Phylogenomics resolves the timing and pattern of insec

Science 346, 763-767 DOI: 10.1126/science.1257570

Citation Report

#	Article	IF	CITATIONS
2	Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii. BMC Genomics, 2015, 16, 754.	2.8	12
3	Convergent adaptive evolution – how insects master the challenge of cardiac glycosideâ€containing host plants. Entomologia Experimentalis Et Applicata, 2015, 157, 30-39.	1.4	54
4	Insect phylogenomics. Insect Molecular Biology, 2015, 24, 403-411.	2.0	17
5	Using phylogenomics to resolve megaâ€families: An example from Compositae. Journal of Systematics and Evolution, 2015, 53, 391-402.	3.1	76
6	The beetle tree of life reveals that <scp>C</scp> oleoptera survived endâ€ <scp>P</scp> ermian mass extinction to diversify during the <scp>C</scp> retaceous terrestrial revolution. Systematic Entomology, 2015, 40, 835-880.	3.9	435
7	Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Scientific Reports, 2015, 5, 15782.	3.3	233
8	Emergence of <i>de novo</i> proteins from †dark genomic matter' by †grow slow and moult'. Biochemical Society Transactions, 2015, 43, 867-873.	3.4	38
9	Unravelling peptidomes by in silico mining. Peptidomics, 2015, 2, .	0.3	5
10	Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages. Scientific Reports, 2015, 5, 15757.	3.3	18
11	Two functional types of attachment pads on a single foot in the Namibia bush cricket <i>Acanthoproctus diadematus</i> (Orthoptera: Tettigoniidae). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142976.	2.6	20
12	Phylotranscriptomic Analysis Based on Coalescence was Less Influenced by the Evolving Rates and the Number of Genes: A Case Study in Ericales. Evolutionary Bioinformatics, 2015, 11s1, EBO.S22448.	1.2	8
13	The ubiquity and ancestry of insect doublesex. Scientific Reports, 2015, 5, 13068.	3.3	42
14	Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. BMC Genomics, 2015, 16, 977.	2.8	82
15	Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evolutionary Biology, 2015, 15, 208.	3.2	36
16	Single origin of the Mascarene stick insects: ancient radiation on sunken islands?. BMC Evolutionary Biology, 2015, 15, 196.	3.2	92
17	Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes. BMC Genomics, 2015, 16, 825.	2.8	18
18	De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics, 2015, 16, 847.	2.8	23
19	A molecular phylogeny for the oldest (nonditrysian) lineages of extant <scp>L</scp> epidoptera, with implications for classification, comparative morphology and lifeâ€history evolution. Systematic Entomology, 2015, 40, 671-704.	3.9	82

		_
CITATI	ION	Report

#	Article	IF	CITATIONS
20	â€~Entomophagy': an evolving terminology in need of review. Journal of Insects As Food and Feed, 2015, 1, 293-305.	3.9	89
21	Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions. Communications in Theoretical Physics, 2015, 64, 507-514.	2.5	1
22	Phylogenetic and Kinetic Characterization of a Suite of Dehydrogenases from a Newly Isolated Bacterium, Strain SG61-1L, That Catalyze the Turnover of Guaiacylglycerol-β-Guaiacyl Ether Stereoisomers. Applied and Environmental Microbiology, 2015, 81, 8164-8176.	3.1	20
23	Codon bias and gene ontology in holometabolous and hemimetabolous insects. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 686-698.	1.3	3
24	Naupliar and Metanaupliar Development of Thysanoessa raschii (Malacostraca, Euphausiacea) from Godthåbsfjord, Greenland, with a Reinstatement of the Ancestral Status of the Free-Living Nauplius in Malacostracan Evolution. PLoS ONE, 2015, 10, e0141955.	2.5	8
25	Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis. Genetics and Molecular Biology, 2015, 38, 263-277.	1.3	8
26	The PRXamide Neuropeptide Signalling System. Advances in Insect Physiology, 2015, 49, 123-170.	2.7	45
27	A Guide to Phylogenetic Reconstruction Using Heterogeneous Models—A Case Study from the Root of the Placental Mammal Tree. Computation, 2015, 3, 177-196.	2.0	17
28	A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Frontiers in Neural Circuits, 2015, 9, 33.	2.8	21
29	QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees. PLoS Genetics, 2015, 11, e1005656.	3.5	21
30	Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence. PLoS ONE, 2015, 10, e0130127.	2.5	155
31	Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS ONE, 2015, 10, e0130600.	2.5	25
32	First instar tibiotarsal chaetotaxy supports the Entomobryidae and Symphypleona (Collembola) forming a cluster in a phylogenetic tree . Zootaxa, 2015, 3955, 487.	0.5	8
33	Antennal Mechanosensors and Their Evolutionary Antecedents. Advances in Insect Physiology, 2015, 49, 59-99.	2.7	24
34	Extraordinary diversity of visual opsin genes in dragonflies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1247-56.	7.1	151
35	Morphology is dead ââ,¬â€œ long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	44
36	Social Recognition in Invertebrates. , 2015, , .		14
37	Communication and Social Regulation in Termites. , 2015, , 193-248.		38

# 38	ARTICLE Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample. Molecular Biology and Evolution, 2015, 32, 2302-2316.	IF 8.9	CITATIONS
39	Post-molecular systematics and the future of phylogenetics. Trends in Ecology and Evolution, 2015, 30, 384-389.	8.7	83
40	Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proceedings of the United States of America, 2015, 112, 10255-10261.	7.1	129
41	Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10169-10176.	7.1	401
42	Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME Journal, 2015, 9, 2587-2604.	9.8	63
43	The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Environmental Epigenetics, 2015, 61, 874-885.	1.8	59
44	The evolution, diversity, and host associations of rhabdoviruses. Virus Evolution, 2015, 1, vev014.	4.9	68
45	Herbivory increases diversification across insect clades. Nature Communications, 2015, 6, 8370.	12.8	153
46	Expression of engrailed-family genes in the jumping bristletail and discussion on the primitive pattern of insect segmentation. Development Genes and Evolution, 2015, 225, 313-318.	0.9	4
47	Dermestes maculatus: an intermediate-germ beetle model system for evo-devo. EvoDevo, 2015, 6, 32.	3.2	24
48	Arthropod genomics beyond fruit flies: bridging the gap between proximate and ultimate causation. Briefings in Functional Genomics, 2015, 14, 381-383.	2.7	3
49	Diet Evolution and Clade Richness in Hexapoda: A Phylogenetic Study of Higher Taxa. American Naturalist, 2015, 186, 777-791.	2.1	37
50	Extreme convergence in egg-laying strategy across insect orders. Scientific Reports, 2015, 5, 7825.	3.3	86
51	Chromosome inversions, adaptive cassettes and the evolution of species' ranges. Molecular Ecology, 2015, 24, 2046-2055.	3.9	62
52	Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zoologischer Anzeiger, 2015, 256, 96-103.	0.9	76
53	Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Scientific Reports, 2015, 5, 8527.	3.3	140
54	Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142953.	2.6	101
55	ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics, 2015, 31, 2577-2579.	4.1	209

#	Article	IF	CITATIONS
56	Circatidal rhythm and the veiled clockwork. Current Opinion in Insect Science, 2015, 7, 92-97.	4.4	13
57	The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea. Insect Biochemistry and Molecular Biology, 2015, 65, 57-67.	2.7	28
58	Structural mouthpart interaction evolved already in the earliest lineages of insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151033.	2.6	16
59	A maturing understanding of the composition of the insect gene repertoire. Current Opinion in Insect Science, 2015, 7, 15-23.	4.4	24
60	Identification of the first neuropeptides from the enigmatic hexapod order Protura. General and Comparative Endocrinology, 2015, 224, 18-37.	1.8	18
61	The Jurassic Bajanzhargalanidae (Insecta: Grylloblattida?): New genera and species, and data on postabdominal morphology. Arthropod Structure and Development, 2015, 44, 688-716.	1.4	9
62	The power of next-generation sequencing as illustrated by the neuropeptidome of the crayfish Procambarus clarkii. General and Comparative Endocrinology, 2015, 224, 84-95.	1.8	111
63	Evolution of Respiratory Proteins across the Pancrustacea. Integrative and Comparative Biology, 2015, 55, 792-801.	2.0	42
64	Convergence of multiple markers and analysis methods defines the genetic distinctiveness of cryptic pitvipers. Molecular Phylogenetics and Evolution, 2015, 92, 266-279.	2.7	9
65	Spiralian Phylogeny Informs the Evolution of Microscopic Lineages. Current Biology, 2015, 25, 2000-2006.	3.9	242
66	Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Molecular Phylogenetics and Evolution, 2015, 90, 129-139.	2.7	85
67	Transcriptional Control of an Essential Ribozyme in Drosophila Reveals an Ancient Evolutionary Divide in Animals. PLoS Genetics, 2015, 11, e1004893.	3.5	5
68	Two New Fossil Species of Cryptocephalus Geoffroy (Coleoptera: Chrysomelidae) from Baltic and Dominican Amber. Proceedings of the Entomological Society of Washington, 2015, 117, 116.	0.2	3
69	Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integrative and Comparative Biology, 2015, 55, 843-855.	2.0	31
70	Spermiogenesis and sperm ultrastructure of Machilontus sp (Insecta: Archaeognatha) with phylogenetic consideration. Micron, 2015, 73, 47-53.	2.2	4
71	Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology, 2015, 15, 13.	3.2	95
72	Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha). BMC Evolutionary Biology, 2015, 15, 52.	3.2	22
73	Discovery of the first lacewings (Neuroptera: Permithonidae) from the Guadalupian of the Lodève Basin (Southern France). Geobios, 2015, 48, 263-270.	1.4	15

#	Article	IF	CITATIONS
74	Embryonic development of a collembolan, Tomocerus cuspidatus Börner, 1909: With special reference to the development and developmental potential of serosa (Hexapoda: Collembola, Tomoceridae). Arthropod Structure and Development, 2015, 44, 157-172.	1.4	11
75	A quantum leap in avian biology. Emu, 2015, 115, 1-5.	0.6	8
76	The fossil record and macroevolutionary history of the beetles. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150060.	2.6	48
77	The circulatory organs of insect wings: Prime examples for the origin of evolutionary novelties. Zoologischer Anzeiger, 2015, 256, 82-95.	0.9	22
78	Estimating ecological production from biomass. Ecosphere, 2015, 6, 1-31.	2.2	26
79	Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing. Molecular Biology and Evolution, 2015, 32, 2001-2014.	8.9	198
80	Identification and evolution of the orphan genes in the domestic silkworm, <i>Bombyx mori</i> . FEBS Letters, 2015, 589, 2731-2738.	2.8	21
81	Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. General and Comparative Endocrinology, 2015, 223, 73-86.	1.8	23
82	The rectal complex and Malpighian tubules of the cabbage looper (<i>Trichoplusia ni</i>): regional variations in Na+ and K+ transport and cation reabsorption by secondary cells. Journal of Experimental Biology, 2015, 218, 3206-3214.	1.7	26
83	Comb Architecture of the Eusocial Bees Arises from Simple Rules Used During Cell Building. Advances in Insect Physiology, 2015, 49, 101-121.	2.7	23
84	Comment on "Phylogenomics resolves the timing and pattern of insect evolution― Science, 2015, 349, 487-487.	12.6	69
85	Response to Comment on "Phylogenomics resolves the timing and pattern of insect evolutionâ€. Science, 2015, 349, 487-487.	12.6	17
86	Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics. Genome Biology and Evolution, 2015, 7, 1474-1489.	2.5	32
87	Morphological Phylogenetics in the Genomic Age. Current Biology, 2015, 25, R922-R929.	3.9	151
88	A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 2015, 526, 569-573.	27.8	1,341
89	The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics, 2015, 16, 429.	2.8	113
90	Trends in genome dynamics among major orders of insects revealed through variations in protein families. BMC Genomics, 2015, 16, 583.	2.8	5
91	Novelty and Innovation in the History of Life. Current Biology, 2015, 25, R930-R940.	3.9	117

#	Article	IF	CITATIONS
92	Widespread Recurrent Patterns of Rapid Repeat Evolution in the Kinetochore Scaffold KNL1. Genome Biology and Evolution, 2015, 7, 2383-2393.	2.5	40
93	The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integrative and Comparative Biology, 2015, 55, 830-842.	2.0	89
94	Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, USA. Journal of the Geological Society, 2015, 172, 693-709.	2.1	18
95	Review of the Gross Anatomy and Microbiology of the Phasmatodea Digestive Tract. Journal of Orthoptera Research, 2015, 24, 29-40.	1.0	25
96	In silico prediction of a neuropeptidome for the eusocial insect Mastotermes darwiniensis. General and Comparative Endocrinology, 2015, 224, 69-83.	1.8	23
98	Updating Genomic Data of Lepidoptera. True Bugs (Heteroptera) of the Neotropics, 2015, , 41-73.	1.2	1
99	The sperm pump of the hangingfly Bittacus planus Cheng (Mecoptera: Bittacidae). Arthropod Structure and Development, 2015, 44, 667-676.	1.4	7
100	Quest for Orthologs Entails Quest for Tree of Life: In Search of the Gene Stream. Genome Biology and Evolution, 2015, 7, 1988-1999.	2.5	25
101	The morphology of the eggs of three species of Zoraptera (Insecta). Arthropod Structure and Development, 2015, 44, 656-666.	1.4	9
102	Late Ordovician Glaciation Initiated by Early Land Plant Evolution and Punctuated by Greenhouse Mass Extinctions. Journal of Geology, 2015, 123, 509-538.	1.4	19
103	From Fossil Parasitoids to Vectors. Advances in Parasitology, 2015, 90, 137-200.	3.2	20
104	Insect glycerol transporters evolved by functional co-option and gene replacement. Nature Communications, 2015, 6, 7814.	12.8	66
105	Revision of the giant pterygote insect <i>Bojophlebia prokopi</i> Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects. Journal of Systematic Palaeontology, 2015, 13, 963-982.	1.5	24
106	Building the insect tree-of-life. Nature Reviews Genetics, 2015, 16, 3-3.	16.3	4
107	<i>Yorkie</i> Facilitates Organ Growth and Metamorphosis in Bombyx. International Journal of Biological Sciences, 2016, 12, 917-930.	6.4	15
108	OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics, 2016, 17, 678.	2.8	35
109	A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 2565-2580.	2.5	70
110	Spider phylogenomics: untangling the Spider Tree of Life. PeerJ, 2016, 4, e1719.	2.0	253

#	Article	IF	CITATIONS
111	Never Ending Analysis of a Century Old Evolutionary Debate: "Unringing―the Urmetazoon Bell. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	15
112	Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evolutionary Biology, 2016, 16, 143.	3.2	86
113	Continuous Influx of Genetic Material from Host to Virus Populations. PLoS Genetics, 2016, 12, e1005838.	3.5	63
114	miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genetics, 2016, 12, e1006257.	3.5	87
115	Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan. PLoS Neglected Tropical Diseases, 2016, 10, e0005034.	3.0	15
116	Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS ONE, 2016, 11, e0149459.	2.5	33
117	Comparative Mt Genomics of the Tipuloidea (Diptera: Nematocera: Tipulomorpha) and Its Implications for the Phylogeny of the Tipulomorpha. PLoS ONE, 2016, 11, e0158167.	2.5	27
118	Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles. PLoS ONE, 2016, 11, e0163529.	2.5	10
119	Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. Frontiers in Plant Science, 2016, 7, 675.	3.6	17
120	Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry, 2016, 12, 314-327.	2.2	101
121	Phylogenetic analyses of the isonychiid mayflies (Ephemeroptera: Isonychiidae) in the northeast palearctic region. Entomological Research, 2016, 46, 246-259.	1.1	13
122	The ecology of sex explains patterns of helping in arthropod societies. Ecology Letters, 2016, 19, 862-872.	6.4	24
123	The Neotropical â€~polymorphic earless praying mantises' – Part I: molecular phylogeny and revised higherâ€level systematics (Insecta: Mantodea, Acanthopoidea). Systematic Entomology, 2016, 41, 607-649.	3.9	42
124	Out of the Neotropics: newly discovered relictual species sheds light on the biogeographical history of spider ants (<i>Leptomyrmex</i> , Dolichoderinae, Formicidae). Systematic Entomology, 2016, 41, 658-671.	3.9	18
125	The butterfly proboscis as a fiber-based, self-cleaning, micro-fluidic system. Proceedings of SPIE, 2016, ,	0.8	1
126	Body-enlarging effect of royal jelly in a non-holometabolous insect species, <i>Gryllus bimaculatus</i> . Biology Open, 2016, 5, 770-776.	1.2	15
127	Craniota vs. Craniata: arguments towards nomenclatural consistency. Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 174-176.	1.4	3
128	Identification and qualification of 500 nuclear, single opy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture. Molecular Ecology Resources, 2016, 16, 1107-1123.	4.8	40

#	Article	IF	CITATIONS
129	Exon capture phylogenomics: efficacy across scales of divergence. Molecular Ecology Resources, 2016, 16, 1059-1068.	4.8	132
130	De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach. International Journal for Parasitology, 2016, 46, 709-721.	3.1	45
131	The evolution of sperm axoneme structure and the dynein heavy chain complement in cecidomid insects. Cytoskeleton, 2016, 73, 209-218.	2.0	5
132	Phylogenetic analyses elucidate the interâ€relationships of Pamphilioidea (Hymenoptera, Symphyta). Cladistics, 2016, 32, 239-260.	3.3	21
133	Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution; International Journal of Organic Evolution, 2016, 70, 1136-1144.	2.3	22
134	The evolution of insect sperm â^' an unusual character system in a megadiverse group. Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 237-256.	1.4	22
135	Not going with the flow: a comprehensive timeâ€calibrated phylogeny of dragonflies (Anisoptera:) Tj ETQqO O O Ecology, 2016, 25, 1340-1353.	gBT /Over 3.9	lock 10 Tf 50 59
136	Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny. Scientific Reports, 2016, 6, 33465.	3.3	8
137	The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Scientific Reports, 2016, 6, 37110.	3.3	139
138	Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises. Scientific Reports, 2016, 6, 37753.	3.3	18
139	Rates and patterns of molecular evolution in freshwater versus terrestrial insects. Genome, 2016, 59, 968-980.	2.0	8
140	Notch signalling mediates reproductive constraint in the adult worker honeybee. Nature Communications, 2016, 7, 12427.	12.8	67
141	Reference gene selection and RNA preservation protocol in the cat flea, <i>Ctenocephalides felis</i> , for gene expression studies. Parasitology, 2016, 143, 1532-1542.	1.5	10
142	Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. Scientific Reports, 2016, 6, 36175.	3.3	45
143	Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research. BMC Genomics, 2016, 17, 842.	2.8	18
144	Molecular data in systematics: a promise fulfi lled, a future beckoning. , 0, , 329-343.		1
145	Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics, 2016, 17, 905.	2.8	41
146	New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Scientific Reports, 2016, 6, 23004.	3.3	47

#	Article	IF	CITATIONS
147	New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions. Scientific Reports, 2016, 6, 25382.	3.3	15
148	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 2016, 7, 13736.	12.8	229
149	PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology and Evolution, 2017, 34, msw260.	8.9	2,854
150	Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda:) Tj ETQq1 1 0.7843	14 ₃ rgBT /C	Dvgrlock 10 T
151	The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. Scientific Reports, 2016, 6, 30660.	3.3	18
152	Evolution of DNA Methylation across Insects. Molecular Biology and Evolution, 2017, 34, msw264.	8.9	246
153	Clobal map of oxytocin/vasopressin-like neuropeptide signalling in insects. Scientific Reports, 2016, 6, 39177.	3.3	35
154	Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids. Scientific Reports, 2016, 6, 34321.	3.3	34
155	The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 2016, 14, 110.	3.8	265
156	Do you speak chemistry?. EMBO Reports, 2016, 17, 626-629.	4.5	18
157	A New Record of Zoraptera (Insecta) from Kenya, with Remarks on their Habitat. Journal of East African Natural History, 2016, 105, 213-222.	0.6	4
158	Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161745.	2.6	29
159	Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations. Systematic Biology, 2017, 66, syw075.	5.6	22
160	Gene Family Evolution Reflects Adaptation to Soil Environmental Stressors in the Genome of the Collembolan <i>Orchesella cincta</i> . Genome Biology and Evolution, 2016, 8, 2106-2117.	2.5	56
161	Phylogenetic comparisons of pedestrian locomotion costs: confirmations and new insights. Ecology and Evolution, 2016, 6, 6712-6720.	1.9	10
162	Gene Ages, Nomenclatures, and Functional Diversification of the Methuselah/Methuselah‣ike GPCR Family in <i>Drosophila</i> and <i>Tribolium</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 453-463.	1.3	12
163	Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics. Scientific Reports, 2016, 6, 28308.	3.3	4
164	The evolution of insect germline specification strategies. Current Opinion in Insect Science, 2016, 13, 99-105.	4.4	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
165	Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 2016, 2	5, 185-202.	3.9	295
166	Comparative genomic approaches to investigate molecular traits specific to social inse Opinion in Insect Science, 2016, 16, 87-94.	cts. Current	4.4	3
167	The diversity of insect antiviral immunity: insights from viruses. Current Opinion in Mici 2016, 32, 71-76.	robiology,	5.1	70
168	Early Morphological Specialization for Insect-Spider Associations in Mesozoic Lacewing Biology, 2016, 26, 1590-1594.	s. Current	3.9	47
169	Which mitochondrial gene (if any) is best for insect phylogenetics?. Insect Systematics 2016, 47, 245-266.	and Evolution,	0.7	8
170	Toll Genes Have an Ancestral Role in Axis Elongation. Current Biology, 2016, 26, 1609-	1615.	3.9	81
171	Phylogenetic analyses and evolutionary timescale of Coleoptera based on mitochondria Biochemical Systematics and Ecology, 2016, 66, 229-238.	al sequence.	1.3	6
172	Advances in Time Estimation Methods for Molecular Data. Molecular Biology and Evolu 863-869.	tion, 2016, 33,	8.9	96
173	A New Orthology Assessment Method for Phylogenomic Data: Unrooted Phylogenetic Molecular Biology and Evolution, 2016, 33, 2117-2134.	Orthology.	8.9	67
174	Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogr Palaeoclimatology, Palaeoecology, 2016, 453, 30-41.	eography,	2.3	26
175	Identification and bioactivity evaluation of the first neuropeptide from the lesser-known Embioptera (webspinner). Amino Acids, 2016, 48, 1677-1684.	n insect order	2.7	6
176	Bridging the gap between chewing and sucking in the hemipteroid insects: from Cretaceous amber. Zootaxa, 2016, 4079, 229-45.	new insights	0.5	26
177	The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phy analyses within cockroaches. Gene, 2016, 586, 115-122.	logenetic	2.2	50
178	Origin, evolution and function of the hemipteran perimicrovillar membrane with empha Reduviidae that transmit Chagas disease. Bulletin of Entomological Research, 2016, 10		1.0	21
179	Twenty years into the "new animal phylogeny― Changes and challenges. Organisr Evolution, 2016, 16, 315-318.	ns Diversity and	1.6	5
180	The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from immatures detected by environmental DNA sequencing. Proceedings of the Royal Socie Sciences, 2016, 283, 20152350.		2.6	59
181	Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: Review. Chemical Senses, 2016, 41, 381-398.	A Comparative	2.0	76
182	A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms. I Enzymology, 2016, 576, 69-97.	Methods in	1.0	18

#	Article	IF	CITATIONS
183	Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150290.	4.0	188
184	Regionalization of surface lipids in insects. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152994.	2.6	51
185	(How) do animals know how much they weigh?. Journal of Experimental Biology, 2016, 219, 1275-1282.	1.7	8
186	Composition and genomic organization of arthropod Hox clusters. EvoDevo, 2016, 7, 11.	3.2	47
187	Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera:) Tj ETQq0 0 0 rgBT /Ov Evolution, 2016, 101, 224-241.	verlock 10 2.7	Tf 50 587 Tc 27
188	Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes. Genome Biology and Evolution, 2016, 8, 2683-2701.	2.5	31
189	Absence of positive selection on CenH3 in <i>Luzula</i> suggests that holokinetic chromosomes may suppress centromere drive. Annals of Botany, 2016, 118, 1347-1352.	2.9	24
190	Applications of phylogenetics to solve practical problems in insect conservation. Current Opinion in Insect Science, 2016, 18, 35-39.	4.4	7
191	The fine structure of the rectal pads of Zorotypus caudelli Karny (Zoraptera, Insecta). Arthropod Structure and Development, 2016, 45, 380-388.	1.4	6
192	Genomic divergence and lack of introgressive hybridization between two 13â€year periodical cicadas support life cycle switching in the face of climate change. Molecular Ecology, 2016, 25, 5543-5556.	3.9	10
193	The oldest known clerid fossils from the <scp>M</scp> iddle <scp>J</scp> urassic of <scp>C</scp> hina, with a review of <scp>C</scp> leridae systematics (<scp>C</scp> oleoptera). Systematic Entomology, 2016, 41, 808-823.	3.9	16
194	A larval transcriptome of the limnephilid caddisfly <i>Micropterna lateralis</i> (Stephens, 1837) (Trichoptera: Limnephilidae). Aquatic Insects, 2016, 37, 253-257.	0.9	3
195	Discovery of novel targets for antivirals: learning from flies. Current Opinion in Virology, 2016, 20, 64-70.	5.4	20
196	Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biology and Evolution, 2016, 8, 1785-1801.	2.5	155
197	The ocelli of Archaeognatha (Hexapoda): Functional morphology, pigment migration and chemical nature of the reflective tapetum. Journal of Experimental Biology, 2016, 219, 3039-3048.	1.7	10
198	Why grow up? <scp>A</scp> perspective on insect strategies to avoid metamorphosis. Ecological Entomology, 2016, 41, 505-515.	2.2	42
199	Nonadaptive radiation in damselflies. Evolutionary Applications, 2016, 9, 103-118.	3.1	27
200	Reâ€evolution of a morphological precursor of crypsis investment in the newly revised horned praying mantises (<scp>I</scp> nsecta, <scp>M</scp> antodea, <scp>V</scp> atinae). Systematic Entomology, 2016, 41, 229-255.	3.9	19

	Ст	ation Report	
#	Article	IF	CITATIONS
201	Ordinal species richness in insects—a preliminary study of the influence of morphology, life history, and ecology. Entomologia Experimentalis Et Applicata, 2016, 159, 270-284.	1.4	8
202	Irrational exuberance for resolved species trees. Evolution; International Journal of Organic Evolution, 2016, 70, 7-17.	2.3	177

Homology of the genital sclerites of $\langle scp \rangle M \langle scp \rangle egaloptera (\langle scp \rangle I \langle scp \rangle nsecta:)$ Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 Td ($\langle scp \rangle I \rangle N = 0$

204	â€ <i><scp>K</scp>inzelbachilla ellenbergeri</i> –Âa new ancestral species, genus and family of <scp>S</scp> trepsiptera (<scp>I</scp> nsecta). Systematic Entomology, 2016, 41, 287-297.	3.9	13
206	Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of the Royal Society Interface, 2016, 13, 20160363.	3.4	46
207	The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160025.	4.0	62
208	Biology and Ecology of Antarctic Krill. Advances in Polar Ecology, 2016, , .	1.3	47
209	Genetics of Antarctic Krill. Advances in Polar Ecology, 2016, , 247-277.	1.3	11
210	From writing to reading the encyclopedia of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150321.	4.0	48
211	The microRNA toolkit of insects. Scientific Reports, 2016, 6, 37736.	3.3	40
212	Composite Eggshell Matrices: Chorionic Layers and Sub-chorionic Cuticular Envelopes. , 2016, , 325-366.		19
213	The Genome as an Evolutionary Timepiece. Genome Biology and Evolution, 2016, 8, 3006-3010.	2.5	12
214	Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, <i>Lupinus mutabilis</i> . American Journal of Botany, 2016, 103, 1592-1606.	1.7	47
215	Parthenogenesis in Hexapoda: Entognatha and non-holometabolous insects. Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 257-268.	1.4	43
216	Phylogeny of the Aphids. , 2016, , 11-23.		6
217	Independent origins of parasitism in Animalia. Biology Letters, 2016, 12, 20160324.	2.3	108
218	Emerging developmental genetic model systems in holometabolous insects. Current Opinion in Genetics and Development, 2016, 39, 116-128.	3.3	20
219	Immune memory in invertebrates. Seminars in Immunology, 2016, 28, 328-342.	5.6	221

#	Article	IF	Citations
220	The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. Systematic Biology, 2016, 65, 1057-1075.	5.6	45
221	Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. Journal of Systematics and Evolution, 2016, 54, 545-559.	3.1	10
222	Comparative performance of transcriptome assembly methods for non-model organisms. BMC Genomics, 2016, 17, 523.	2.8	47
223	Adaptive protein divergence of BMP ligands takes place under developmental and evolutionary constraints. Development (Cambridge), 2016, 143, 3742-3750.	2.5	7
224	Advances using molecular data in insect systematics. Current Opinion in Insect Science, 2016, 18, 40-47.	4.4	13
225	Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annual Review of Virology, 2016, 3, 573-589.	6.7	62
226	Traumatic insemination and female counter-adaptation in Strepsiptera (Insecta). Scientific Reports, 2016, 6, 25052.	3.3	28
227	Searching Tree Space, Methods for. , 2016, , 499-504.		0
228	Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. Royal Society Open Science, 2016, 3, 160347.	2.4	34
229	Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects. American Naturalist, 2016, 188, 640-650.	2.1	16
230	Insects and Ecdysozoa, Diversification of. , 2016, , 264-269.		0
231	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17, 227.	8.8	244
232	Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology, 2016, 13, 46.	2.0	75
233	The rapidly changing landscape of insect phylogenetics. Current Opinion in Insect Science, 2016, 18, 77-82.	4.4	7
234	Fossils and the Evolution of the Arthropod Brain. Current Biology, 2016, 26, R989-R1000.	3.9	38
235	Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects. Scientific Reports, 2016, 6, 26388.	3.3	78
236	Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito, <i>Anopheles gambiae</i> . Journal of Experimental Biology, 2016, 219, 3945-3951.	1.7	22
237	The first fossil salmonfly (Insecta: Plecoptera: Pteronarcyidae), back to the Middle Jurassic. BMC Evolutionary Biology, 2016, 16, 217.	3.2	9

