Oxygen electrocatalysts in metal–air batteries: from a

Chemical Society Reviews 43, 7746-7786 DOI: 10.1039/c3cs60248f

Citation Report

#	Article	IF	CITATIONS
2	Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Science China Materials, 2014, 57, 42-58.	3.5	78
3	The double perovskite oxide Sr2CrMoO6â~îδas an efficient electrocatalyst for rechargeable lithium air batteries. Chemical Communications, 2014, 50, 14855-14858.	2.2	38
4	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
5	The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 2014, 6, 1091-1099.	6.6	942
6	Exploring zinc coordination in novel zinc battery electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 10816.	1.3	27
7	Energy-saving and environmentally friendly electrodeposition of γ-MnO ₂ . RSC Advances, 2014, 4, 16512-16516.	1.7	20
8	A hierarchical Ni–Co–O@Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode. Physical Chemistry Chemical Physics, 2014, 16, 20402-20405.	1.3	54
9	Carbon embedded α-MnO ₂ @graphene nanosheet composite: a bifunctional catalyst for high performance lithium oxygen batteries. Journal of Materials Chemistry A, 2014, 2, 18736-18741.	5.2	44
10	Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale, 2014, 6, 10235-10242.	2.8	112
11	A comparative study of nanostructured $\hat{I}\pm$ and \hat{I}' MnO2 for lithium oxygen battery application. RSC Advances, 2014, 4, 8973.	1.7	44
12	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	15.6	767
13	Zinc–Air Battery: Understanding the Structure and Morphology Changes of Graphene-Supported CoMn ₂ O ₄ Bifunctional Catalysts Under Practical Rechargeable Conditions. ACS Applied Materials & Interfaces, 2014, 6, 16545-16555.	4.0	132
14	An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li–O2 batteries. Journal of Materials Chemistry A, 2014, 2, 10634.	5.2	76
15	Liâ€O ₂ Battery Based on Highly Efficient Sbâ€Doped Tin Oxide Supported Ru Nanoparticles. Advanced Materials, 2014, 26, 4659-4664.	11.1	133
16	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	5.2	41
17	Key scientific challenges in current rechargeable non-aqueous Li–O2 batteries: experiment and theory. Physical Chemistry Chemical Physics, 2014, 16, 12093.	1.3	120
18	Edge-iodine/sulfonic acid-functionalized graphene nanoplatelets as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 8690-8695.	5.2	45

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
20	Recent advances in zinc–air batteries. Chemical Society Reviews, 2014, 43, 5257-5275.	18.7	1,882
21	A Carbon―and Binderâ€Free Nanostructured Cathode for Highâ€Performance Nonaqueous Liâ€O ₂ Battery. Advanced Science, 2015, 2, 1500092.	5.6	76
23	Flexible and Foldable Li–O ₂ Battery Based on Paperâ€Ink Cathode. Advanced Materials, 2015, 27, 8095-8101.	11.1	117
25	Flexible, Stretchable, and Rechargeable Fiberâ€Shaped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	7.2	291
26	Highâ€Rate Oxygen Evolution Reaction on Alâ€Doped LiNiO ₂ . Advanced Materials, 2015, 27, 6063-6067.	11.1	74
27	Investigation on the Cyclability of Lithiumâ€Oxygen Cells in a Confined Potential Window using Cathodes with Preâ€filled Discharge Products. Chemistry - an Asian Journal, 2015, 10, 2182-2189.	1.7	10
28	Recent Progress on Stability Enhancement for Cathode in Rechargeable Nonâ€Aqueous Lithiumâ€Oxygen Battery. Advanced Energy Materials, 2015, 5, 1500633.	10.2	128
29	Carbon Nanofibers as Advanced Pd Catalyst Supports for the Air Electrode of Alkaline Metal–Air Batteries. ChemPlusChem, 2015, 80, 1384-1388.	1.3	20
30	An Organic Catalyst for Li–O ₂ Batteries: Dilithium Quinoneâ€1,4â€Dicarboxylate. ChemSusChem, 2015, 8, 2198-2203.	3.6	13
31	Synthesis, Spectroscopic Characterization, Crystal Structures, Energetics, and Thermal Stabilities of Li[AlX ₄] (X = Cl, Br): Investigation and Performance of Their Electrolyte Solutions. European Journal of Inorganic Chemistry, 2015, 2015, 3128-3138.	1.0	5
32	Chitosan Wasteâ€Derived Co and N Coâ€doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1806-1812.	1.7	49
33	Diameterâ€Controlled Synthesis and Capacitive Performance of Mesoporous Dualâ€Layer MnO ₂ Nanotubes. ChemNanoMat, 2015, 1, 159-166.	1.5	11
34	Synergistically enhanced oxygen reduction activity of MnO _x –CeO ₂ /Ketjenblack composites. Chemical Communications, 2015, 51, 10123-10126.	2.2	69
35	A review of cathode materials and structures for rechargeable lithium–air batteries. Energy and Environmental Science, 2015, 8, 2144-2198.	15.6	415
36	A high-capacity Li-ion/Li–oxygen hybrid cathode. Journal of Materials Chemistry A, 2015, 3, 13628-13631.	5.2	6
37	Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement. Journal of Power Sources, 2015, 283, 358-371.	4.0	248
38	FeS ₂ microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12898-12904.	5.2	111
39	Mg2Al3, a complex and disordered intermetallic compound as anode material for metal-air batteries. Journal of Solid State Electrochemistry, 2015, 19, 685-695.	1.2	11

#	Article	IF	CITATIONS
40	An Efficient Bi-functional Electrocatalyst Based on Strongly Coupled CoFe 2 O 4 /Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 2015, 177, 65-72.	2.6	92
41	The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale, 2015, 7, 6504-6509.	2.8	29
42	Honeycomb-like NiMoO ₄ ultrathin nanosheet arrays for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 6128-6135.	5.2	203
43	The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. Journal of Materials Chemistry A, 2015, 3, 3425-3431.	5.2	34
44	Probing LaMO ₃ Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 2063-2072.	1.5	56
45	Increasing the reversibility of Li–O2 batteries with caterpillar structured α–MnO2/N–GNF bifunctional electrocatalysts. Electrochimica Acta, 2015, 157, 299-306.	2.6	23
46	β-FeOOH decorated highly porous carbon aerogels composite as a cathode material for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 6447-6454.	5.2	16
47	Open mesoporous spherical shell structured Co3O4with highly efficient catalytic performance in Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 7600-7606.	5.2	36
48	Fabrication of ultrathin CoMoO ₄ nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Transactions, 2015, 44, 6158-6168.	1.6	129
49	Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3320-3324.	5.2	86
50	SnO ₂ nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation. Energy and Environmental Science, 2015, 8, 1261-1266.	15.6	50
51	Perovskite–Nitrogenâ€Đoped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium–Air Batteries. ChemSusChem, 2015, 8, 1058-1065.	3.6	92
52	Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chemical Communications, 2015, 51, 11599-11602.	2.2	71
53	Hierarchical mesoporous/macroporous Co ₃ O ₄ ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 17620-17626.	5.2	54
54	SrCo _{0.9} Ti _{0.1} O _{3â^'δ} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces, 2015, 7, 17663-17670.	4.0	125
55	Oxygen Redox Catalyst for Rechargeable Lithium-Air Battery. Green Energy and Technology, 2015, , 541-557.	0.4	0
56	Toward a Sodium–"Air―Battery: Revealing the Critical Role of Humidity. Journal of Physical Chemistry C, 2015, 119, 13433-13441.	1.5	66
57	The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 17598-17605.	5.2	155

#	Article	IF	CITATIONS
58	Investigation of the activity and stability of Pd-based catalysts towards the oxygen reduction (ORR) and evolution reactions (OER) in iron–air batteries. RSC Advances, 2015, 5, 25424-25427.	1.7	39
59	MWNT-supported bifunctional catalyst of β-FeOOH nanospindles for enhanced rechargeable Li–O2 batteries. Journal of Alloys and Compounds, 2015, 639, 428-434.	2.8	4
60	Facile in Situ Preparation of Graphitic-C ₃ N ₄ @carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2015, 7, 10823-10827.	4.0	75
61	Hierarchical porous NiCo2O4@Ni as carbon-free electrodes for Lithium–oxygen batteries. Electrochimica Acta, 2015, 168, 292-299.	2.6	26
62	An atomic-level strategy for the design of a low overpotential catalyst for Liâ^'O2 batteries. Nano Energy, 2015, 13, 679-686.	8.2	68
63	TiO ₂ embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. Chemical Communications, 2015, 51, 11370-11373.	2.2	64
64	DMSO–Li ₂ O ₂ Interface in the Rechargeable Li–O ₂ Battery Cathode: Theoretical and Experimental Perspectives on Stability. ACS Applied Materials & Interfaces, 2015, 7, 11402-11411.	4.0	66
65	Trinary Layered Double Hydroxides as Highâ€Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015, 5, 1500245.	10.2	328
66	Protocol for High-Sensitivity Surface Area Measurements of Nanostructured Films Enabled by Atomic Layer Deposition of TiO ₂ . Journal of Physical Chemistry C, 2015, 119, 26119-26127.	1.5	8
67	Recent advances in surface and interface engineering for electrocatalysis. Chinese Journal of Catalysis, 2015, 36, 1476-1493.	6.9	48
68	A high-rate and long cycle life solid-state lithium–air battery. Energy and Environmental Science, 2015, 8, 3745-3754.	15.6	129
69	Electrodeposition of Pluronic F127 assisted rod-like EMD/carbon arrays for efficient energy storage. Dalton Transactions, 2015, 44, 16446-16457.	1.6	9
70	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	18.7	388
71	A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18456-18465.	5.2	81
72	Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 2015, 60, 38-41.	2.3	86
73	Highly Active and Durable Nanocrystalâ€Decorated Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ChemSusChem, 2015, 8, 3129-3138.	3.6	57
74	Critical advances for the iron molten air battery: a new lowest temperature, rechargeable, ternary electrolyte domain. Journal of Materials Chemistry A, 2015, 3, 21039-21043.	5.2	15
75	Bi-layer lithium phosphorous oxynitride/aluminium substituted lithium lanthanum titanate as a promising solid electrolyte for long-life rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 22421-22431.	5.2	36

