, 200-212.	10.9	34
13	Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation. Journal of Membrane Science, 2017, 528, 135-146.	8.2	52
14	Role of MOF surface defects on the microscopic structure of MOF/polymer interfaces: A computational study of the ZIF-8/PIMs systems. Microporous and Mesoporous Materials, 2017, 254, 184-191.	4.4	30
15	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	38.1	386
16	Improved gas selectivity of polyetherimide membrane by the incorporation of <scp>PIM</scp> polyimide phase. Journal of Applied Polymer Science, 2017, 134, .	2.6	25
17	Realization of ultra-high barrier to water vapor by 3D-interconnection of super-hydrophobic graphene layers in polylactide films. Journal of Materials Chemistry A, 2017, 5, 14377-14386.	10.3	20
18	Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIMâ€1) Membranes. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 344-354.	2.1	29
19	Ultrathin Composite Polymeric Membranes for CO ₂ /N ₂ Separation with Minimum Thickness and High CO ₂ Permeance. ChemSusChem, 2017, 10, 4014-4017.	6.8	36
20	Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. Langmuir, 2017, 33, 11377-11389.	3.5	36
21	Diastereoselective Selfâ€Assembly of a Neutral Dinuclear Doubleâ€Stranded Zinc(II) Helicate via Narcissistic Selfâ€Sorting. Chemistry - A European Journal, 2017, 23, 12380-12386.	3.3	18

#	Article	IF	CITATIONS
22	Soluble, optically transparent polyamides with a phosphaphenanthrene skeleton: synthesis, characterization, gas permeation and molecular dynamics simulations. Polymer Chemistry, 2017, 8, 4220-4232.	3.9	29
23	Aromatic polyamides containing trityl substituted triphenylamine: Gas transport properties and molecular dynamics simulations. Journal of Membrane Science, 2017, 522, 77-90.	8.2	57
24	Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity nafion "heterojunction―on a microhole substrate. Electrochimica Acta, 2017, 258, 807-813.	5.2	21
25	1.9 Membranes Made of Polymers of Intrinsic Microporosity (PIMs). , 2017, , 216-235.		1
26	1.3 Basic Aspects of Gas Transport in Membranes. , 2017, , 57-64.		0
27	Soluble polybenzimidazoles with intrinsic porosity: Synthesis, structure, properties and processability. Journal of Polymer Science Part A, 2018, 56, 1046-1057.	2.3	7
28	Molecular Dynamics Simulation of Nanostructure of High Free Volume Polymers with SiMe ₃ Side Groups. Macromolecules, 2018, 51, 1398-1408.	4.8	23
29	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	21.0	85
30	A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. Journal of Membrane Science, 2018, 561, 39-58.	8.2	77
31	Temperature and pressure dependence of gas permeation in amine-modified PIM-1. Journal of Membrane Science, 2018, 555, 483-496.	8.2	45
32	A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Tr¶ger's base polymerization. Journal of Materials Chemistry A, 2018, 6, 5661-5667.	10.3	92
33	Effective increase in permeability and free volume of PIM copolymers containing ethanoanthracene unit and comparison between the alternating and random copolymers. Journal of Membrane Science, 2018, 548, 593-597.	8.2	16
34	Hydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H ₂)-TB/PBI Blends. Industrial & Engineering Chemistry Research, 2018, 57, 16909-16916.	3.7	26
35	Polyimides Containing Phosphaphenanthrene Skeleton: Gas-Transport Properties and Molecular Dynamics Simulations. ACS Omega, 2018, 3, 13510-13523.	3.5	20
36	Temperature and Pressure Dependence of Gas Permeation in a Microporous Tröger's Base Polymer. Membranes, 2018, 8, 132.	3.0	49
37	A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. Membranes, 2018, 8, 73.	3.0	35
38	Polyamides with phosphaphenanthrene skeleton and substituted triphenylamine for gas separation membranes. Journal of Membrane Science, 2018, 566, 129-139.	8.2	6
39	Modeling Amorphous Microporous Polymers for CO ₂ Capture and Separations. Chemical Reviews, 2018, 118, 5488-5538.	47.7	208