#	Article	IF	CITATIONS
238	Formation of the germ-disc in spider embryos by a condensation-like mechanism. Frontiers in Zoology, 2016, 13, 35.	2.0	17
239	Comparative thoracic anatomy of the wild type and wingless (wg1cn1) mutant of Drosophila melanogaster (Diptera). Arthropod Structure and Development, 2016, 45, 611-636.	1.4	19
240	Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 2016, 17, 861.	2.8	23
241	Editorial overview: Insect phylogenetics: an expanding toolbox to resolve evolutionary questions. Current Opinion in Insect Science, 2016, 18, 93-95.	4.4	2
242	A review of methods for analysing insect structures — the role of morphology in the age of phylogenomics. Current Opinion in Insect Science, 2016, 18, 60-68.	4.4	68
243	Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evolutionary Biology, 2016, 16, 212.	3.2	147
244	Incorporating fossils into hypotheses of insect phylogeny. Current Opinion in Insect Science, 2016, 18, 69-76.	4.4	15
245	Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Scientific Reports, 2016, 6, 35275.	3.3	122
246	Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera:) Tj ETQq0 0 0 r 2016, 6, 32680.	gBT /Overl 3.3	ock 10 Tf 50 42
247	Construction of a Species-Level Tree of Life for the Insects and Utility in Taxonomic Profiling. Systematic Biology, 2016, 66, syw099.	5.6	29
248	Biochemical pathways supporting beta-lactam biosynthesis in the springtail <i>Folsomia candida</i> . Biology Open, 2016, 5, 1784-1789.	1.2	13
249	A comparative genomic analysis of targets of Hox protein Ultrabithorax amongst distant insect species. Scientific Reports, 2016, 6, 27885.	3.3	28
250	Transcriptome profiling in the damselfly Ischnura elegans identifies genes with sex-biased expression. BMC Genomics, 2016, 17, 985.	2.8	25
251	Identification and preliminary characterization of chemosensory perception-associated proteins in the melon fly Bactrocera cucurbitae using RNA-seq. Scientific Reports, 2016, 6, 19112.	3.3	29
252	ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw081.	3.0	22
253	Phylogenetic divergences of the true bugs (Insecta: Hemiptera: Heteroptera), with emphasis on the aquatic lineages: the last piece of the aquatic insect jigsaw originated in the Late Permian/Early Triassic. Cladistics, 2016, 32, 390-405.	3.3	65
254	New insight into the systematics of Tomoceridae (Hexapoda, Collembola) by integrating molecular and morphological evidence. Zoologica Scripta, 2016, 45, 286-299.	1.7	25
255	Evolution of Acoustic Communication in Insects. Springer Handbook of Auditory Research, 2016, , 17-47.	0.7	31

		ON REPORT	
# 256	ARTICLE Evolution of neuropeptides in non-pterygote hexapods. BMC Evolutionary Biology, 2016, 16, 51.	IF 3.2	Citations 63
257	Insect Hearing. Springer Handbook of Auditory Research, 2016, , .	0.7	16
258	Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics. Genome Biology and Evolution, 2016, 8, 161-175.	2.5	157
259	Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biology and Evolution, 2016, 8, 507-518.	2.5	98
260	Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biology and Evolution, 2016, 8, 1411-1426.	2.5	154
261	Ultrastructure of Selenidium pendula, the Type Species of Archigregarines, and Phylogenetic Relations to Other Marine Apicomplexa. Protist, 2016, 167, 339-368.	1.5	40
262	A molecular palaeobiological exploration of arthropod terrestrialization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150133.	4.0	131
263	Editorial Overview: Development, regulation and evolution of organ systems. Current Opinion in Insect Science, 2016, 13, vii-ix.	4.4	0
264	Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body. Cell and Tissue Research, 2016, 363, 635-648.	2.9	21
265	Evolutionary escalation: the bat–moth arms race. Journal of Experimental Biology, 2016, 219, 1589-1602	2. 1.7	93
266	The thorax of the cave cricket Troglophilus neglectus: anatomical adaptations in an ancient wingless insect lineage (Orthoptera: Rhaphidophoridae). BMC Evolutionary Biology, 2016, 16, 39.	3.2	9
267	Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics, 2016, 17, 172.	2.8	92
268	Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies. GigaScience, 2016, 5, 18.	6.4	44
269	Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evolutionary Biology, 2016, 16, 118.	3.2	103
270	The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility. Open Biology, 2016, 6, 160080.	3.6	8
271	Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews, 2016, 160, 43-110.	9.1	168
272	Evaluation of the impact of <scp>RNA</scp> preservation methods ofÂspiders for <i>de novo</i> transcriptome assembly. Molecular Ecology Resources, 2016, 16, 662-672.	4.8	36
273	The accessory organ, a scolopidial sensory organ, in the cave cricket <i>Troglophilus neglectus</i> (Orthoptera: Ensifera: Rhaphidophoridae). Acta Zoologica, 2016, 97, 187-195.	0.8	10

#	Article	IF	CITATIONS
274	Identification of an <scp>H_V</scp> 1 voltageâ€gated proton channel in insects. FEBS Journal, 2016, 283, 1453-1464.	4.7	21
275	Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1297-1302.	7.1	92
276	On the probability of dinosaur fleas. BMC Evolutionary Biology, 2016, 16, 9.	3.2	7
277	Genomics of Phenotypic Plasticity in Aphids. , 2016, , 65-96.		3
278	Exploring the origin of insect wings from an evo-devo perspective. Current Opinion in Insect Science, 2016, 13, 77-85.	4.4	51
279	A new twisted-wing parasitoid from mid-Cretaceous amber of Myanmar (Strepsiptera). Cretaceous Research, 2016, 58, 160-167.	1.4	17
280	Insect genome content phylogeny and functional annotation of core insect genomes. Molecular Phylogenetics and Evolution, 2016, 97, 224-232.	2.7	11
281	The earliest fossil evidence of bone boring by terrestrial invertebrates, examples from China and South Africa. Historical Biology, 2016, 28, 1108-1117.	1.4	23
282	Insect immunology and hematopoiesis. Developmental and Comparative Immunology, 2016, 58, 102-118.	2.3	366
283	Hearing in Insects. Annual Review of Entomology, 2016, 61, 257-276.	11.8	60
284	The homology of cephalic muscles and endoskeletal elements between Diplura and Ectognatha (Insecta). Organisms Diversity and Evolution, 2016, 16, 241-257.	1.6	5
285	Chemical Ecology of Neuroptera. Annual Review of Entomology, 2016, 61, 197-218.	11.8	26
286	Structure and Evolution of Insect Sperm: New Interpretations in the Age of Phylogenomics. Annual Review of Entomology, 2016, 61, 1-23.	11.8	84
287	Antarctic Entomology. Annual Review of Entomology, 2016, 61, 119-137.	11.8	67
288	Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Genome Biology and Evolution, 2016, 8, 579-587.	2.5	77
289	BaitFisher: A Software Package for Multispecies Target DNA Enrichment Probe Design. Molecular Biology and Evolution, 2016, 33, 1875-1886.	8.9	71
290	Reassessing the phylogenetic position of the epizoic earwigs (Insecta: Dermaptera). Molecular Phylogenetics and Evolution, 2016, 100, 382-390.	2.7	27
291	Mitochondrial capture enriches mitoâ€DNA 100 fold, enabling PCRâ€free mitogenomics biodiversity analysis. Molecular Ecology Resources, 2016, 16, 470-479.	4.8	74

#	Article	IF	CITATIONS
292	Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). Insect Biochemistry and Molecular Biology, 2016, 71, 1-11.	2.7	22
293	Taxonomist's Nightmare … Evolutionist's Delight : An Integrative Approach Resolves Species Limits in Jumping Bristletails Despite Widespread Hybridization and Parthenogenesis. Systematic Biology, 2016, 65, 947-974.	5.6	39
294	Palaeontology: The Point of No Return in the Fossil Record of Eusociality. Current Biology, 2016, 26, R159-R161.	3.9	10
295	ls Darwin's â€~Abominable Mystery' still a mystery today?. Cretaceous Research, 2016, 61, 256-262.	1.4	11
296	Editorial overview: Insect genomics — shifting the focus of genomics from the lab to the field. Current Opinion in Insect Science, 2016, 13, v-vi.	4.4	0
297	Ancient origin of high taxonomic richness among insects. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152476.	2.6	32
298	The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152893.	2.6	59
299	Musculoskeletal modeling of the dragonfly mandible system as an aid to understanding the role of single muscles in an evolutionary context. Journal of Experimental Biology, 2016, 219, 1041-9.	1.7	22
300	Detecting false positive sequence homology: a machine learning approach. BMC Bioinformatics, 2016, 17, 101.	2.6	19
301	â€Alienoptera — A new insect order in the roach–mantodean twilight zone. Gondwana Research, 2016, 39, 317-326.	6.0	86
302	Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits. Genome Biology and Evolution, 2016, 8, 753-764.	2.5	27
303	A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Molecular Phylogenetics and Evolution, 2016, 98, 201-209.	2.7	22
304	Ecology and Evolution of Communication in Social Insects. Cell, 2016, 164, 1277-1287.	28.9	263
305	Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps. Molecular Biology and Evolution, 2016, 33, 1042-1052.	8.9	45
306	New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar. Cretaceous Research, 2016, 60, 91-108.	1.4	29
307	Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis. Developmental Biology, 2016, 409, 297-309.	2.0	51
308	Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews Genetics, 2016, 17, 71-80.	16.3	244
309	Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects. Aquatic Toxicology, 2016, 171, 20-29.	4.0	35

#	Article	IF	CITATIONS
310	Phylogenetic analyses suggest that diversification and body size evolution are independent in insects. BMC Evolutionary Biology, 2016, 16, 8.	3.2	21
311	Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and Biodiversity, 2016, 14, 1-8.	1.2	148

Avoiding Missing Data Biases in Phylogenomic Inference: An Empirical Study in the Landfowl (Aves:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

313	OfftargetFinder: a web tool for species-specific RNAi design. Bioinformatics, 2016, 32, 1232-1234.	4.1	14
314	Power, resolution and bias: recent advances in insect phylogeny driven by the genomic revolution. Current Opinion in Insect Science, 2016, 13, 16-23.	4.4	34
315	A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Molecular Phylogenetics and Evolution, 2016, 96, 150-160.	2.7	66
316	Waptia revisited: Intimations of behaviors. Arthropod Structure and Development, 2016, 45, 173-184.	1.4	20
317	Evolution of SUMO Function and Chain Formation in Insects. Molecular Biology and Evolution, 2016, 33, 568-584.	8.9	26
318	Inflation of Molecular Clock Rates and Dates: Molecular Phylogenetics, Biogeography, and Diversification of a Global Cicada Radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Systematic Biology, 2016, 65, 16-34.	5.6	48
319	Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Molecular Phylogenetics and Evolution, 2016, 94, 447-462.	2.7	321
320	Total-Evidence Dating under the Fossilized Birth–Death Process. Systematic Biology, 2016, 65, 228-249.	5.6	304
321	Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4380-4389.	0.7	10
322	New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Organisms Diversity and Evolution, 2016, 16, 419-426.	1.6	47
323	The application of "-omics―technologies for the classification and identification of animals. Organisms Diversity and Evolution, 2016, 16, 1-12.	1.6	49
324	Rice–gall midge interactions: Battle for survival. Journal of Insect Physiology, 2016, 84, 40-49.	2.0	43
325	Transcription factors, chromatin proteins and the diversification of Hemiptera. Insect Biochemistry and Molecular Biology, 2016, 69, 1-13.	2.7	14
326	Telomerase lost?. Chromosoma, 2016, 125, 65-73.	2.2	64
327	The mitochondrial genome of the winter stonefly <i>Apteroperla tikumana</i> (Plecoptera, Capniidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3030-3032.	0.7	9

#	Article	IF	CITATIONS
328	The mitogenome of <i>Hydropsyche pellucidula</i> (Hydropsychidae): first gene arrangement in the insect order Trichoptera. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 71-72.	0.7	11
329	Giant taxonâ€eharacter matrices: quality of character constructions remains critical regardless of size. Cladistics, 2017, 33, 198-219.	3.3	94
330	Serotonin ontaining neurons in basal insects: In search of ground patterns among tetraconata. Journal of Comparative Neurology, 2017, 525, 79-115.	1.6	5
331	The mitochondrial genome of Iberobaenia (Coleoptera: Iberobaeniidae): first rearrangement of protein-coding genes in the beetles. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 156-158.	0.7	16
332	Molecular phylogeny of the Byrrhoidea–Buprestoidea complex (Coleoptera, Elateriformia). Zoologica Scripta, 2017, 46, 150-164.	1.7	34
333	Characterization and analysis of a <i>de novo</i> transcriptome from the pygmy grasshopper <i>Tetrix japonica</i> . Molecular Ecology Resources, 2017, 17, 381-392.	4.8	33
334	Rounding up the usual suspects: a standard targetâ€gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orbâ€weaving spiders with a new familyâ€rank classification (Araneae, Araneoidea). Cladistics, 2017, 33, 221-250.	3.3	108
335	Phylogenetic position of Corydasialidae (Insecta: Neuropterida) revisited based on a significant new fossil in Cretaceous amber of Myanmar. Journal of Systematic Palaeontology, 2017, 15, 571-581.	1.5	9
336	Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?. Biological Reviews, 2017, 92, 410-430.	10.4	51
337	Mouthpart conduit sizes of fluid-feeding insects determine the ability to feed from pores. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162026.	2.6	19
338	Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution, 2017, 109, 302-320.	2.7	51
339	Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects. Genome Biology and Evolution, 2016, 8, evw281.	2.5	92
340	Consequences of evolutionary transitions in changing photic environments. Austral Entomology, 2017, 56, 23-46.	1.4	52
341	The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Molecular Phylogenetics and Evolution, 2017, 109, 271-282.	2.7	58
342	Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins. Current Biology, 2017, 27, 263-269.	3.9	62
343	Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data, 2017, 4, 160132.	5.3	67
344	paco: implementing Procrustean Approach to Cophylogeny in R. Methods in Ecology and Evolution, 2017, 8, 932-940.	5.2	98
345	The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162340.	2.6	48

#	Article	IF	CITATIONS
346	Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Molecular and Cellular Proteomics, 2017, 16, 552-566.	3.8	53
347	Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods in Ecology and Evolution, 2017, 8, 1103-1112.	5.2	133
348	Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. Arthropod Structure and Development, 2017, 46, 380-394.	1.4	28
349	Robust Dinoflagellata phylogeny inferred from public transcriptome databases. Journal of Phycology, 2017, 53, 725-729.	2.3	39
350	Computational biomechanics changes our view on insect head evolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162412.	2.6	23
351	Evidence of neofunctionalization after the duplication of the highly conserved Polycomb group gene Caf1-55 in the obscura group of Drosophila. Scientific Reports, 2017, 7, 40536.	3.3	4
352	Genomeâ€wide survey of nuclear proteinâ€coding markers for beetle phylogenetics and their application in resolving both deep and shallowâ€level divergences. Molecular Ecology Resources, 2017, 17, 1342-1358.	4.8	31
353	Amalga-like virus infecting Antonospora locustae , a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Research, 2017, 233, 95-104.	2.2	18
354	The morphology and ultrastructure of salivary glands of Zoraptera (Insecta). Arthropod Structure and Development, 2017, 46, 508-517.	1.4	3
355	Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 2017, 18, 27.	8.8	624
356	Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology and Evolution, 2017, 1, 126.	7.8	365
357	Patterns of biodiversity. , 2017, , 123-191.		8
358	On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 304-320.	1.3	16
359	New fossil insects from the Anisian (Lower to Middle Muschelkalk) from the Central European Basin (Germany and The Netherlands). Palaontologische Zeitschrift, 2017, 91, 185-194.	1.6	7
360	Comparative transcriptomics support evolutionary convergence of diapause responses across <scp>l</scp> nsecta. Physiological Entomology, 2017, 42, 246-256.	1.5	85
361	Homology-aware Phylogenomics at Gigabase Scales. Systematic Biology, 2017, 66, syw104.	5.6	34
362	The honeybee as a model insect for developmental genetics. Genesis, 2017, 55, e23019.	1.6	21
363	Factors involved in early polarization of the anteriorâ€posterior axis in the milkweed bug <i>Oncopeltus fasciatus</i> . Genesis, 2017, 55, e23027.	1.6	23

	CITATION	REPORT	
#	Article	IF	CITATIONS
364	<i>Oncopeltus fasciatus</i> as an evoâ€devo research organism. Genesis, 2017, 55, e23020.	1.6	27
365	How the Aridification of Australia Structured the Biogeography and Influenced the Diversification of a Large Lineage of Australian Cicadas. Systematic Biology, 2017, 66, syw078.	5.6	23
366	Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4721-4726.	7.1	184
367	Mechanics of the thorax in flies. Journal of Experimental Biology, 2017, 220, 1382-1395.	1.7	51
368	The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mechanisms of Development, 2017, 148, 18-39.	1.7	74
369	Phylogenomics from Whole Genome Sequences Using aTRAM. Systematic Biology, 2017, 66, syw105.	5.6	47
370	History and Natural History of Plants and Their Associates. Structure and Function of Mountain Ecosystems in Japan, 2017, , 7-61.	0.5	1
371	Novel Wing-Flashing Behavior in a Scorpionfly (Panorpa debilis) May be Competitive. Journal of Insect Behavior, 2017, 30, 247-258.	0.7	1
372	Male-specific molecular genetic markers in the Japanese subterranean termite Reticulitermes speratus. Insectes Sociaux, 2017, 64, 357-364.	1.2	8
373	Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance. American Naturalist, 2017, 190, S29-S43.	2.1	42
374	Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. GigaScience, 2017, 6, 1-16.	6.4	19
375	Identifying Optimal Models of Evolution. Methods in Molecular Biology, 2017, 1525, 379-420.	0.9	17
376	Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. Annual Review of Entomology, 2017, 62, 419-442.	11.8	92
377	Wing base structure supports Coleorrhyncha + Auchenorrhyncha (Insecta: Hemiptera). Journal of Zoological Systematics and Evolutionary Research, 2017, 55, 199-207.	1.4	8
378	Juvenile hormone and hemimetabolan eusociality: a comparison of cockroaches with termites. Current Opinion in Insect Science, 2017, 22, 109-116.	4.4	32
379	Daily Activity of the Housefly, <i>Musca domestica</i> , Is Influenced by Temperature Independent of 3′ UTR <i>period</i> Gene Splicing. G3: Genes, Genomes, Genetics, 2017, 7, 2637-2649.	1.8	25
380	Perspectives on Gene Regulatory Network Evolution. Trends in Genetics, 2017, 33, 436-447.	6.7	66
381	The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Current Topics in Developmental Biology, 2017, 125, 39-70.	2.2	15

#	Article	IF	CITATIONS
382	Phylogenomics using Target-restricted Assembly Resolves Intra-generic Relationships of Parasitic Lice (Phthiraptera: <i>Columbicola</i>). Systematic Biology, 2017, 66, syx027.	5.6	22
383	Genomic features of the damselfly <i>Calopteryx splendens</i> representing a sister clade to most insect orders. Genome Biology and Evolution, 2017, 9, evx006.	2.5	53
384	Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170227.	2.6	51
385	A Phylogenomic Solution to the Origin of Insects by Resolving Crustacean-Hexapod Relationships. Current Biology, 2017, 27, 1818-1824.e5.	3.9	156
386	More on the Best Evolutionary Rate for Phylogenetic Analysis. Systematic Biology, 2017, 66, 769-785.	5.6	48
387	Insights into the Systematics, Phylogeny, and Evolution of Cladobranchia (Gastropoda:) Tj ETQq1 1 0.784314 rgE	BT /Qverloo	ck 10 Tf 50 3
388	Early bursts of diversification defined the faunal colonization of land. Nature Ecology and Evolution, 2017, 1, .	7.8	50
389	Species diversity of insects in Japan: Their origins and diversification processes. Entomological Science, 2017, 20, 357-381.	0.6	96
390	Parallel implementation of Dâ€Phylo algorithm for maximum likelihood clusters. IET Nanobiotechnology, 2017, 11, 134-142.	3.8	1
391	Evolution of Venomous Animals and Their Toxins. Toxinology, 2017, , .	0.2	2
392	Reconsidering connectivity in the subâ€ <scp>A</scp> ntarctic. Biological Reviews, 2017, 92, 2164-2181.	10.4	58
393	Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling. Systematic Biology, 2017, 66, 857-879.	5.6	242
394	Evolutionary History of the Hymenoptera. Current Biology, 2017, 27, 1013-1018.	3.9	611
395	New insects (Insecta: Eoblattida, Embiida) from the Permian of Russia and the Triassic of Kyrgyzstan, with observations on the origin of webspinners. Paleontological Journal, 2017, 51, 161-170.	0.5	8
396	Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae). Scientific Reports, 2017, 7, 46016.	3.3	8
397	Electroporation-mediated RNA interference reveals a role of the multicopper oxidase 2 gene in dragonfly cuticular pigmentation. Applied Entomology and Zoology, 2017, 52, 379-387.	1.2	22
398	Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation. Scientific Reports, 2017, 7, 40221.	3.3	19
399	Parasitoid Wasps and Their Venoms. Toxinology, 2017, , 187-212.	0.2	8

#	Article	IF	CITATIONS
400	Interspecific hybridization causes longâ€ŧerm phylogenetic discordance between nuclear and mitochondrial genomes in freshwater fishes. Molecular Ecology, 2017, 26, 3116-3127.	3.9	61
401	Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach. Journal of Comparative Neurology, 2017, 525, 2343-2357.	1.6	35
402	Evolutionary ecology of betaâ€ l actam gene clusters in animals. Molecular Ecology, 2017, 26, 3217-3229.	3.9	24
403	The Species and Genetic Diversities of Insects in Japan, with Special Reference to the Aquatic Insects. Diversity and Commonality in Animals, 2017, , 229-247.	0.7	12
404	Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nature Microbiology, 2017, 2, 16241.	13.3	113
405	Organization of the antennal lobes in the praying mantis (<i>Tenodera aridifolia</i>). Journal of Comparative Neurology, 2017, 525, 1685-1706.	1.6	6
406	Complete mitochondrial genome of Neochauliodes parasparsus (Megaloptera: Corydalidae) with phylogenetic consideration. Biochemical Systematics and Ecology, 2017, 70, 192-199.	1.3	9
407	Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics, 2017, 33, 617-636.	3.3	117
408	Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 2017, 107, 415-430.	2.7	122
409	Insulin receptors and wing dimorphism in rice planthoppers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150489.	4.0	55
410	Comparative Morphology of the Orthopteran Thorax With a Discussion of Phylogenetically Relevant Characters. Insect Systematics and Diversity, 2017, 1, 29-47.	1.7	2
411	Comparative mitogenomic analysis of Aposthonia borneensis and Aposthonia japonica (Embioptera:) Tj ETQq1 1	0.784314	rggBT /Overlo
412	New genus and species of the extinct aphid family Szelegiewicziidae and their implications for aphid evolution. Die Naturwissenschaften, 2017, 104, 95.	1.6	6
413	The scolopidial accessory organs and Nebenorgans in orthopteroid insects: Comparative neuroanatomy, mechanosensory function, and evolutionary origin. Arthropod Structure and Development, 2017, 46, 765-776.	1.4	18
414	Yeasts in Insects and Other Invertebrates. , 2017, , 397-433.		12
415	Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. Archives of Insect Biochemistry and Physiology, 2017, 96, e21422.	1.5	10
416	TreeShrink: Efficient Detection of Outlier Tree Leaves. Lecture Notes in Computer Science, 2017, , 116-140.	1.3	7
417	A Cretaceous-aged Palaeotropical dispersal established an endemic lineage of Caribbean praying mantises. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171280.	2.6	19

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
418	Laboratory Rearing System for Ischnura senegalensis (Insecta: Odonata) Enables Detailed Description of Larval Development and Morphogenesis in Dragonfly. Zoological Science, 2017, 34, 386.	0.7	11
419	The pregenital abdomen of Enicocephalomorpha and morphological evidence for different modes of communication at the dawn of heteropteran evolution. Arthropod Structure and Development, 2017, 46, 843-868.	1.4	10
420	Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science, 2017, 358, 386-390.	12.6	87
421	Comparative transcriptomics reveal developmental turning points during embryogenesis of a hemimetabolous insect, the damselfly Ischnura elegans. Scientific Reports, 2017, 7, 13547.	3.3	24
422	Genome-Guided Phylo-Transcriptomic Methods and the Nuclear Phylogenetic Tree of the Paniceae Grasses. Scientific Reports, 2017, 7, 13528.	3.3	27
423	Fragmentary Gene Sequences Negatively Impact Gene Tree and Species Tree Reconstruction. Molecular Biology and Evolution, 2017, 34, 3279-3291.	8.9	73
424	Embryonic development of <i>Eucorydia yasumatsui</i> Asahina, with special reference to external morphology (Insecta: Blattodea, Corydiidae). Journal of Morphology, 2017, 278, 1469-1489.	1.2	8
425	Current Understanding of Ecdysozoa and its Internal Phylogenetic Relationships. Integrative and Comparative Biology, 2017, 57, 455-466.	2.0	95
426	Molecular ecology of insect pests of agricultural importance: the case of aphids. Ecological Entomology, 2017, 42, 18-27.	2.2	6
427	Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity. Ecological Research, 2017, 32, 811-819.	1.5	27
428	Transcriptome sequencing and estimation of DNA methylation level in the subsocial wood-feeding cockroach Cryptocercus punctulatus (Blattodea: Cryptocercidae). Applied Entomology and Zoology, 2017, 52, 643-651.	1.2	9
429	Molecular Mechanisms Underlying Color Vision and Color Formation in Dragonflies. , 2017, , 303-321.		13
430	Dated phylogeny and dispersal history of the butterfly subfamily Nymphalinae (Lepidoptera:) Tj ETQqO O	0 rgBT /Overlock 1	0 Tf 50 262 14
431	A biologist's guide to Bayesian phylogenetic analysis. Nature Ecology and Evolution, 2017, 1, 1446-2	1454. 7.8	154
432	Diversity and Evolution of Butterfly Wing Patterns. , 2017, , .		23
433	Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 2017, 116, 213-226.	2.7	87
434	Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171223.	2.6	218
435	Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology, 2017, 98, 2640-2652.	3.2	28

#	Article	IF	CITATIONS
436	New Insights into the Evolution of the W Chromosome in Lepidoptera. Journal of Heredity, 2017, 108, 709-719.	2.4	44
437	Convergent evolution of germ granule nucleators: A hypothesis. Stem Cell Research, 2017, 24, 188-194.	0.7	16
438	Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Scientific Reports, 2017, 7, 8.	3.3	178
439	Ovipositor setation in oldest insects (Insecta: Archaeognatha) revealed by SEM and He-ion microscopy. Micron, 2017, 101, 138-150.	2.2	2
440	Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Molecular Phylogenetics and Evolution, 2017, 115, 16-26.	2.7	44
444	Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. Science China Life Sciences, 2017, 60, 806-815.	4.9	21
445	Structural and physical determinants of the proboscis–sucking pump complex in the evolution of fluid-feeding insects. Scientific Reports, 2017, 7, 6582.	3.3	22
446	Parabasalia. , 2017, , 1175-1218.		8
447	An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Molecular Phylogenetics and Evolution, 2017, 115, 50-57.	2.7	13
448	Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. Journal of Visualized Experiments, 2017, , .	0.3	13
449	Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. GigaScience, 2017, 6, 1-14.	6.4	40
450	Wolbachia infections of the butterfly Eurema mandarina interfere with embryonic development of the sawfly Athalia rosae. Journal of Invertebrate Pathology, 2017, 150, 76-81.	3.2	1
451	Inferring Arthropod Phylogeny: Fossils and their Interaction with Other Data Sources. Integrative and Comparative Biology, 2017, 57, 467-476.	2.0	9
452	The ecological role of microsymbionts in the interaction of plants and herbivorous insects. Biology Bulletin Reviews, 2017, 7, 506-518.	0.9	4
453	Transcriptome Profiling of Neurosensory Perception Genes in Wing Tissue of Two Evolutionary Distant Insect Orders: Diptera (Drosophila melanogaster) and Hemiptera (Acyrthosiphon pisum). Journal of Molecular Evolution, 2017, 85, 234-245.	1.8	5
454	Evolution: Weevils Get Tough on Symbiotic Tyrosine. Current Biology, 2017, 27, R1282-R1284.	3.9	3
455	Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope. Current Biology, 2017, 27, R1284-R1286.	3.9	1
456	Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. Advances in Genetics, 2017, 100, 1-47.	1.8	28

#	Article	IF	CITATIONS
457	Genomic data reveal high conservation but divergent evolutionary pattern of Polycomb/Trithorax group genes in arthropods. Insect Science, 2019, 26, 20-34.	3.0	11
458	The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nature Communications, 2017, 8, 1486.	12.8	87
459	Morphological dissection of behavior: thoracic musculature clarifies independent development of jumping mechanisms between sister groups, planthoppers and leafhoppers (Insecta: Hemiptera:) Tj ETQq0 0 0 rgB	Ti /O verloo	cho 10 Tf 50
460	Distribution and hypoxiaâ€regulation of haemocyanin in springtails (Collembola). Insect Molecular Biology, 2017, 26, 633-641.	2.0	6
461	Arthropod communities on hybrid and parental cottonwoods are phylogenetically structured by tree type: Implications for conservation of biodiversity in plant hybrid zones. Ecology and Evolution, 2017, 7, 5909-5921.	1.9	7
462	Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades. Scientific Reports, 2017, 7, 3903.	3.3	50
463	The peculiar extra-acrosomal structure of the Collembola (Hexapoda) spermatozoa. Micron, 2017, 101, 114-122.	2.2	1
464	Comment on Que et al. 2016. Journal of Medical Entomology, 2017, 54, 1-2.	1.8	5
465	Identification and functional characterization of the sex-determining gene doublesex in the sawfly, Athalia rosaeÂ(Hymenoptera: Tenthredinidae). Applied Entomology and Zoology, 2017, 52, 497-509.	1.2	29
466	Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida. BMC Genomics, 2017, 18, 493.	2.8	103
467	Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 2017, 18, 111.	2.6	146
468	Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. BMC Evolutionary Biology, 2017, 17, 84.	3.2	19
469	Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evolutionary Biology, 2017, 17, 92.	3.2	14
470	Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiology Reviews, 2017, 41, S27-S48.	8.6	400
471	MicroRNAs and the Evolution of Insect Metamorphosis. Annual Review of Entomology, 2017, 62, 111-125.	11.8	106
472	Phylogeny mandalas for illustrating the Tree of Life. Molecular Phylogenetics and Evolution, 2017, 117, 168-178.	2.7	34
473	Phylogeny, classification and divergence times of pygmy leafâ€mining moths (<scp>L</scp> epidoptera:) Tj ETQq0 Entomology, 2017, 42, 267-287.	0 0 rgBT 3.9	/Overlock 1 26
474	Fast and Accurate Estimates of Divergence Times from Big Data. Molecular Biology and Evolution, 2017, 34, 45-50.	8.9	52