#	Article	IF	CITATIONS
76	Composition-controlled synthesis of LixCo3â~'xO4 solid solution nanocrystals on carbon and their impact on electrocatalytic activity toward oxygen reduction reaction. RSC Advances, 2015, 5, 90785-90796.	1.7	19
77	Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochimica Acta, 2015, 180, 788-794.	2.6	77
78	Hydrothermal Synthesis of Boron and Nitrogen Codoped Hollow Graphene Microspheres with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 19398-19407.	4.0	83
79	Recent developments in materials for aluminum–air batteries: A review. Journal of Industrial and Engineering Chemistry, 2015, 32, 1-20.	2.9	224
80	Carbon nanotube-supported Cu ₃ N nanocrystals as a highly active catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 18983-18990.	5.2	52
81	Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations. ACS Applied Materials & Interfaces, 2015, 7, 21948-21955.	4.0	34
82	Template-directed fabrication of porous gas diffusion layer for magnesium air batteries. Journal of Power Sources, 2015, 297, 202-207.	4.0	22
83	Covalency-reinforced oxygen evolution reaction catalyst. Nature Communications, 2015, 6, 8249.	5.8	393
84	A low-cost cementite (Fe ₃ C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction. Physical Chemistry Chemical Physics, 2015, 17, 27527-27533.	1.3	22
85	Another Way of Looking at Reactivity Enhancement in Large-Area Graphene: The Role of Exchange Splitting from First-Principles Methods. Journal of Physical Chemistry C, 2015, 119, 26636-26642.	1.5	1
86	Nanostructured porous RuO ₂ /MnO ₂ as a highly efficient catalyst for high-rate Li–O ₂ batteries. Nanoscale, 2015, 7, 20614-20624.	2.8	42
87	N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery. International Journal of Hydrogen Energy, 2015, 40, 16230-16237.	3.8	49
88	Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Physical Chemistry Chemical Physics, 2015, 17, 30963-30977.	1.3	142
89	Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc–Air Battery Applications. ACS Applied Materials & Interfaces, 2015, 7, 902-910.	4.0	176
90	Sea Urchin Shaped α-MnO ₂ /RuO ₂ Mixed Oxides Nanostructure as Promising Electrocatalyst for Lithium–Oxygen Battery. Journal of the Electrochemical Society, 2015, 162, A300-A307.	1.3	32
91	Lithium–Air Batteries: Performance Interplays with Instability Factors. ChemElectroChem, 2015, 2, 312-323.	1.7	30
92	Low Surface Energy Plane Exposed Co ₃ O ₄ Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 442-451.	4.0	108
93	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	18.7	740

#	Article	IF	CITATIONS
95	Electrocatalytic Activity of Co-based Perovskite Oxides for Oxygen Reduction and Evolution Reactions. International Journal of Electrochemical Science, 2016, 11, 5900-5908.	0.5	17
96	Investigation of MnO2 and Ordered Mesoporous Carbon Composites as Electrocatalysts for Li-O2 Battery Applications. Nanomaterials, 2016, 6, 21.	1.9	17
97	Lithium–air battery cathode modification via an unconventional thermal method employing borax. RSC Advances, 2016, 6, 66307-66310.	1.7	1
98	Measuring the oxygen content of a single oil droplet. Chemical Science, 2016, 7, 6458-6462.	3.7	16
99	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	1.9	33
100	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
101	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.	7.2	258
102	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle and Particle Systems Characterization, 2016, 33, 473-486.	1.2	106
103	Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. Journal of Materials Chemistry A, 2016, 4, 11516-11523.	5.2	104
104	Cableâ€Type Waterâ€Survivable Flexible Liâ€O ₂ Battery. Small, 2016, 12, 3101-3105.	5.2	102
105	Sodiumâ€Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Advanced Materials, 2016, 28, 7065-7093.	11.1	198
106	Superaerophilic Carbonâ€Nanotubeâ€Array Electrode for Highâ€Performance Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 7155-7161.	11.1	231
107	Selfâ€Assembled 3D Foamâ€Like NiCo ₂ O ₄ as Efficient Catalyst for Lithium Oxygen Batteries. Small, 2016, 12, 602-611.	5.2	97
108	Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co ₃ O ₄ for oxygen electrocatalysis. Chemical Communications, 2016, 52, 9727-9730.	2.2	291
109	Warum Lithiumâ€5auerstoffâ€Batterien versagen: ParasitÃæ chemische Reaktionen und ihr synergistischer Effekt. Angewandte Chemie, 2016, 128, 11514-11524.	1.6	22
110	First-principles calculations of the OHâ^ adsorption energy on perovskite oxide. AIP Conference Proceedings, 2016, , .	0.3	6
111	Rechargeable Metal–Air Protonâ€Exchange Membrane Batteries for Renewable Energy Storage. ChemElectroChem, 2016, 3, 247-255.	1.7	15
112	Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7107-7134.	5.2	408

#	Article	IF	CITATIONS
113	N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2016, 4, 8602-8609.	5.2	112
114	Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges. Chemistry - A European Journal, 2016, 22, 3588-3598.	1.7	305
115	Efficiency and long-term durability of a nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluorination-assisted nanotube-substitution for oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9184-9195.	5.2	21
116	Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries. Journal of Power Sources, 2016, 306, 329-336.	4.0	24
117	Improving the Performance of Lithium–Sulfur Batteries by Employing Polyimide Particles as Hosting Matrixes. ACS Applied Materials & Interfaces, 2016, 8, 7464-7470.	4.0	52
118	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	5.2	88
119	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63
120	Pt and Pd catalyzed oxidation of Li ₂ O ₂ and DMSO during Li–O ₂ battery charging. Chemical Communications, 2016, 52, 6605-6608.	2.2	45
121	Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Applied Energy, 2016, 175, 459-467.	5.1	51
122	Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium–O2 batteries. Energy Storage Materials, 2016, 2, 8-13.	9.5	40
123	Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 208, 17-24.	2.6	86
124	NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for Li O2 battery with enhanced performances. Journal of Power Sources, 2016, 319, 19-26.	4.0	43
125	Bulk Production of Nonprecious Metal Catalysts from Cheap Starch as Precursor and Their Excellent Electrochemical Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 3235-3244.	3.2	22
126	Progress in development of flexible metal–air batteries. Functional Materials Letters, 2016, 09, 1630001.	0.7	41
127	Measurement of a new parameter representing the gas transport properties of the catalyst layers of polymer electrolyte fuel cells. Physical Chemistry Chemical Physics, 2016, 18, 13066-13073.	1.3	8
128	Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries. Nanoscale, 2016, 8, 11398-11402.	2.8	59
129	Nanosized CoWO 4 and NiWO 4 as efficient oxygen-evolving electrocatalysts. Electrochimica Acta, 2016, 209, 75-84.	2.6	70
130	An urchin-like Ni ₃ ZnC _{0.7} –carbon nanotube-porous carbon composite derived from metal–organic gel as a cathode material for rechargeable Li–O ₂ batteries. RSC Advances, 2016, 6, 45612-45616.	1.7	8

#	Article	IF	CITATIONS
131	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	15.6	535
132	Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed Inâ€Situ by Highâ€Pressure Pyrolysis for Efficient Oxygen Reduction. ChemCatChem, 2016, 8, 3131-3136.	1.8	4
133	Exploration of LiO2 by the method of electrochemical quartz crystal microbalance in TEGDME based Li-O2 battery. Journal of Power Sources, 2016, 329, 525-529.	4.0	18
134	Cobalt nanoparticles encapsulated in N-doped graphene nanoshells as an efficient cathode electrocatalyst for a mechanical rechargeable zinc–air battery. RSC Advances, 2016, 6, 90069-90075.	1.7	22
135	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	4.5	241
136	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
137	A critical review of macroscopic modeling studies on LiÂO2 and Li–air batteries using organic electrolyte: Challenges and opportunities. Journal of Power Sources, 2016, 332, 420-446.	4.0	60
138	Insights into the Catalytic Activity of Barium Carbonate for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 22895-22902.	1.5	15
139	Zinc regeneration in rechargeable zinc-air fuel cells—A review. Journal of Energy Storage, 2016, 8, 35-50.	3.9	87
140	Stirring-assisted hydrothermal synthesis of ultralong α-MnO ₂ nanowires for oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 928-933.	3.0	28
141	N-, Fe-Doped carbon sphere/oriented carbon nanofiber nanocomposite with synergistically enhanced electrochemical activities. RSC Advances, 2016, 6, 92739-92747.	1.7	1
142	A binder-free, flexible cathode for rechargeable Na-O2 batteries. Chinese Journal of Catalysis, 2016, 37, 1172-1179.	6.9	18
143	Hierarchical urchin-shaped α-MnO2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na–air battery. NPG Asia Materials, 2016, 8, e294-e294.	3.8	87
144	A Flexible and Wearable Lithium–Oxygen Battery with Record Energy Density achieved by the Interlaced Architecture inspired by Bamboo Slips. Advanced Materials, 2016, 28, 8413-8418.	11.1	138
145	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 21431-21439.	4.0	205
146	A multi-layered Fe ₂ O ₃ /graphene composite with mesopores as a catalyst for rechargeable aprotic lithium–oxygen batteries. Nanotechnology, 2016, 27, 365402.	1.3	21
147	Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6, 6335-6342.	5.5	210
148	Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Electrochimica Acta, 2016, 214, 49-55.	2.6	61