щ		15	CITATIONS
#	The synthesis, chain-packing simulation and long-term gas permeability of highly selective	IF	CHATIONS
40	spirobifluorene-based polymers of intrinsic microporosity. Journal of Material's Chemistry A, 2018, 6, 10507-10514.	10.3	91
41	Experimental and modeling study of blended membranes for direct methanol fuel cells. Journal of Membrane Science, 2018, 564, 308-316.	8.2	8
42	Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 2018, 118, 5871-5911.	47.7	414
43	Intrinsically microporous co-polyimides derived from ortho-substituted Tr¶ger's Base diamine with a pendant tert-butyl-phenyl group and their gas separation performance. Polymer, 2018, 153, 173-182.	3.8	28
44	Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions. Macromolecules, 2019, 52, 6294-6302.	4.8	46
45	Microporous Polymeric Membranes: Structure, Preparation, Characterization, and Applications. , 2019, , 225-258.		0
46	Redefining the Robeson upper bounds for CO ₂ /CH ₄ and CO ₂ /N ₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science, 2019, 12, 2733-2740.	30.8	509
47	Polymer with Intrinsic Microporosity PIM-1: New Methods of Synthesis and Gas Transport Properties. Polymer Science - Series B, 2019, 61, 605-612.	0.8	10
48	Structure and Properties of High and Low Free Volume Polymers Studied by Molecular Dynamics Simulation. Computation, 2019, 7, 27.	2.0	11
49	Experimental and computational study on direct fluorination of PEEKWC membranes. Separation and Purification Technology, 2019, 227, 115676.	7.9	1
50	Prospects of Membrane Science Development. Membranes and Membrane Technologies, 2019, 1, 45-63.	1.9	111
51	Sorption of CO2/CH4 mixtures in TZ-PIM, PIM-1 and PTMSP: Experimental data and NELF-model analysis of competitive sorption and selectivity in mixed gases. Journal of Membrane Science, 2019, 585, 136-149.	8.2	37
52	Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes, 2019, 9, 8.	3.0	43
53	Elimination of CO ₂ /N ₂ Langmuir Sorption and Promotion of "N ₂ -Phobicity―within High- <i>T</i> _g Glassy Membranes. Macromolecules, 2019, 52, 1589-1600.	4.8	43
54	Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science, 2019, 92, 35-88.	24.7	230
55	Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. Journal of Membrane Science, 2019, 570-571, 522-536.	8.2	29
56	The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. Journal of Colloid and Interface Science, 2019, 536, 474-482.	9.4	20
57	Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger's base: A combined experimental and computational investigation of the role of residual casting solvent. Journal of Membrane Science, 2019, 569, 17-31.	8.2	25

#	Article	IF	CITATIONS
58	Polymers of Intrinsic Microporosity and Their Potential in Process Intensification. , 2020, , 231-264.		2
59	Polymer Membranes for Sustainable Gas Separation. , 2020, , 265-296.		4
60	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	8.2	39
61	Addition-type alkoxysilyl-substituted polynorbornenes for post-combustion carbon dioxide separations. Journal of Membrane Science, 2020, 595, 117532.	8.2	27
62	Effect of side branch on gas separation performance of triptycene based PIM membrane: A molecular simulation study. Polymer Testing, 2020, 83, 106339.	4.8	20
63	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	27.5	237
64	Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 2020, 597, 117627.	8.2	18
65	Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2020, 59, 5381-5391.	3.7	25
66	Constructing Gas Molecule Transport Channels in Thermally Rearranged Multiblock Poly(benzoxazole- <i>co</i> -imide) Membranes for Effective CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9669-9679.	6.7	17
67	Representing polymer molecular structure using molecular simulations for the study of liquid sorption and diffusion. Current Opinion in Chemical Engineering, 2020, 28, 144-151.	7.8	3
68	Polymers of Intrinsic Microporosity (PIMs). Polymer, 2020, 202, 122736.	3.8	94
69	Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger's-Base Derived Polymers of Intrinsic Microporosity. Membranes, 2020, 10, 62.	3.0	21
70	Upgrading of raw biogas using membranes based on the ultrapermeable polymer of intrinsic microporosity PIM-TMN-Trip. Journal of Membrane Science, 2021, 618, 118694.	8.2	23
71	Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation. Progress in Energy and Combustion Science, 2021, 84, 100903.	31.2	43
72	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	14.9	29
73	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2100049.	12.0	62
74	Structure-Property Relationship on the Example of Gas Separation Characteristics of Poly(Arylene) Tj ETQq0 0 0	rgBT /Ove 3.0	rlock 10 Tf 50
75	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2170026.	12.0	8