#	Article	IF	CITATIONS
475	Ultrabithorax and the evolution of insect forewing/hindwing differentiation. Current Opinion in Insect Science, 2017, 19, 8-15.	4.4	40
476	Phylogeny and Evolution of Lepidoptera. Annual Review of Entomology, 2017, 62, 265-283.	11.8	188
477	A first higher-level time-calibrated phylogeny of antlions (Neuroptera: Myrmeleontidae). Molecular Phylogenetics and Evolution, 2017, 107, 103-116.	2.7	30
478	The peril of dating beetles. Systematic Entomology, 2017, 42, 1-10.	3.9	132
479	Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods. Zoologica Scripta, 2017, 46, 200-213.	1.7	33
480	Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. Journal of Heredity, 2017, 108, 78-93.	2.4	146
481	Phylogeny of <scp>M</scp> yrmeleontiformia based on larval morphology (<scp>N</scp> europterida:) Tj ETQqO C	9.ggBT /C	verlock 10
482	Systematics and origin of moths in the subfamily Arctiinae (Lepidoptera, Erebidae) in the Neotropical region. Zoologica Scripta, 2017, 46, 348-362.	1.7	33
483	Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (<i>Apis mellifera</i> L.): A Correlative Analysis of Morphology and Gene Expression. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 139-156.	1.3	5
484	A molecular phylogeny and revised higherâ€level classification for the leafâ€mining moth family <scp>G</scp> racillariidae and its implications for larval hostâ€use evolution. Systematic Entomology, 2017, 42, 60-81.	3.9	61
485	Expected pairwise congruence among gene trees under the coalescent model. Molecular Phylogenetics and Evolution, 2017, 106, 144-150.	2.7	5
486	Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Systematic Entomology, 2017, 42, 305-316.	3.9	38
487	Anchored Hybrid Enrichment-Based Phylogenomics of Leafhoppers and Treehoppers (Hemiptera:) Tj ETQq0 0 0 rgI	3T /Overlo 1.7	ck 10 Tf 50 110
488	Cytogenetic Characterization of Eight Odonata Species Originating from the Curonian Spit (the Baltic) Tj ETQq1 1 Probes. Cytogenetic and Genome Research, 2017, 153, 147-157.	0.784314 1.1	4 rgBT /Ove 14
489	Phylogeny of Anophelinae using mitochondrial protein coding genes. Royal Society Open Science, 2017, 4, 170758.	2.4	83
490	Estimation of phylogenetic divergence times in Panagrolaimidae and other nematodes using relaxed molecular clocks calibratedÂwith insect and crustacean fossils. Nematology, 2017, 19, 899-913.	0.6	6
491	Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Frontiers in Physiology, 2017, 8, 322.	2.8	15
492	Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae. Frontiers in Plant Science, 2017. 8. 242.	3.6	46

	Сітл	ATION REPORT	
#	Article	IF	CITATIONS
493	Insect Antimicrobial Defences. Advances in Insect Physiology, 2017, , 1-33.	2.7	30
494	Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera. BMC Genomics, 2017, 18, 931.	2.8	18
495	What Kills the Hindgut Flagellates of Lower Termites during the Host Molting Cycle?. Microorganisms, 2017, 5, 82.	3.6	28
496	New Insights into Phasmatodea Chromosomes. Genes, 2017, 8, 327.	2.4	10
497	Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Frontiers in Systems Neuroscience, 2017, 11, 74.	2.5	61
498	Evolution of Epigenetic Mechanisms inÂAnimals and Their Role in Speciation. , 2017, , 409-426.		7
499	In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust <i>Schistocerca gregaria</i> (Orthoptera: Acrididae) Are Co-expressed with SNMP1. International Journal of Biological Sciences, 2017, 13, 911-922.	6.4	49
500	First fossil of an oestroid fly (Diptera: Calyptratae: Oestroidea) and the dating of oestroid divergences. PLoS ONE, 2017, 12, e0182101.	2.5	37
501	Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. PLoS ONE, 2017, 12, e0188044.	2,5	51
502	Erythropoietin-Mediated Neuroprotection in Insects Suggests a Prevertebrate Evolution of Erythropoietin-Like Signaling. Vitamins and Hormones, 2017, 105, 181-196.	1.7	15
503	Plant–Insect Interactions. Advances in Botanical Research, 2017, , 1-24.	1.1	10
504	The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17, 269.	3.2	40
505	Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo, 2017, 8, 20.	. 3.2	7
506	A Novel Heuristic for Data Distribution in Massively Parallel Phylogenetic Inference Using Site Repeats. , 2017, , .		3
507	Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom's Biological Role. Toxins, 2017, 9, 234.	3.4	27
508	Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics, 2017, 18, 795.	2.8	28
509	Conservation and Convergence of Immune Signaling Pathways With Mitochondrial Regulation in Vector Arthropod Physiology. , 2017, , 15-33.		4
510	The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ, 2017, 5, e4023.	2.0	16

#	Article	IF	CITATIONS
511	Independent suboesophageal neuronal innervation of the defense gland and longitudinal muscles in the stick insect (Peruphasma schultei) prothorax. Arthropod Structure and Development, 2018, 47, 162-172.	1.4	1
512	New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a firefly-like luciferase but an entirely new luciferin. Scientific Reports, 2018, 8, 3278.	3.3	27
513	New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Systematic Entomology, 2018, 43, 447-459.	3.9	53
514	Parasitoids Turn Herbivores into Mutualists in a Nursery System Involving Active Pollination. Current Biology, 2018, 28, 980-986.e3.	3.9	17
515	An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Communications, 2018, 9, 756.	12.8	192
516	Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Scientific Reports, 2018, 8, 3516.	3.3	37
517	Morphology of the elytral base sclerites. Arthropod Structure and Development, 2018, 47, 423-429.	1.4	2
518	A phylogenomic analysis of Culicomorpha (Diptera) resolves the relationships among the eight constituent families. Systematic Entomology, 2018, 43, 434-446.	3.9	22
519	Comparative analysis of behavioural traits in insects. Current Opinion in Insect Science, 2018, 27, 52-60.	4.4	6
520	The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature Communications, 2018, 9, 755.	12.8	67
521	Triplicate parallel life cycle divergence despite gene flow in periodical cicadas. Communications Biology, 2018, 1, 26.	4.4	9
522	Multiple large-scale gene and genome duplications during the evolution of hexapods. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4713-4718.	7.1	151
523	Resolving the psyllid tree of life: phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Systematic Entomology, 2018, 43, 762-776.	3.9	61
524	Broad infectivity of <i>Leidynema appendiculatum</i> (Nematoda: Oxyurida: Thelastomatidae) parasite of the smokybrown cockroach <i>Periplaneta fuliginosa</i> (Blattodea: Blattidae). Ecology and Evolution, 2018, 8, 3908-3918.	1.9	10
525	A revised phylogeny of macropathine cave crickets (Orthoptera: Rhaphidophoridae) uncovers a paraphyletic Australian fauna. Molecular Phylogenetics and Evolution, 2018, 126, 153-161.	2.7	9
526	Fossil scales illuminate the early evolution of lepidopterans and structural colors. Science Advances, 2018, 4, e1700988.	10.3	26
527	Larval neurogenesis in the copepod Tigriopus californicus (Tetraconata, Multicrustacea). Development Genes and Evolution, 2018, 228, 119-129.	0.9	4
528	100 years of primate paleontology. American Journal of Physical Anthropology, 2018, 165, 652-676.	2.1	8

		LFORT	
#	Article	IF	CITATIONS
529	Complete mitochondrial genome of the green-lipped mussel, Perna canaliculus (Mollusca: Mytiloidea), from long nanopore sequencing reads. Mitochondrial DNA Part B: Resources, 2018, 3, 175-176.	0.4	12
530	Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. Journal of Experimental Biology, 2018, 221, .	1.7	3
531	Anchored phylogenomics of burrowing mayflies (Ephemeroptera) and the evolution of tusks. Systematic Entomology, 2018, 43, 692-701.	3.9	12
532	Molecular phylogeny and temporal diversification of <i>Tanytarsus</i> van der Wulp (Diptera:) Tj ETQq1 1 0.784 Entomology, 2018, 43, 659-677.	4314 rgBT 3.9	/Overlock 10 23
533	Leg deformation during imaginal ecdysis in the downy emerald, Cordulia aenea (Odonata,) Tj ETQq0 0 0 rgBT /O	verlock 10 1.2) Tf ₂ 50 582 Td
534	Some mitochondrial genes perform better for damselfly phylogenetics: species―and populationâ€level analyses of four complete mitogenomes of <i>Euphaea</i> sibling species. Systematic Entomology, 2018, 43, 702-715.	3.9	11
535	A biomechanical analysis of prognathous and orthognathous insect head capsules: evidence for a manyâ€ŧoâ€one mapping of form to function. Journal of Evolutionary Biology, 2018, 31, 665-674.	1.7	7
536	Arthropoda – Gliederfüßer. , 2018, , 413-519.		0
537	Characterization of viral RNA splicing using whole-transcriptome datasets from host species. Scientific Reports, 2018, 8, 3273.	3.3	10
538	A New Cretaceous Insect with a Unique Cephalo-thoracic Scissor Device. Current Biology, 2018, 28, 438-443.e1.	3.9	40
539	Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 2018, 218, 819-834.	7.3	149
540	Genomes of Diptera. Current Opinion in Insect Science, 2018, 25, 116-124.	4.4	26
541	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	7.8	223
542	Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Molecular Biology and Evolution, 2018, 35, 970-983.	8.9	73
543	A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Current Biology, 2018, 28, 770-778.e5.	3.9	249
544	Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Plant Science, 2018, 270, 97-113.	3.6	12
545	Yeastâ€insect associations: It takes guts. Yeast, 2018, 35, 315-330.	1.7	174
546	The State of Software for Evolutionary Biology. Molecular Biology and Evolution, 2018, 35, 1037-1046.	8.9	36

		PORT	
#	Article	IF	CITATIONS
547	Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. GigaScience, 2018, 7, 1-11.	6.4	90
548	Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. Cellular and Molecular Life Sciences, 2018, 75, 3215-3229.	5.4	31
549	Variable Molecular Markers for the Order Mantophasmatodea (Insecta). Journal of Heredity, 2018, 109, 477-483.	2.4	3
550	Phanerozoic <i>p</i> O ₂ and the early evolution of terrestrial animals. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172631.	2.6	56
551	By land, air, and sea: hemipteran diversity through the genomic lens. Current Opinion in Insect Science, 2018, 25, 106-115.	4.4	31
552	Zombie-ant fungi across continents: 15 new species and new combinations within <i>Ophiocordyceps</i> . I. Myrmecophilous hirsutelloidÃ,Âspecies. Studies in Mycology, 2018, 90, 119-160.	7.2	73
553	Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160493.	4.0	31
554	Beetle genomes in the 21st century: prospects, progress and priorities. Current Opinion in Insect Science, 2018, 25, 76-82.	4.4	33
555	A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Molecular Phylogenetics and Evolution, 2018, 121, 23-34.	2.7	17
556	Phylogeny and Evolution of Neuropterida: Where Have Wings of Lace Taken Us?. Annual Review of Entomology, 2018, 63, 531-551.	11.8	93
557	New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta). Scientific Reports, 2018, 8, 238.	3.3	25
558	Conserved roles of Osiris genes in insect development, polymorphism and protection. Journal of Evolutionary Biology, 2018, 31, 516-529.	1.7	43
559	Roles of transient receptor potential channels in eclosion and movement in the red flour beetle <i>Tribolium castaneum</i> . Physiological Entomology, 2018, 43, 79-85.	1.5	2
560	Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta, Hemiptera,) Tj ETQq1 1 0.784	4314 rgBT 2.7	/Qyerlock 1
561	Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications, 2018, 9, 205.	12.8	352
562	Molecular phylogeny of Macrosiphini (Hemiptera: Aphididae): An evolutionary hypothesis for the Pterocomma-group habitat adaptation. Molecular Phylogenetics and Evolution, 2018, 121, 12-22.	2.7	20
563	Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. Molecular Biology and Evolution, 2018, 35, 486-503.	8.9	147
564	Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Scientific Reports, 2018, 8, 83.	3.3	56

#	Article	IF	CITATIONS
565	BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Molecular Biology and Evolution, 2018, 35, 543-548.	8.9	1,844
566	A Triassic-Jurassic window into the evolution of Lepidoptera. Science Advances, 2018, 4, e1701568.	10.3	51
567	Phylogenomic Data Yield New and Robust Insights into the Phylogeny and Evolution of Weevils. Molecular Biology and Evolution, 2018, 35, 823-836.	8.9	93
568	Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 2018, 120, 286-296.	2.7	83
569	Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evolutionary Biology, 2018, 18, 33.	3.2	24
570	Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics, 2018, 19, 306.	2.8	4
571	The prevalence of terraced treescapes in analyses of phylogenetic data sets. BMC Evolutionary Biology, 2018, 18, 46.	3.2	13
572	Shifts in gene expression profiles are associated with weak and strong Crassulacean acid metabolism. American Journal of Botany, 2018, 105, 587-601.	1.7	45
573	On the universality of targetâ€enrichment baits for phylogenomic research. Methods in Ecology and Evolution, 2018, 9, 1453-1460.	5.2	51
574	Wing vein development in the sawfly Athalia rosae is regulated by spatial transcription of Dpp/BMP signaling components. Arthropod Structure and Development, 2018, 47, 408-415.	1.4	8
575	The wing base of the palaeodictyopteran genus Dunbaria Tillyard: Where are we now?. Arthropod Structure and Development, 2018, 47, 339-351.	1.4	10
576	Explaining global insect species richness: lessons from a decade of macroevolutionary entomology. Entomologia Experimentalis Et Applicata, 2018, 166, 225-250.	1.4	16
577	Manipulation of insulin signaling phenocopies evolution of a host-associated polyphenism. Nature Communications, 2018, 9, 1699.	12.8	21
578	FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. Journal of Comparative Neurology, 2018, 526, 1589-1610.	1.6	4
579	Chemical signaling and insect attraction is a conserved trait in yeasts. Ecology and Evolution, 2018, 8, 2962-2974.	1.9	62
580	Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biology and Evolution, 2018, 10, 1185-1197.	2.5	100
581	The complete mitochondrial genome of <i>Epeorus herklotsi</i> (Ephemeroptera: Heptageniidae) and its phylogeny. Mitochondrial DNA Part B: Resources, 2018, 3, 303-304.	0.4	21
582	Mate sampling influences the intensity of sexual selection and the evolution of costly sexual ornaments. Journal of Theoretical Biology, 2018, 447, 74-83.	1.7	14

#	Article	IF	CITATIONS
583	The genomic and functional landscapes of developmental plasticity in the American cockroach. Nature Communications, 2018, 9, 1008.	12.8	113
584	Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach. Scientific Reports, 2018, 8, 3209.	3.3	31
585	â€Peltosynidae, a new beetle family from the Middle–Late Triassic of Kyrgyzstan: its affinities with Polyphaga (Insecta, Coleoptera) and the groundplan of this megadiverse suborder. Journal of Systematic Palaeontology, 2018, 16, 515-530.	1.5	14
586	Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics. Systematic Biology, 2018, 67, 78-93.	5.6	161
587	Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae). Cladistics, 2018, 34, 57-77.	3.3	44
588	The phylogenetic relevance of thoracic musculature: a case study including a description of the thorax anatomy of Z ygoptera (I nsecta: O donata) larvae. Systematic Entomology, 2018, 43, 31-42.	3.9	4
589	An Evaluation of Different Partitioning Strategies for Bayesian Estimation of Species Divergence Times. Systematic Biology, 2018, 67, 61-77.	5.6	32
590	At the dawn of the great rise: â€ <i>Ponomarenkia belmonthensis</i> (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. Journal of Systematic Palaeontology, 2018, 16, 611-619.	1.5	16
591	Phylogenetic analyses with four new Cretaceous bristletails reveal interâ€relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics, 2018, 34, 384-406.	3.3	19
592	Extending the scope of Darwin's â€~abominable mystery': integrative approaches to understanding angiosperm origins and species richness. Annals of Botany, 2018, 121, 1-8.	2.9	18
593	Entomological Collections in the Age of Big Data. Annual Review of Entomology, 2018, 63, 513-530.	11.8	49
594	Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Molecular Biology and Evolution, 2018, 35, 3-15.	8.9	9
595	The Cat Flea (Ctenocephalides felis) Immune Deficiency Signaling Pathway Regulates Rickettsia typhi Infection. Infection and Immunity, 2018, 86, .	2.2	24
596	Compositional heterogeneity in true bug mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 2018, 118, 135-144.	2.7	112
597	New Jurassic predatory cockroaches (Blattaria: Raphidiomimidae) from Daohugou, China and Karatau, Kazakhstan. Alcheringa, 2018, 42, 101-109.	1.2	10
598	Do holocentric chromosomes represent an evolutionary advantage? A study of paired analyses of diversification rates of lineages with holocentric chromosomes and their monocentric closest relatives. Chromosome Research, 2018, 26, 139-152.	2.2	22
599	Ecological constraints from incumbent clades drive trait evolution across the treeâ€ofâ€life of freshwater macroinvertebrates. Ecography, 2018, 41, 1049-1063.	4.5	21
600	Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (<scp>C</scp> erambycidae). Systematic Entomology, 2018, 43, 68-89.	3.9	73

			_
#	Article	IF	CITATIONS
601	Application of nextâ€generation sequencing to the study of nonâ€model insects. Entomological Science, 2018, 21, 3-11.	0.6	33
602	Complete mitochondrial genome of bamboo grasshopper, <i>Ceracris fasciata</i> , and the phylogenetic analyses and divergence time estimation of Caelifera (Orthoptera). Bulletin of Entomological Research, 2018, 108, 321-336.	1.0	5
603	Parthenogenesis in Hexapoda: holometabolous insects. Journal of Zoological Systematics and Evolutionary Research, 2018, 56, 23-34.	1.4	46
604	Evolution of lacewings and allied orders using anchored phylogenomics (<scp>N</scp> europtera,) Tj ETQq1 1 0.2	784314 rg 3.9	BT/Qverloc
605	Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annual Review of Animal Biosciences, 2018, 6, 23-46.	7.4	166
606	Genomes of the Hymenoptera. Current Opinion in Insect Science, 2018, 25, 65-75.	4.4	63
607	DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers – Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochemistry and Molecular Biology, 2018, 92, 21-29.	2.7	41
608	New zorapterans (Zoraptera) from Burmese amber suggest higher paleodiversity of the order in tropical forests. Cretaceous Research, 2018, 84, 168-172.	1.4	15
609	Egg structure and outline of embryonic development of the basal mantodean, Metallyticus splendidus Westwood, 1835 (Insecta, Mantodea, Metallyticidae). Arthropod Structure and Development, 2018, 47, 64-73.	1.4	3
610	Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nature Ecology and Evolution, 2018, 2, 174-181.	7.8	214
611	Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in in insects. Progress in Neurobiology, 2018, 161, 23-60.	5.7	56
612	Diel behavior in moths and butterflies: a synthesis of data illuminates the evolution of temporal activity. Organisms Diversity and Evolution, 2018, 18, 13-27.	1.6	37
613	Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Molecular Ecology, 2018, 27, 2095-2108.	3.9	67
614	Taxon sampling to address an ancient rapid radiation: a supermatrix phylogeny of early brachyceran flies (Diptera). Systematic Entomology, 2018, 43, 277-289.	3.9	28
615	Epigenetics and developmental plasticity in orthopteroid insects. Current Opinion in Insect Science, 2018, 25, 25-34.	4.4	26
616	The complete mitochondrial genome of Epeorus herklotsi (Ephemeroptera: Heptageniidae) from Longquan, Zhejiang, China and its phylogeny. Mitochondrial DNA Part B: Resources, 2018, 3, 1254-1255.	0.4	3
618	Growth zone segmentation in the milkweed bug Oncopeltus fasciatus sheds light on the evolution of insect segmentation. BMC Evolutionary Biology, 2018, 18, 178.	3.2	26
619	The <i>achaete–scute</i> complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	15

#	Article	IF	CITATIONS
620	Immediate-Early Promoter-Driven Transgenic Reporter System for Neuroethological Research in a Hemimetabolous Insect. ENeuro, 2018, 5, ENEURO.0061-18.2018.	1.9	17
621	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	7.1	275
622	The genome of an underwater architect, the caddisfly <i>Stenopsyche tienmushanensis</i> Hwang (Insecta: Trichoptera). GigaScience, 2018, 7, .	6.4	41
623	Development of a multi-locus CRISPR gene drive system in budding yeast. Scientific Reports, 2018, 8, 17277.	3.3	30
624	Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Scientific Reports, 2018, 8, 17084.	3.3	35
625	Mechanoreceptive sensillum fields at the tarsal tip of insect legs. Journal of Morphology, 2018, 279, 1654-1664.	1.2	4
626	A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota. Arthropod Structure and Development, 2018, 47, 563-613.	1.4	41
627	Research in Anchialine Caves. Ecological Studies, 2018, , 383-397.	1.2	3
628	AE-CNN Classification of Pulmonary Tuberculosis Based on CT Images. , 2018, , .		24
629	A Phylogenomic Framework and Divergence History of Cephalochordata Amphioxus. Frontiers in Physiology, 2018, 9, 1833.	2.8	11
630	CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies. IScience, 2018, 10, 222-233.	4.1	10
631	The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics, 2018, 19, 832.	2.8	47
632	Evolution of Oviposition Techniques in Stick and Leaf Insects (Phasmatodea). Frontiers in Ecology and Evolution, 2018, 6, .	2.2	85
633	Ultrastructure of the single-chamber stemmata of Arge pagana (Panzer, 1798) (Hymenoptera: Argidae). Arthropod Structure and Development, 2018, 47, 614-621.	1.4	3
634	Gene Family Evolution and the Problem of a Functional Classification of Insect Carboxylesterases. , 2018, , .		3
635	Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers. Frontiers in Genetics, 2018, 9, 605.	2.3	43
636	Quantifying the risk of hemiplasy in phylogenetic inference. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12787-12792.	7.1	49
637	Differential expression of the adult specifier E93 in the strepsipteran Xenos vesparum Rossi suggests a role in female neoteny. Scientific Reports, 2018, 8, 14176.	3.3	18

#	Article	IF	Citations
638	Paleotropical Diversification Dominates the Evolution of the Hyperdiverse Ant Tribe Crematogastrini (Hymenoptera: Formicidae). Insect Systematics and Diversity, 2018, 2, .	1.7	27
639	Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 2018, 154, 15-27.	1.6	67
640	Development and ultrastructure of the thickened serosa and serosal cuticle formed beneath the embryo in the stonefly Scopura montana Maruyama, 1987 (Insecta, Plecoptera, Scopuridae). Arthropod Structure and Development, 2018, 47, 643-654.	1.4	3
641	A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Developmental Biology, 2018, 443, 188-202.	2.0	6
642	Firefly genomes illuminate parallel origins of bioluminescence in beetles. ELife, 2018, 7, .	6.0	108
643	Doomsday for Insects? The Alarming Decline of Insect Populations around the World. Entomology, Ornithology, & Herpetology: Current Research, 2018, 07, .	0.1	5
644	Sexual dimorphism in immunity across animals: a metaâ€analysis. Ecology Letters, 2018, 21, 1885-1894.	6.4	91
645	Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. Insect Biochemistry and Molecular Biology, 2018, 102, 31-42.	2.7	52
646	A simple developmental model recapitulates complex insect wing venation patterns. Proceedings of the United States of America, 2018, 115, 9905-9910.	7.1	32
647	Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Science Advances, 2018, 4, eaat1380.	10.3	57
648	A balance between aerodynamic and olfactory performance during flight in Drosophila. Nature Communications, 2018, 9, 3215.	12.8	29
649	Order Plecoptera. , 2018, , 119-141.		3
650	Order Trichoptera. , 2018, , 237-324.		11
651	Order Mecoptera. , 2018, , 349-351.		2
652	Population and Evolutionary Genetic Inferences in the Whole-Genome Era: Software Challenges. Population Genomics, 2018, , 161-175.	0.5	0
653	Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies. International Journal of Molecular Sciences, 2018, 19, 680.	4.1	18
654	Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. PLoS ONE, 2018, 13, e0202729.	2.5	25
655	De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS ONE, 2018, 13, e0199070.	2.5	13

#	Article	IF	CITATIONS
656	Origins and structural properties of novel and <i>de novo</i> protein domains during insect evolution. FEBS Journal, 2018, 285, 2605-2625.	4.7	30
657	Old method not old-fashioned: parallelism between wing venation and wing-pad tracheation of cockroaches and a revision of terminology. Zoomorphology, 2018, 137, 519-533.	0.8	40
660	TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics, 2018, 19, 272.	2.8	225
661	Largely flat latitudinal life history clines in the dung fly Sepsis fulgens across Europe (Diptera:) Tj ETQq1 1 0.7843	14 rgBT / 2.0	Overlock 10 T
662	An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects. Zoological Monographs, 2018, , 1-47.	1.1	25
663	Insect-Fungus Interactions in Dead Wood Systems. Zoological Monographs, 2018, , 377-427.	1.1	45
664	It's the End of the Wood as We Know It: Insects in Veteris (Highly Decomposed) Wood. Zoological Monographs, 2018, , 729-795.	1.1	7
665	Simultaneous radiation of bird and mammal lice following the K-Pg boundary. Biology Letters, 2018, 14, 20180141.	2.3	33
666	Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Molecular Phylogenetics and Evolution, 2018, 127, 146-155.	2.7	38
667	Differences in Performance among Test Statistics for Assessing Phylogenomic Model Adequacy. Genome Biology and Evolution, 2018, 10, 1375-1388.	2.5	13
668	Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm. Scientific Reports, 2018, 8, 7858.	3.3	22
669	Forest cover is more important than farmland heterogeneity and livestock intensification for the retention of dung beetle phylogenetic diversity. Ecological Indicators, 2018, 93, 524-532.	6.3	24
670	Revisiting the Darwinian shortfall in biodiversity conservation. Biodiversity and Conservation, 2018, 27, 2859-2875.	2.6	37
671	Zorotypus dilaticeps sp. nov., a remarkable zorapteran (Zoraptera) in mid-Cretaceous Burmese amber. Cretaceous Research, 2018, 91, 126-130.	1.4	7
672	A Review of the Fossil History of Staphylinoidea. , 2018, , 27-45.		19
673	Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera. Journal of Molecular Evolution, 2018, 86, 379-394.	1.8	10
674	Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta) Tj ETQq0 0 0 rgBT	∕ ⊘ yørloc	k 146Tf 50 97
675	Changes in hemolymph total CO2 content during the water-to-air respiratory transition of amphibiotic dragonflies. Journal of Experimental Biology, 2018, 221, .	1.7	14

		PORT	
#	Article	IF	CITATIONS
680	A new praying mantis from middle Cretaceous Burmese amber exhibits bilateral asymmetry of forefemoral spination (Insecta: Dictyoptera). Cretaceous Research, 2018, 91, 269-273.	1.4	9
681	Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of smallâ€scale heterogeneity. Ecology and Evolution, 2018, 8, 7273-7284.	1.9	10
682	Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. IScience, 2018, 4, 164-179.	4.1	32
683	Topological support and data quality can only be assessed through multiple tests in reviewing Blattodea phylogeny. Molecular Phylogenetics and Evolution, 2018, 128, 112-122.	2.7	16

A new Cretaceous cockroach with heterogeneous tarsi preserved in Burmese amber (Dictyoptera,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 1.4

685	Multispecies coalescent analysis confirms standing phylogenetic instability in Hexapoda. Journal of Evolutionary Biology, 2018, 31, 1623-1631.	1.7	7
686	Insect Pest Management. , 2018, , 1015-1078.		3
687	Influence of Wolbachia infection on mitochondrial DNA variation in the genus Polytremis (Lepidoptera: Hesperiidae). Molecular Phylogenetics and Evolution, 2018, 129, 158-170.	2.7	10
688	GABA immunostaining in the central complex of dicondylian insects. Journal of Comparative Neurology, 2018, 526, 2301-2318.	1.6	15
689	A head transcriptome provides insights into odorant binding proteins of the bamboo grasshopper. Genes and Genomics, 2018, 40, 991-1000.	1.4	14
690	Species-Specific Interactions between Plant Metabolites and Insect Juvenile Hormone Receptors. Journal of Chemical Ecology, 2018, 44, 1022-1029.	1.8	6
691	The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera. Molecular Phylogenetics and Evolution, 2018, 128, 1-11.	2.7	41
692	The Evolution of Tarsal Adhesive Microstructures in Stick and Leaf Insects (Phasmatodea). Frontiers in Ecology and Evolution, 2018, 6, .	2.2	72
693	Scaling up <scp>DNA</scp> barcoding – Primer sets for simple and cost efficient arthropod systematics by multiplex <scp>PCR</scp> and Illumina amplicon sequencing. Methods in Ecology and Evolution, 2018, 9, 2181-2193.	5.2	26
694	Wings and powered flight: Core novelties in insect evolution. Arthropod Structure and Development, 2018, 47, 319-321.	1.4	3
695	The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain. BMC Genomics, 2018, 19, 68.	2.8	41
696	Plant phylogenomics based on genome-partitioning strategies: Progress and prospects. Plant Diversity, 2018, 40, 158-164.	3.7	36
697	Hypothesis on monochromatic vision in scorpionflies questioned by new transcriptomic data. Scientific Reports, 2018, 8, 9872.	3.3	7

#	Article	IF	CITATIONS
698	De Novo Assembly and Characterization of the Xenocatantops brachycerus Transcriptome. International Journal of Molecular Sciences, 2018, 19, 520.	4.1	17
699	A Dipteran's Novel Sucker Punch: Evolution of Arthropod Atypical Venom with a Neurotoxic Component in Robber Flies (Asilidae, Diptera). Toxins, 2018, 10, 29.	3.4	33
700	Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa?. Acta Parasitologica, 2018, 63, 617-633.	1.1	4
701	CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica: A genetic tool in an apterygote development model of wing evolution. Arthropod Structure and Development, 2018, 47, 362-369.	1.4	11
702	Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Structure and Development, 2018, 47, 391-407.	1.4	50
703	Insect damage in dinosaur bones from the Cerro del Pueblo Formation (Late Cretaceous, Campanian) Coahuila, Mexico. Journal of South American Earth Sciences, 2018, 86, 353-365.	1.4	10
704	Morphological and Molecular Perspectives on the Phylogeny, Evolution, and Classification of Weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 International Weevil Meeting. Diversity, 2018, 10, 64.	1.7	10
705	Functional characterization of the Hyles euphorbiae hawkmoth transcriptomeÂreveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes. Frontiers in Zoology, 2018, 15, 20.	2.0	13
706	Assessing the Genetic Landscape of Animal Behavior. Genetics, 2018, 209, 223-232.	2.9	25
707	Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Frontiers in Zoology, 2018, 15, 21.	2.0	30
708	Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasites and Vectors, 2018, 11, 48.	2.5	53
709	Benthic macroinvertebrate community response to salinization in headwater streams in Appalachia USA over multiple years. Ecological Indicators, 2018, 91, 645-656.	6.3	44
710	Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. Arthropod Structure and Development, 2018, 47, 430-441.	1.4	16
711	Characterization and expression of a long neuropeptide F (NPF) receptor in the Chagas disease vector Rhodnius prolixus. PLoS ONE, 2018, 13, e0202425.	2.5	5
712	Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Molecular Phylogenetics and Evolution, 2018, 128, 233-245.	2.7	35
713	Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)—A Critical Guide. Toxins, 2018, 10, 292.	3.4	26
714	Multiple origin of flightlessness in Phaneropterinae bushcrickets and redefinition of the tribus Odonturini (Orthoptera: Tettigonioidea: Phaneropteridae). Organisms Diversity and Evolution, 2018, 18, 327-339.	1.6	8
715	Genome-Wide Characterization of Endogenous Retroviruses in Bombyx mori Reveals the Relatives and Activity of env Genes. Frontiers in Microbiology, 2018, 9, 1732.	3.5	2