#	Article	IF	Citations
149	A class of transition metal-oxide@MnOx core–shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13881-13889.	5.2	42
150	Development of carbon-based cathodes for Li-air batteries: Present and future. Electronic Materials Letters, 2016, 12, 551-567.	1.0	45
151	A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass. Nanoscale Research Letters, 2016, 11, 268.	3.1	20
153	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Research, 2016, 9, 2445-2457.	5.8	40
154	Lithium-Ion-Battery Anode Materials with Improved Capacity from a Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 8244-8247.	1.9	76
155	A Metalâ€Amino Acid Complexâ€Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc–Air Batteries. Small, 2016, 12, 5414-5421.	5.2	48
156	Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 2016, 6, 6191-6197.	5.5	94
157	Metal coordination enhanced Ni–Co@N-doped porous carbon core–shell microsphere bi-functional electrocatalyst and its application in rechargeable zinc/air batteries. RSC Advances, 2016, 6, 83386-83392.	1.7	8
158	Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries. Electrochimica Acta, 2016, 222, 1438-1444.	2.6	26
159	Catalyst morphology matters for lithium–oxygen battery cathodes. Nanotechnology, 2016, 27, 495404.	1.3	12
160	Dandelion-like NiCo 2 O 4 hollow microspheres as enhanced cathode catalyst for Li-oxygen batteries in ambient air. Electrochimica Acta, 2016, 216, 120-129.	2.6	26
161	Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance. Electrochimica Acta, 2016, 217, 80-91.	2.6	88
162	Computational insights into the effect of carbon structures at the atomic level for non-aqueous sodium-oxygen batteries. Journal of Power Sources, 2016, 325, 91-97.	4.0	21
163	Phase controllable synthesis of three-dimensional star-like MnO ₂ hierarchical architectures as highly efficient and stable oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 16462-16468.	5.2	48
164	Facile synthesis of ZnCo ₂ O ₄ mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties. RSC Advances, 2016, 6, 92699-92704.	1.7	38
165	The Influence of Electrode Microstructure on the Performance of Free-Standing Cathode for Aprotic Lithium-Oxygen Battery. Jom, 2016, 68, 2585-2592.	0.9	7
166	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598
167	Nitrogen-doped amorphous carbon with effective electrocatalytic activity toward oxygen reduction reaction. Materials Research Bulletin, 2016, 84, 118-123.	2.7	12

#	Article	IF	CITATIONS
168	Direct Heating Amino Acids with Silica: A Universal Solventâ€Free Assembly Approach to Highly Nitrogenâ€Đoped Mesoporous Carbon Materials. Advanced Functional Materials, 2016, 26, 6649-6661.	7.8	67
169	Advanced High Energy Density Secondary Batteries with Multiâ€Electron Reaction Materials. Advanced Science, 2016, 3, 1600051.	5.6	180
170	Recent Advances in Nonâ€Aqueous Electrolyte for Rechargeable Li–O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1600751.	10.2	149
171	Ru-decorated knitted Co ₃ O ₄ nanowires as a robust carbon/binder-free catalytic cathode for lithium–oxygen batteries. New Journal of Chemistry, 2016, 40, 6812-6818.	1.4	20
172	Efficient water oxidation through strongly coupled graphitic C ₃ N ₄ coated cobalt hydroxide nanowires. Journal of Materials Chemistry A, 2016, 4, 12940-12946.	5.2	88
173	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	3.6	39
174	Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect. Angewandte Chemie - International Edition, 2016, 55, 11344-11353.	7.2	186
175	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
176	Controlled Growth of Li ₂ O ₂ by Cocatalysis of Mobile Pd and Co ₃ O ₄ Nanowire Arrays for High-Performance Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31653-31660.	4.0	26
177	Selective nitrogen bonding states in nitrogen-doped carbon via a solution plasma process for advanced oxygen reduction reaction. RSC Advances, 2016, 6, 109354-109360.	1.7	23
178	Enabling rechargeable non-aqueous Mg–O ₂ battery operations with dual redox mediators. Chemical Communications, 2016, 52, 13753-13756.	2.2	22
179	Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage. Scientific Reports, 2016, 6, 31120.	1.6	125
180	FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery. Electrochimica Acta, 2016, 220, 354-362.	2.6	112
181	Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Scientific Reports, 2016, 6, 24314.	1.6	56
182	Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports, 2016, 6, 33154.	1.6	77
183	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.	1.6	20
184	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
185	Improving the Performance of Perovskite in Nonaqueous Oxygen Electrocatalysis. Chemistry - an Asian Journal, 2016, 11, 1210-1217.	1.7	8

#	Article	IF	CITATIONS
186	Metalâ€Organic Frameworks Help Conducting Polymers Optimize the Efficiency of the Oxygen Reduction Reaction in Neutral Solutions. Advanced Materials Interfaces, 2016, 3, 1600047.	1.9	33
187	Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution. Journal of Materials Chemistry A, 2016, 4, 10575-10584.	5.2	141
188	Insights into degradation of metallic lithium electrodes protected by a bilayer solid electrolyte based on aluminium substituted lithium lanthanum titanate in lithium-air batteries. Journal of Materials Chemistry A, 2016, 4, 11124-11138.	5.2	36
189	Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. RSC Advances, 2016, 6, 56765-56771.	1.7	8
190	Significant Lanthanoid Substitution Effect on the Redox Reactivity of the Oxygen-Storage Material BaYMn ₂ O _{5+δ} . Chemistry of Materials, 2016, 28, 4409-4414.	3.2	21
191	Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chemical Communications, 2016, 52, 8156-8159.	2.2	145
192	Nitrogen-doped activated graphene/SWCNT hybrid for oxygen reduction reaction. Current Applied Physics, 2016, 16, 1242-1249.	1.1	17
193	Self-Actuation of Liquid Metal via Redox Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 6-10.	4.0	84
194	Magnesium cobalt silicate as a bifunctional catalyst for the O2 electrode and its application in Li–O2 cells. Catalysis Science and Technology, 2016, 6, 6716-6725.	2.1	10
195	Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 18860-18866.	4.0	96
196	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie, 2016, 128, 8111-8114.	1.6	70
197	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982.	7.2	211
198	Hollowâ€Structured Carbonâ€Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. ChemCatChem, 2016, 8, 736-742.	1.8	70
199	Influence of Ambient Air on Cell Reactions of Li-air Batteries. Electrochimica Acta, 2016, 191, 473-478.	2.6	28
200	Hierarchical Cr2O3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries. Journal of Alloys and Compounds, 2016, 665, 365-372.	2.8	16
201	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	2.8	109
202	Simple synthesis of a CoMoS ₄ based nanostructure and its application for high-performance supercapacitors. RSC Advances, 2016, 6, 7633-7642.	1.7	69
203	Perovskite La0.6Sr0.4Co0.2Fe0.8O3 as an effective electrocatalyst for non-aqueous lithium air batteries. Electrochimica Acta, 2016, 191, 106-115.	2.6	53

#	Article	IF	CITATIONS
204	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	15.6	774
205	Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers, 2016, 3, 630-634.	3.0	145
206	Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. Journal of Materials Chemistry A, 2016, 4, 3711-3720.	5.2	80
207	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
208	Influence of TiO 2 on the electrochemical performance of pasted type β -nickel hydroxide electrode in alkaline electrolyte. Journal of Energy Chemistry, 2016, 25, 41-48.	7.1	15
209	Synthesis of α-MnO ₂ nanowires modified by Co ₃ O ₄ nanoparticles as a high-performance catalyst for rechargeable Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2016, 18, 926-931.	1.3	46
210	A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts. Journal of Colloid and Interface Science, 2016, 464, 83-88.	5.0	27
211	High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	8.2	187
212	Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries. Electrochimica Acta, 2016, 191, 733-742.	2.6	43
213	Fabrication of La ₂ NiO ₄ nanoparticles as an efficient bifunctional cathode catalyst for rechargeable lithium–oxygen batteries. RSC Advances, 2016, 6, 17430-17437.	1.7	17
214	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	4.0	71
215	Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2016, 4, 4864-4870.	5.2	72
216	The (2Â×Â2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries. Superlattices and Microstructures, 2016, 90, 184-190.	1.4	23
217	Composition-dependent electro-catalytic activities of covalent carbon-LaMnO3 hybrids as synergistic catalysts for oxygen reduction reaction. Electrochimica Acta, 2016, 198, 115-126.	2.6	47
218	Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Electrochimica Acta, 2016, 191, 776-783.	2.6	131
219	MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries. Journal of Power Sources, 2016, 306, 724-732.	4.0	58
220	A biopolymer gel-decorated cobalt molybdate nanowafer: effective graft polymer cross-linked with an organic acid for better energy storage. New Journal of Chemistry, 2016, 40, 2863-2877.	1.4	69
221	One-Dimensional RuO ₂ /Mn ₂ O ₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 2076-2083.	4.5	193