#	Article	IF	CITATIONS
76	Preparation and Characterization of Intrinsic Porous Polyamides Based on Redox-Active Aromatic Diamines with Pentiptycene Scaffolds. ACS Macro Letters, 2021, 10, 1210-1215.	4.8	8
77	Gas barrier properties of furan-based polyester films analyzed experimentally and by molecular simulations. Polymer, 2021, 233, 124200.	3.8	25
78	Membrane Science and membrane Engineering for a sustainable industrial development. Separation and Purification Technology, 2021, 275, 119196.	7.9	15
79	Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Separation and Purification Technology, 2021, 278, 119513.	7.9	44
80	Effects of different treatments of films of PIM-1 on its gas permeation parameters and free volume. Polymer, 2021, 212, 123271.	3.8	10
81	Facile synthesis and gas transport properties of Hünlich's base-derived intrinsically microporous polyimides. Polymer, 2020, 201, 122619.	3.8	14
82	Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review. Proceedings of the Nature Research Society, 0, 2, .	0.0	46
83	Pure- and mixed-gas transport properties of a microporous Tröger's Base polymer (PIM-EA-TB). Polymer, 2021, 236, 124295.	3.8	7
84	PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS Applied Materials & Interfaces, 2021, 13, 55517-55533.	8.0	22
85	Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. Journal of Membrane Science, 2022, 644, 120172.	8.2	11
86	Phenomenology of vapour sorption in polymers of intrinsic microporosity PIM-1 and PIM-EA-TB: envelopment of sorption isotherms. Current Opinion in Chemical Engineering, 2022, 35, 100786.	7.8	8
87	A new approach toward modeling of mixedâ€gas sorption in glassy polymers based on metaheuristic algorithms. Journal of Polymer Science, 2022, 60, 1392-1406.	3.8	5
88	Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation. Journal of Materials Chemistry A, 2022, 10, 10107-10119.	10.3	20
89	129Xe: A Wide-Ranging NMR Probe for Multiscale Structures. Applied Sciences (Switzerland), 2022, 12, 3152.	2.5	8
90	Tröger's Base Network Polymers of Intrinsic Microporosity (TB-PIMs) with Tunable Pore Size for Heterogeneous Catalysis. Journal of the American Chemical Society, 2022, 144, 15581-15594.	13.7	18
91	Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding. Membranes, 2022, 12, 1155.	3.0	2
92	Non-conjugated triarylamine-based intrinsic microporous polyamides for an electrochromic supercapacitor: diffusion dynamics and charge–discharge studies. Journal of Materials Chemistry A, 2023, 11, 1877-1885.	10.3	8
93	Solution-processable amorphous microporous polymers for membrane applications. Progress in Polymer Science, 2023, 137, 101636.	24.7	13

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
94	Diffusion Behavior of VOC Molecules in Polyvinyl Chloride Investigated by Molecular Dynamics Simulation. International Journal of Environmental Research and Public Health, 2023, 20, 3235.	2.6	0	
95	Hierarchically microporous membranes for highly energy-efficient gas separations. , 2023, 1, 376-387.		9	
96	Recent Advances in Carbon Dioxide Separation Membranes: A Review. Journal of Chemical Engineering of Japan, 2023, 56, .	0.6	5	
97	自åå¾®å"èšå•̂物在电化å¦èƒ½æºè½¬åŒ–åŠå,¨å~ä,的应用. Chinese Science Bulletin, 2023, , .	0.7	1	
98	Tuning and Coupling Irreversible Electroosmotic Water Flow in Ionic Diodes: Methylation of an Intrinsically Microporous Polyamine (PIM-EA-TB). ACS Applied Materials & Interfaces, 2023, 15, 42369-42377.	8.0	1	
99	Sorption of vapors in methanol soaked and in thermally annealed <scp>Matrimid®</scp> films. Journal of Applied Polymer Science, 2023, 140, .	2.6	1	
100	Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Membranes, 2023, 13, 903.	3.0	0	
101	Rational macromolecular design and strategies to tune the microporosity for high-performance O2/N2 separation membranes. Separation and Purification Technology, 2024, 334, 125978.	7.9	1	
102	Solubility of Gases and Free Volume Evolution in R-BAPB Polyimide: Molecular Dynamics Simulations and Analytical Theory Insights into Cooling Velocity Effect. Macromolecules, 2024, 57, 586-596.	4.8	0	
103	Polyimides Containing Biphenyl and Tröger's Base Units for Gas Separation Membranes. ACS Applied Polymer Materials, 2024, 6, 3342-3353.	4.4	0	
104	Molecular Structure Effects on Ionic Diode Performance in Desalination: Ultrahigh Rectification in Butylated Intrinsically Microporous Polyamine (PIMâ€EAâ€TB). ChemElectroChem, 0, , .	3.4	0	