		LEPORT	
#	Article	IF	CITATIONS
716	The molecular clock and evolutionary timescales. Biochemical Society Transactions, 2018, 46, 1183-1190.	3.4	8
717	Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. Fungal Diversity, 2018, 92, 31-41.	12.3	19
718	Pests and Their Management. , 2018, , 1-5.		2
719	Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology, 2018, 18, 71.	3.2	131
720	Tetraconatan phylogeny with special focus on Malacostraca and Branchiopoda: highlighting the strength of taxon-specific matrices in phylogenomics. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181524.	2.6	80
721	Cloning and Functional Characterisation of the Duplicated RDL Subunits from the Pea Aphid, Acyrthosiphon pisum. International Journal of Molecular Sciences, 2018, 19, 2235.	4.1	14
723	Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS ONE, 2018, 13, e0189898.	2.5	4
724	Insight into higher-level phylogeny of Neuropterida: Evidence from secondary structures of mitochondrial rRNA genes and mitogenomic data. PLoS ONE, 2018, 13, e0191826.	2.5	13
726	Reanalyzing the Palaeoptera problem – The origin of insect flight remains obscure. Arthropod Structure and Development, 2018, 47, 328-338.	1.4	51
727	Reconstructed evolution of insulin receptors in insects reveals duplications in early insects and cockroaches. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 305-311.	1.3	26
728	Estimating TimeTrees with MEGA and the TimeTree Resource. Molecular Biology and Evolution, 2018, 35, 2334-2342.	8.9	92
729	Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Molecular Biology and Evolution, 2018, 35, 2375-2389.	8.9	12
730	The phylogeny of Coleopterida (Hexapoda) – morphological characters and molecular phylogenies. Systematic Entomology, 2019, 44, 75-102.	3.9	30
731	The evolution of molluscs. Biological Reviews, 2019, 94, 102-115.	10.4	104
732	Molecular Clock. , 2019, , 719-726.		0
733	Casteâ€ s pecific microRNA expression in termites: insights into soldier differentiation. Insect Molecular Biology, 2019, 28, 86-98.	2.0	14
734	A comprehensive molecular phylogeny of tiger beetles (Coleoptera, Carabidae, Cicindelinae). Systematic Entomology, 2019, 44, 305-321.	3.9	31
735	"Maximum supportâ€Â=Â100% BS. Cladistics, 2019, 35, 349-350.	3.3	3

#	Article	IF	CITATIONS
736	Transcriptome Surveys in Silverfish Suggest a Multistep Origin of the Insect Odorant Receptor Gene Family. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	17
737	Putting the genome in insect phylogenomics. Current Opinion in Insect Science, 2019, 36, 111-117.	4.4	19
738	A remarkably new basal wasp with uniquely transformed forewing in mid-Cretaceous Burmese amber (Hymenoptera, Syspastoxyelidae). Cretaceous Research, 2019, 104, 104172.	1.4	6
739	Ecomorphology of Cyclorrhaphan Larvae (Diptera). Zoological Monographs, 2019, , .	1.1	11
741	Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects. GigaScience, 2019, 8, .	6.4	25
742	A Phylogenomic Supertree of Birds. Diversity, 2019, 11, 109.	1.7	93
743	The Cyclorrhaphan Larva as a Data Source. Zoological Monographs, 2019, , 247-279.	1.1	0
744	Recurrent Losses and Rapid Evolution of the Condensin II Complex in Insects. Molecular Biology and Evolution, 2019, 36, 2195-2204.	8.9	31
745	Impact of sequencing depth and technology on de novo RNA-Seq assembly. BMC Genomics, 2019, 20, 604.	2.8	40
710			
746	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19.		
	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0	.784314 r	gBT /Overlo <mark>c</mark> l
746	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather	.784314 r 1.6	gBT /Overloci 22
746 747	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather Lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity, 2019, 3, .	.784314 r 1.6 1.7	gBT /Overloci 22 7
746 747 748	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather Lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity, 2019, 3, . Insect egg size and shape evolve with ecology but not developmental rate. Nature, 2019, 571, 58-62.	.784314 r 1.6 1.7 27.8	gBT /Overloe 22 7 78
746 747 748 749	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather Lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity, 2019, 3, . Insect egg size and shape evolve with ecology but not developmental rate. Nature, 2019, 571, 58-62. A dataset of egg size and shape from more than 6,700 insect species. Scientific Data, 2019, 6, 104. Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded	.784314 r 1.6 1.7 27.8 5.3	gBT /Overloe 22 7 78 26
746 747 748 749 750	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq1 1 0 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather Lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity, 2019, 3, . Insect egg size and shape evolve with ecology but not developmental rate. Nature, 2019, 571, 58-62. A dataset of egg size and shape from more than 6,700 insect species. Scientific Data, 2019, 6, 104. Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling. Genome Biology and Evolution, 2019, 11, 2055-2070.	.784314 r 1.6 1.7 27.8 5.3 2.5	gBT /Overloe 22 7 78 26 76
746 747 748 749 750 751	The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera:) Tj ETQq110 Linnean Society, 2019, 128, 1-19. Implications of a Dating Analysis of Hippoboscoidea (Diptera) for the Origins of Phoresis in Feather Lice (Psocodea: Phthiraptera: Philopteridae). Insect Systematics and Diversity, 2019, 3, . Insect egg size and shape evolve with ecology but not developmental rate. Nature, 2019, 571, 58-62. A dataset of egg size and shape from more than 6,700 insect species. Scientific Data, 2019, 6, 104. Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling. Genome Biology and Evolution, 2019, 11, 2055-2070. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22657-22663. Repertoire-wide gene structure analyses: a case study comparing automatically predicted and	.784314 r 1.6 1.7 27.8 5.3 2.5 7.1	gBT /Overlo el 22 7 7 26 76 291

#	Article	IF	CITATIONS
755	Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191854.	2.6	24
756	Seasonal diet of <i>Asellia tridens</i> (Chiroptera: Hipposideridae) in North-Western Africa. , 2019, 86, 354-362.		2
757	Deep Instability in the Phylogenetic Backbone of Heteroptera is Only Partly Overcome by Transcriptome-Based Phylogenomics. Insect Systematics and Diversity, 2019, 3, .	1.7	6
758	Ecological specificity of the metagenome in a set of lower termite species supports contribution of the host. Animal Microbiome, 2019, 1, 13.	3.8	21
759	Patterns and Constraints in the Evolution of Sperm Individualization Genes in Insects, with an Emphasis on Beetles. Genes, 2019, 10, 776.	2.4	1
760	Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone. Journal of Insect Physiology, 2019, 119, 103968.	2.0	6
761	Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. Journal of Insect Physiology, 2019, 118, 103939.	2.0	15
762	Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biological Journal of the Linnean Society, 2019, 128, 865-886.	1.6	27
763	Data Distribution for Phylogenetic Inference with Site Repeats via Judicious Hypergraph Partitioning. , 2019, , .		0
764	Sexâ€specific changes in the aphid DNA methylation landscape. Molecular Ecology, 2019, 28, 4228-4241.	3.9	45
765	Phylogenetics, patterns of genetic variation and population dynamics of Trypanosoma terrestris support both coevolution and ecological host-fitting as processes driving trypanosome evolution. Parasites and Vectors, 2019, 12, 473.	2.5	12
766	The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts. Frontiers in Molecular Neuroscience, 2019, 12, 251.	2.9	19
767	Biological Adaptations Associated with Dehydration in Mosquitoes. Insects, 2019, 10, 375.	2.2	23
768	Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	80
769	Shifting roles of <i>Drosophila</i> pair-rule gene orthologs: segmental expression and function in the milkweed bug <i>Oncopeltus fasciatus</i> . Development (Cambridge), 2019, 146, .	2.5	19
770	Achiasmy and sex chromosome evolution. Ecological Genetics and Genomics, 2019, 13, 100046.	0.5	12
771	Complete mitochondrial genomes of Bittacus strigosus and Panorpa debilis and genomic comparisons of Mecoptera. International Journal of Biological Macromolecules, 2019, 140, 672-681.	7.5	12
772	Complete mitochondrial genome of two Thitarodes species (Lepidoptera, Hepialidae), the host moths of Ophiocordyceps sinensis and phylogenetic implications. International Journal of Biological	7.5	9

#	Article	IF	CITATIONS
773	The innovation of the final moult and the origin of insect metamorphosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180415.	4.0	34
774	Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190063.	4.0	103
775	Links between metamorphosis and symbiosis in holometabolous insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190068.	4.0	118
776	The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190070.	4.0	109
777	Immune gene regulation in the gut during metamorphosis in a holo- versus a hemimetabolous insect. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190073.	4.0	32
778	Cooking up the perfect insect: Aristotle's transformational idea about the complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190074.	4.0	9
779	Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives. BMC Evolutionary Biology, 2019, 19, 182.	3.2	49
780	Exploring the underwater silken architectures of caddisworms: comparative silkomics across two caddisfly suborders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190206.	4.0	25
781	Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. EvoDevo, 2019, 10, 21.	3.2	18
782	Evolution, Origin of Life, Concepts and Methods. , 2019, , .		4
783	Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191881.	2.6	22
784	Insect microbial symbionts as a novel source for biotechnology. World Journal of Microbiology and Biotechnology, 2019, 35, 25.	3.6	29
785	A High-quality Draft Genome Assembly ofSinella curviseta: A Soil Model Organism (Collembola). Genome Biology and Evolution, 2019, 11, 521-530.	2.5	13
786	Integrating morphology and phylogenomics supports a terrestrial origin of insect flight. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2796-2798.	7.1	4
787	Ancient origin of a dipteromimid mayfly family endemic to the Japanese Islands and its genetic differentiation across tectonic faults. Biological Journal of the Linnean Society, 2019, 126, 555-573.	1.6	28
788	Molecular Systematics and the Evolution of Arthropods. , 2019, , 463-513.		0
789	Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. Bmc Ecology and Evolution, 2019, 19, 11.	1.6	129
790	Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics, 2019, 20, 52.	2.8	22

#	Article	IF	CITATIONS
791	A Machine Learning Method for Detecting Autocorrelation of Evolutionary Rates in Large Phylogenies. Molecular Biology and Evolution, 2019, 36, 811-824.	8.9	45
792	Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life, 2019, 9, 2.	2.4	5
793	Domain structure and expression along the midgut and carcass of peritrophins and cuticle proteins analogous to peritrophins in insects with and without peritrophic membrane. Journal of Insect Physiology, 2019, 114, 1-9.	2.0	15
794	Assessing phylogenetic information to reveal uncertainty in historical data: An example using Goodeinae (Teleostei: Cyprinodontiformes: Goodeidae). Molecular Phylogenetics and Evolution, 2019, 134, 282-290.	2.7	6
795	Plant-Insect Interaction: The Saga of Molecular Coevolution. Reference Series in Phytochemistry, 2019, , 1-27.	0.4	1
796	How to make a haploid male. Evolution Letters, 2019, 3, 173-184.	3.3	9
797	The Phylogeny and Evolutionary History of Arthropods. Current Biology, 2019, 29, R592-R602.	3.9	155
798	Effect of heritable symbionts on maternally-derived embryo transcripts. Scientific Reports, 2019, 9, 8847.	3.3	5
799	Pheromones and Barcoding Delimit Boundaries between Cryptic Species in the Primitive Moth Genus Eriocrania (Lepidoptera: Eriocraniidae). Journal of Chemical Ecology, 2019, 45, 429-439.	1.8	15
800	The Life of an Insect Endosymbiont from the Cradle to the Grave. Current Biology, 2019, 29, R485-R495.	3.9	157
801	Going Deeper into High and Low Phylogenetic Relationships of Protura. Genes, 2019, 10, 292.	2.4	5
802	Ultrastructure of the rectum of the soil-spraying larva in Bittacus cirratus (Mecoptera: Bittacidae). Protoplasma, 2019, 256, 1487-1494.	2.1	4
803	The oldest known mastotermitids (Blattodea: Termitoidae) and phylogeny of basal termites. Systematic Entomology, 2019, 44, 612-623.	3.9	27
804	Identification of Yâ€chromosome scaffolds of the Queensland fruit fly reveals a duplicated <i>gyf</i> gene paralogue common to many <i>Bactrocera</i> pest species. Insect Molecular Biology, 2019, 28, 873-886.	2.0	10
805	Editorial overview: Revisiting Dobzhansky and the â€~modern synthesis' in light of insect evolutionary genomics. Current Opinion in Insect Science, 2019, 31, iii-vi.	4.4	1
806	The insect reservoir of biodiversity for viruses and for antiviral mechanisms. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190122.	0.8	10
807	Insect Immunity: From Systemic to Chemosensory Organs Protection. , 2019, , 205-229.		1
808	Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC Genomics, 2019, 20, 370.	2.8	9

#	Article	IF	CITATIONS
809	Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: a test of ecological stoichiometry theory. Oecologia, 2019, 190, 229-242.	2.0	12
810	Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biology, 2019, 20, 98.	8.8	27
811	Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Molecular Phylogenetics and Evolution, 2019, 137, 236-249.	2.7	59
812	Diversification of Transposable Elements in Arthropods and Its Impact on Genome Evolution. Genes, 2019, 10, 338.	2.4	26
813	Gene expression changes associated with the evolutionary loss of a metabolic trait: lack of lipogenesis in parasitoids. BMC Genomics, 2019, 20, 309.	2.8	20
814	Resilin in the flight apparatus of Odonata (Insecta)—cap tendons and their biomechanical importance for flight. Biology Letters, 2019, 15, 20190127.	2.3	17
815	Immunity of fleas (Order Siphonaptera). Developmental and Comparative Immunology, 2019, 98, 76-79.	2.3	12
816	Pterin-pigmented nanospheres create the colours of the polymorphic damselfly <i>Ischnura elegans</i> . Journal of the Royal Society Interface, 2019, 16, 20180785.	3.4	31
817	Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 2019, 5, 461-470.	9.3	467
818	A Jurassic leap for flowering plants. Nature Plants, 2019, 5, 455-456.	9.3	2
818 819	A Jurassic leap for flowering plants. Nature Plants, 2019, 5, 455-456. Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125.	9.3 2.2	2 91
819	Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125. Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica	2.2	91
819 820	Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125. Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194381. Water and ion transport across the eversible vesicles in the collophore of a springtail <i>Orchesella</i>	2.2 1.9	91 13
819 820 821	Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125. Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194381. Water and ion transport across the eversible vesicles in the collophore of a springtail <i>Orchesella cincta</i> . Journal of Experimental Biology, 2019, 222, . Phylogenomic analysis resolves the relationships among netâ€winged beetles (Coleoptera: Lycidae) and	2.2 1.9 1.7	91 13 3
819 820 821 822	Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125. Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194381. Water and ion transport across the eversible vesicles in the collophore of a springtail <i>Orchesella cincta </i> . Journal of Experimental Biology, 2019, 222, . Phylogenomic analysis resolves the relationships among netâ€winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Systematic Entomology, 2019, 44, 911-925. Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular	2.2 1.9 1.7 3.9	91 13 3 35
 819 820 821 822 823 	Diversity and Ecosystem Services of Trichoptera. Insects, 2019, 10, 125. Role of RNA secondary structures in regulating Dscam alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194381. Water and ion transport across the eversible vesicles in the collophore of a springtail <i>Orchesella cincta </i> . Journal of Experimental Biology, 2019, 222, . Phylogenomic analysis resolves the relationships among netâ€winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Systematic Entomology, 2019, 44, 911-925. Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular Ecology, 2019, 28, 3141-3150. A Review of Approaches for Optimizing Phylogenetic Likelihood Calculations. Computational Biology,	2.2 1.9 1.7 3.9 3.9	91 13 3 35 27

#	Article	IF	CITATIONS
828	Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. Insect Biochemistry and Molecular Biology, 2019, 108, 61-70.	2.7	41
829	Odonata: Who They Are and What They Have Done for Us Lately: Classification and Ecosystem Services of Dragonflies. Insects, 2019, 10, 62.	2.2	40
830	Frozen Antarctic path for dispersal initiated parallel host-parasite evolution on different continents. Molecular Phylogenetics and Evolution, 2019, 135, 67-77.	2.7	9
831	Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 2019, 8, .	6.4	126
832	Gene Selection and Evolutionary Modeling Affect Phylogenomic Inference of Neuropterida Based on Transcriptome Data. International Journal of Molecular Sciences, 2019, 20, 1072.	4.1	8
833	The systematics of Mantodea revisited: an updated classification incorporating multiple data sources (Insecta: Dictyoptera). Annales De La Societe Entomologique De France, 2019, 55, 101-196.	0.9	72
834	ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics, 2019, 35, 3961-3969.	4.1	57
835	In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. VirusDisease, 2019, 30, 245-251.	2.0	14
836	The phylogeny and evolutionary timescale of stoneflies (Insecta: Plecoptera) inferred from mitochondrial genomes. Molecular Phylogenetics and Evolution, 2019, 135, 123-135.	2.7	35
837	Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Molecular Phylogenetics and Evolution, 2019, 136, 241-253.	2.7	32
838	A molecular phylogeny of chafers revisits the polyphyly of Tanyproctini (Scarabaeidae,) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 1.7	0 342 Td (M 12
842	Developmental expression and evolution of hexamerin and haemocyanin from <i>Folsomia candida</i> (Collembola). Insect Molecular Biology, 2019, 28, 716-727.	2.0	5
843	Independent origins of coastal colonization in the tribe Athetini (Coleoptera, Staphylinidae). Zoologica Scripta, 2019, 48, 337-348.	1.7	4
844	Bionomics and Ecological Services of Megaloptera Larvae (Dobsonflies, Fishflies, Alderflies). Insects, 2019, 10, 86.	2.2	12
845	Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nature Communications, 2019, 10, 1485.	12.8	144
846	The Natural History of Teneurins: A Billion Years of Evolution in Three Key Steps. Frontiers in Neuroscience, 2019, 13, 109.	2.8	18
847	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
848	No signal of deleterious mutation accumulation in conserved gene sequences of extant asexual hexapods. Scientific Reports, 2019, 9, 5338.	3.3	17

#	Article	IF	CITATIONS
849	Phylogenomic analysis of Calyptratae: resolving the phylogenetic relationships within a major radiation of Diptera. Cladistics, 2019, 35, 605-622.	3.3	51
850	Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182207.	2.6	78
851	The circadian system in insects: Cellular, molecular, and functional organization. Advances in Insect Physiology, 2019, 56, 73-115.	2.7	25
852	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	2.7	36
853	The Mitochondrial Genomes of Neuropteridan Insects and Implications for the Phylogeny of Neuroptera. Genes, 2019, 10, 108.	2.4	11
854	Nuclear Genome Size in Contrast to Sex Chromosome Number Variability in the Human Bed Bug, Cimex lectularius (Heteroptera: Cimicidae). Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 746-756.	1.5	8
855	Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta:) Tj ETQqO	0 0 rgBT / 1.2	Oyerlock 10

856	Physicochemical Amino Acid Properties Better Describe Substitution Rates in Large Populations. Molecular Biology and Evolution, 2019, 36, 679-690.	8.9	20
857	An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182076.	2.6	143
858	Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances, 2019, 9, 6793-6803.	3.6	103
859	Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Molecular Biology and Evolution, 2019, 36, 1022-1036.	8.9	46
860	Taxonomic notes on dustywings of Aleuropteryginae (Insecta,ÂNeuroptera, Coniopterygidae) from the mid-Cretaceous Burmese amber. Cretaceous Research, 2019, 98, 122-135.	1.4	7
861	Edible insects and related products. , 2019, , 139-165.		0
862	Computational analysis of size, shape and structure of insect wings. Biology Open, 2019, 8, .	1.2	27
863	Different Evolutionary Trajectories of Two Insect-Specific Paralogous Proteins Involved in Stabilizing Muscle Myofibrils. Genetics, 2019, 212, 743-755.	2.9	13
864	Arthropod segmentation. Development (Cambridge), 2019, 146, .	2.5	73
865	The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24729-24737.	7.1	372
866	Injecting Gryllus bimaculatus Eggs. Journal of Visualized Experiments, 2019, , .	0.3	5

#	Article	IF	CITATIONS
867	The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships. Scientific Reports, 2019, 9, 17765.	3.3	21
868	Expansion of Imaginal Disc Growth Factor Gene Family in Diptera Reflects the Evolution of Novel Functions. Insects, 2019, 10, 365.	2.2	8
869	Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. International Journal of Molecular Sciences, 2019, 20, 5862.	4.1	111
870	Insect Mouthparts. Zoological Monographs, 2019, , .	1.1	32
871	The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence. BMC Biology, 2019, 17, 100.	3.8	19
872	Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics, 2019, 20, 954.	2.8	25
873	Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 2019, 15, e1008224.	4.7	101
874	Novel DNA Barcode Sequence Discovery from Transcriptome of <i>Acheta domesticus</i> : A Partial Mitochondrial DNA. Materials Science Forum, 0, 967, 59-64.	0.3	3
875	The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 172-183.	2.5	36
876	On the thoracic anatomy of the Madagascan <i>Heterogyrus milloti</i> and the phylogeny of Gyrinidae (Coleoptera). Systematic Entomology, 2019, 44, 336-360.	3.9	9
877	A new surface gliding species of Chironomidae: An independent invasion of marine environments and its evolutionary implications. Zoologica Scripta, 2019, 48, 81-92.	1.7	9
878	Effects of miniaturization in primary larvae of Strepsiptera (Insecta). Arthropod Structure and Development, 2019, 48, 49-55.	1.4	6
879	Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding <i>Drosophila</i> . Journal of Heredity, 2019, 110, 80-91.	2.4	17
880	Comparative genomics and transcriptomics of host–pathogen interactions in insects: evolutionary insights and future directions. Current Opinion in Insect Science, 2019, 31, 106-113.	4.4	29
881	Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB Journal, 2019, 33, 3659-3669.	0.5	23
882	Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography, 2019, 42, 811-813.	4.5	15
883	The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference. International Journal of Biological Macromolecules, 2019, 124, 185-199.	7.5	11
884	Homoplasy-Based Partitioning Outperforms Alternatives in Bayesian Analysis of Discrete Morphological Data. Systematic Biology, 2019, 68, 657-671.	5.6	31

#	Article	IF	CITATIONS
885	The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila. Insect Biochemistry and Molecular Biology, 2019, 106, 10-18.	2.7	7
886	Phylogenomics from lowâ€coverage wholeâ€genome sequencing. Methods in Ecology and Evolution, 2019, 10, 507-517.	5.2	59
887	Molecular phylogeny and diversification timing of the Nemouridae family (Insecta, Plecoptera) in the Japanese Archipelago. PLoS ONE, 2019, 14, e0210269.	2.5	13
888	Wing morphology in featherwing beetles (Coleoptera: Ptiliidae): Features associated with miniaturization and functional scaling analysis. Arthropod Structure and Development, 2019, 48, 56-70.	1.4	14
889	Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3024-3029.	7.1	150
890	Insight from an ultraconserved element bait set designed for hemipteran phylogenetics integrated with genomic resources. Molecular Phylogenetics and Evolution, 2019, 130, 297-303.	2.7	51
891	Highly specialized Cretaceous beetle parasitoids (Ripiphoridae) identified with optimized visualization of microstructures. Systematic Entomology, 2019, 44, 396-407.	3.9	15
892	Mitochondrial phylogenomics of the Hymenoptera. Molecular Phylogenetics and Evolution, 2019, 131, 8-18.	2.7	104
893	Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera:) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Tf 50 422
894	Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution, 2019, 130, 121-131.	2.7	127
895	Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. Annual Review of Entomology, 2019, 64, 227-242.	11.8	156
896	Evolution of the Torso activation cassette, a pathway required for terminal patterning and moulting. Insect Molecular Biology, 2019, 28, 392-408.	2.0	12
897	Arthropod venoms: Biochemistry, ecology and evolution. Toxicon, 2019, 158, 84-103.	1.6	30
898	Are sulfate effects in the mayfly <i>Neocloeon triangulifer</i> driven by the cost of ion regulation?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180013.	4.0	23
899	Comparative morphology of the internal female genitalia in two species of Mantophasmatodea. Zoomorphology, 2019, 138, 73-83.	0.8	12
900	Long-Branch Attraction in Species Tree Estimation: Inconsistency of Partitioned Likelihood and Topology-Based Summary Methods. Systematic Biology, 2019, 68, 281-297.	5.6	77
901	The first representative of Progonocimicidae (Hemiptera: Coleorrhyncha) from mid-Cretaceous Burmese amber. Cretaceous Research, 2019, 93, 346-359.	1.4	6

902		expression in the honeybee <i>Apis mellifera</i> : a , and <i>vitellogenin</i> . Insect Molecular Biology,	2.0	26
-----	--	---	-----	----

#	Article	IF	CITATIONS
903	Functional morphology and neuronal innervation of the prothoracic defence gland in <i>Timema</i> . Acta Zoologica, 2019, 100, 6-13.	0.8	3
904	Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil. Historical Biology, 2019, 31, 926-937.	1.4	20
905	A novel insect-infecting virga/nege-like virus group and its pervasive endogenization into insect genomes. Virus Research, 2019, 262, 37-47.	2.2	49
906	Maternal care by Early Cretaceous cockroaches. Journal of Systematic Palaeontology, 2019, 17, 379-391.	1.5	24
907	Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny. Cladistics, 2019, 35, 67-105.	3.3	84
908	Phylogeny and historical biogeography of Gondwanan mossâ€bugs (Insecta: Hemiptera: Coleorrhyncha:) Tj ETQq1	1 0.7843 3.3	14 rgBT /O\ 13
909	Two Lys-vasopressin-like peptides, EFLamide, and other phasmid neuropeptides. General and Comparative Endocrinology, 2019, 278, 3-11.	1.8	21
910	Systemic RNAi of Vâ€ATPase subunit B causes molting defect and developmental abnormalities in <i>Periplaneta fuliginosa</i> . Insect Science, 2019, 26, 721-731.	3.0	21
911	When did the ancestor of true bugs become stinky? Disentangling the phylogenomics of Hemiptera–Heteroptera. Cladistics, 2019, 35, 42-66.	3.3	53
912	<i>Archaeomalthus</i> -(Coleoptera, Archostemata) a â€~ghost adult' of Micromalthidae from Upper Permian deposits of Siberia?. Historical Biology, 2020, 32, 1019-1027.	1.4	13
913	Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Systematic Biology, 2020, 69, 38-60.	5.6	65
914	Model Choice, Missing Data, and Taxon Sampling Impact Phylogenomic Inference of Deep Basidiomycota Relationships. Systematic Biology, 2020, 69, 17-37.	5.6	34
915	Accounting for Uncertainty in the Evolutionary Timescale of Green Plants Through Clock-Partitioning and Fossil Calibration Strategies. Systematic Biology, 2020, 69, 1-16.	5.6	55
916	Conservation of the voltageâ€sensitive sodium channel protein within the Insecta. Insect Molecular Biology, 2020, 29, 9-18.	2.0	27
917	Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. National Science Review, 2020, 7, 381-390.	9.5	58
918	Ecology and Evolution of Insect–Fungus Mutualisms. Annual Review of Entomology, 2020, 65, 431-455.	11.8	174
919	Reliable placement of beetle fossils via phylogenetic analyses – Triassic <i>Leehermania</i> as a case study (Staphylinidae or Myxophaga?). Systematic Entomology, 2020, 45, 175-187.	3.9	38
920	Characterization of plexinA and two distinct semaphorin1a transcripts in the developing and adult cricket Gryllus bimaculatus. Journal of Comparative Neurology, 2020, 528, 687-702.	1.6	1

#	Article	IF	CITATIONS
921	A new mid-Cretaceous cockroach of stem Nocticolidae and reestimating the age of Corydioidea (Dictyoptera: Blattodea). Cretaceous Research, 2020, 106, 104202.	1.4	17
922	Phylotranscriptomics resolves phylogeny of the Heliozelidae (Adeloidea: Lepidoptera) and suggests a Late Cretaceous origin in Australia. Systematic Entomology, 2020, 45, 128-143.	3.9	8
923	The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Molecular Biology, 2020, 29, 77-91.	2.0	68
924	INSTRAL: Discordance-Aware Phylogenetic Placement Using Quartet Scores. Systematic Biology, 2020, 69, 384-391.	5.6	14
925	Upliftâ€driven diversification revealed by the historical biogeography of the cockroach <i>Cryptocercus</i> Scudder (Blattodea: Cryptocercidae) in eastern Asia. Systematic Entomology, 2020, 45, 60-72.	3.9	7
926	Comment on Phylogenetic analyses with four new Cretaceous bristletails reveal interâ€relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics, 2020, 36, 227-231.	3.3	1
927	Phylogenomics of Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial relationships via degeneracy coding and interrogation of gene conflict. Systematic Entomology, 2020, 45, 85-113.	3.9	45
928	Quartet-Based Computations of Internode Certainty Provide Robust Measures of Phylogenetic Incongruence. Systematic Biology, 2020, 69, 308-324.	5.6	38
929	New Specimen Sheds Light on the Anatomy and Taxonomy of the Early Late Triassic Dinosauriforms from the Cha±ares Formation, NW Argentina. Anatomical Record, 2020, 303, 1393-1438.	1.4	32
930	Genetics of Thrips palmi (Thysanoptera: Thripidae). Journal of Pest Science, 2020, 93, 27-39.	3.7	20
931	Phylotranscriptomics confirms Alveopora is sister to Montipora within the family Acroporidae. Marine Genomics, 2020, 50, 100703.	1.1	9
932	Cross-contamination and strong mitonuclear discordance in Empria sawflies (Hymenoptera,) Tj ETQq1 1 C 106670.).784314 rgBT / 2.7	Overlock 10 Tf 10
933	To be or not to be: postcubital vein in insects revealed by microtomography. Systematic Entomology, 2020, 45, 327-336.	3.9	47
934	Anchored hybrid enrichment challenges the traditional classification of flesh flies (Diptera:) Tj ETQq1 1 0.7	784314 rgBJ /Oʻ	verlgck 10 Tf 5
935	The power of neuropeptide precursor sequences to reveal phylogenetic relationships in insects: A case study on Blattodea. Molecular Phylogenetics and Evolution, 2020, 143, 106686.	2.7	12
936	Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evolutionary Applications, 2020, 13, 95-115.	3.1	61
937	Multifunctional cellulase enzymes are ancestral in Polyneoptera. Insect Molecular Biology, 2020, 29, 124-135.	2.0	21
938	The unique antimicrobial peptide repertoire of stick insects. Developmental and Comparative Immunology, 2020, 103, 103471.	2.3	20

#	Article	IF	CITATIONS
939	Insect Mouthpart Transcriptome Unveils Extension of Cuticular Protein Repertoire and Complex Organization. IScience, 2020, 23, 100828.	4.1	8
940	Molecular characterization and distribution of the voltage-gated sodium channel, Para, in the brain of the grasshopper and vinegar fly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 289-307.	1.6	6
941	Characteristic and variability of five complete aphid mitochondrial genomes: Aphis fabae mordvilkoi, Aphis craccivora, Myzus persicae, Therioaphis tenera and Appendiseta robiniae (Hemiptera;) Tj ETQq0 0 0 rgBT /0	Dverbock 1	0 Tafa50 657 T
942	Phylogenomic analysis of the beetle suborder Adephaga with comparison of tailored and generalized ultraconserved element probe performance. Systematic Entomology, 2020, 45, 552-570.	3.9	35
943	The phylogeny of insects in the dataâ€driven era. Systematic Entomology, 2020, 45, 540-551.	3.9	18
944	MicroRNA evolution provides new evidence for a close relationship of Diplura to Insecta. Systematic Entomology, 2020, 45, 365-377.	3.9	4
945	Dscam in immunity: A question of diversity in insects and crustaceans. Developmental and Comparative Immunology, 2020, 105, 103539.	2.3	39
946	Telomere structure in insects: A review. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 127-158.	1.4	36
947	Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Molecular Phylogenetics and Evolution, 2020, 143, 106695.	2.7	62
948	The morphological evolution of the Adephaga (Coleoptera). Systematic Entomology, 2020, 45, 378-395.	3.9	29
949	The evolution of Zoraptera. Systematic Entomology, 2020, 45, 349-364.	3.9	8
950	The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations. Genome Biology and Evolution, 2020, 12, 3534-3549.	2.5	3
951	Carbonate collapse and the late Paleozoic ice age marine biodiversity crisis. Geology, 2020, 48, 118-122.	4.4	16
952	Inside the head of a cybertype – three-dimensional reconstruction of the head muscles of Ommatoiulus avatar (Diplopoda: Juliformia: Julidae) reveals insights into the feeding movements of Juliformia. Zoological Journal of the Linnean Society, 2020, 188, 954-975.	2.3	3
953	Aquatic Insects Are Dramatically Underrepresented in Genomic Research. Insects, 2020, 11, 601.	2.2	35
954	Inferring Evolutionary Timescales without Independent Timing Information: An Assessment of "Universal―Insect Rates to Calibrate a Collembola (Hexapoda) Molecular Clock. Genes, 2020, 11, 1172.	2.4	4
955	Phylogenomics of Parasitic and Nonparasitic Lice (Insecta: Psocodea): Combining Sequence Data and Exploring Compositional Bias Solutions in Next Generation Data Sets. Systematic Biology, 2021, 70, 719-738.	5.6	43
956	Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Frontiers in Immunology, 2020, 11, 2030.	4.8	53