#	Article	IF	CITATIONS
222	Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 5877-5889.	5.2	155
223	Porous LaCo _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â^îî} Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc–Air Battery. ACS Applied Materials & Interfaces, 2016, 8, 6019-6031.	4.0	115
224	From Lithiumâ€Oxygen to Lithiumâ€Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 2016, 6, 1502164.	10.2	296
225	First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2016, 120, 6612-6618.	1.5	161
226	N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O ₂ battery. Journal of Materials Chemistry A, 2016, 4, 2128-2136.	5.2	64
227	An optimization of MnO 2 amount in CNT-MnO 2 nanocomposite as a high rate cathode catalyst for the rechargeable Li-O 2 batteries. Electrochimica Acta, 2016, 188, 428-440.	2.6	55
228	Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions. Nano Letters, 2016, 16, 781-785.	4.5	39
229	MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 775-780.	5.2	79
230	A soft, multilayered lithium–electrolyte interface. Energy and Environmental Science, 2016, 9, 112-116.	15.6	53
231	Job-sharing cathode design for Li–O ₂ batteries with high energy efficiency enabled by in situ ionic liquid bonding to cover carbon surface defects. Journal of Materials Chemistry A, 2016, 4, 241-249.	5.2	31
232	Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Research, 2017, 10, 1449-1470.	5.8	144
233	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
234	Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe ₃ O ₄ nanorods. Nanotechnology, 2017, 28, 095707.	1.3	22
235	Synthesis, spectroscopic analysis and electrochemical performance of modified \hat{l}^2 -nickel hydroxide electrode with CuO. Journal of Science: Advanced Materials and Devices, 2017, 2, 93-98.	1.5	33
236	A highly efficient bifunctional heterogeneous catalyst for morphological control of discharged products in Na–air batteries. Chemical Communications, 2017, 53, 1522-1525.	2.2	18
237	Effects of composition and nanostructuring of palladium selenide phases, Pd ₄ Se, Pd ₇ Se ₄ and Pd ₁₇ Se ₁₅ , on ORR activity and their use in Mg–air batteries. Journal of Materials Chemistry A, 2017, 5, 4660-4670.	5.2	43
238	Dual Heteroatomâ€Ðoped Carbon Nanofoamâ€Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li–O ₂ Batteries. ChemSusChem, 2017, 10, 1554-1562.	3.6	15
239	Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Science Bulletin, 2017, 62, 442-452.	4.3	54

#	Article	IF	CITATIONS
240	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
241	Materials Design and System Construction for Conventional and Newâ€Concept Supercapacitors. Advanced Science, 2017, 4, 1600382.	5.6	365
242	Intensive Study on the Catalytical Behavior of <i>N</i> -Methylphenothiazine as a Soluble Mediator to Oxidize the Li ₂ O ₂ Cathode of the Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 3733-3739.	4.0	65
243	The development of cobalt phosphate for bifunctional oxygen electrocatalysis in alkaline solution. Electrochimica Acta, 2017, 227, 310-316.	2.6	38
244	Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. Journal of Materials Science, 2017, 52, 3697-3718.	1.7	36
245	Facile synthesis of PdSnCo/nitrogen-doped reduced graphene as a highly active catalyst for lithium-air batteries. Electrochimica Acta, 2017, 228, 36-44.	2.6	31
246	Hierarchical Structures Based on Twoâ€Dimensional Nanomaterials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1601906.	10.2	216
247	La0.7(Sr0.3-xPdx)MnO3 as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. Electrochimica Acta, 2017, 230, 418-427.	2.6	32
248	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
249	Efficient and Durable Bifunctional Oxygen Catalysts Based on NiFeO@MnO _{<i>x</i>} Core–Shell Structures for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8121-8133.	4.0	76
250	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602674.	10.2	129
251	In Situ Exfoliated, Edgeâ€Rich, Oxygenâ€Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Advanced Materials, 2017, 29, 1606207.	11.1	532
252	Graphene-like δ-MnO ₂ decorated with ultrafine CeO ₂ as a highly efficient catalyst for long-life lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 6747-6755.	5.2	51
253	Development of Aluminum-Air Battery Using an Ionic Liquid Electrolyte Solution. ECS Transactions, 2017, 75, 83-90.	0.3	4
254	Highâ€Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt Supported on Carbon Nanotubes for Metal–Air Batteries. Advanced Functional Materials, 2017, 27, 1606034.	7.8	121
255	Facile synthesis of 3D porous Co ₃ V ₂ O ₈ nanoroses and 2D NiCo ₂ V ₂ O ₈ nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties. Dalton Transactions, 2017, 46, 3295-3302.	1.6	68
256	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017, 337, 80-96.	9.5	282
257	Vanadium proton exchange membrane water electrolyser. Journal of Power Sources, 2017, 349, 144-151.	4.0	8

#	Article	IF	CITATIONS
258	Highâ€Performance Integrated Selfâ€Package Flexible Li–O ₂ Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378.	11.1	72
259	Structural Evolution of Sub-10 nm Octahedral Platinum–Nickel Bimetallic Nanocrystals. Nano Letters, 2017, 17, 3926-3931.	4.5	57
260	Highly Rechargeable Lithium O ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.	7.2	260
261	Ruthenium Oxide Incorporated Oneâ€Dimensional Cobalt Oxide Composite Nanowires as Lithium–Oxygen Battery Cathode Catalysts. ChemCatChem, 2017, 9, 3554-3562.	1.8	24
262	Recent Progress in the Design of Advanced Cathode Materials and Battery Models for Highâ€Performance Lithiumâ€X (X = O ₂ , S, Se, Te, I ₂ , Br ₂) Batteries. Advanced Materials, 2017, 29, 1606454.	11.1	240
263	Highâ€Performance Aqueous Rechargeable Liâ€Ni Battery Based on Ni(OH) ₂ /NiOOH Redox Couple with High Voltage. Advanced Energy Materials, 2017, 7, 1700155.	10.2	39
264	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
265	Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. International Journal of Hydrogen Energy, 2017, 42, 28063-28069.	3.8	12
266	Interacting ZnCo 2 O 4 and Au nanodots on carbon nanotubes as highly efficient water oxidation electrocatalyst. Journal of Power Sources, 2017, 357, 1-10.	4.0	76
267	Objectively Evaluating the Cathode Performance of Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602938.	10.2	33
268	Aprotic metal-oxygen batteries: recent findings and insights. Journal of Solid State Electrochemistry, 2017, 21, 1861-1878.	1.2	23
269	MnMoO ₄ Electrocatalysts for Superior Longâ€Life and Highâ€Rate Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1601741.	10.2	53
270	From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C 3 N 4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Microporous and Mesoporous Materials, 2017, 240, 216-226.	2.2	51
271	Ultralong Cycle Life Achieved by a Natural Plant: <i>Miscanthus × giganteus</i> for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4382-4390.	4.0	24
272	Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable and Sustainable Energy Reviews, 2017, 69, 771-789.	8.2	660
273	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie, 2017, 129, 334-338.	1.6	38
274	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 328-332.	7.2	172
275	Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. Journal of Materials Science, 2017, 52, 2131-2141.	1.7	4

#	Article	IF	CITATIONS
276	Spiny Rhombic Dodecahedral CuPt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates. Chemistry of Materials, 2017, 29, 5681-5692.	3.2	77
277	Micrometerâ€5ized RuO ₂ Catalysts Contributing to Formation of Amorphous Naâ€Deficient Sodium Peroxide in Na–O ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700632.	7.8	33
278	Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 22578-22587.	4.0	128
279	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 21587-21592.	4.0	21
280	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
281	Understanding oxygen electrochemistry in aprotic Li O2 batteries. Green Energy and Environment, 2017, 2, 186-203.	4.7	59
282	MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small, 2017, 13, 1700740.	5.2	170
283	Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium–air batteries. Chemical Communications, 2017, 53, 7921-7924.	2.2	42
284	Highly Rechargeable Lithium O ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.	1.6	24
285	Ultrathin Co ₃ O ₄ Layers with Large Contact Area on Carbon Fibers as Highâ€Performance Electrode for Flexible Zinc–Air Battery Integrated with Flexible Display. Advanced Energy Materials, 2017, 7, 1700779.	10.2	309
286	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	8.2	216
287	Electroanalytical Assessment of the Effect of Ni:Fe Stoichiometry and Architectural Expression on the Bifunctional Activity of Nanoscale Ni _{<i>y</i>} Fe _{1–<i>y</i>} O <i>x</i> . Langmuir, 2017, 33, 9390-9397.	1.6	11
288	In-situ Electrodeposition of Highly Active Silver Catalyst on Carbon Fiber Papers as Binder Free Cathodes for Aluminum-air Battery. Scientific Reports, 2017, 7, 3378.	1.6	39
289	Brownmilleriteâ€ŧype Ca ₂ FeCoO ₅ as a Practicable Oxygen Evolution Reaction Catalyst. ChemSusChem, 2017, 10, 2864-2868.	3.6	50
290	Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries. Journal of Power Sources, 2017, 359, 71-79.	4.0	61
291	Crater-like architectural aluminum current collectors with superior electrochemical performance for Li-ion batteries. Journal of Electroanalytical Chemistry, 2017, 797, 37-41.	1.9	19
292	Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn–Air Batteries. Nano Letters, 2017, 17, 3974-3981.	4.5	80
293	Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochimica Acta, 2017, 246, 380-390.	2.6	77