#	Article	IF	CITATIONS
957	Mitochondrial genomes of stick insects (Phasmatodea) and phylogenetic considerations. PLoS ONE, 2020, 15, e0240186.	2.5	14
958	Gene editing reveals obligate and modulatory components of the CO2 receptor complex in the malaria vector mosquito, Anopheles coluzzii. Insect Biochemistry and Molecular Biology, 2020, 127, 103470.	2.7	30
959	Drosophila melanogaster and worker honeybees (Apis mellifera) do not require olfaction to be susceptible to honeybee queen mandibular pheromone. Journal of Insect Physiology, 2020, 127, 104154.	2.0	3
960	Temporal Changes in Cuticular Hydrocarbons During Worker-Reproductive Transition in the Eastern Subterranean Termite (Blattodea: Rhinotermitidae). Annals of the Entomological Society of America, 2021, 114, 643-653.	2.5	5
961	Evolutionary Timeline and Genomic Plasticity Underlying the Lifestyle Diversity in <i>Rhizobiales</i> . MSystems, 2020, 5, .	3.8	45
962	Is Phylotranscriptomics as Reliable as Phylogenomics?. Molecular Biology and Evolution, 2020, 37, 3672-3683.	8.9	52
963	Bioinformatic, genomic and evolutionary analysis of genes: A case study in dipteran CSPs. Methods in Enzymology, 2020, 642, 35-79.	1.0	0
964	The Identification and Evolutionary Trends of the Solute Carrier Superfamily in Arthropods. Genome Biology and Evolution, 2020, 12, 1429-1439.	2.5	12
965	Bulbous perennials precisely detect the length of winter and adjust flowering dates. New Phytologist, 2020, 228, 1535-1547.	7.3	11
966	Expansions and contractions in gene families of independently-evolved blood-feeding insects. BMC Evolutionary Biology, 2020, 20, 87.	3.2	9
967	Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Scientific Reports, 2020, 10, 11390.	3.3	14
968	The immune and circulatory systems are functionally integrated across insect evolution. Science Advances, 2020, 6, .	10.3	25
969	Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses, 2020, 12, 1337.	3.3	25
970	Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31979-31986.	7.1	40
971	<i>Portiera</i> Gets Wild: Genome Instability Provides Insights into the Evolution of Both Whiteflies and Their Endosymbionts. Genome Biology and Evolution, 2020, 12, 2107-2124.	2.5	14
972	Resolving the phylogenetic position of Hygrobiidae (Coleoptera: Adephaga) requires objective statistical tests and exhaustive phylogenetic methodology: a response to Cai et al. (2020). Molecular Phylogenetics and Evolution, 2021, 162, 106923.	2.7	9
973	Genome-Wide Differential DNA Methylation in Reproductive, Morphological, and Visual System Differences Between Queen Bee and Worker Bee (Apis mellifera). Frontiers in Genetics, 2020, 11, 770.	2.3	14
974	Cellular and humoral immune interactions between <i>Drosophila</i> and its parasitoids. Insect Science, 2021, 28, 1208-1227.	3.0	29

#	Article	IF	CITATIONS
975	Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	10
976	How to escape from insect egg parasitoids: a review of potential factors explaining parasitoid absence across the Insecta. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200344.	2.6	19
977	The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biology, 2020, 18, 90.	3.8	40
978	Expression of Multiple engrailed Family Genes in Eyespots of Bicyclus anynana Butterflies Does Not Implicate the Duplication Events in the Evolution of This Morphological Novelty. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	7
979	Arthropod Origins: Integrating Paleontological and Molecular Evidence. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 1-25.	8.3	30
980	Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings. Nature Ecology and Evolution, 2020, 4, 1694-1702.	7.8	28
981	Spermatozoa morphology of the giant water bug Belostoma anurum (Herrich-SchÃĦer, 1848) (Heteroptera: Belostomatidae). Zoologischer Anzeiger, 2020, 288, 103-106.	0.9	1
982	Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans—a meta-analysis. BMC Biology, 2020, 18, 135.	3.8	22
983	Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 2020, 18, 142.	3.8	54
984	Comparing gastrulation in flies: Links between cell biology and the evolution of embryonic morphogenesis. Mechanisms of Development, 2020, 164, 103648.	1.7	5
985	Evolution, developmental expression and function of odorant receptors in insects. Journal of Experimental Biology, 2020, 223, .	1.7	67
986	The evolution of insect metallothioneins. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202189.	2.6	16
987	Prüfungstrainer Spezielle Zoologie. , 2020, , .		0
988	Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata. Scientific Reports, 2020, 10, 15538.	3.3	2
989	Malpighamoeba infection compromises fluid secretion and P-glycoprotein detoxification in Malpighian tubules. Scientific Reports, 2020, 10, 15953.	3.3	4
990	Miniaturization re-establishes symmetry in the wing folding patterns of featherwing beetles. Scientific Reports, 2020, 10, 16458.	3.3	3
991	Regulatory gene function handoff allows essential gene loss in mosquitoes. Communications Biology, 2020, 3, 540.	4.4	6
992	The Globin Gene Family in Arthropods: Evolution and Functional Diversity. Frontiers in Genetics, 2020, 11, 858.	2.3	8

#	Article	IF	CITATIONS
993	The evolution of startle displays: a case study in praying mantises. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201016.	2.6	13
994	The green-brown polymorphism of the club-legged grasshopper Comphocerus sibiricus is heritable and appears genetically simple. BMC Evolutionary Biology, 2020, 20, 63.	3.2	5
995	Mode and Tempo of Microsatellite Evolution across 300 Million Years of Insect Evolution. Genes, 2020, 11, 945.	2.4	5
997	Chemical entrapment and killing of insects by bacteria. Nature Communications, 2020, 11, 4608.	12.8	18
998	Cretaceous mantid lacewings with specialized raptorial forelegs illuminate modification of prey capture (Insecta: Neuroptera). Zoological Journal of the Linnean Society, 2020, 190, 1054-1070.	2.3	9
999	Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evolutionary Ecology, 2020, 34, 1063-1088.	1.2	2
1000	Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Systematic Biology, 2021, 70, 863-876.	5.6	18
1001	Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology, 2021, 18, 1653-1681.	3.1	16
1002	The International Virus Bioinformatics Meeting 2020. Viruses, 2020, 12, 1398.	3.3	3
1003	<i>Metarhizium</i> : jack of all trades, master of many. Open Biology, 2020, 10, 200307.	3.6	87
1004	Evolutionary novelty in the apoptotic pathway of aphids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32545-32556.	7.1	9
1005	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
1006	Survey of biomechanical aspects of arthropod terrestrialisation – Substrate bound legged locomotion. Arthropod Structure and Development, 2020, 59, 100983.	1.4	10
1007	A phylogenomic study of Steganinae fruit flies (Diptera: Drosophilidae): strong gene tree heterogeneity and evidence for monophyly. BMC Evolutionary Biology, 2020, 20, 141.	3.2	4
1008	Oxytocin/vasopressin-like neuropeptide signaling in insects. Vitamins and Hormones, 2020, 113, 29-53.	1.7	8
1009	Hemiptera phylogenomic resources: Treeâ€based orthology prediction and conserved exon identification. Molecular Ecology Resources, 2020, 20, 1346-1360.	4.8	5
1010	Distal leg structures of the Aculeata (Hymenoptera): A comparative evolutionary study of Sceliphron (Sphecidae) and Formica (Formicidae). Journal of Morphology, 2020, 281, 737-753.	1.2	15
1011	Insect wing damage: causes, consequences and compensatory mechanisms. Journal of Experimental Biology, 2020, 223, .	1.7	30

#	Article	IF	CITATIONS
1012	Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian–eastern North American <i>Nyssa</i> (Nyssaceae). Journal of Systematics and Evolution, 2020, 58, 571-603.	3.1	24
1013	New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Molecular Biology and Evolution, 2020, 37, 2727-2733.	8.9	354
1014	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	12.8	57
1015	The State of the World's Insects. Annual Review of Environment and Resources, 2020, 45, 61-82.	13.4	86
1016	Deep Roots and Splendid Boughs of the Global Plant Virome. Annual Review of Phytopathology, 2020, 58, 23-53.	7.8	73
1017	Cooperative policing behaviour regulates reproductive division of labour in a termite. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200780.	2.6	11
1018	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
1019	The nuclear and mitochondrial genomes of Frieseomelitta varia – a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics, 2020, 21, 386.	2.8	15
1020	Transcriptomes reveal expression of hemoglobins throughout insects and other Hexapoda. PLoS ONE, 2020, 15, e0234272.	2.5	6
1021	Embryogenesis of the damselfly Euphaea yayeyamana Oguma (Insecta: Odonata: Euphaeidae), with special reference to the formation of their larval abdominal "gillâ€like―appendages. Entomological Science, 2020, 23, 280-293.	0.6	6
1022	Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer, <i>Coraebus undatus</i> (Coleoptera: Buprestidae). Journal of Experimental Biology, 2020, 223, .	1.7	8
1023	Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Molecular Ecology, 2020, 29, 2676-2691.	3.9	17
1024	Male genitalia of Charimachilis (Insecta: Archaeognatha) and the status of archaeognathan "paleoforms― Organisms Diversity and Evolution, 2020, 20, 253-266.	1.6	0
1025	A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biology, 2020, 18, 70.	3.8	29
1026	An intestinal zinc sensor regulates food intake and developmental growth. Nature, 2020, 580, 263-268.	27.8	46
1027	Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genomics, 2020, 21, 227.	2.8	60
1028	Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics, 2020, 21, 242.	2.8	12
1029	Chromosomeâ€level genome assembly of the greenhouse whitefly (<i>Trialeurodes vaporariorum</i>) Tj ETQq1 ∷	1 0,78431	4 rgBT /Ove

#	Article	IF	CITATIONS
1030	Interspecific crossing between blueâ€ŧailed damselflies <scp><i>Ischnura elegans</i></scp> and <scp><i>I. senegalensis</i></scp> in the laboratory. Entomological Science, 2020, 23, 165-172.	0.6	9
1031	Vasa deferentia and associated structures of the male Panorpodes kuandianensis (Mecoptera:) Tj ETQq1 1 0.7843	314.rgBT / 1.4	Oyerlock I <mark>O</mark>
1032	Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nature Microbiology, 2020, 5, 821-829.	13.3	102
1033	Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics, 2020, 36, 394-412.	3.3	16
1034	An Overview of Embryogenesis: External Morphology and Transcriptome Profiling in the Hemipteran Insect Nilaparvata lugens. Frontiers in Physiology, 2020, 11, 106.	2.8	14
1035	Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution, 2020, 147, 106782.	2.7	23
1036	Contribution to understanding the evolution of holometaboly: transformation of internal head structures during the metamorphosis in the green lacewing Chrysopa pallens (Neuroptera:) Tj ETQq0 0 0 rgBT /Ov	ve sla ck 10	Tf\$0 497 To
1037	Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont. Frontiers in Microbiology, 2020, 11, 1357.	3.5	98
1038	Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Scientific Reports, 2020, 10, 7785.	3.3	22
1039	Abundant and Diverse RNA Viruses in Insects Revealed by RNA-Seq Analysis: Ecological and Evolutionary Implications. MSystems, 2020, 5, .	3.8	66
1040	Increase in egg resistance to desiccation in springtails correlates with blastodermal cuticle formation: Ecoâ€evolutionary implications for insect terrestrialization. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 606-619.	1.3	8
1041	Intrageneric evolutionary timing and hidden genetic diversity of <i>Paramecium</i> lineages (Ciliophora: Oligohymenophorea). Systematics and Biodiversity, 2020, 18, 662-674.	1.2	9
1042	ÂÂÂÂÂÂWidespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genetics, 2020, 16, e1008864.	3.5	56
1043	A new phylogenetic protocol: dealing with model misspecification and confirmation bias in molecular phylogenetics. NAR Genomics and Bioinformatics, 2020, 2, Iqaa041.	3.2	15
1044	Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Molecular Biology and Evolution, 2020, 37, 1775-1789.	8.9	58
1045	Predator-induced stress responses in insects: A review. Journal of Insect Physiology, 2020, 122, 104039.	2.0	23
1046	Greenâ€brown polymorphism in alpine grasshoppers affects body temperature. Ecology and Evolution, 2020, 10, 441-450.	1.9	12
1047	The modular nature of protein evolution: domain rearrangement rates across eukaryotic life. BMC Evolutionary Biology, 2020, 20, 30.	3.2	33

#	Article	IF	CITATIONS
1048	Nociceptive neurons respond to multimodal stimuli in Manduca sexta. Journal of Experimental Biology, 2020, 223, .	1.7	2
1049	Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends in Ecology and Evolution, 2020, 35, 512-522.	8.7	55
1050	A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes for <i>Drosophila</i> Parasitoids. Molecular Biology and Evolution, 2020, 37, 2791-2807.	8.9	24
1051	Plant-Insect Interaction: The Saga of Molecular Coevolution. Reference Series in Phytochemistry, 2020, , 19-45.	0.4	16
1052	Songs <i>versus</i> colours <i>versus</i> horns: what explains the diversity of sexually selected traits?. Biological Reviews, 2020, 95, 847-864.	10.4	52
1053	Adult neurogenesis in the mushroom bodies of red flour beetles (Tribolium castaneum, Herbst) is influenced by the olfactory environment. Scientific Reports, 2020, 10, 1090.	3.3	14
1054	Scientists' warning to humanity on insect extinctions. Biological Conservation, 2020, 242, 108426.	4.1	458
1055	Operationalizing evolutionary transitions in individuality. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192805.	2.6	12
1056	Conflicting signal in transcriptomic markers leads to a poorly resolved backbone phylogeny of chalcidoid wasps. Systematic Entomology, 2020, 45, 783-802.	3.9	23
1057	Phylogenomics changes our understanding about earwig evolution. Systematic Entomology, 2020, 45, 516-526.	3.9	15
1058	Molecular Phylogeny and Infraordinal Classification of Zoraptera (Insecta). Insects, 2020, 11, 51.	2.2	6
1059	Transcriptomics illuminate the phylogenetic backbone of tiger beetles. Biological Journal of the Linnean Society, 2020, 129, 740-751.	1.6	16
1060	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	8.8	150
1061	A multigene phylogeny and timeline for Trichoptera (Insecta). Systematic Entomology, 2020, 45, 670-686.	3.9	66
1062	No Evidence for Single-Copy Immune-Gene Specific Signals of Selection in Termites. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	5
1063	Geographic patterns of insect diversity across China's nature reserves: The roles of niche conservatism and range overlapping. Ecology and Evolution, 2020, 10, 3305-3317.	1.9	9
1064	The complete mitochondrial genome of <i>Choroterpides apiculata</i> (Ephemeroptera:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T 0.4	f 50 107 Td 8
1065	Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root. Biology, 2020, 9, 64.	2.8	20

#		IF	Citations
#	ARTICLE Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Structure and	IF	CHATIONS
1066	Development, 2020, 56, 100931.	1.4	39
1067	Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8966-8972.	7.1	27
1068	<i>Selaginella</i> was hyperdiverse already in the Cretaceous. New Phytologist, 2020, 228, 1176-1182.	7.3	18
1069	How well do multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepidoptera). Systematic Entomology, 2020, 45, 857-873.	3.9	15
1070	Evolution of Neuropeptide Precursors in Polyneoptera (Insecta). Frontiers in Endocrinology, 2020, 11, 197.	3.5	11
1071	Of Retinoids and Organotins: The Evolution of the Retinoid X Receptor in Metazoa. Biomolecules, 2020, 10, 594.	4.0	15
1072	â€Cormopsocidae: A new family of the suborder Trogiomorpha (Insecta: Psocodea) from Burmese amber. Entomological Science, 2020, 23, 208-215.	0.6	13
1073	Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo, 2020, 11, 9.	3.2	7
1074	Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS ONE, 2020, 15, e0230827.	2.5	17
1075	A minimum reporting standard for multiple sequence alignments. NAR Genomics and Bioinformatics, 2020, 2, Iqaa024.	3.2	36
1076	Immune Suppressive Extracellular Vesicle Proteins of <i>Leptopilina heterotoma</i> Are Encoded in the Wasp Genome. G3: Genes, Genomes, Genetics, 2020, 10, 1-12.	1.8	12
1077	Flight Muscle and Wing Mechanical Properties are Involved in Flightlessness of the Domestic Silkmoth, Bombyx mori. Insects, 2020, 11, 220.	2.2	12
1078	Phylogenetic and sequence analyses of insect transferrins suggest that only <i>transferrin 1</i> has a role in iron homeostasis. Insect Science, 2021, 28, 495-508.	3.0	12
1079	Insects as zoogeomorphic agents: an extended review. Earth Surface Processes and Landforms, 2021, 46, 89-109.	2.5	32
1080	On the value of Burmese amber for understanding insect evolution: Insights from â€ <i>Heterobathmilla</i> – an exceptional stem group genus of Strepsiptera (Insecta). Cladistics, 2021, 37, 211-229.	3.3	10
1081	Unexpected cryptic species diversity of parasites of the family Xenidae (Strepsiptera) with a constant diversification rate over time. Systematic Entomology, 2021, 46, 252-265.	3.9	7
1082	Juvenile hormone upregulates sugarbabe for vitellogenesis and egg development in the migratory locust Locusta migratoria. Archives of Insect Biochemistry and Physiology, 2021, 106, e21742.	1.5	4
1083	The ionotropic receptor gene family in Lepidoptera and Trichoptera: Annotation, evolutionary and functional perspectives. Genomics, 2021, 113, 601-612.	2.9	20

	CITATION REPORT		
#	Article	IF	CITATIONS
1084	The age of insects and the revival of the minimum age tree. Austral Entomology, 2021, 60, 138-146.	1.4	13
1085	Evolutionary history of histamine receptors: Early vertebrate origin and expansion of the H3-H4 subtypes. Molecular Phylogenetics and Evolution, 2021, 154, 106989.	2.7	6
1086	Atypical insects: molecular mechanisms of unusual life history strategies. Current Opinion in Insect Science, 2021, 43, 46-53.	4.4	9
1087	Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae). Systematic Biology, 2021, 70, 322-339.	5.6	34
1088	Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta:) Tj ETQq0 0 0 r	gBT /Overlock 10 T	If 50 582 Td

1089	Surf and turf vision: Patterns and predictors of visual acuity in compound eye evolution. Arthropod Structure and Development, 2021, 60, 101002.	1.4	14
1090	Diplura in caves: diversity, ecology, evolution and biogeography. Zoological Journal of the Linnean Society, 2021, 192, 675-689.	2.3	14
1091	Phylogenomics of the North American Plecoptera. Systematic Entomology, 2021, 46, 287-305.	3.9	19
1092	Lepidoptera: Female sex pheromone biosynthesis and its hormonal regulation. , 2021, , 13-88.		7
1093	Phylogenomics reveals accelerated late Cretaceous diversification of bee flies (Diptera: Bombyliidae). Cladistics, 2021, 37, 276-297.	3.3	12
1094	Egg structure of five antarctoperlarian stoneflies (Insecta: Plecoptera, Antarctoperlaria). Arthropod Structure and Development, 2021, 60, 101011.	1.4	7
1095	Multiâ€level convergence of complex traits and the evolution of bioluminescence. Biological Reviews, 2021, 96, 673-691.	10.4	35
1096	Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and fluorescence in situ hybridization: Insights into the karyotype evolution of the ancient insect order Odonata. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 387-399.	1.4	10
1097	Is Sexual Conflict a Driver of Speciation? A Case Study With a Tribe of Brush-footed Butterflies. Systematic Biology, 2021, 70, 413-420.	5.6	4
1098	Comparative transcriptomics of ice rawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evolutionary Applications, 2021, 14, 360-382.	3.1	5
1099	Oral RNAi of diap1 results in rapid reduction of damage to potatoes in Henosepilachna vigintioctopunctata. Journal of Pest Science, 2021, 94, 505-515.	3.7	11
1100	Assessing support for <scp>Blaberoidea</scp> phylogeny suggests optimal locus quality. Systematic Entomology, 2021, 46, 157-171.	3.9	18
1101	The histology and ultrastructure of the salivary glands of Neopanorpa longiprocessa (Mecoptera:) Tj ETQq1 1 0.76	84314 rgE	BT (Overloo

#	Article	IF	CITATIONS
1102	<i>Apolygus lucorum</i> genome provides insights into omnivorousness and mesophyll feeding. Molecular Ecology Resources, 2021, 21, 287-300.	4.8	31
1103	Phylogenomic relationships of bioluminescent elateroids define the â€~lampyroid' clade with clicking Sinopyrophoridae as its earliest member. Systematic Entomology, 2021, 46, 111-123.	3.9	32
1104	Antimicrobial Peptides as Potential Therapeutic Agents: A Review. International Journal of Peptide Research and Therapeutics, 2021, 27, 555-577.	1.9	49
1105	Sperm Ultrastructure of corydalid Corydalus diasi NavĄ̃įs (Megaloptera, Neuropterida, Insecta) with phylogenetic considerations. Acta Zoologica, 2021, 102, 26-37.	0.8	0
1106	Genomeâ€wide identification of neuropeptides and their receptor genes in <i>Bemisia tabaci</i> and their transcript accumulation change in response to temperature stresses. Insect Science, 2021, 28, 35-46.	3.0	15
1107	Philosophy of Evolutionary Biology. Biology Bulletin Reviews, 2021, 11, 1-26.	0.9	3
1109	Fossil Social Insects. , 2021, , 384-403.		6
1110	The molecular systematics and diversification of a taxonomically unstable group of Asian cicada tribes related to Cicadini Latreille, 1802 (Hemiptera : Cicadidae). Invertebrate Systematics, 2021, 35, 570-601.	1.3	12
1113	Analysis of RNA-Seq, DNA Target Enrichment, and Sanger Nucleotide Sequence Data Resolves Deep Splits in the Phylogeny of Cuckoo Wasps (Hymenoptera: Chrysididae). Insect Systematics and Diversity, 2021, 5, .	1.7	8
1114	The History of Insect Parasitism and the Mid-Mesozoic Parasitoid Revolution. Topics in Geobiology, 2021, , 377-533.	0.5	21
1115	Transcriptomic analysis of s-methoprene resistance in the lesser grain borer, Rhyzopertha dominica, and evaluation of piperonyl butoxide as a resistance breaker. BMC Genomics, 2021, 22, 65.	2.8	3
1116	Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evolution, 2021, 7, veab030.	4.9	35
1117	Parasites of Fossil Vertebrates: What We Know and What Can We Expect from the Fossil Record?. Topics in Geobiology, 2021, , 1-27.	0.5	13
1118	Regulation of acoustic sensory-to-motor processing in insects. , 2021, , 13-29.		1
1119	Assessing a generic synapomorphy of Pseudodebis Forster, 1964 (Lepidoptera : Nymphalidae : Satyrinae) and a recent speciation with a shift in elevation between two new species in the western Andes. Invertebrate Systematics, 2021, , .	1.3	1
1120	QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution. Systematic Biology, 2021, 70, 1046-1060.	5.6	39
1121	Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. BMC Biology, 2021, 19, 23.	3.8	22
1122	Editorial overview: Development and regulation: from heresy to the molecular understanding of the metamorphic transformation. Current Opinion in Insect Science, 2021, 43, iii-v.	4.4	Ο

#	Article	IF	CITATIONS
1123	Advances in the Arms Race Between Silkworm and Baculovirus. Frontiers in Immunology, 2021, 12, 628151.	4.8	25
1124	Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Molecular Genetics and Genomics, 2021, 296, 513-526.	2.1	27
1125	Evidence for aposematism in a southern hemisphere stonefly family (Plecoptera: Austroperlidae). Austral Entomology, 2021, 60, 267-275.	1.4	5
1126	Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes. Life, 2021, 11, 181.	2.4	14
1127	Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Scientific Reports, 2021, 11, 3791.	3.3	2
1129	Towards a new classification of Muscidae (Diptera): a comparison of hypotheses based on multiple molecular phylogenetic approaches. Systematic Entomology, 2021, 46, 508-525.	3.9	20
1130	Dissecting Incongruence between Concatenation- and Quartet-Based Approaches in Phylogenomic Data. Systematic Biology, 2021, 70, 997-1014.	5.6	28
1131	A chromosomeâ€level genome of the mud crab (<i>Scylla paramamosain</i> estampador) provides insights into the evolution of chemical and light perception in this crustacean. Molecular Ecology Resources, 2021, 21, 1299-1317.	4.8	17
1133	Reconstructing the nonadaptive radiation of an ancient lineage of groundâ€dwelling stick insects (Phasmatodea: Heteropterygidae). Systematic Entomology, 2021, 46, 487-507.	3.9	23
1134	Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 2021, 156, 107023.	2.7	30
1135	Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens. Systematic Entomology, 2021, 46, 649-671.	3.9	40
1136	Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata. Scientific Reports, 2021, 11, 5164.	3.3	2
1137	Mountains act as museums and cradles for hemipteran insects in China: Evidence from patterns of richness and phylogenetic structure. Global Ecology and Biogeography, 2021, 30, 1070-1085.	5.8	22
1138	Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic <i>orco</i> mutation in honey bees. Journal of Neurogenetics, 2021, 35, 320-332.	1.4	23
1139	An Overview of Antennal Esterases in Lepidoptera. Frontiers in Physiology, 2021, 12, 643281.	2.8	14
1141	Phylogeography of the northernmost distributed <i>Anisocentropus</i> caddisflies and their comparative genetic structures based on habitat preferences. Ecology and Evolution, 2021, 11, 4957-4971.	1.9	8
1142	Reanalysis of the apoid wasp phylogeny with additional taxa and sequence data confirms the placement of Ammoplanidae as sister to bees. Systematic Entomology, 2021, 46, 558-569.	3.9	16
1143	Beetles as floral visitors in the Magnoliaceae: an evolutionary perspective. Arthropod-Plant Interactions, 2021, 15, 273-283.	1.1	4

#	Article	IF	CITATIONS
1145	Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. ELife, 2021, 10, .	6.0	20
1146	Alienopterix Mlynský et al., 2018 complex in North Myanmar amber supports Umenocoleoidea/ae status. Biologia (Poland), 2021, 76, 2207-2224.	1.5	14
1147	Diversity, ecology, distribution and biogeography of Diplura. Insect Conservation and Diversity, 2021, 14, 415-425.	3.0	16
1149	Biochemically identified neuropeptides in a caddisfly (Trichoptera) and a pygmy mole cricket (Orthoptera: Caelifera: Tridactyloidea). Archives of Insect Biochemistry and Physiology, 2021, 106, e21778.	1.5	1
1151	Genome assembly and methylome analysis of the white wax scale insect provides insight into sexual differentiation of metamorphosis in hexapods. Molecular Ecology Resources, 2021, 21, 1983-1995.	4.8	3
1153	The limits of Quediini at last (Staphylinidae: Staphylininae): a rove beetle megaâ€radiation resolved by comprehensive sampling and anchored phylogenomics. Systematic Entomology, 2021, 46, 396-421.	3.9	16
1154	The lobula plate is exclusive to insects. Arthropod Structure and Development, 2021, 61, 101031.	1.4	8
1155	Convergent evolution of optic lobe neuropil in Pancrustacea. Arthropod Structure and Development, 2021, 61, 101040.	1.4	9
1157	Ascodipteron sanmingensis sp. nov., a new bat fly (Hippoboscidae: streblid grade) from Fujian, China. Biodiversity Data Journal, 2021, 9, e64558.	0.8	2
1158	Sistemática y diversidad de las hormigas neotropicales. Revista Colombiana De Entomologia, 2021, 47, 1-20.	0.4	4
1159	Identification and characterization of a novel rhabdovirus in green rice leafhopper, Nephotettix cincticeps. Virus Research, 2021, 296, 198281.	2.2	3
1161	Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics, 2021, 22, 234.	2.8	9
1162	Sensing and signalling viral infection in drosophila. Developmental and Comparative Immunology, 2021, 117, 103985.	2.3	24
1163	Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biology and Evolution, 2021, 13, .	2.5	15
1164	<i>scAnt</i> —an open-source platform for the creation of 3D models of arthropods (and other small) Tj ETQqC	0.0 rgBT	Oyerlock 10
1165	Simple inheritance of color and pattern polymorphism in the steppe grasshopper Chorthippus dorsatus. Heredity, 2021, 127, 66-78.	2.6	6
1169	Penetration mechanics of elongated female and male genitalia of earwigs. Scientific Reports, 2021, 11, 7920.	3.3	6
1170	Gondwana breakup under the ephemeral look. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 1028-1036.	1.4	8

#	Article	IF	CITATIONS
1171	Exploring parallel MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG. Bioinformatics, 2021, 37, 4056-4063.	4.1	4
1172	Performance of two species of whiteflies is unaffected by glucosinolate profile in Brassica plants. Pest Management Science, 2021, 77, 4313-4320.	3.4	3
1173	A highâ€quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation. Molecular Ecology Resources, 2021, 21, 2145-2165.	4.8	13
1174	Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Molecular Biology and Evolution, 2021, 38, 4025-4038.	8.9	58
1175	<scp>SL1</scp> confers broadâ€spectrum resistance to phloemâ€feeding insects. Plant, Cell and Environment, 2021, 44, 2765-2776.	5.7	13
1176	Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 2021, 96, 2113-2126.	10.4	63
1178	Anchored Phylogenomics, Evolution and Systematics of Elateridae: Are All Bioluminescent Elateroidea Derived Click Beetles?. Biology, 2021, 10, 451.	2.8	39
1179	First instar nymphs of two peltoperlid stoneflies (Insecta, Plecoptera, Peltoperlidae). Mitteilungen Aus Dem Museum Fur Naturkunde in Berlin - Deutsche Entomologische Zeitschrift, 2021, 68, 179-188.	0.8	1
1180	Draft nuclear genome and complete mitogenome of the Mediterranean corn borer, <i>Sesamia nonagrioides</i> , a major pest of maize. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	11
1182	A comparative genomic approach using mouse and fruit fly data to discover genes involved in testis function in hymenopterans with a focus on Nasonia vitripennis. Bmc Ecology and Evolution, 2021, 21, 90.	1.6	1
1184	Larvae of longhorned beetles (Coleoptera; Cerambycidae) have evolved a diverse and phylogenetically conserved array of plant cell wall degrading enzymes. Systematic Entomology, 2021, 46, 784-797.	3.9	13
1187	Geographic variation in the robustness of pollination networks is mediated by modularity. Global Ecology and Biogeography, 2021, 30, 1447-1460.	5.8	17
1188	Hox dosage contributes to flight appendage morphology in Drosophila. Nature Communications, 2021, 12, 2892.	12.8	30
1189	First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Research, 2020, 9, 775.	1.6	24
1190	Ultrastructural 3D reconstruction of the smallest known insect photoreceptors: The stemmata of a first instar larva of Strepsiptera (Hexapoda). Arthropod Structure and Development, 2021, 62, 101055.	1.4	1
1191	Juvenile ecology drives adult morphology in two insect orders. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210616.	2.6	5
1192	Host Phylogeny and Diet Shape Gut Microbial Communities Within Bamboo-Feeding Insects. Frontiers in Microbiology, 2021, 12, 633075.	3.5	27
1193	Opsin Evolution in Flower-Visiting Beetles. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5

ARTICLE IF CITATIONS # The phylogeny of robber flies (Asilidae) inferred from ultraconserved elements. Systematic 1194 3.9 7 Entomology, 2021, 46, 812-826. Preliminary Study of Insect Diversity and Its Economic Importance in Agulu-Nanka Gully Sites. Journal 0.2 of Applied Life Sciences International, 0, , 1-12. Phylogenomics of flavobacterial insect nutritional endosymbionts with implications for 1196 3.3 13 Auchenorrhyncha phylogeny. Cladistics, 2022, 38, 38-58. Xâ€ray microtomography and phylogenomics provide insights into the morphology and evolution of an 3.9 enigmatic Mesozoic insect larva. Systematic Entomology, 2021, 46, 672-684. Evolutionary morphology of the antennal heart in stick and leaf insects (Phasmatodea) and 1198 0.8 1 webspinners (Embioptera) (Insecta: Eukinolabia). Zoomorphology, 2021, 140, 331-340. Long Reads Are Revolutionizing 20 Years of Insect Genome Sequencing. Genome Biology and Evolution, 1199 2.5 2021, 13, . Fifty million years of beetle evolution along the Antarctic Polar Front. Proceedings of the National 1200 7.1 21 Academy of Sciences of the United States of America, 2021, 118, . The Pre-Metaphase Stretch: A Re-Examination. Dna, 2021, 1, 3-12. 1.3 Insights into the genomic evolution of insects from cricket genomes. Communications Biology, 2021, 1202 4.4 41 4, 733. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria 1204 hypothesis with three different outgroup combinations. PeerJ, 2021, 9, e11402. Morphological phylogeny of Panorpidae (Mecoptera: Panorpoidea). Systematic Entomology, 2021, 46, 1206 3.9 15 526-557. Phylogeny and classification of Odonata using targeted genomics. Molecular Phylogenetics and Evolution, 2021, 160, 107115. Evolutionary dynamics of sexâ€biased genes expressed in cricket brains and gonads. Journal of 1209 1.7 14 Evolutionary Biology, 2021, 34, 1188-1211. Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics, 2021, 1210 2.8 22, 562. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC 1211 2.8 12 Genomics, 2021, 22, 553. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first 2.2 report of convergences within Hexapoda. Gene, 2021, 791, 145719. A review of the hexapod tracheal system with a focus on the apterygote groups. Arthropod Structure 1213 1.4 7 and Development, 2021, 63, 101072. Mechanical properties of a female reproductive tract of a beetle and implications for penile 1214 penetration. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211125.

#	Article	IF	CITATIONS
1215	Cryo-EM structure of the flight muscle thick filament from the bumble bee, Bombus ignitius, at 6 Ã Resolution. Microscopy and Microanalysis, 2021, 27, 1684-1686.	0.4	0
1216	Phylogenomic analyses clarify the pattern of evolution of Adephaga (Coleoptera) and highlight phylogenetic artefacts due to model misspecification and excessive data trimming. Systematic Entomology, 2021, 46, 991-1018.	3.9	12
1217	The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins, 2021, 13, 538.	3.4	23
1218	Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	11
1219	Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Systematic Entomology, 2021, 46, 952-967.	3.9	13
1220	Integrative phylogenomics reveals a Permian origin of Adephaga beetles. Systematic Entomology, 2021, 46, 968-990.	3.9	15
1221	Population genomics reveals variable patterns of immune gene evolution in monarch butterflies (<i>Danaus plexippus</i>). Molecular Ecology, 2021, 30, 4381-4391.	3.9	4
1222	Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum,) Tj ETQq1 1 0.78	4314 rgBT	0verlock
1223	Deep Ancestral Introgression Shapes Evolutionary History of Dragonflies and Damselflies. Systematic Biology, 2022, 71, 526-546.	5.6	32
1225	Convergence of Social Strategies in Carrion Breeding Insects. BioScience, 2021, 71, 1028-1037.	4.9	19
1226	Patterns of morphological simplification and innovation in the megadiverse Holometabola (Insecta). Cladistics, 2022, 38, 227-245.	3.3	10
1227	Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans. Genomics, 2021, 113, 1828-1837.	2.9	17
1228	The evolution of marine dwelling in Diptera. Ecology and Evolution, 2021, 11, 11440-11448.	1.9	1
1229	Evolution and genomic organization of the insect sHSP gene cluster and coordinate regulation in phenotypic plasticity. Bmc Ecology and Evolution, 2021, 21, 154.	1.6	0
1230	Evolution of the Insect PPK Gene Family. Genome Biology and Evolution, 2021, 13, .	2.5	15
1231	A widely diverged locus involved in locomotor adaptation in <i>Heliconius</i> butterflies. Science Advances, 2021, 7, .	10.3	9
1232	Evolutionary terrestrialization scenarios for soil invertebrates. Pedobiologia, 2021, 87-88, 150753.	1.2	9
1233	Microfossils from the Liuchapo Formation: Possible oldest radiolarians from deep-water chert and phylogenetic analysis. Precambrian Research, 2021, 362, 106312.	2.7	4

# 1234	ARTICLE The biology and evolution of spider venoms. Biological Reviews, 2022, 97, 163-178.	lF 10.4	CITATIONS
1235	Phylogenomic Analysis of Velvet Worms (Onychophora) Uncovers an Evolutionary Radiation in the Neotropics. Molecular Biology and Evolution, 2021, 38, 5391-5404.	8.9	10
1237	Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny. Insects, 2021, 12, 779.	2.2	10
1238	Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals. Scientific Reports, 2021, 11, 15744.	3.3	4
1239	The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genetics, 2021, 17, e1009745.	3.5	14
1240	Genetic innovations in animal–microbe symbioses. Nature Reviews Genetics, 2022, 23, 23-39.	16.3	60
1242	Pigmentation and color pattern diversity in Odonata. Current Opinion in Genetics and Development, 2021, 69, 14-20.	3.3	15
1243	What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures. Current Opinion in Genetics and Development, 2021, 69, 48-55.	3.3	12
1244	Recombination mapping of the Brazilian stingless bee Frieseomelitta varia confirms high recombination rates in social hymenoptera. BMC Genomics, 2021, 22, 673.	2.8	1
1246	Vicariance and dispersal events inferred from mitochondrial genomes and nuclear genes (18S, 28S) shaped global Cryptocercus distributions. Molecular Phylogenetics and Evolution, 2022, 166, 107318.	2.7	4
1247	Characterization of cuticular hydrocarbons in a subsocial bee, Ceratina calcarata. Insectes Sociaux, 0, , 1.	1.2	3
1248	Mitogenomes of Three Satyrid Butterfly Species (Nymphalidae: Lepidoptera) and Reconstructed Phylogeny of Satyrinae. Diversity, 2021, 13, 468.	1.7	1
1249	Effects of Functional Depletion of Doublesex on Male Development in the Sawfly, Athalia rosae. Insects, 2021, 12, 849.	2.2	6
1250	Three mitochondrial genomes of early-winged insects (Ephemeroptera: Baetidae and Leptophlebiidae). Mitochondrial DNA Part B: Resources, 2021, 6, 2969-2971.	0.4	1
1251	Early Cretaceous enigmatic insect group showing unique wing venations and antennal sensilla. Papers in Palaeontology, 0, , .	1.5	0
1252	A review on the DNA methyltransferase family of insects: Aspect and prospects. International Journal of Biological Macromolecules, 2021, 186, 289-302.	7.5	24
1253	Mitochondrial genome divergence supports an ancient origin of circatidal behaviour in the Anurida maritima (Collembola: Neanuridae) species group. Organisms Diversity and Evolution, 0, , 1.	1.6	1
1254	Molecular underpinnings of division of labour among workers in a socially complex termite. Scientific Reports, 2021, 11, 18269.	3.3	8

#	Article	IF	CITATIONS
1255	Novel ACE2 protein interactions relevant to COVID-19 predicted by evolutionary rate correlations. PeerJ, 2021, 9, e12159.	2.0	3
1257	Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera. Arthropod Structure and Development, 2021, 64, 101084.	1.4	2
1259	The Enigmatic <i>Culex pipiens</i> (Diptera: Culicidae) Species Complex: Phylogenetic Challenges and Opportunities From a Notoriously Tricky Mosquito Group. Annals of the Entomological Society of America, 2022, 115, 95-104.	2.5	13
1260	Low-Coverage Whole Genomes Reveal the Higher Phylogeny of Green Lacewings. Insects, 2021, 12, 857.	2.2	4
1261	Evolution of a Cytoplasmic Determinant: Evidence for the Biochemical Basis of Functional Evolution of the Novel Germ Line Regulator Oskar. Molecular Biology and Evolution, 2021, 38, 5491-5513.	8.9	5
1262	A global review and network analysis of phytophagous insect interactions with ferns and lycophytes. Plant Ecology, 2022, 223, 27-40.	1.6	11
1263	Experimental river noise alters arthropod abundance. Oikos, 2021, 130, 2001-2014.	2.7	5
1264	Mayfly metamorphosis: Adult winged insects that molt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2114128118.	7.1	0
1265	The first chromosomeâ€level genome assembly of a green lacewing <i>Chrysopa pallens</i> and its implication for biological control. Molecular Ecology Resources, 2022, 22, 755-767.	4.8	7
1267	Food Plant Shifts Drive the Diversification of Sack-Bearer Moths. American Naturalist, 2021, 198, E170-E184.	2.1	8
1268	The Phylogeographic Shortfall in Hexapods: A Lot of Leg Work Remaining. Insect Systematics and Diversity, 2021, 5, .	1.7	6
1269	Development and evaluation of a custom bait design based on 469 single-copy protein-coding genes for exon capture of isopods (Philosciidae: Haloniscus). PLoS ONE, 2021, 16, e0256861.	2.5	2
1270	New psocids (Psocodea: Prionoglarididae, Psyllipsocidae) from Cretaceous Burmese amber deposits. Cretaceous Research, 2021, 126, 104890.	1.4	7
1271	Expression pattern of CAPA/pyrokinin neuropeptide genes in Remipedia and silverfish: Rapid differentiation after gene duplication in early Hexapoda, followed by strong conservation of newly established features in insects. Peptides, 2021, 144, 170610.	2.4	5
1272	Evolution of the dorsoventral axis in insects: the changing role of Bone Morphogenetic Proteins. Current Opinion in Insect Science, 2022, 49, 1-7.	4.4	3
1273	Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. Arthropod Structure and Development, 2021, 65, 101100.	1.4	7
1274	Identification and functional characterization of olfactory indolergic receptors in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2021, 139, 103651.	2.7	6
1275	ldentification and functional characterization of olfactory indolergic receptors in Musca domestica. Insect Biochemistry and Molecular Biology, 2021, 139, 103653.	2.7	6

	CITATION	CITATION REPORT	
# 1276	ARTICLE Spermiogenic chromatin condensation patterning in several hexapods may involve phase separation dynamics by spinodal decomposition or microemulsion inversion (nucleation). Tissue and Cell, 2021, 73, 101648.	IF 2.2	Citations
1277	Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny. Current Opinion in Insect Science, 2021, 48, 8-17.	4.4	16
1279	More than one way to smell ashore $\hat{a} \in \mathcal{E}$ Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. Arthropod Structure and Development, 2021, 60, 101022.	1.4	9
1280	Beetle or roach: systematic position of the enigmatic Umenocoleidae based on new material from Zhonggou Formation in Jiuquan, Northwest China, and a morphocladistic analysis. Palaeoworld, 2022, 31, 121-130.	1.1	8
1281	A new Late Cretaceous leaf mine <i>Leucopteropsa spiralae</i> gen. et sp. nov. (Lepidoptera:) Tj ETQq0 0 0 rgl Systematic Palaeontology, 2021, 19, 131-144.	BT /Overloc 1.5	k 10 Tf 50 58 15
1282	Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	317
1283	Wing morphology of a new Cretaceous prayin g mantis solves the phylogenetic jigsaw of earlyâ€diverging extant lineages. Systematic Entomology, 2021, 46, 205-223.	3.9	3
1284	Insects. , 2021, , 266-272.		0
1286	The Fossil Record of Insect Mouthparts: Innovation, Functional Convergence, and Associations with Other Organisms. Zoological Monographs, 2019, , 567-671.	1.1	31
1287	Form and Function of Insect Mouthparts. Zoological Monographs, 2019, , 9-46.	1.1	12
1288	The Early Evolution of Biting–Chewing Performance in Hexapoda. Zoological Monographs, 2019, , 175-202.	1.1	14
1289	The Generalized Feeding Apparatus of Cockroaches: A Model for Biting and Chewing Insects. Zoological Monographs, 2019, , 203-262.	1.1	8
1291	Interactions Between Soil Mesofauna and Edible Ectomycorrhizal Mushrooms. , 2020, , 367-405.		2
1292	Efficient Methods for Dating Evolutionary Divergences. , 2020, , 197-219.		14
1293	Parabasalia. , 2016, , 1-44.		9
1294	Fossil Social Insects. , 2020, , 1-21.		11
1295	Parasitoid Wasps and Their Venoms. , 2015, , 1-26.		3
1296	Parasitoid Wasps and Their Venoms. , 2016, , 1-26.		9

IF

ARTICLE

CITATIONS

1297	Insects and Pests.	, 2016, ,	, 1-24.
------	--------------------	-----------	---------

6	
U	

1298	Evolution of the Mechanisms Underlying Insect Respiratory Gas Exchange. Advances in Insect Physiology, 2015, , 1-24.	2.7	18
1299	Microbial symbionts of herbivorous species across the insect tree. Advances in Insect Physiology, 2020, , 111-159.	2.7	19
1300	The endoparasitic larval stages of Eoxenos laboulbenei: An atypical holometabolan development (Strepsiptera, Mengenillidae). Arthropod Structure and Development, 2020, 56, 100932.	1.4	4
1301	Functional analysis and localisation of a thyrotropin-releasing hormone-type neuropeptide (EFLa) in hemipteran insects. Insect Biochemistry and Molecular Biology, 2020, 122, 103376.	2.7	8
1302	Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua. Scientific Reports, 2015, 5, 11273.	3.3	38
1303	Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase <i>su(var)3-9</i> and translation regulator <i>eIF2γ</i> in <i>Tribolium castaneum</i> . Biochemical Journal, 2020, 477, 3059-3074.	3.7	4
1304	Are Insects Heading Toward Their First Mass Extinction? Distinguishing Turnover From Crises in Their Fossil Record. Annals of the Entomological Society of America, 2021, 114, 99-118.	2.5	45
1306	Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian–Triassic co-origination with insectivores. Royal Society Open Science, 2020, 7, 201689.	2.4	25
1357	A phylotranscriptomic framework for flesh fly evolution (Diptera, Calyptratae, Sarcophagidae). Cladistics, 2021, 37, 540-558.	3.3	26
1358	Is â€Skleroptera (â€Stephanastus) an order in the stemgroup of Coleopterida (Insecta)?. Insect Systematics and Evolution, 2019, 50, 670-678.	0.7	8
1359	Progress on the phylogeny of caddisflies (Trichoptera) . Zoosymposia, 2016, 10, 248-256.	0.3	17
1360	First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Research, 2020, 9, 775.	1.6	34
1361	EAPhy: A Flexible Tool for High-throughput Quality Filtering of Exon-alignments and Data Processing for Phylogenetic Methods. PLOS Currents, 2015, 7, .	1.4	9
1362	Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biology, 2020, 18, e3000862.	5.6	113
1363	The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genetics, 2016, 12, e1006020.	3.5	82
1364	Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genetics, 2017, 13, e1006868.	3.5	24
1365	Chromosome number evolves at equal rates in holocentric and monocentric clades. PLoS Genetics, 2020, 16, e1009076.	3.5	22

#	Article	IF	CITATIONS
1366	Transcriptomes of three species of Tipuloidea (Diptera, Tipulomorpha) and implications for phylogeny of Tipulomorpha. PLoS ONE, 2017, 12, e0173207.	2.5	14
1367	Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis. PLoS Pathogens, 2015, 11, e1005246.	4.7	156
1368	The evolution of head structures in lower Diptera. ScienceOpen Research, 2014, .	0.6	3
1369	Rates of molecular evolution and genetic diversity in European vs. North American populations of invasive insect species. European Journal of Entomology, 0, , 718-728.	1.2	3
1370	Survey for positively selected coding regions in the genome of the hematophagous tsetse fly Glossina morsitans identifies candidate genes associated with feeding habits and embryonic development. Genetics and Molecular Biology, 2020, 43, e20180311.	1.3	1
1371	The First Establishment of "Hand-Pairing―Cross-Breeding Method for the Most Ancestral Wing Acquired Insect Group. Zoological Science, 2019, 36, 136.	0.7	6
1373	CryoEM structure of <i>Drosophila</i> flight muscle thick filaments at 7 Ã resolution. Life Science Alliance, 2020, 3, e202000823.	2.8	22
1374	Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta:) Tj ETQq1 1	0,784314 2,4	l rgBT /Overl
1375	Re-Evaluating the Internal Phylogenetic Relationships of Collembola by Means of Mitogenome Data. Genes, 2021, 12, 44.	2.4	12
1376	Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany?. Biodiversity Data Journal, 2016, 4, e10671.	0.8	82
1377	Short COI markers for freshwater macroinvertebrate metabarcoding. Metabarcoding and Metagenomics, 0, 1, e14625.	0.0	108
1378	PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. ZooKeys, 2016, 596, 129-141.	1.1	24
1379	Mantophasmatodea from the Richtersveld in South Africa with description of two new genera and species. ZooKeys, 2018, 746, 137-160.	1.1	3
1380	A DNA barcode reference library of Neuroptera (Insecta, Neuropterida) from Beijing. ZooKeys, 2018, 807, 127-147.	1.1	5
1381	Strepsiptera of Canada. ZooKeys, 2019, 819, 377-382.	1.1	3
1382	Mitochondrial genomes of the stoneflies Mesonemoura metafiligera and Mesonemoura tritaenia (Plecoptera, Nemouridae), with a phylogenetic analysis of Nemouroidea. ZooKeys, 2019, 835, 43-63.	1.1	5
1383	The West Palaearctic genera of Nematinae (Hymenoptera, Tenthredinidae). ZooKeys, 2019, 875, 63-127.	1.1	9
1384	Taxonomic Catalog of the Brazilian Fauna: order Trichoptera (Insecta), diversity and distribution. Zoologia, 0, 37, 1-13.	0.5	13

		CITATION REPORT		
#	Article		IF	CITATIONS
1385	Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. ELife, 2	2016, 5, e11117.	6.0	25
1386	Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalizati ELife, 2016, 5, .	on in flies.	6.0	20
1387	An insect-like mushroom body in a crustacean brain. ELife, 2017, 6, .		6.0	43
1388	The origin of the odorant receptor gene family in insects. ELife, 2018, 7, .		6.0	103
1389	The mlpt/Ubr3/Svb module comprises an ancient developmental switch for embryonic 2019, 8, .	patterning. ELife,	6.0	19
1390	Disparate expression specificities coded by a shared Hox-C enhancer. ELife, 2020, 9, .		6.0	3
1391	Bacterial contribution to genesis of the novel germ line determinant oskar. ELife, 2020	, 9, .	6.0	21
1392	Fog signaling has diverse roles in epithelial morphogenesis in insects. ELife, 2019, 8, .		6.0	20
1393	Hemimetabolous insects elucidate the origin of sexual development via alternative spli 8, .	cing. ELife, 2019,	6.0	61
1394	Evolutionary emergence of Hairless as a novel component of the Notch signaling pathv 8, .	vay. ELife, 2019,	6.0	1
1395	Lichen mimesis in mid-Mesozoic lacewings. ELife, 2020, 9, .		6.0	17
1396	Determining the probability of hemiplasy in the presence of incomplete lineage sorting introgression. ELife, 2020, 9, .	and	6.0	25
1397	Evolution of <i>Wolbachia</i> mutualism and reproductive parasitism: insight from two that co-infect cat fleas. PeerJ, 2020, 8, e10646.	novel strains	2.0	43
1398	Expression patterns of cysteine peptidase genes across the <i>Tribolium castaneum</i> provide clues to biological function. PeerJ, 2016, 4, e1581.	life cycle	2.0	20
1399	AMAS: a fast tool for alignment manipulation and computing of summary statistics. Pe e1660.	erJ, 2016, 4,	2.0	535
1400	Breakdown of coevolution between symbiotic bacteria <i>Wolbachia</i> and their filaria 2016, 4, e1840.	al hosts. PeerJ,	2.0	86
1401	Molecular phylogeny of the megadiverse insect infraorder Bibionomorpha <i>sensu lato PeerJ, 2016, 4, e2563.</i>	>(Diptera).	2.0	52
1402	The impacts of drift and selection on genomic evolution in insects. PeerJ, 2017, 5, e324	41.	2.0	6

# 1403	ARTICLE The presumed oldest flying insect: more likely a myriapod?. PeerJ, 2017, 5, e3402.	IF 2.0	CITATIONS
1404	RNA helicase domains of viral origin in proteins of insect retrotransposons: possible source for evolutionary advantages. PeerJ, 2017, 5, e3673.	2.0	4
1405	â€~Rolling' stoneflies (Insecta: Plecoptera) from mid-Cretaceous Burmese amber. PeerJ, 2018, 6, e5354.	2.0	19
1406	A needle in a haystack: Mesozoic origin of parasitism in Strepsiptera revealed by first definite Cretaceous primary larva (Insecta). PeerJ, 2018, 6, e5943.	2.0	15
1407	Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ, 2019, 7, e6399.	2.0	111
1408	Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ, 2019, 7, e6727.	2.0	20
1409	Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ, 2019, 7, e7144.	2.0	72
1410	Structure and pigment make the eyed elater's eyespots black. PeerJ, 2020, 8, e8161.	2.0	3
1411	Analysis of the RNA virome of basal hexapods. PeerJ, 2020, 8, e8336.	2.0	6
1412	The evolution of insect biodiversity. Current Biology, 2021, 31, R1299-R1311.	3.9	39
1413	The Honey Bee Gene Bee Antiviral Protein-1 Is a Taxonomically Restricted Antiviral Immune Gene. Frontiers in Insect Science, 2021, 1, .	2.1	3
1414	Chromosomal-Level Genome Assembly of a True Bug, <i>Aspongopus chinensis</i> Dallas, 1851 (Hemiptera: Dinidoridae). Genome Biology and Evolution, 2021, 13, .	2.5	3
1416	Phylogenomics and loci dropout patterns of deeply diverged <i>Zodarion</i> antâ€eating spiders suggest a high potential of RADâ€seq for genusâ€level spider phylogenetics. Cladistics, 2022, 38, 320-334.	3.3	6
1419	Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. IScience, 2021, 24, 103324.	4.1	25
1420	Deep Conservation of Hid-Like RHG Gene Family Homologs in Winged Insects Revealed by "Taxon Hopping―BLAST. Insects, 2021, 12, 957.	2.2	0
1421	Chromosome-Level Genome Assembly of <i>Nephotettix cincticeps</i> (Uhler, 1896) (Hemiptera:) Tj ETQq1 1 0.	784314 rg 2.5	BŢ /Overloch
1422	A twig-like insect stuck in the Permian mud indicates early origin of an ecological strategy in Hexapoda evolution. Scientific Reports, 2021, 11, 20774.	3.3	1
1425	The evolution of head structures in lower Diptera. ScienceOpen Research, 2015, .	0.6	4

#	Article	IF	CITATIONS
1429	Phylogeny of the Aphids. , 2016, , 1-13.		1
1430	A New Fishfly Species (Megaloptera: Corydalidae: Neohermes Banks) Discovered from North America by a Systematic Revision, with Phylogenetic and Biogeographic Implications. PLoS ONE, 2016, 11, e0148319.	2.5	2
1443	Origin and diversification of hoverflies: a revision of the genera Asarkina and Allobaccha – A BIG4 Consortium PhD project. Research Ideas and Outcomes, 0, 3, e19860.	1.0	2
1449	Management of Entomofauna in buildings as indicator of symptoms of pathological states. I-Psocoptera = Gestión de la Entomofauna en edificación como indicador de sĂntomas de estados patológicos. I-Psocoptera. Building & Management, 2017, 1, 56.	0.0	0
1450	CRISPR/Cas9 Deletions in a Conserved Exon of Distal-Less Generates Gains and Losses in a Recently Acquired Morphological Novelty in Flies. SSRN Electronic Journal, 0, , .	0.4	0
1456	Diversity of flight control strategies in insects: lessons from hawkmoths. Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2018, 35, 108-118.	0.0	1
1462	Epigenetic Control of Sociality through DNA Methylation. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2751-2762.	0.1	0
1466	Suspension and Filter Feeding in Aquatic Insects. Zoological Monographs, 2019, , 101-125.	1.1	3
1472	Physical Determinants of Fluid-Feeding in Insects. Zoological Monographs, 2019, , 263-314.	1.1	4
1473	Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus. PeerJ, 2019, 7, e6142.	2.0	3
1474	Grylloblattodea of Canada. ZooKeys, 2019, 819, 271-276.	1.1	1
1475	Trichoptera of Canada. ZooKeys, 2019, 819, 507-520.	1.1	2
1476	The Phylogenetic Relationships among Some Common Species of Amblyseiinae (Acari: Phytoseiidae) in China Orchard Based on the Mitochondrial CO1 Gene. Pakistan Journal of Zoology, 2019, 51, .	0.2	0
1488	First person – Mary Salcedo. Biology Open, 2019, 8, .	1.2	0
1493	The evolution of metamorphosis. , 2020, , 251-272.		1
1494	Spezielle Zoologie Teil B: Bilateria – Prostostomia. , 2020, , 73-171.		0
1495	Bayesian Phylogenomic Dating. , 2020, , 221-249.		2
1496	Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration. PeerJ, 2020, 8, e8567.	2.0	5

#	Article	IF	CITATIONS
1498	Insect diversity over 36 years at a protected Sierra Nevada (California) site: towards an evaluation of the insect apocalypse hypothesis. Ecological Entomology, 2020, 45, 1490-1494.	2.2	5
1505	Monophyletic blowflies revealed by phylogenomics. BMC Biology, 2021, 19, 230.	3.8	24
1506	Phylogeny of gracillariid leafâ€mining moths: evolution of larval behaviour inferred from phylogenomic and Sanger data. Cladistics, 2022, 38, 277-300.	3.3	11
1509	Ultrastructure of the larval eyes of the hangingfly Terrobittacus implicatus (Mecoptera: Bittacidae). Micron, 2022, 152, 103176.	2.2	3
1512	The origin of hemimetaboly. , 2020, , 241-250.		0
1513	Integration of Bacterial Volatile Organic Compounds with Plant Health. , 2020, , 201-213.		Ο
1514	Insect Olfaction. , 2020, , 423-452.		1
1515	A spectacular diversity of forms and developmental modes. , 2020, , 19-33.		0
1516	Biology of Wood Deteriogens. , 2020, , 99-176.		0
1518	Databases for Natural Product Research. , 2020, , 222-238.		2
1519	The hemimetabolan development. , 2020, , 47-69.		0
1526	Evolution of CP2 transcription factors in Hexapoda. Journal of Genetics, 2021, 100, 1.	0.7	1
1527	Light sheet fluorescence microscopy. Nature Reviews Methods Primers, 2021, 1, .	21.2	105
1528	Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
1529	New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Molecular Phylogenetics and Evolution, 2022, 166, 107341.	2.7	9
1530	The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biology, 2021, 19, 241.	3.8	40
1535	Possibility of Undeveloped Egg Absorption during Embryogenesis: A Unique Phenomenon Observed in the Ovoviviparous Mayfly Cloeon dipterum. Zoological Science, 2020, 38, 20-25.	0.7	0
1536	Characterisation of the epigenetic architecture of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) after treatment with epigenetic modulators and heavy metals. Acta Tropica, 2022, 226, 106259.	2.0	1

#	Article	IF	CITATIONS
1537	The diversity of endogenous viral elements in insects. Current Opinion in Insect Science, 2022, 49, 48-55.	4.4	22
1538	Hidden Phylogenomic Signal Helps Elucidate Arsenurine Silkmoth Phylogeny and the Evolution of Body Size and Wing Shape Trade-Offs. Systematic Biology, 2022, 71, 859-874.	5.6	5
1539	Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals. Geobiology, 2022, 20, 333-345.	2.4	5
1540	Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Frontiers in Endocrinology, 2021, 12, 773669.	3.5	10
1541	Carabid adaptation to a collembolan diet: hunting efficiency and nutritional value. Ecological Entomology, 2022, 47, 242-248.	2.2	4
1542	The genus Entomophthora: bringing the insect destroyers into the twenty-first century. IMA Fungus, 2021, 12, 34.	3.8	26
1543	Molecular phylogeny of Allodia (Diptera : Mycetophilidae) constructed using genome skimming. Systematic Entomology, 0, , .	3.9	3
1545	Local olfactory interneurons provide the basis for neurochemical regionalization of olfactory glomeruli in crustaceans. Journal of Comparative Neurology, 2022, 530, 1399-1422.	1.6	2
1546	Top Three Strategies of ss(+)RNA Plant Viruses: Great Opportunists and Ecosystem Tuners with a Small Genome. Viruses, 2021, 13, 2304.	3.3	2
1548	Hymenoptera. , 2024, , 598-607.		1
1548 1549	Hymenoptera. , 2024, , 598-607. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7.	3.8	1
	Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme	3.8 1.6	
1549	Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and		5
1549 1550	 Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Bmc Ecology and Evolution, 2022, 22, 2. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: A critical review. 	1.6	5 9
1549 1550 1551	 Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Bmc Ecology and Evolution, 2022, 22, 2. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: A critical review. Earth-Science Reviews, 2022, 225, 103914. Role of External Factors in Embryogenesis of Apis mellifera. Russian Journal of Developmental 	1.6 9.1	5 9 8
1549 1550 1551 1554	Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Bmc Ecology and Evolution, 2022, 22, 2. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: A critical review. Earth-Science Reviews, 2022, 225, 103914. Role of External Factors in Embryogenesis of Apis mellifera. Russian Journal of Developmental Biology, 2021, 52, 422-429. Origin and evolution of green plants in the light of key evolutionary events. Journal of Integrative	1.6 9.1 0.5	5 9 8 1
1549 1550 1551 1554 1555	Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biology, 2022, 20, 7. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. Bmc Ecology and Evolution, 2022, 22, 2. Life history and evolution of the enigmatic Cretaceous–Eocene Alienopteridae: A critical review. Earth-Science Reviews, 2022, 225, 103914. Role of External Factors in Embryogenesis of Apis mellifera. Russian Journal of Developmental Biology, 2021, 52, 422-429. Origin and evolution of green plants in the light of key evolutionary events. Journal of Integrative Plant Biology, 2022, 64, 516-535. ``>;Phylogeny and age of cockroaches: a reanalysis of mitogenomes with selective fossil calibrations. Mitteilungen Aus Dem Museum Fur Naturkunde in Berlin - Deutsche Entomologische Zeitschrift, 2022,	1.6 9.1 0.5 8.5	5 9 8 1 16