#	Article	IF	CITATIONS
294	Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Materials, 2017, 9, 134-139.	9.5	19
295	One-pot synthesis of La 0.7 Sr 0.3 MnO 3 supported on flower-like CeO 2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 358, 50-60.	4.0	38
296	Highly efficient Ru/MnO2 nano-catalysts for Li-O2 batteries: Quantitative analysis of catalytic Li2O2 decomposition by operando synchrotron X-ray diffraction. Journal of Power Sources, 2017, 352, 208-215.	4.0	16
297	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	9.5	70
298	Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites. Energy and Environmental Science, 2017, 10, 919-923.	15.6	16
299	In pursuit of catalytic cathodes for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 7710-7731.	5.2	79
300	Perovskite-type La _{0.8} Sr _{0.2} Co _{0.8} Fe _{0.2} O ₃ with uniform dispersion on N-doped reduced graphene oxide as an efficient bi-functional Li–O ₂ battery cathode. Physical Chemistry Chemical Physics, 2017, 19, 10227-10230.	1.3	30
301	Promoting effects of Ce _{0.75} Zr _{0.25} O ₂ on the La _{0.7} Sr _{0.3} MnO ₃ electrocatalyst for the oxygen reduction reaction in metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 6411-6415.	5.2	35
302	A long cycle life, high coulombic efficiency iron molten air battery. Sustainable Energy and Fuels, 2017, 1, 474-481.	2.5	28
303	Facile Generation of A ₂ B Corrole Radical Using Fe(III) Salts and Its Spectroscopic Properties. ACS Omega, 2017, 2, 959-965.	1.6	2
304	Three dimensionally ordered mesoporous hydroxylated Ni _x Co _{3â^'x} O ₄ spinels for the oxygen evolution reaction: on the hydroxyl-induced surface restructuring effect. Journal of Materials Chemistry A, 2017, 5, 7173-7183.	5.2	52
305	Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbonâ€Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds. ChemElectroChem, 2017, 4, 1269-1273.	1.7	24
306	One-pot surface engineering of battery electrode materials with metallic SWCNT-enriched, ivy-like conductive nanonets. Journal of Materials Chemistry A, 2017, 5, 12103-12112.	5.2	7
307	Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017, 5, 7651-7666.	5.2	432
308	NiCo 2 S 4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017, 31, 541-550.	8.2	365
309	Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2017, 10, 129-136.	15.6	154
310	(La1â^'xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 342, 192-201.	4.0	87
311	A novel rechargeable zinc-air battery with molten salt electrolyte. Journal of Power Sources, 2017, 342, 435-441.	4.0	51

#	Article	IF	CITATIONS
312	Tuning the Electronic Bandgap: An Efficient Way To Improve the Electrocatalytic Activity of Carbon‣upported Co ₃ O ₄ Nanocrystals for Oxygen Reduction Reactions. Chemistry - A European Journal, 2017, 23, 2599-2609.	1.7	42
313	Waste cotton-derived N-doped carbon as a sustainable metal-free electrocatalyst for oxygen reduction. Materials Letters, 2017, 188, 33-36.	1.3	9
314	Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. ACS Nano, 2017, 11, 347-357.	7.3	369
315	Bifunctional electro-catalytic performances of CoWO ₄ nanocubes for water redox reactions (OER/ORR). RSC Advances, 2017, 7, 45615-45623.	1.7	94
316	A platinum catalyst deposited on a zirconia support for the design of lithium–oxygen batteries with enhanced cycling ability. Chemical Communications, 2017, 53, 11767-11770.	2.2	9
317	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding. ACS Applied Materials & Interfaces, 2017, 9, 38499-38506.	4.0	42
318	The promoting effect of tetravalent cerium on the oxygen evolution activity of copper oxide catalysts. Physical Chemistry Chemical Physics, 2017, 19, 31545-31552.	1.3	44
319	Porous CoP nanosheet arrays grown on nickel foam as an excellent and stable catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 26995-27003.	3.8	23
320	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
321	Turning Waste Chemicals into Wealth—A New Approach To Synthesize Efficient Cathode Material for an Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 31907-31912.	4.0	21
322	Robust Fe ₃ Mo ₃ C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery. Advanced Materials, 2017, 29, 1702385.	11.1	90
323	Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. Journal of Power Sources, 2017, 365, 76-82.	4.0	30
324	Maximizing the utilization of Fe–N _x C/CN _x centres for an air-cathode material and practical demonstration of metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 20252-20262.	5.2	46
325	MnCo ₂ O ₄ decorated Magnéli phase titanium oxide as a carbon-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 19991-19996.	5.2	27
326	An Active and Robust Bifunctional Oxygen Electrocatalyst through Carbonâ€Free Hierarchical Functionalization. Angewandte Chemie - International Edition, 2017, 56, 12826-12827.	7.2	8
327	CaCu3Ti4O12: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium. Electrochimica Acta, 2017, 252, 532-540.	2.6	25
328	Electrocatalysis of Rechargeable Non‣ithium Metal–Air Batteries. Advanced Materials Interfaces, 2017, 4, 1700589.	1.9	20
329	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	15.6	477

#	Article	IF	CITATIONS
330	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Advanced Materials, 2017, 29, 1606967.	11.1	334
331	Design of coordination polymers with high anodic capabilities for Li-ion batteries. Polyhedron, 2017, 137, 278-283.	1.0	10
332	Highly efficient electrocatalytic oxidation of urea on a Mn-incorporated Ni(OH) ₂ /carbon fiber cloth for energy-saving rechargeable Zn–air batteries. Chemical Communications, 2017, 53, 10711-10714.	2.2	32
333	Electrostatic Selfâ€Assembly of the Composite La _{0.7} Sr _{0.3} MnO ₃ @Ce _{0.75} Zr _{0.25} O _{2as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. Energy Technology, 2017. 5. 2226-2233.})> 1.8	6
334	Edgeâ€Abundant Porous Fe ₃ O ₄ Nanoparticles Docking in Nitrogenâ€Rich Graphene Aerogel as Efficient and Durable Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2442-2447.	1.7	33
335	Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945-976.	6.4	263
336	Defects-rich graphene/carbon quantum dot composites as highly efficient electrocatalysts forÂaqueous zinc/air batteries. International Journal of Hydrogen Energy, 2017, 42, 21305-21310.	3.8	34
337	A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells. Scientific Reports, 2017, 7, 5396.	1.6	30
338	The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries. Energy and Environmental Science, 2017, 10, 1828-1842.	15.6	107
339	Influence of Cu ²⁺ doping concentration on the catalytic activity of Cu _x Co _{3â"x} O ₄ for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 18569-18576.	5.2	13
340	Pre-surface functionalization of commercial conductive carbon for effective N doping as a highly efficient electrocatalyst. Materials Letters, 2017, 207, 33-36.	1.3	2
341	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Advanced Energy Materials, 2017, 7, 1700544.	10.2	593
342	Ni ₃ FeN‣upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie, 2017, 129, 10033-10037.	1.6	25
343	Electrocatalysts Derived from Metal–Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 2017, 13, 1701143.	5.2	150
344	Facile synthesis of bicontinuous Ni3Fe alloy for efficient electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 726, 875-884.	2.8	49
345	Graphene Foam Decorated with Ceria Microspheres as a Flexible Cathode for Foldable Lithiumâ€Air Batteries. ChemCatChem, 2017, 9, 4231-4237.	1.8	22
346	Defect Engineering toward Atomic Co–N <i>_x</i> –C in Hierarchical Graphene for Rechargeable Flexible Solid Znâ€Air Batteries. Advanced Materials, 2017, 29, 1703185.	11.1	614
347	Single Cell Fabrication Towards the Realistic Evaluation of a CNTâ€Strung ZIFâ€Derived Electrocatalyst as a Cathode Material in Alkaline Fuel Cells and Metalâ^'Air Batteries. ChemElectroChem, 2017, 4, 2928-2933.	1.7	23

#	Article	IF	CITATIONS
348	Nitrogen-Doped Porous Graphdiyne: A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 29744-29752.	4.0	166
349	Iron–Cobalt Phosphomolybdate with High Electrocatalytic Activity for Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2694-2702.	1.7	11
350	High-performance Waste Biomass-derived Microporous Carbon Electrocatalyst with a Towel-like Surface for Alkaline Metal/air batteries. Electrochimica Acta, 2017, 250, 384-392.	2.6	15
351	Novel catalytic properties of quadruple perovskites. Science and Technology of Advanced Materials, 2017, 18, 541-548.	2.8	35
352	Capacity Fading Mechanism in Lithium-Sulfur Battery using Poly(ionic liquid) Gel Electrolyte. Electrochimica Acta, 2017, 258, 1284-1292.	2.6	32
353	Bifunctional MnO ₂ -Coated Co ₃ O ₄ Hetero-structured Catalysts for Reversible Li-O ₂ Batteries. Chemistry of Materials, 2017, 29, 10542-10550.	3.2	60
354	Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods, 2017, 1, 1700209.	4.6	183
355	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 41980-41987.	4.0	22
356	Advances in modeling and simulation of Li–air batteries. Progress in Energy and Combustion Science, 2017, 62, 155-189.	15.8	68
357	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo ₂ O ₄ nanoparticles as bifunctional oxygen catalysts for rechargeable Zn–air batteries. Nanoscale, 2017, 9, 11148-11157.	2.8	39
358	Designing N-doped carbon nanotubes and Fe–Fe ₃ C nanostructures co-embedded in B-doped mesoporous carbon as an enduring cathode electrocatalyst for metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 16843-16853.	5.2	83
359	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	0.9	16
360	Highly Efficient Ni-Fe Based Oxygen Evolution Catalyst Prepared by A Novel Pulse Electrochemical Approach. Electrochimica Acta, 2017, 247, 722-729.	2.6	12
361	Spatially Confined Li–Oxygen Interaction in the Tunnel of α-MnO ₂ Catalyst for Li–Air Battery: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 16193-16200.	1.5	15
362	A comprehensive review on recent progress in aluminum–air batteries. Green Energy and Environment, 2017, 2, 246-277.	4.7	280
363	Ni ₃ FeNâ€Supported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie - International Edition, 2017, 56, 9901-9905.	7.2	175
364	Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 360, 528-537.	4.0	12
365	Nitrogen-doped graphene anchored with mixed growth patterns of CuPt alloy nanoparticles as a highly efficient and durable electrocatalyst for the oxygen reduction reaction in an alkaline medium. Nanoscale, 2017, 9, 9009-9017.	2.8	25

#	Article	IF	CITATIONS
366	Two-Dimensional Computational Fluid Dynamics Analysis of Transport Limitations of Different Electrolyte Systems in a Lithium-Air Button Cell Cathode. Journal of the Electrochemical Society, 2017, 164, E3489-E3498.	1.3	4
367	Ni nanoparticles embedded in N doped carbon nanotubes derived from a metal organic framework with improved performance for oxygen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 16149-16156.	3.8	49
368	Recent advances in electrocatalysts for non-aqueous Li–O 2 batteries. Chinese Chemical Letters, 2017, 28, 709-718.	4.8	36
369	Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Applied Catalysis B: Environmental, 2017, 203, 889-898.	10.8	172
370	A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 1462-1471.	5.2	71
371	Ultrathin, Lightweight, and Wearable Liâ€O ₂ Battery with High Robustness and Gravimetric/Volumetric Energy Density. Small, 2017, 13, 1602952.	5.2	69
372	Heteroatom-doped graphene as electrocatalysts for air cathodes. Materials Horizons, 2017, 4, 7-19.	6.4	142
373	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Research, 2017, 10, 1213-1222.	5.8	73
374	Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode. Small, 2017, 13, 1601250.	5.2	107
375	Ni ₃ Feâ€N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Advanced Energy Materials, 2017, 7, 1601172.	10.2	369
376	Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58, 1-35.	15.8	506
377	Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 693, 964-969.	2.8	49
378	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	8.2	317
379	Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 2017, 29, 1604685.	11.1	1,143
380	Greatly Enhanced Anode Stability in Kâ€Oxygen Batteries with an In Situ Formed Solvent†and Oxygenâ€Impermeable Protection Layer. Advanced Energy Materials, 2017, 7, .	10.2	34
381	Perspective article: Flow synthesis of functional materials. Journal of Flow Chemistry, 2017, 7, 96-105.	1.2	24
382	Recent Progress on the Development of Metalâ€Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700036.	2.7	83
383	Nitrogen Doped Carbon Wrapped Fe3O4 as an Efficient Bifunctional Oxygen Electrocatalyst. International Journal of Electrochemical Science, 2017, , 6129-6136.	0.5	1

#	Article	IF	CITATIONS
384	Perovskite Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. Catalysts, 2017, 7, 154.	1.6	80
385	Structural Inheritance and Redox Performance of Nanoporous Electrodes from Nanocrystalline Fe85.2B10-14P0-4Cu0.8 Alloys. Nanomaterials, 2017, 7, 141.	1.9	12
386	Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 2017, 5, 123.	1.8	45
387	Ein aktiver und widerstandsfäiger difunktioneller Sauerstoffâ€Elektrokatalysator durch kohlenstofffreie hierarchische Funktionalisierung. Angewandte Chemie, 2017, 129, 13002-13004.	1.6	4
388	Dualâ€Native Vacancy Activated Basal Plane and Conductivity of MoSe ₂ with Highâ€Efficiency Hydrogen Evolution Reaction. Small, 2018, 14, e1704150.	5.2	114
389	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	2.7	46
390	Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018, 47, 3189-3216.	18.7	297
391	Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV〓Vis Spectroscopy. ACS Applied Materials & Interfaces, 2018, 10, 10860-10869.	4.0	6
392	NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes. Renewable Energy, 2018, 125, 250-259.	4.3	36
393	Molecular Sieve Induced Solution Growth of Li ₂ O ₂ in the Li–O ₂ Battery with Largely Enhanced Discharge Capacity. ACS Applied Materials & Interfaces, 2018, 10, 7989-7995.	4.0	28
394	Charge-Transfer-Promoted High Oxygen Evolution Activity of Co@Co ₉ S ₈ Core–Shell Nanochains. ACS Applied Materials & Interfaces, 2018, 10, 11565-11571.	4.0	46
395	Ancient Chemistry "Pharaoh's Snakes―for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 10778-10785.	4.0	64
396	Rechargeable solid-state Li-air batteries: a status report. Rare Metals, 2018, 37, 459-472.	3.6	35
397	On an easy way to prepare highly efficient Fe/N-co-doped carbon nanotube/nanoparticle composite for oxygen reduction reaction in Al–air batteries. Journal of Materials Science, 2018, 53, 10280-10291.	1.7	21
398	3D-ordered porous nitrogen and sulfur Co-Doped carbon supported PdCuW nanoparticles as efficient catalytic cathode materials for Li-O 2 batteries. Electrochimica Acta, 2018, 272, 33-43.	2.6	9
399	Co ₃ O ₄ Nanosheets as Active Material for Hybrid Zn Batteries. Small, 2018, 14, e1800225.	5.2	131
400	Facile One-Pot Synthesis of CoFe Alloy Nanoparticles Decorated N-Doped Carbon for High-Performance Rechargeable Zinc–Air Battery Stacks. ACS Sustainable Chemistry and Engineering, 2018, 6, 7743-7751.	3.2	41
401	Urchin-like non-precious-metal bifunctional oxygen electrocatalysts: Boosting the catalytic activity via the In-situ growth of heteroatom (N, S)-doped carbon nanotube on mesoporous cobalt sulfide/carbon spheres. Journal of Colloid and Interface Science, 2018, 524, 465-474.	5.0	29

#	Article	IF	CITATIONS
402	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small, 2018, 14, e1800195.	5.2	91
403	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	1.7	129
404	Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc–Air Batteries. Small, 2018, 14, e1800737.	5.2	159
405	Controllable Synthesis of [11â^'2â^'2] Faceted InN Nanopyramids on ZnO for Photoelectrochemical Water Splitting. Small, 2018, 14, e1703623.	5.2	16
406	Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 8430-8440.	5.2	65
407	Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chemical Reviews, 2018, 118, 4731-4816.	23.0	357
408	Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zincâ^'Air Battery. Journal of the Electrochemical Society, 2018, 165, A809-A818.	1.3	41
409	Cathodically Stable Li-O2 Battery Operations Using Water-in-Salt Electrolyte. CheM, 2018, 4, 1345-1358.	5.8	69
410	Catalysts in metal-air batteries. MRS Communications, 2018, 8, 372-386.	0.8	7
411	Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. Journal of Catalysis, 2018, 359, 242-250.	3.1	61
412	New Phosphorusâ€Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, 6950-6957.	1.7	34
413	Atomic-Level Co ₃ O ₄ Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 7052-7060.	4.0	45
414	Superior Oxygen Reduction Electrocatalyst: Hollow Porous Spinel Microsphere. CheM, 2018, 4, 196-198.	5.8	34
415	Enhancing Electron Transfer and Electrocatalytic Activity on Crystalline Carbon-Conjugated g-C ₃ N ₄ . ACS Catalysis, 2018, 8, 1926-1931.	5.5	172
416	Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Longâ€Lasting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1702900.	10.2	242
417	Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 2018, 51, 881-889.	7.6	437
418	MoP Nanoflakes as Efficient Electrocatalysts for Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 2018, 1, 331-335.	2.5	26
419	Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. Electrochimica Acta, 2018, 263, 544-554.	2.6	52