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1560	Voltageâ€gated proton channels in polyneopteran insects. FEBS Open Bio, 2022, 12, 5	23-537.	2.3	5
1561	nQMaker: Estimating Time Nonreversible Amino Acid Substitution Models. Systematic 1110-1123.	Biology, 2022, 71,	5.6	9
1562	Stoneflies in the genus Lednia (Plecoptera: Nemouridae): sentinels of climate change ir mountain stream biodiversity. Biodiversity and Conservation, 0, , 1.	npacts on	2.6	6
1563	Honeybee queen mandibular pheromone fails to regulate ovary activation in the comm Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral P 2022, 208, 297-302.	on wasp. hysiology,	1.6	3
1564	Phylogenetic Revision and Patterns of Host Specificity in the Fungal Subphylum Entomophthoromycotina. Microorganisms, 2022, 10, 256.		3.6	5
1565	Species Paraphyly and Social Parasitism: Phylogenomics, Morphology, and Geography (Evolution of the <i>Pseudomyrmex elongatulus</i> Group (Hymenoptera: Formicidae), a Ant Clade. Insect Systematics and Diversity, 2022, 6, .	Clarify the Mesoamerican	1.7	5
1566	Evolution of DNA Methylation Across Ecdysozoa. Journal of Molecular Evolution, 2022,	90, 56-72.	1.8	12
1567	Exploration of the homology among the muscles associated with the female genitalia c suborders of Psocodea (Insecta). Arthropod Structure and Development, 2022, 66, 102		1.4	2
1570	Dissecting cricket genomes for the advancement of entomology and entomophagy. Bio Reviews, 2022, 14, 75-97.	ophysical	3.2	9
1571	First In Silico Screening of Insect Molecules for Identification of Novel Anti-Parasitic Co Pharmaceuticals, 2022, 15, 119.	mpounds.	3.8	6
1572	Endophytic insect oviposition traces in deep time. Palaeogeography, Palaeoclimatology 2022, 590, 110855.	ı, Palaeoecology,	2.3	6
1573	Multiscale analysis of the randomization limits of the chromosomal gene organization Lepidoptera and Diptera. Proceedings of the Royal Society B: Biological Sciences, 2022	between , 289, 20212183.	2.6	2
1575	Evolution of flexible biting in hyperdiverse parasitoid wasps. Proceedings of the Royal S Biological Sciences, 2022, 289, 20212086.	ociety B:	2.6	16
1576	Xenos yangi sp. nov.: A new twisted-wing parasite species (Strepsiptera, Xenidae) fro Mountains, Southwest China. ZooKeys, 2022, 1085, 11-27.	om Gaoligong	1.1	2
1577	The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. Journal of Geological Society, 2022, 179, .	the	2.1	21
1578	Evolution of germ plasm assembly and function among the insects. Current Opinion in 2022, 50, 100883.	Insect Science,	4.4	3
1579	Structural organization of xanthine crystals in the median ocellus of a member of the a insect group Archaeognatha. Journal of Structural Biology, 2022, 214, 107834.	ncestral	2.8	4
1580	Insect egg morphology: evolution, development, and ecology. Current Opinion in Insec 50, 100868.	t Science, 2022,	4.4	12

#	Article	IF	CITATIONS
1581	Genomics of the semi-aquatic bugs (Heteroptera; Gerromorpha): recent advances toward establishing a model lineage for the study of phenotypic evolution. Current Opinion in Insect Science, 2022, 50, 100870.	4.4	1
1582	Acanthochrysa langae gen. et sp. nov., a new lacewing larva (Neuroptera: Chrysopoidea) from mid-Cretaceous Kachin amber. Cretaceous Research, 2022, 133, 105146.	1.4	5
1583	Champagne: Automated Whole-Genome Phylogenomic Character Matrix Method Using Large Genomic Indels for Homoplasy-Free Inference. Genome Biology and Evolution, 2022, 14, .	2.5	3
1584	Mitogenomics and hiddenâ€ŧrait models reveal the role of phoresy and host shifts in the diversification of parasitoid blister beetles (Coleoptera: Meloidae). Molecular Ecology, 2022, 31, 2453-2474.	3.9	5
1585	The ecological function of insect egg micropyles. Functional Ecology, 2022, 36, 1113-1123.	3.6	3
1586	Serial passage in an insect host indicates genetic stability of the human probiotic <i>Escherichia coli</i> Nissle 1917. Evolution, Medicine and Public Health, 2022, 10, 71-86.	2.5	4
1588	Cricket: The third domesticated insect. Current Topics in Developmental Biology, 2022, 147, 291-306.	2.2	2
1589	Genome size evolution in the diverse insect order Trichoptera. GigaScience, 2022, 11, .	6.4	24
1592	Chromosome-level genome of the globe skimmer dragonfly (<i>Pantala flavescens</i>). GigaScience, 2022, 11, .	6.4	9
1593	Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
1594	Convergent Adaptation of Ootheca Formation as a Reproductive Strategy in Polyneoptera. Molecular Biology and Evolution, 2022, 39, .	8.9	8
1595	The ringâ€legged earwig <i>Euborellia annulipes</i> as a new model for oogenesis and development studies in insects. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 18-33.	1.3	2
1597	Illumina Short-Read Sequencing of the Mitogenomes of Novel Scarites subterraneus Isolates Allows for Taxonomic Refinement of the Genus Scarites Fabricius 1775, within the Carabidae Family. Insects, 2022, 13, 190.	2.2	1
1598	Paradoxes of Hymenoptera flight muscles, extreme machines. Biophysical Reviews, 2022, 14, 403-412.	3.2	4
1599	A previously unknown feeding mode in millipedes and the convergence of fluid feeding across arthropods. Science Advances, 2022, 8, eabm0577.	10.3	7
1601	Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Scientific Reports, 2022, 12, 2773.	3.3	4
1602	The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): Assessing the potential causes and consequences. Systematic Entomology, 2022, 47, 531-550.	3.9	14
1603	Evolutionary History of Interactions among Terrestrial Arthropods. Current Opinion in Insect Science, 2022, , 100915.	4.4	1

#	Article	IF	CITATIONS
1604	Cicada minimum age tree: Cryptic speciation and exponentially increasing base substitution rates in recent geologic time. F1000Research, 0, 11, 308.	1.6	1
1605	Theme and variation in the evolution of insect sex determination. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 162-181.	1.3	5
1606	Plant Diversity Is More Important than Climate Factors in Driving Insect Richness Pattern along a Latitudinal Gradient. Ecologies, 2022, 3, 30-37.	1.6	2
1607	Ecological radiations of insects in the Mesozoic. Trends in Ecology and Evolution, 2022, 37, 529-540.	8.7	17
1608	Unraveling the evolutionary history of the snakefly family Inocelliidae (Insecta: Raphidioptera) through integrative phylogenetics. Cladistics, 2022, 38, 515-537.	3.3	5
1609	Comparative analysis of four complete mitogenomes from hoverfly genus Eristalinus with phylogenetic implications. Scientific Reports, 2022, 12, 4164.	3.3	Ο
1610	Testing the systematic status of <i>Homalictus</i> and <i>Rostrohalictus</i> with weakened crossâ€vein groups within Halictini (Hymenoptera: Halictidae) using lowâ€coverage wholeâ€genome sequencing. Insect Science, 2022, 29, 1819-1833.	3.0	7
1612	Terrestrial arthropods broadly possess endogenous phytohormones auxin and cytokinins. Scientific Reports, 2022, 12, 4750.	3.3	10
1613	Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics, 2022, 38, 452-464.	3.3	13
1615	Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecology and Evolution, 2022, 12, e8625.	1.9	6
1616	A world checklist of extant and extinct species of Megaloptera (Insecta: Neuropterida). European Journal of Taxonomy, 0, 812, .	0.6	3
1617	A nondestructive method of calculating the wing area of insects. Ecology and Evolution, 2022, 12, e8792.	1.9	3
1618	Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Science Alliance, 2022, 5, e202101163.	2.8	16
1619	High morphological disparity of neuropteran larvae during the Cretaceous revealed by a new large species. Geological Magazine, 2022, 159, 954-962.	1.5	7
1620	A generic classification of Xenidae (Strepsiptera) based on the morphology of the female cephalothorax and male cephalotheca with a preliminary checklist of species. ZooKeys, 2022, 1093, 1-134.	1.1	2
1621	Evolutionarily conserved function of the even-skipped ortholog in insects revealed by gene knock-out analyses in Gryllus bimaculatus. Developmental Biology, 2022, 485, 1-8.	2.0	1
1622	Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis. ELife, 2021, 10, .	6.0	8
1623	Transcriptomics provides a robust framework for the relationships of the major clades of cladobranch sea slugs (Mollusca, Gastropoda, Heterobranchia), but fails to resolve the position of the enigmatic genus Embletonia. Bmc Ecology and Evolution, 2021, 21, 226.	1.6	5

#	Article	IF	CITATIONS
1624	Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock. Molecular Biology and Evolution, 2022, 39, .	8.9	31
1625	A species-level timeline of mammal evolution integrating phylogenomic data. Nature, 2022, 602, 263-267.	27.8	84
1626	What is the age of flowering plants?. Journal of Experimental Botany, 2022, 73, 3840-3853.	4.8	29
1627	Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers, 2022, 14, 1611.	4.5	16
1628	A comprehensive analysis of higherâ€level phylogenetic relationships of Hemiptera based on transcriptome data. Journal of Systematics and Evolution, 2023, 61, 572-586.	3.1	3
1707	Distal leg structures of Zoraptera – did the loss of adhesive devices curb the chance of diversification?. Arthropod Structure and Development, 2022, 68, 101164.	1.4	5
1708	Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect. Insect Systematics and Diversity, 2022, 6, .	1.7	3
1709	Insect Overwintering Stages in an Alpine Meadow in Relation to Their Phylogeny and Soil Depth. Annales Zoologici Fennici, 2022, 59, .	0.6	0
1710	Kr-h1, a Cornerstone Gene in Insect Life History. Frontiers in Physiology, 2022, 13, 905441.	2.8	11
1711	Exploring Large-Scale Patterns of Genetic Variation in the COI Gene among Insecta: Implications for DNA Barcoding and Threshold-Based Species Delimitation Studies. Insects, 2022, 13, 425.	2.2	19
1712	Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes. Insects, 2022, 13, 412.	2.2	3
1713	The larval scaffold controls fascicle number but is not required for formation of the dorsolongitudinal flight muscles in Manduca sexta. Arthropod Structure and Development, 2022, 68, 101170.	1.4	2
1714	Gene arrangement, phylogeny and divergence time estimation of mitogenomes in Thrips. Molecular Biology Reports, 2022, 49, 6269-6283.	2.3	5
1715	A second view on the evolution of flight in stick and leaf insects (Phasmatodea). Bmc Ecology and Evolution, 2022, 22, 62.	1.6	23
1716	Early diversifications of angiosperms and their insect pollinators: were they unlinked?. Trends in Plant Science, 2022, 27, 858-869.	8.8	14
1717	An atlas of the developing <i>Tribolium castaneum</i> brain reveals conservation in anatomy and divergence in timing to <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2022, 530, 2335-2371.	1.6	8
1718	Investigating the reliability of molecular estimates of evolutionary time when substitution rates and speciation rates vary. Bmc Ecology and Evolution, 2022, 22, 61.	1.6	2
1719	PhyloCloud: an online platform for making sense of phylogenomic data. Nucleic Acids Research, 2022, ,	14.5	4

#	Article	IF	CITATIONS
1720	BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics, 2022, 221, .	2.9	13
1721	Sensory mechanisms for the shift from phytophagy to haematophagy in mosquitoes. Current Opinion in Insect Science, 2022, 52, 100930.	4.4	1
1723	The Hox gene <i>Abdominalâ€B</i> regulates the appendage development during the embryogenesis of scorpionflies. Insect Molecular Biology, 2022, 31, 609-619.	2.0	3
1724	Molecular Identification of Two DNA Methyltransferase Genes and Their Functional Characterization in the Anti-Bacterial Immunity of Antheraea pernyi. Frontiers in Immunology, 2022, 13, .	4.8	4
1725	DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Reports Methods, 2022, 2, 100215.	2.9	34
1726	Detecting Darwinian Shortfalls in the Amazonian Odonata. Neotropical Entomology, 2022, , .	1.2	4
1727	Bibliometric Analyses of Web of Science Illuminate Research Advances of Neuropterida. Insects, 2022, 13, 464.	2.2	0
1728	Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Scientific Reports, 2022, 12, 8131.	3.3	10
1729	Behavioral differences between pitâ€building antlions and wormlions suggest limits to convergent evolution. Integrative Zoology, 2022, , .	2.6	2
1730	A High-Quality Genome of the Dobsonfly Neoneuromus Ignobilis Reveals Molecular Convergences in Aquatic Insects. SSRN Electronic Journal, 0, , .	0.4	0
1731	Deep conservation and co-option of programmed cell death facilitates evolution of alternative phenotypes at multiple biological levels. Seminars in Cell and Developmental Biology, 2023, 145, 28-41.	5.0	4
1733	Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in Microbiology, 2022, 13, .	3.5	5
1734	First fossil record of Brachyptera (Plecoptera: Taeniopterygidae) in eocene baltic amber. Palaeoworld, 2022, , .	1.1	0
1737	Insect multicopper oxidase-2: Molecular properties, roles in cuticle formation, and impacts on evolutionary success of insects. Advances in Insect Physiology, 2022, , 273-337.	2.7	3
1738	Germline specification and axis determination in viviparous and oviparous pea aphids: conserved and divergent features. Development Genes and Evolution, 0, , .	0.9	4
1739	New Genus and Species of Empheriidae (Insecta: Psocodea: Trogiomorpha) and Their Implication for the Phylogeny of Infraorder Atropetae. Frontiers in Ecology and Evolution, 0, 10, .	2.2	2
1740	Early Evolution of Beetles of the Suborder Polyphaga (Insecta: Coleoptera) at the Permian–Triassic Boundary. Paleontological Journal, 2022, 56, 268-279.	0.5	2
1741	Genetic and genomic architecture of species-specific cuticular hydrocarbon variation in parasitoid wasps. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	3

#	Article	IF	CITATIONS
1742	The Adipokinetic Peptides of Hemiptera: Structure, Function, and Evolutionary Trends. Frontiers in Insect Science, 0, 2, .	2.1	5
1743	Whole-genome sequencing analysis and protocol for RNA interference of the endoparasitoid wasp <i>Asobara japonica</i> . DNA Research, 2022, 29, .	3.4	1
1744	Novel Mitochondrial Gene Rearrangement and Intergenic Regions Exist in the Mitochondrial Genomes from Four Newly Established Families of Praying Mantises (Insecta: Mantodea). Insects, 2022, 13, 564.	2.2	5
1745	Phylogenomic Analysis Reconstructed the Order Matoniales from Paleopolyploidy Veil. Plants, 2022, 11, 1529.	3.5	3

Four New Species of Harringtonia: Unravelling the Laurel Wilt Fungal Genus. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

1747	Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. Parasites and Vectors, 2022, 15, .	2.5	8
1748	In toto light sheet fluorescence microscopy live imaging datasets of Ceratitis capitata embryonic development. Scientific Data, 2022, 9, .	5.3	5
1749	A chromosome-level genome assembly and intestinal transcriptome of <i>Trypoxylus dichotomus</i> (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. GigaScience, 2022, 11, .	6.4	5
1750	The Impact of Fast Radiation on the Phylogeny of Bactrocera Fruit Flies as Revealed by Multiple Evolutionary Models and Mutation Rate-Calibrated Clock. Insects, 2022, 13, 603.	2.2	4
1751	Abdominal serial homologues of wings in Paleozoic insects. Current Biology, 2022, 32, 3414-3422.e1.	3.9	9
1752	Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process. Systematic Biology, 2022, 71, 1471-1486.	5.6	13
1753	Cretaceous lophocoronids with short proboscis and retractable female genitalia provide the earliest evidence for their feeding and oviposition habits. Cladistics, 2022, 38, 684-701.	3.3	2
1754	Mining Ultraconserved Elements From Transcriptome and Genome Data to Explore the Phylogenomics of the Free-living Lice Suborder Psocomorpha (Insecta: Psocodea). Insect Systematics and Diversity, 2022, 6, .	1.7	2
1755	Postembryonic development of the tracheal system of beetles in the context of aptery and adaptations towards an arid environment. PeerJ, 0, 10, e13378.	2.0	0

Morphology and phylogenetic significance of the thoracic muscles in Psocodea (Insecta:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50_{-12} 182 Td (

1757	Evolutionary History of Sexual Differentiation Mechanism in Insects. Molecular Biology and Evolution, 2022, 39, .	8.9	7
1758	A world review of the bristle fly parasitoids of webspinners. BMC Zoology, 2022, 7, .	1.0	2
1759	The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. MBio, 0, , .	4.1	0

#	Article	IF	CITATIONS
1760	Spittlebugs (Hemiptera: Cercopidae): Integrated Pest Management on Gramineous Crops in the Neotropical Ecozone. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	3
1761	Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. Current Opinion in Insect Science, 2022, 53, 100951.	4.4	4
1763	The extended analogy of extraembryonic development in insects and amniotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	6
1765	HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell, 2022, 185, 2975-2987.e10.	28.9	55
1767	Asymmetric Inheritance: The Diversity and Evolution of Non-Mendelian Reproductive Strategies. Annual Review of Ecology, Evolution, and Systematics, 2022, 53, 1-23.	8.3	8
1768	Permian parallelisms: Reanalysis of â€Tshekardocoleidae sheds light on the earliest evolution of the Coleoptera. Systematic Entomology, 2023, 48, 69-96.	3.9	11
1769	First caddisfly-like insect from the Pennsylvanian of Piesberg (Mecopterida: stem group) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 1.4	50 ₁ 502 Td (A
1770	Characterizing Hox genes in mayflies (Ephemeroptera), with Hexagenia limbata as a new mayfly model. EvoDevo, 2022, 13, .	3.2	0
1771	Phylogeny of Membracoidea (Hemiptera: Auchenorrhyncha) based on transcriptome data. Systematic Entomology, 2023, 48, 97-110.	3.9	8
1772	Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. International Journal of Molecular Sciences, 2022, 23, 9451.	4.1	1
1773	Multiple horizontal transfers of a Helitron transposon associated with a parasitoid wasp. Mobile DNA, 2022, 13, .	3.6	3
1774	PxTret1-like Affects the Temperature Adaptability of a Cosmopolitan Pest by Altering Trehalose Tissue Distribution. International Journal of Molecular Sciences, 2022, 23, 9019.	4.1	8
1775	Maritime midge radiations in the Pacific Ocean (Diptera: Chironomidae). Systematic Entomology, 2023, 48, 111-126.	3.9	1
1776	Simultaneously collecting coding and non-coding phylogenomic data using homemade full-length cDNA probes, tested by resolving the high-level relationships of Colubridae. Frontiers in Ecology and Evolution, 0, 10, .	2.2	1
1777	Comparative analysis of mitochondrial genomes among the family Peltoperlidae (Plecoptera:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 182
1778	Elucidating the role of neurotransmitters in the nesting behaviour ofÂDigitonthophagus gazella (Fabricius, 1787) (Coleoptera: Scarabaeidae). International Journal of Tropical Insect Science, 0, , .	1.0	0
1779	Flight or protection: the genes <i>Ultrabithorax</i> and <i>apterous</i> in the determination of membranous and sclerotized wings in insects. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	2

1781	The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect <i>Rhodnius prolixus</i> . Journal of Experimental Biology, 2022, 225, .	1.7	1	
------	--	-----	---	--

#	Article	IF	CITATIONS
1782	The organizing role of Wnt signaling pathway during arthropod posterior growth. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
1783	The Evolution of Squamate Chitinase Genes (<i>CHIAs</i>) Supports an Insectivory–Carnivory Transition during the Early History of Snakes. , 2022, , 235-247.		0
1785	Longest-surviving Carboniferous-family insect found in Mesozoic amber. , 0, , .		8
1786	Highâ€quality genomes reveal significant genetic divergence and cryptic speciation in the model organism <i>Folsomia candida</i> (collembola). Molecular Ecology Resources, 2023, 23, 273-293.	4.8	6
1787	Transposons and non-coding regions drive the intrafamily differences of genome size in insects. IScience, 2022, 25, 104873.	4.1	9
1788	A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. Genomics, 2022, 114, 110437.	2.9	0
1789	The IMD pathway in Hemipteran: A comparative analysis and discussion. Developmental and Comparative Immunology, 2022, 136, 104513.	2.3	8
1790	Phylogeny and evolution of Cupressaceae: Updates on intergeneric relationships and new insights on ancient intergeneric hybridization. Molecular Phylogenetics and Evolution, 2022, 177, 107606.	2.7	4
1792	Evolution and Biogeographic History of Rubyspot Damselflies (Hetaerininae: Calopterygidae: Odonata). Diversity, 2022, 14, 757.	1.7	6
1793	Is phenotypic evolution affected by spidersâ \in $^{ m M}$ construction behaviors?. Systematic Biology, 0, , .	5.6	2
1794	Mimetic accuracy and co-evolution of mimetic traits in ant-mimicking species. IScience, 2022, 25, 105126.	4.1	3
1795	Dating Microbial Evolution with MCMCtree. Methods in Molecular Biology, 2022, , 3-22.	0.9	1
1796	Self-Assembly of Ecosystems in the Paleozoic: Overview of the Latest Sources. , 2022, , 149-160.		0
1797	Self-Assembly of Ecosystems in the Paleozoic: Interpretation and Summary. , 2022, , 161-177.		0
1798	Salinity-Induced Osmoregulatory Changes in the Gill Proteome of the Mayfly, Neocloeon Triangulifer. SSRN Electronic Journal, 0, , .	0.4	0
1799	Glucosinolate Sulfatases–Sulfatase-Modifying Factors System Enables a Crucifer-Specialized Moth To Pre-detoxify Defensive Glucosinolate of the Host Plant. Journal of Agricultural and Food Chemistry, 2022, 70, 11179-11191.	5.2	8
1800	The Evolution of Glycoside Hydrolase Family 1 in Insects Related to Their Adaptation to Plant Utilization. Insects, 2022, 13, 786.	2.2	3
1801	Mitogenome selection in the evolution ofÂkey ecological strategies in the ancient hexapod class Collembola. Scientific Reports, 2022, 12, .	3.3	2

		LEPORT	
#	Article	IF	Citations
1803	Towards a Comparative Study of Animal Consciousness. Biological Theory, 2022, 17, 292-303.	1.5	7
1805	Identification and Spread of the Ghost Silverfish (Ctenolepisma calvum) among Museums and Homes in Europe. Insects, 2022, 13, 855.	2.2	9
1806	A genomeâ€wide phylogeny and the diversification of genus <i>Liriomyza</i> (Diptera: Agromyzidae) inferred from anchored phylogenomics. Systematic Entomology, 2023, 48, 178-197.	3.9	2
1807	Analysis of Polyadenylation Signal Usage with Full-Length Transcriptome in Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 2022, 13, 803.	2.2	0
1808	Molecular genetics solutions to grand challenges in Entomology. Frontiers in Insect Science, 0, 2, .	2.1	0
1810	Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	14
1811	Genomeâ€wide and expressionâ€profiling analyses of the cytochrome P450 genes in Tenebrionidea. Archives of Insect Biochemistry and Physiology, 0, , .	1.5	1
1812	First insights into the phylogeny of the subgenus Cryobius Chaudoir, 1838 (Coleoptera: Carabidae:) Tj ETQq1 1	0.784314 1.1	rg&T /Overloc
1813	Taxon-specific ultraconserved element probe design for phylogenetic analyses of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Frontiers in Ecology and Evolution, 0, 10, .	2.2	5
1814	The First Chromosome-level Genome Assembly of <i>Cheumatopsyche charites</i> Malicky and Chantaramongkol, 1997 (Trichoptera: Hydropsychidae) Reveals How It Responds to Pollution. Genome Biology and Evolution, 2022, 14, .	2.5	3
1815	Phylogenomic Analyses of the Tenthredinoidea Support the Familial Rank of Athaliidae (Insecta,) Tj ETQq0 0 0 r	gBT /Qverlo 2.2	ock ₈ 10 Tf 50 3
1816	Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biology, 2022, 20, .	3.8	12
1817	The earliest beetle â€Coleopsis archaica (Insecta: ColeoÂptera) – morphological re-evaluation using Reflectance Transformation Imaging (RTI) and phylogenetic assessment. Arthropod Systematics and Phylogeny, 0, 80, 495-510.	1.1	4
1818	Complete metamorphosis and microbiota turnover in insects. Molecular Ecology, 2023, 32, 6543-6551.	3.9	10
1821	Phylogenetic resolution of the fly superfamily Ephydroidea–Molecular systematics of the enigmatic and diverse relatives of Drosophilidae. PLoS ONE, 2022, 17, e0274292.	2.5	8
1822	How Do Genomic, Mitochondrial, and Morphological Data Contribute to the Linnean Classification of the Porrostomine Net-Winged Beetles (Coleoptera, Lycidae)?. Insect Systematics and Diversity, 2022, 6, .	1.7	1
1824	Systematic bias and the phylogeny of Coleoptera—A response to Cai et al. (2022) following the responses to Cai et al. (2020). Systematic Entomology, 2023, 48, 223-232.	3.9	5
1825	Systematics and evolution of predatory flower flies (Diptera: Syrphidae) based on exonâ€capture sequencing. Systematic Entomology, 2023, 48, 250-277.	3.9	3

#	Article	IF	CITATIONS
1827	Recapitulation of the embryonic transcriptional program in holometabolous insect pupae. Scientific Reports, 2022, 12, .	3.3	1
1829	BuscoPhylo: a webserver for Busco-based phylogenomic analysis for non-specialists. Scientific Reports, 2022, 12, .	3.3	6
1830	The Genetic Diversity and the Divergence Time in Extant Primitive Mayfly, Siphluriscus chinensis Ulmer, 1920 Using the Mitochondrial Genome. Genes, 2022, 13, 1780.	2.4	2
1831	The Epidemiology and Control of "Olive Quick Decline Syndrome―in Salento (Apulia, Italy). Agronomy, 2022, 12, 2475.	3.0	7
1832	Mechanisms of Na+ uptake from freshwater habitats in animals. Frontiers in Physiology, 0, 13, .	2.8	9
1834	Mitogenomic Comparison of the Mole Crickets Gryllotalpidae with the Phylogenetic Implications (Orthoptera: Ensifera). Insects, 2022, 13, 919.	2.2	2
1835	Taxonomic note on the species status of Epiophlebia diana (Insecta, Odonata, Epiophlebiidae), including remarks on biogeography and possible species distribution. ZooKeys, 0, 1127, 79-90.	1.1	1
1837	The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Developmental Biology, 2022, 492, 187-199.	2.0	8
1838	Sensorimotor ecology of the insect antenna: Active sampling by a multimodal sensory organ. Advances in Insect Physiology, 2022, , 1-105.	2.7	2
1839	Sexual Differentiation in Dragonflies and Damselflies. , 2022, , 13-35.		0
1840	Salinity-induced ionoregulatory changes in the gill proteome of the mayfly, Neocloeon triangulifer. Environmental Pollution, 2023, 316, 120609.	7.5	1
1842	Behavioral and genomic divergence between a generalist and a specialist fly. Cell Reports, 2022, 41, 111654.	6.4	5
1843	Repeated Alpine Flight Loss Within the Widespread New Zealand Stonefly <i>Nesoperla fulvescens</i> Hare (Plecoptera: Gripopterygidae). Insect Systematics and Diversity, 2022, 6, .	1.7	1
1845	A New Genus and Species of the Suborder Trogiomorpha (Insecta, Psocodea) from Mid-Cretaceous Amber of Myanmar. Insects, 2022, 13, 1064.	2.2	2
1846	Insects, 60% of All Biodiversity. , 2024, , 504-516.		0
1847	Changes in growth and developmental timing in Manduca sexta when exposed to altered oxygen levels. Arthropod Structure and Development, 2023, 72, 101231.	1.4	0
1848	The prothoracicotropic hormone (PTTH) of Rhodnius prolixus (Hemiptera) is noggin-like: Molecular characterisation, functional analysis and evolutionary implications. General and Comparative Endocrinology, 2023, 332, 114184.	1.8	1
1849	Transcriptomic data recover a new superfamily-level phylogeny of Cucujiformia (Coleoptera,) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 Tf

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1850	Macroevolutionary analyses point to a key role of hosts in diversification of the highly speceriophyoid mite superfamily. Molecular Phylogenetics and Evolution, 2023, 179, 107676.	iose	2.7	8
1851	Evolution and ontogeny of bacteriocytes in insects. Frontiers in Physiology, 0, 13, .		2.8	4
1852	Advanced Research on Fossil Insects. Taxonomy, 2022, 2, 488-490.		1.0	1
1853	Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Inst Larvicides. Insects, 2022, 13, 1093.	ecticides as	2.2	8
1854	Diversity patterns and seasonality of hawkmoths (Lepidoptera: Sphingidae) from northern Ghats of Maharashtra, India. Journal of Threatened Taxa, 2022, 14, 22105-22117.	Western	0.3	0
1855	Historical Biogeography of Earwigs. Biology, 2022, 11, 1794.		2.8	2
1856	Standardized nuclear markers improve and homogenize species delimitation in Metazoa. N Ecology and Evolution, 2023, 14, 543-555.	Nethods in	5.2	13
1857	Illusion of flight? Absence, evidence and the age of winged insects. Biological Journal of the Society, 2023, 138, 143-168.	e Linnean	1.6	4
1858	Hox dosage and morphological diversification during development and evolution. Seminar and Developmental Biology, 2024, 152-153, 70-75.	s in Cell	5.0	5
1859	Reference Genome Sequences of the Oriental Armyworm, Mythimna separata (Lepidoptera Insects, 2022, 13, 1172.	a: Noctuidae).	2.2	2
1860	Phylogeny and systematics of Sphaeriusidae (Coleoptera: Myxophaga): minute living fossil underestimated past and presentâ€day diversity. Systematic Entomology, 2023, 48, 233-2		3.9	4
1861	Electron Tomography and Machine Learning for Understanding the Highly Ordered Structu Leafhopper Brochosomes. Biomacromolecules, 2023, 24, 190-200.	ire of	5.4	2
1862	iORbase: A database for the prediction of the structures and functions of insect olfactory r Insect Science, 2023, 30, 1245-1254.	eceptors.	3.0	2
1863	The Evolution of Collembola Higher Taxa (Arthropoda, Hexapoda) Based on Mitogenome D Diversity, 2023, 15, 7.	ata.	1.7	6
1864	Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nature Communications, 2022, 13, .	2	12.8	11
1866	Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosop Frontiers in Physiology, 0, 13, .	hila.	2.8	4
1867	Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo determining mosquito gene cucoid. PLoS ONE, 2023, 18, e0274716.	oolarity	2.5	0
1868	Contribution of cryptochromes and photolyases for insect life under sunlight. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 20: 373-389.	23, 209,	1.6	7

#	Article	IF	CITATIONS
1870	Improved Basic Cytogenetics Challenges Holocentricity of Butterfly Chromosomes. Cytogenetic and Genome Research, 2022, 162, 262-272.	1.1	2
1871	Diversity, Form, and Postembryonic Development of Paleozoic Insects. Annual Review of Entomology, 2023, 68, 401-429.	11.8	7
1872	Descriptions of a new genus and a new species, <i>Grylloprimevala jilina</i> (Grylloblattidae) from China. Ecology and Evolution, 2023, 13, .	1.9	2
1873	Spatial and phylogenetic structure of Alpine stonefly assemblages across seven habitats using DNA-species. Oecologia, 2023, 201, 513-524.	2.0	1
1875	Phylogeny of Urostylididae (Heteroptera: Pentatomoidea) reveals rapid radiation and challenges traditional classification. Zoologica Scripta, 0, , .	1.7	2
1876	Mitochondrial genomes of soft scales (Hemiptera: Coccidae): features, structures and significance. BMC Genomics, 2023, 24, .	2.8	6
1877	Parallel duplication and loss of aquaporinâ€coding genes during the "out of the sea―transition as potential key drivers of animal terrestrialization. Molecular Ecology, 2023, 32, 2022-2040.	3.9	2
1878	Endosymbiotic interactions of actinobacteria with the insects. , 2023, , 645-658.		0
1879	Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project. PLoS Biology, 2023, 21, e3001972.	5.6	13
1880	Tempo and Mode of Genome Structure Evolution in Insects. Genes, 2023, 14, 336.	2.4	1
1884	A brief introduction to the phylogeny of Iranian Lepidoptera*. Integrative Systematics: Stuttgart Contributions To Natural History, 2023, 6, .	0.6	0
1885	Variation in mutation, recombination, and transposition rates in <i>Drosophila melanogaster</i> and <i>Drosophila simulans</i> . Genome Research, 2023, 33, 587-598.	5.5	8
1886	Emergence of terpene chemical communication in insects: Evolutionary recruitment of isoprenoid metabolism. Protein Science, 2023, 32, .	7.6	4
1887	Morphological variation of the epiphyses in some Ambulycini hawkmoths (Lepidoptera, Sphingidae,) Tj ETQq1 1 (0.784314	rgBT /Overloo
1888	The phylogeny and divergence times of leaf-mining flies (Diptera: Agromyzidae) from anchored phylogenomics. Molecular Phylogenetics and Evolution, 2023, 184, 107778.	2.7	0
1889	Evolution of proteins involved in the final steps of juvenile hormone synthesis. Journal of Insect Physiology, 2023, 145, 104487.	2.0	4
1890	Distinct developmental mechanisms influence sexual dimorphisms in the milkweed bug <i>Oncopeltus fasciatus</i> . Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	5
1891	Evidence for existence of an apoptosisâ€inducing <scp>BH3</scp> â€only protein, <i>sayonara</i> , in <i>Drosophila</i> . EMBO Journal, 2023, 42, .	7.8	8

#	Article	IF	CITATIONS
1892	Systematics, Ecology and Taxonomy of Collembola: Introduction to the Special Issue. Diversity, 2023, 15, 221.	1.7	2
1893	Reduction of embryonic <i>E93</i> expression as a hypothetical driver of the evolution of insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
1894	Revisiting the formation of midgut epithelium in Zygentoma (Insecta) from a developmental study of the firebrat Thermobia domestica (Packard, 1873) (Lepismatidae). Arthropod Structure and Development, 2023, 73, 101237.	1.4	0
1895	<i>Wolbachia</i> and <i>Spiroplasma</i> endosymbionts in the <i>Anurida maritima</i> (Collembola) species group. , 0, , .		0
1896	Higher-level phylogeny and evolutionary history of nonditrysians (Lepidoptera) inferred from mitochondrial genome sequences. Zoological Journal of the Linnean Society, 2023, 198, 476-493.	2.3	3
1897	DNA sequencing in the classroom: complete genome sequence of two earwig (Dermaptera; Insecta) species. Biological Research, 2023, 56, .	3.4	1
1898	A Chromosome-length Assembly of the Black Petaltail (<i>Tanypteryx hageni</i>) Dragonfly. Genome Biology and Evolution, 2023, 15, .	2.5	9
1899	Phylogenomics of darkling beetles (Coleoptera: Tenebrionidae) from the Atacama Desert. PeerJ, 0, 11, e14848.	2.0	8
1900	Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001T, which originated from Permian ground water. Marine Life Science and Technology, 2023, 5, 12-27.	4.6	0
1901	Deadwood Biodiversity. Advances in Global Change Research, 2023, , 167-189.	1.6	3
1902	Key innovations and the diversification of Hymenoptera. Nature Communications, 2023, 14, .	12.8	29
1903	Dispersal syndromes mediate phylogenetic distance decay relationships in a dendritic stream network. Journal of Biogeography, 2023, 50, 897-908.	3.0	0
1904	Terpene synthases and pathways in animals: enzymology and structural evolution in the biosynthesis of volatile infochemicals. Natural Product Reports, 2023, 40, 766-793.	10.3	5
1906	Drosophila Free-Flight Odor Tracking is Altered in a Sex-Specific Manner By Preimaginal Sensory Exposure. Journal of Chemical Ecology, 2023, 49, 179-194.	1.8	3
1908	Role of gut symbionts of insect pests: A novel target for insect-pest control. Frontiers in Microbiology, 0, 14, .	3.5	9
1909	One genome, multiple phenotypes: decoding the evolution and mechanisms of environmentally induced developmental plasticity in insects. Biochemical Society Transactions, 2023, 51, 675-689.	3.4	5
1910	Body size as a magic trait in two plant-feeding insect species. Evolution; International Journal of Organic Evolution, 2023, 77, 437-453.	2.3	4
1911	The morphology of the freeâ€living females of Strepsiptera (Insecta). Journal of Morphology, 2023, 284, .	1.2	1

#	Article	IF	CITATIONS
1912	Does haplodiploidy help drive the evolution of insect eusociality?. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
1915	Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nature Ecology and Evolution, 2023, 7, 557-569.	7.8	9
1917	Retrotransposon-mediated evolutionary rewiring of a pathogen response orchestrates a resistance phenotype in an insect host. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	11
1918	Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence. Systematic Biology, 2023, 72, 837-855.	5.6	4
1919	Physiological and life history responses in a mayfly (Callibaetis floridanus) inhabiting ponds with saltwater intrusion. Frontiers in Ecology and Evolution, 0, 11, .	2.2	1
1920	Invertebrates, Terrestrial, Overview. , 2024, , 487-502.		0
1921	Phylogenetic systematics, diversification, and biogeography of Cerurinae (Lepidoptera: Notodontidae) and a description of a new genus. Insect Systematics and Diversity, 2023, 7, .	1.7	4
1922	Uncovering the determinants of biodiversity hotspots in China: Evidence from the drivers of multiple diversity metrics on insect assemblages and implications for conservation. Science of the Total Environment, 2023, 880, 163287.	8.0	6
1923	Neurochemical diversity in the central olfactory pathway of the crustacean <i>Parhyale hawaiensis</i> (Amphipoda): evolutionary implications. Journal of Comparative Neurology, 2023, 531, 1032-1056.	1.6	1
1925	Sidestepping Darwin: horizontal gene transfer from plants to insects. Current Opinion in Insect Science, 2023, 57, 101035.	4.4	5
1926	A review on insects flight aerodynamics, noise sources, and flow control mechanisms. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237, 2907-2917.	1.3	2
1927	Lunar and Tidal Rhythms and Clocks. Entomology Monographs, 2023, , 203-227.	0.5	0
1928	Molecular Mechanism of the Circadian Clock. Entomology Monographs, 2023, , 49-84.	0.5	3
1929	Ecoâ€evolutionary implications for a possible contribution of cuticle hardening system in insect evolution and terrestrialisation. Physiological Entomology, 0, , .	1.5	1
1930	Mating behaviors and multiple mating in the firebrat, Thermobia domestica (Zygentoma: Lepismatidae). Applied Entomology and Zoology, 0, , .	1.2	0
1932	Air sacs are a key adaptive trait of the insect respiratory system. Journal of Experimental Biology, 2023, 226, .	1.7	1
1933	Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. , 2023, 2, .		1
1934	Redefining Possible: Combining Phylogenomic and Supersparse Data in Frogs. Molecular Biology and Evolution, 2023, 40, .	8.9	3

#	Article	IF	CITATIONS
1935	Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus, 2023, 14, .	3.8	3
1936	Phylogenetic relationships and divergence dating of Mantodea using mitochondrial phylogenomics. Systematic Entomology, 2023, 48, 644-657.	3.9	3
1937	Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics, 2023, 12, 952.	3.7	3
1938	The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation. Scientific Reports, 2023, 13, .	3.3	0
1939	Pseudo-Rate Matrices, Beyond Dayhoff's Model. Applied and Numerical Harmonic Analysis, 2023, , 617-644.	0.3	0
1940	Launching insectphylo.org; a new hub facilitating construction and use of synthesis molecular phylogenies of insects. Molecular Ecology Resources, 2023, 23, 1556-1573.	4.8	1
1941	Identifying and addressing methodological incongruence in phylogenomics: A review. Evolutionary Applications, 2023, 16, 1087-1104.	3.1	6
1942	Widely Targeted HPLC-MS/MS Metabolomics Analysis Reveals Natural Metabolic Insights in Insects. Metabolites, 2023, 13, 735.	2.9	0
1943	Nonâ€seed plants are emerging gene sources for agriculture and insect control proteins. Plant Journal, 2023, 116, 23-37.	5.7	1
1944	Bee pollination services and the burden of biogeography. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	1
1946	Phylogeny and diversification of planthoppers (Hemiptera: Fulgoromorpha) based on a comprehensive molecular dataset and large taxon sampling. Molecular Phylogenetics and Evolution, 2023, 186, 107862.	2.7	2
1947	Incongruence in the phylogenomics era. Nature Reviews Genetics, 2023, 24, 834-850.	16.3	16
1948	Adaptations for gas exchange enabled the elongation of lepidopteran proboscises. Current Biology, 2023, 33, 2888-2896.e2.	3.9	1
1949	A phylogenomic perspective on the relationships of subfamilies in the family Geometridae (Lepidoptera). Systematic Entomology, 0, , .	3.9	1
1951	Symbioses shape feeding niches and diversification across insects. Nature Ecology and Evolution, 2023, 7, 1022-1044.	7.8	12
1952	Widespread mermithid nematode parasitism of Cretaceous insects. ELife, 0, 12, .	6.0	3
1953	A very long-chain fatty acid enzyme gene, PxHacd2 affects the temperature adaptability of a cosmopolitan insect by altering epidermal permeability. Science of the Total Environment, 2023, 891, 164372.	8.0	1
1954	300 Million years of coral treaders (Insecta: Heteroptera: Hermatobatidae) back to the ocean in the phylogenetic context of Arthropoda. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	1

#	Article	IF	Citations
1955	Exploring the Mitogenomes of Mantodea: New Insights from Structural Diversity and Higher-Level Phylogenomic Analyses. International Journal of Molecular Sciences, 2023, 24, 10570.	4.1	0
1957	Sap-Sucking Forest Pests. , 2023, , 417-456.		0
1960	The ootheca of Libyaspis flavosparsa (Montandon) (Heteroptera: Plataspidae), with a review of ootheca-production in Heteroptera and other Insecta. Zoologischer Anzeiger, 2023, 306, 10-26.	0.9	0
1961	Decoding the genetic and chemical basis of sexual attractiveness in parasitic wasps. ELife, 0, 12, .	6.0	0
1963	Early evolution of the megadiverse subtribe Philonthina (Staphylinidae: Staphylininae: Staphylinini) and its Neotropical lineage. Systematic Entomology, 2024, 49, 28-47.	3.9	0
1964	New Insights into the <i>Plutella xylostella</i> Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. Journal of Agricultural and Food Chemistry, 2023, 71, 10952-10969.	5.2	3
1965	Noxious chemical discrimination by Tribolium castaneum TRPA1 channel in the HEK293 cell expression system. Current Research in Insect Science, 2023, 4, 100066.	1.7	0
1966	Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biology and Evolution, 2023, 15, .	2.5	1
1967	The First Complete Mitochondrial Genome of the Genus Pachycondyla (Formicidae, Ponerinae) and Insights into the Phylogeny of Ants. Genes, 2023, 14, 1528.	2.4	1
1968	Divergence and convergence of gut microbiomes of wild insect pollinators. MBio, 0, , .	4.1	1
1969	<i>ebony</i> underpins Batesian mimicry in melanic stoneflies. Molecular Ecology, 0, , .	3.9	2
1970	Chromosome-Scale Genome Assembly of the Solitary Parasitoid Wasp <i>Microplitis manilae</i> Ashmead, 1904 (Braconidae: Microgastrinae). Genome Biology and Evolution, 2023, 15, .	2.5	1
1971	Interspecific gene flow obscures phylogenetic relationships in an important insect pest species complex. Molecular Phylogenetics and Evolution, 2023, 188, 107892.	2.7	3
1972	Exploring the evolution and function of Canoe's intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. PLoS ONE, 2023, 18, e0289224.	2.5	2
1973	A chromosome-level genome assembly of Stenchaetothrips biformis and comparative genomic analysis highlights distinct host adaptations among thrips. Communications Biology, 2023, 6, .	4.4	2
1975	Scoutknife: A naÃ ⁻ ve, whole genome informed phylogenetic robusticity metric. F1000Research, 0, 12, 945.	1.6	0
1976	Cellular heterogeneity of the developing worker honey bee (<i>Apis mellifera</i>) pupa: a single cell transcriptomics analysis. G3: Genes, Genomes, Genetics, 0, , .	1.8	0
1977	Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. International Journal of Biological Macromolecules, 2023, 250, 126162.	7.5	0

#	Article	IF	CITATIONS
1978	Evolutionary genomics of camouflage innovation in the orchid mantis. Nature Communications, 2023, 14, .	12.8	1
1979	Milton assembles large mitochondrial clusters, mitoballs, to sustain spermatogenesis. Proceedings of the United States of America, 2023, 120, .	7.1	0
1980	Extant thrips diverged in the early tertiary period. BMC Genomic Data, 2023, 24, .	1.7	0
1981	Editorial: Coevolution of insect-gut microbiome. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
1982	Molecular and biochemical changes in <i>Locusta migratoria</i> (Orthoptera: Acrididae) infected with <i>Paranosema locustae</i> . Journal of Insect Science, 2023, 23, .	1.5	1
1983	Small urban fragments maintain complex food webs of litter-dwelling arthropods in a subtropical city in China. Soil Biology and Biochemistry, 2023, 185, 109150.	8.8	0
1984	Molecular Phylogeny of Holarctic Aeshnidae with a Focus on the West Palaearctic and Some Remarks on Its Genera Worldwide (Aeshnidae, Odonata). Diversity, 2023, 15, 950.	1.7	2
1985	Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. IScience, 2023, 26, 107793.	4.1	1
1986	Essential Entomology. American Entomologist, 2023, 69, 53-54.	0.2	0
1987	Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers. Insects, 2023, 14, 774.	2.2	0
1988	Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome. Insects, 2023, 14, 794.	2.2	0
1989	Resilin in Insect Flight Systems. Advanced Functional Materials, 0, , .	14.9	2
1990	A new species of Zoraptera, Zorotypus komatsui sp. nov. from Cameroon and a redescription of Zorotypus vinsoni Paulian, 1951 (Polyneoptera, Zoraptera). ZooKeys, 0, 1178, 39-59.	1.1	0
1991	Divergence time estimates for the hypoxiaâ€inducible factorâ€1 alpha (<scp>HIF1α</scp>) reveal an ancient emergence of animals in lowâ€oxygen environments. Geobiology, 2024, 22, .	2.4	0
1992	Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. International Journal of Biological Macromolecules, 2023, 253, 126742.	7.5	1
1993	First complete mitochondrial genome of the tribe Coccini (Hemiptera, Coccomorpha, Coccidae) and its phylogenetic implications. ZooKeys, 0, 1180, 333-354.	1.1	0
1994	Serotonin signaling regulates actomyosin contractility during morphogenesis in evolutionarily divergent lineages. Nature Communications, 2023, 14, .	12.8	0
1995	Bridging two insect flight modes in evolution, physiology and robophysics. Nature, 2023, 622, 767-774.	27.8	4

#	Article	IF	CITATIONS
1996	The Waterâ€Exclusion Trap (<scp>WET</scp>): A <scp>3D</scp> printable window trap collector that prevents <scp>DNA</scp> degradation. Methods in Ecology and Evolution, 0, , .	5.2	0
1997	First mitochondrial genomes of the crane fly tribe Elephantomyiini (Diptera, Tipuloidea, Limoniidae): comparative analysis and phylogenetic implications. Arthropod Systematics and Phylogeny, 0, 81, 731-746.	1.1	0
1998	Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genetics, 2023, 19, e1010924.	3.5	2
1999	The evolution and mutational robustness of chromatin accessibility in Drosophila. Genome Biology, 2023, 24, .	8.8	0
2000	Independent wing reductions and losses among stick and leaf insects (Phasmatodea), supported by new Cretaceous fossils in amber. BMC Biology, 2023, 21, .	3.8	1
2001	Comparative morphology of serotoninâ€immunoreactive neurons innervating the central complex in the brain of dicondylian insects. Journal of Comparative Neurology, 2023, 531, 1482-1508.	1.6	1
2002	Cicada minimum age tree: Cryptic speciation and exponentially increasing base substitution rates in recent geologic time. F1000Research, 0, 11, 308.	1.6	0
2003	The complete mitochondrial genome of Nephrotoma scalaris parvinotata (Brunetti 1918) (Diptera:) Tj ETQq1 1 0. 26, 102133.	784314 rş 0.9	gBT /Overloc 1
2004	Patterns of Insect Evolution. True Bugs (Heteroptera) of the Neotropics, 2023, , 1-12.	1.2	0
2005	General Trends in the Evolution of Digestive Systems. True Bugs (Heteroptera) of the Neotropics, 2023, , 231-238.	1.2	0
2006	Coordinated rhythms in animal species, including humans: Entrainment from bushcricket chorusing to the philharmonic orchestra. Neuroscience and Biobehavioral Reviews, 2023, 153, 105382.	6.1	4
2007	Larvicidal activity of the photosensitive insecticides, methylene blue and rose bengal, in <i>Aedes aegypti</i> and <i>Anopheles gambiae</i> mosquitoes. Pest Management Science, 2024, 80, 296-306.	3.4	0
2008	Complete mitochondrial genome of Ctenophthalmus quadratus and Stenischia humilis in China provides insights into fleas phylogeny. Frontiers in Veterinary Science, 0, 10, .	2.2	0
2009	Structure of the Avian Respiratory System. Zoological Monographs, 2023, , 191-267.	1.1	1
2010	The X chromosome of insects likely predates the origin of class Insecta. Evolution; International Journal of Organic Evolution, 2023, 77, 2504-2511.	2.3	2
2011	The chromosome-scale reference genome of mirid bugs (Adelphocoris suturalis) genome provides insights into omnivory, insecticide resistance, and survival adaptation. BMC Biology, 2023, 21, .	3.8	1
2012	Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. Genome Research, 2023, 33, 1708-1717.	5.5	2
2013	Respirometry reveals major lineage-based differences in the energetics of osmoregulation in aquatic invertebrates. Journal of Experimental Biology, 2023, 226, .	1.7	1

#	Article	IF	CITATIONS
2014	â€~Dawn' hexapods in Cenozoic ambers (Diplura: Campodeoidea). Zoological Journal of the Linnean Society, 0, , .	2.3	1
2015	Distinct roles of the Hox genes <i>Ultrabithorax</i> and <i>abdominalâ€A</i> in scorpionfly embryonic proleg development. Insect Molecular Biology, 2024, 33, 69-80.	2.0	0
2016	Largeâ€scale genomic data reveal the phylogeny and evolution of owlet moths (Noctuoidea). Cladistics, 2024, 40, 21-33.	3.3	1
2017	Chromosome-level genome assembly of an important wolfberry fruit fly (Neoceratitis asiatica Becker). Scientific Data, 2023, 10, .	5.3	0
2018	Exploring chromosome evolution in 250 million year old groups of dragonflies and damselflies (Insecta:Odonata). Molecular Ecology, 2023, 32, 5785-5797.	3.9	1
2019	Structure of the Drosophila melanogaster Flight Muscle Myosin Filament at 4.7 Ã Resolution Reveals New Details of Non-Myosin Proteins. International Journal of Molecular Sciences, 2023, 24, 14936.	4.1	1
2020	Phylogenomics reveals the history of host use in mosquitoes. Nature Communications, 2023, 14, .	12.8	9
2021	Anchored phylogenomics and revised classification of the Miltogramminae (Diptera: Sarcophagidae). Systematic Entomology, 2024, 49, 138-155.	3.9	1
2022	The PWWP domain and the evolution of unique DNA methylation toolkits in Hymenoptera. IScience, 2023, 26, 108193.	4.1	2
2023	First records of two new silverfish species (Ctenolepisma longicaudatum and Ctenolepisma calvum) in Slovakia, with checklist and identification key of Slovak Zygentoma. , 2024, 79, 425-435.		0
2024	Phylogenomic analysis of Tachinidae (Diptera: Calyptratae: Oestroidea): a transcriptomic approach to understanding the subfamily relationships. Cladistics, 2024, 40, 64-81.	3.3	1
2025	Co-option of a conserved host glutamine transporter facilitates aphid/ <i>Buchnera</i> metabolic integration. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
2026	Neofunctionalization of Toll Signaling in Insects: From Immunity to Dorsoventral Patterning. Annual Review of Cell and Developmental Biology, 2023, 39, 1-22.	9.4	1
2027	Sperm models in European Plecoptera. Arthropod Structure and Development, 2023, 77, 101311.	1.4	0
2028	Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). Arthropod Structure and Development, 2023, 77, 101309.	1.4	0
2029	New insects (Paoliida, Dictyoptera) from the Carboniferous outcrop of Tante Victoire in Var, France. Alcheringa, 2023, 47, 305-314.	1.2	0
2030	Cretaceous amber insects. Geological Society Special Publication, 2024, 544, .	1.3	0
2031	Uncovering the functional basis of mantids that resemble plants. Science China Life Sciences, 0, , .	4.9	0

#	Article	IF	CITATIONS
2032	Evolutionary Insights into the Relationship of Frogs, Salamanders, and Caecilians and Their Adaptive Traits, with an Emphasis on Salamander Regeneration and Longevity. Animals, 2023, 13, 3449.	2.3	1
2033	Mosquito larvae exposed to a sublethal dose of photosensitive insecticides have altered juvenile development but unaffected adult life history traits. Parasites and Vectors, 2023, 16, .	2.5	0
2034	A radiation of <i>Psylliodes</i> flea beetles on Brassicaceae is associated with the evolution of specific detoxification enzymes. Evolution; International Journal of Organic Evolution, 0, , .	2.3	1
2035	Trade-Offs among Immune Mechanisms: Bacterial-Challenged Spodoptera frugiperda Larvae Reduce Nodulation Reactions during Behavioral Fever. Insects, 2023, 14, 864.	2.2	1
2036	Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Development Genes and Evolution, 2023, 233, 59-76.	0.9	0
2037	Bridging the cytogenetic gap in Trichoptera (Insecta): first karyotypic data on Neotropical species and insights into chromosomal evolution in caddisflies. Biological Journal of the Linnean Society, 0, , .	1.6	0
2038	The function of wing bullae in mayflies (Insecta: Ephemeroptera) reveals new insights into the early evolution of Pterygota. BMC Biology, 2023, 21, .	3.8	0
2039	Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Molecular Phylogenetics and Evolution, 2024, 190, 107956.	2.7	1
2040	Ontogeny of color development in two green–brown polymorphic grasshopper species. Ecology and Evolution, 2023, 13, .	1.9	0
2041	Functional annotation of insecta transcriptomes: A cautionary tale from Lepidoptera. Insect Biochemistry and Molecular Biology, 2024, 165, 104038.	2.7	0
2042	Evolution of terrestrial herbivory: nutrient stoichiometry, body size, and dietary diversity. Frontiers in Ecology and Evolution, 0, 11, .	2.2	0
2043	The Scorpionfly (<i>Panorpa cognata</i>) Genome Highlights Conserved and Derived Features of the Peculiar Dipteran X Chromosome. Molecular Biology and Evolution, 2023, 40, .	8.9	0
2044	Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. Insects, 2023, 14, 904.	2.2	0
2045	Female Germline Cysts in Animals: Evolution and Function. Results and Problems in Cell Differentiation, 2024, , 23-46.	0.7	0
2046	Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera). Integrative Zoology, 0, , .	2.6	0
2048	The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Communications Biology, 2023, 6, .	4.4	0
2049	The taxonomic catalog of the Brazilian fauna: Dermaptera and Phasmatodea (Insecta), with commentaries on species list, types, authorship and distribution. Zoologia, 0, 40, .	0.5	0
2050	Facilitating taxonomy and phylogenetics: An informative and cost-effective protocol integrating long amplicon PCRs and third-generation sequencing. Molecular Phylogenetics and Evolution, 2024, 192, 107988.	2.7	1

ARTICLE IF CITATIONS The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to 2052 2.2 0 Different Management Strategies. Insects, 2023, 14, 944. Comparative analysis of mitogenomes among three species of grasshoppers (Orthoptera: Acridoidea:) Tj ETQq1 1 Q784314 rgBT /Ov 2053 New records of Odonata (Insecta) for the extreme northwest of the Brazilian Amazon. International 2054 0.5 0 Journal of Odonatology, 0, 26, 224-233. Geologically calibrated mammalian tree and its correlation with global events, including the 1.9 emergence of humans. Ecology and Evolution, 2023, 13, . The limits of the constant-rate birth-death prior for phylogenetic tree topology inference. Systematic 2057 5.6 0 Biology, O, , . On the nature of evolutionary explanations: a critical appraisal of Walter Bock $\hat{a} \in \mathbb{M}$ s approach with a new revised proposal. History and Philosophy of the Life Sciences, 2024, 46, . 2058 1.1 Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation 2059 6.4 0 and immune-related genes. GigaScience, 2024, 13, . Artificial neuronal networks are revolutionizing entomological research. Journal of Applied 2060 1.8 Entomology, 2024, 148, 232-251. Middle Jurassic insect mines on gymnosperms provide missing links to early mining evolution. New 2061 7.3 1 Phytologist, 0, , . Exploring horizontal transfer of mariner transposable elements among ants and aphids. Gene, 2024, 2.2 899, 148144. A Scientometric Approach to the Taxonomy of Brazilian Plecoptera: An Overview of Data. Revista 2063 0 0.4 Brasileira De Entomologia, 2023, 67, . Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda 2064 2.0 phylogeny. PeerJ, 0, 12, e16706. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. 2067 9.5 0 Journal of Advanced Research, 2024, , . Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) 2068 5.6 Revealed by a New Molecular Phylogeny. Systematic Biology, 0, , . When Plants and Animals First Met Fungi: Insights from the Evolution of Host Immune Systems. , 2024, , 2069 0 1-32. The role of non-volatile chemicals of floral rewards in plant-pollinator interactions. Basic and 2070 Applied Ecology, 2024, 75, 31-43. New insights on the spore dispersal of Phallus indusiatus s.l. (Basidiomycota, Phallaceae) for the 2071 1.2 0 Brazilian Amazon forest. Food Webs, 2024, 38, e00338. Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification. Genome Biology and Evolution, 2024, 16, .

#	Article	IF	CITATIONS
2073	The genome of the blind bee louse fly reveals deep convergences with its social host and illuminates Drosophila origins. Current Biology, 2024, 34, 1122-1132.e5.	3.9	1
2074	Stem chewing lice on Cretaceous feathers preserved in amber. Current Biology, 2024, 34, 916-922.e1.	3.9	0
2075	Virus-host coevolutionary analyses of an Alphabaculovirus with a wide host range. Journal of General Virology, 2024, 105, .	2.9	0
2078	The evolutionary history of <scp>Coleoptera</scp> (<scp>Insecta</scp>) in the late <scp>Palaeozoic</scp> and the <scp>Mesozoic</scp> . Systematic Entomology, 0, , .	3.9	0
2080	Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. Insects, 2024, 15, 132.	2.2	0
2081	Current progress and challenges of horizontal gene transfers in whiteflies (Bemisia tabaci) for their sustainable management. Journal of Asia-Pacific Entomology, 2024, 27, 102216.	0.9	0
2082	Chromosome-level genome of the poultry shaft louse <i>Menopon gallinae</i> provides insight into the host-switching and adaptive evolution of parasitic lice. GigaScience, 2024, 13, .	6.4	0
2083	Moss bugs shed light on the evolution of complex bioacoustic systems. PLoS ONE, 2024, 19, e0298174.	2.5	0
2084	First <scp>3D</scp> reconstruction of the male genitalia of a Cretaceous fossil cricket: Diving into the evolutionary history of the Oecanthidae family (Orthoptera: Grylloidea) with the incorporation of new fossils in its phylogeny and a totalâ€evidence dating approach. Systematic Entomology, 0, , .	3.9	0
2085	Salivary proteins potentially derived from horizontal gene transfer are critical for salivary sheath formation and other feeding processes. Communications Biology, 2024, 7, .	4.4	0
2086	A new griffenfly genus and species from the Early Pennsylvanian of the Xiaheyan locality (Ningxia,) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
2087	Unsupervised AI reveals insect species-specific genome signatures. PeerJ, 0, 12, e17025.	2.0	0
2088	Sensory pathway in aquatic basal polyneoptera: Antennal sensilla and brain morphology in stoneflies. Arthropod Structure and Development, 2024, 79, 101345.	1.4	0
2090	Mechanisms preventing animals to achieve buoyant flight. Journal of Natural History, 2024, 58, 440-448.	0.5	0
2091	Chromosomal-Level Reference Genome for the Chinese Endemic Pygmy Grasshopper, Zhengitettix transpicula, Sheds Light on Tetrigidae Evolution and Advancing Conservation Efforts. Insects, 2024, 15, 223.	2.2	0
2092	Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola. Insects, 2024, 15, 199.	2.2	0
2093	Development and reproductive biology of Dermaptera: a comparative study of thirteen species from eight families. Arthropod Systematics and Phylogeny, 0, 82, 35-75.	1.1	0
2094	Multicopper oxidase-2 mediated cuticle formation: Its contribution to evolution and success of insects as terrestrial organisms. Insect Biochemistry and Molecular Biology, 2024, 168, 104111.	2.7	0

#	Article	IF	CITATIONS
2095	Insects of North America. American Entomologist, 2024, 70, 62-62.	0.2	0
2096	Vertebrate Pollination of Angiosperms in the Mediterranean Area: A Review. Plants, 2024, 13, 895.	3.5	0