#	Article	IF	CITATIONS
420	An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. Journal of Energy Storage, 2018, 15, 304-328.	3.9	290
421	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	10.2	66
422	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	11.1	300
423	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	11.1	476
424	Tunable Bifunctional Activity of Mn _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1295-1304.	3.6	50
425	Enhanced Iron Molten Air Battery Cycle Life and the Chemistry of the Nickel Oxide/Air Interface. Journal of the Electrochemical Society, 2018, 165, A235-A243.	1.3	7
426	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645
427	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
428	Nanoscale Carbon Modified α-MnO ₂ Nanowires: Highly Active and Stable Oxygen Reduction Electrocatalysts with Low Carbon Content. ACS Applied Materials & Interfaces, 2018, 10, 2040-2050.	4.0	38
429	Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy, 2018, 45, 127-135.	8.2	166
430	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	10.2	243
431	Aligning the binder effect on sodium–air batteries. Journal of Materials Chemistry A, 2018, 6, 1473-1484.	5.2	21
432	Co ₉ S ₈ @MoS ₂ Core–Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1678-1689.	4.0	242
433	Control of Growth Front Evolution by Bi Additives during ZnAu Electrodeposition. Nano Letters, 2018, 18, 1093-1098.	4.5	30
434	Fabrication of strong bifunctional electrocatalytically active hybrid Cu–Cu ₂ O nanoparticles in a carbon matrix. Catalysis Science and Technology, 2018, 8, 1414-1422.	2.1	42
435	Bloodâ€Capillaryâ€Inspired, Freeâ€Standing, Flexible, and Low ost Superâ€Hydrophobic Nâ€CNTs@SS Cathoc for Highâ€Capacity, Highâ€Rate, and Stable Liâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1702242.	les 10.2	108
436	Cobalt and Iron Oxides Coâ€supported on Carbon Nanotubes as an Efficient Bifunctional Catalyst for Enhanced Electrocatalytic Activity in Oxygen Reduction and Oxygen Evolution Reactions. ChemistrySelect, 2018, 3, 207-213.	0.7	14
437	Preparation of Si-graphite dual-ion batteries by tailoring the voltage window of pretreated Si-anodes. Materials Today Energy, 2018, 8, 174-181.	2.5	27

#	Article	IF	CITATIONS
438	Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chemical Engineering Journal, 2018, 348, 416-437.	6.6	141
439	The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renewable and Sustainable Energy Reviews, 2018, 90, 992-1016.	8.2	77
440	Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catalysis Science and Technology, 2018, 8, 2427-2433.	2.1	19
441	Facile fabrication of two-dimensional reduced graphene oxide/CoAl-layered double hydroxides nanocomposites for lithium-oxygen battery with improved electrochemical performance. Journal of Alloys and Compounds, 2018, 744, 196-203.	2.8	21
442	Strong Lanthanoid Substitution Effect on Electrocatalytic Activity of Double-Perovskite-Type BaLnMn ₂ O ₅ (Ln = Y, Gd, Nd, and La) for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 7081-7087.	1.5	10
443	Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and) Tj ETQq1 1 Electrochemistry, 2018, 54, 1-19.	0.784314 rg 0.3	BT /Overloci 7
444	Engineering hierarchical ultrathin CuCo 2 O 4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Applied Surface Science, 2018, 445, 272-280.	3.1	95
445	Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers. Journal of Power Sources, 2018, 380, 174-184.	4.0	48
446	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. Journal of Materials Chemistry A, 2018, 6, 8280-8288.	5.2	62
447	Mesoporous La _{0.6} Ca _{0.4} CoO ₃ perovskites with large surface areas as stable air electrodes for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 7686-7692.	5.2	26
448	Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Science China Materials, 2018, 61, 915-925.	3.5	17
449	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
450	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	8.2	47
451	Incorporation of Fe ₃ C and Pyridinic N Active Sites with a Moderate N/C Ratio in Fe–N Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. ACS Applied Nano Materials, 2018, 1, 1801-1810.	2.4	48
452	Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 2018, 808, 412-419.	1.9	37
453	Production of P, N Coâ€doped Grapheneâ€Based Materials by a Solution Process and Their Electrocatalytic Performance for Oxygen Reduction Reaction. ChemNanoMat, 2018, 4, 118-123.	1.5	28
454	Metallomacrocyclic–carbon complex: A study of bifunctional electrocatalytic activity for oxygen reduction and oxygen evolution reactions and their lithium-oxygen battery applications. Applied Catalysis B: Environmental, 2018, 220, 488-496.	10.8	56
455	Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 810-817.	1.2	18

#	ARTICLE	IF	CITATIONS
456	Self-terminated activation for high-yield production of N,P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon, 2018, 128, 97-105.	5.4	69
457	CoS ₂ –TiO ₂ hybrid nanostructures: efficient and durable bifunctional electrocatalysts for alkaline electrolyte membrane water electrolyzers. Journal of Materials Chemistry A, 2018, 6, 1075-1085.	5.2	39
458	Aprotic Lithium–Air Batteries Tested in Ambient Air with a Highâ€Performance and Low ost Bifunctional Perovskite Catalyst. ChemCatChem, 2018, 10, 1635-1642.	1.8	5
459	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogelâ€&upported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	11.1	547
460	CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. Nano-Micro Letters, 2018, 10, 22.	14.4	29
461	<i>In situ</i> encapsulation of core–shell-structured Co@Co ₃ O ₄ into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 1443-1453.	5.2	178
462	Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D. Journal of Materials Chemistry A, 2018, 6, 735-753.	5.2	99
463	An Asymmetricâ€Electrolyte Znâ^'Air Battery with Ultrahigh Power Density and Energy Density. ChemElectroChem, 2018, 5, 589-592.	1.7	50
464	Reversible Structural Evolution of NiCoO _{<i>x</i>} H _{<i>y</i>} during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catalysis, 2018, 8, 1238-1247.	5.5	153
465	Bifunctional electrocatalysts for Zn–air batteries. Sustainable Energy and Fuels, 2018, 2, 39-67.	2.5	179
466	Metal Loading Effect on the Activity of Co ₃ O ₄ /Nâ€Đoped Reduced Graphene Oxide Nanocomposites as Bifunctional Oxygen Reduction/Evolution Catalysts. ChemElectroChem, 2018, 5, 483-493.	1.7	20
467	Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization. Chemical Engineering Journal, 2018, 334, 1270-1280.	6.6	182
468	A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Materials, 2018, 12, 260-276.	9.5	99
469	A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2018, 43, 130-137.	8.2	105
470	Fe/Fe ₃ C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 516-526.	5.2	366
471	CuO embedded β-Ni(OH)2 nanocomposite as advanced electrode materials for supercapacitors. Journal of Alloys and Compounds, 2018, 736, 332-339.	2.8	70
472	Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 475-483.	1.8	18
473	Investigation of the Influence of Slurry Properties and Electrode Microstructure on the Performance of Polymer Electrolyte Fuel Cell. Journal of the Society of Powder Technology, Japan, 2018, 55, 366-374.	0.0	1

#	Article	IF	Citations
474	Characterization of MnCo2O4 as anode material for a Sodium-Air Electric Vehicle Battery. International Journal of Electrochemical Science, 2018, 13, 3317-3325.	0.5	0
475	Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. Journal of Materials Chemistry A, 2018, 6, 20646-20652.	5.2	95
477	Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2 Dissolution. IScience, 2018, 9, 278-285.	1.9	40
478	A Nano-Architectured Metal-Oxide/Perovskite Hybrid Material as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. ACS Applied Nano Materials, 2018, 1, 6824-6833.	2.4	14
479	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	2.5	20
480	Thermal cycling durability improved by doping fluorine to PrBaCo2O5+δas oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 402, 363-372.	4.0	46
481	Development, Challenges, and Prospects of Carbon-Based Electrode for Lithium-Air Batteries. , 2018, , 115-152.		12
482	Multiscale Structural Engineering of Niâ€Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density. Advanced Materials, 2018, 30, e1804653.	11.1	131
483	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. Electrochimica Acta, 2018, 292, 942-950.	2.6	46
484	Integration of Zn–Ag and Zn–Air Batteries: A Hybrid Battery with the Advantages of Both. ACS Applied Materials & Interfaces, 2018, 10, 36873-36881.	4.0	70
485	Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries. Electrochimica Acta, 2018, 292, 268-275.	2.6	74
486	Tea-leaf-residual derived electrocatalyst: Hierarchical pore structure and self nitrogen and fluorine co-doping for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 19492-19499.	3.8	33
487	Conductive Molybdenum Sulfide for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803361.	5.2	73
488	Nitrogen-Doped Defect-Rich Graphitic Carbon Nanorings with CoO _{<i>x</i>} Nanoparticles as Highly Efficient Electrocatalyst for Oxygen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15811-15821.	3.2	35
491	In Situ Activating Strategy to Significantly Boost Oxygen Electrocatalysis of Commercial Carbon Cloth for Flexible and Rechargeable Znâ€Air Batteries. Advanced Science, 2018, 5, 1800760.	5.6	91
492	Twoâ€Dimensional Layered Hydroxide Nanoporous Nanohybrids Pillared with Zeroâ€Dimensional Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis. Small, 2018, 14, e1703481.	5.2	33
493	Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2857-2866.	7.6	190
494	Reversible Aqueous Zinc–CO 2 Batteries Based on CO 2 –HCOOH Interconversion. Angewandte Chemie, 2018, 130, 17242-17247.	1.6	13

#	Article	IF	Citations
495	Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, 16996-17001.	7.2	108
496	Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn–Air Batteries. ChemSusChem, 2018, 11, 4203-4208.	3.6	22
497	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
498	Correlation of Low-Index Facets to Active Sites in Micrometer-Sized Polyhedral Pyrochlore Electrocatalyst. ACS Catalysis, 2018, 8, 9647-9655.	5.5	11
500	<i>Anthocephalus cadamba</i> shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 20411-20420.	5.2	67
501	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Airâ€Cathode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	10.2	248
503	La _{0.7} Sr _{0.3} Mn _{1–<i>x</i>} Ni _{<i>x</i>} O _{3â^î´} Ele for the Four-Electron Oxygen Reduction Reaction in Concentrated Alkaline Media. Journal of Physical Chemistry C, 2018, 122, 22301-22308.	ctrocataly 1.5	sts 20
504	An Efficient Antiâ€poisoning Catalyst against SO _{<i>x</i>} , NO _{<i>x</i>} , and PO _{<i>x</i>} : P, Nâ€Đoped Carbon for Oxygen Reduction in Acidic Media. Angewandte Chemie, 2018, 130, 15321-15326.	1.6	27
505	An Efficient Antiâ€poisoning Catalyst against SO _{<i>x</i>} , NO _{<i>x</i>} , and PO _{<i>x</i>} : P, Nâ€Đoped Carbon for Oxygen Reduction in Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 15101-15106.	7.2	122
506	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	5.2	192
507	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32212-32219.	4.0	38
508	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O ₂ Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.	10.2	137
509	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
510	Optimization of rechargeable zinc-air battery with Co3O4/MnO2/CNT bifunctional catalyst: effects of catalyst loading, binder content, and spraying area. Ionics, 2018, 24, 3877-3884.	1.2	13
511	Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials. Journal of Applied Electrochemistry, 2018, 48, 947-957.	1.5	15
512	Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon, 2018, 137, 458-466.	5.4	82
513	Oxygen Evolution Reaction on Pristine and Oxidized TiC (100) Surface in Li–O ₂ Battery. Journal of Physical Chemistry C, 2018, 122, 12665-12672.	1.5	27
514	Efficient Co@CoP _x core–shell nanochains catalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1844-1848.	3.0	9

#	Article	IF	CITATIONS
515	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
516	Role of flower-like ultrathin Co ₃ O ₄ nanosheets in water splitting and non-aqueous Li–O ₂ batteries. Nanoscale, 2018, 10, 10221-10231.	2.8	60
517	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	4.0	94
518	A porous Zn cathode for Li–CO ₂ batteries generating fuel-gas CO. Journal of Materials Chemistry A, 2018, 6, 13952-13958.	5.2	66
519	All inorganic based Nd0.9Mn0.1FeO3 perovskite for Li-ion battery application: Synthesis, structural and morphological investigation. Journal of Alloys and Compounds, 2018, 766, 1014-1023.	2.8	13
520	Kinetic and Mechanistic Characterization of Low-Overpotential, H ₂ O ₂ -Selective Reduction of O ₂ Catalyzed by N ₂ O ₂ -Ligated Cobalt Complexes. Journal of the American Chemical Society, 2018. 140. 10890-10899.	6.6	46
521	Facile synthesis of silver nanowire-zeolitic imidazolate framework 67 composites as high-performance bifunctional oxygen catalysts. Nanoscale, 2018, 10, 15755-15762.	2.8	44
522	Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable Na–O ₂ batteries. Energy and Environmental Science, 2018, 11, 2833-2838.	15.6	33
523	Tuning Bifunctional Oxygen Electrocatalysts by Changing the A‣ite Rareâ€Earth Element in Perovskite Nickelates. Advanced Functional Materials, 2018, 28, 1803712.	7.8	122
524	Firstâ€Principles Study of Magnesium Peroxide Nucleation for Mgâ€Air Battery. Chemistry - an Asian Journal, 2018, 13, 3198-3203.	1.7	7
525	Flexible, Flameâ€Resistant, and Dendriteâ€Impermeable Gelâ€Polymer Electrolyte for Li–O ₂ /Air Batteries Workable Under Hurdle Conditions. Small, 2018, 14, e1801798.	5.2	113
526	MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Advances, 2018, 8, 26728-26754.	1.7	75
527	Progress and Future Perspectives on Li(Na)–CO ₂ Batteries. Advanced Sustainable Systems, 2018, 2, 1800060.	2.7	54
528	Facile preparation of ultra-low Pt loading graphene-immobilized electrode for methanol oxidation reaction. International Journal of Hydrogen Energy, 2018, 43, 16005-16014.	3.8	12
529	Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	3.0	29
531	Nanoporous NiO/Ni(OH) ₂ Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. Journal of the Electrochemical Society, 2018, 165, A2119-A2126.	1.3	35
532	Investigation on the electrode design of hybrid Zn-Co3O4/air batteries for performance improvements. Electrochimica Acta, 2018, 283, 1028-1036.	2.6	42
533	Mesoporous NiO with different morphology: Synthesis, characterization and their evaluation for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 15639-15649.	3.8	38

		CITATION REPORT		
# 534	ARTICLE Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 20	118 2 1242-1264	IF 11.7	Citations
535	Solidâ€6tate Rechargeable Zinc–Air Battery with Long Shelf Life Based on Nanoengir Electrolyte. ChemSusChem, 2018, 11, 3215-3224.		3.6	55
536	Manipulation of surface plasmon resonance of sputtered gold-nanoparticles on TiO2 n films for enhanced photoelectrochemical water splitting efficiency. Thin Solid Films, 20		0.8	6
537	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy cor systems with aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 10595-1		5.2	162
538	Core/shell design of efficient electrocatalysts based on NiCo ₂ O _{4and NiMn LDH nanosheets for rechargeable zinc–air batteries. Journal of Materials Cl 6, 10243-10252.}	ub>nanowires nemistry A, 2018,	5.2	158
539	New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Batteries. Journal of Physical Chemistry C, 2018, 122, 20153-20166.	Zinc–Air	1.5	24
540	Anisotropic Surface Modulation of Pt Catalysts for Highly Reversible Li–O _{2High Index Facet as a Critical Descriptor. ACS Catalysis, 2018, 8, 9006-9015.}	ıb> Batteries:	5.5	68
541	Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air b Diatomite boosted the catalytic activity and durability. Electrochimica Acta, 2018, 284		2.6	25
542	Carbon‣upported Single Atom Catalysts for Electrochemical Energy Conversion and Advanced Materials, 2018, 30, e1801995.	Storage.	11.1	479
543	Heteroatom-doped carbon nanospheres derived from cuttlefish ink: A bifunctional elec for oxygen reduction and evolution. International Journal of Hydrogen Energy, 2018, 43		3.8	27
544	Electrocatalysts based on metal@carbon core@shell nanocomposites: AnÂoverview. G Environment, 2018, 3, 335-351.	reen Energy and	4.7	75
545	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8	8, 1801396.	10.2	156
546	Gadolinium doped ceria on graphene cathode with enhanced cycle stability for non-aqu lithium-oxygen batteries. Journal of Power Sources, 2018, 400, 1-8.	ieous	4.0	10
547	Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Znâ ACS Applied Materials & Interfaces, 2018, 10, 29448-29456.	€"Air Batteries.	4.0	110
548	Bifunctionally active and durable hierarchically porous transition metal-based hybrid ele for rechargeable metal-air batteries. Applied Catalysis B: Environmental, 2018, 239, 67	ctrocatalyst 7-687.	10.8	64
549	Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Journal, 2018, 352, 972-995.	Engineering	6.6	57
550	Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy, 691-698.	2018, 50,	8.2	303
551	Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets a oxygen reduction electrocatalysts for primary Zinc-air battery. Chemical Engineering Jo 351, 94-102.	as efficient urnal, 2018,	6.6	88

#	Article	IF	CITATIONS
552	PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chemical Communications, 2018, 54, 7519-7522.	2.2	160
553	Strategies toward Highâ€Performance Cathode Materials for Lithium–Oxygen Batteries. Small, 2018, 14, e1800078.	5.2	86
554	Metalâ€Organic Frameworkâ€Derived Carbons for Battery Applications. Advanced Energy Materials, 2018, 8, 1800716.	10.2	174
555	Fe, N codoped porous carbon nanosheets for efficient oxygen reduction reaction in alkaline andÂacidic media. International Journal of Hydrogen Energy, 2018, 43, 14273-14280.	3.8	21
556	Hierarchical carbon-free NiCo2O4 cathode for Li–O2 batteries. Ionics, 2019, 25, 1669-1677.	1.2	9
557	Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery. Chemical Engineering Science, 2019, 194, 127-133.	1.9	21
558	Nanocarbons and Their Composite Materials as Electrocatalyst for Metal–Air Battery and Water Splitting. Nanostructure Science and Technology, 2019, , 455-496.	0.1	0
559	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	9.5	25
560	Ionic Liquid-Derived Co ₃ O ₄ -N/S-Doped Carbon Catalysts for the Enhanced Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 14889-14898.	3.2	21
561	Distorted Inverse Spinel Nickel Cobaltite Grown on a MoS ₂ Plate for Significantly Improved Water Splitting Activity. Chemistry of Materials, 2019, 31, 7590-7600.	3.2	42
562	All solid-state lithium–oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chemical Communications, 2019, 55, 10689-10692.	2.2	16
563	Recent Advances in Oxygen Electrocatalysts Based on Perovskite Oxides. Nanomaterials, 2019, 9, 1161.	1.9	58
564	Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Research, 2019, 12, 2528-2534.	5.8	16
565	Carbon nanomaterials for metal–air batteries. , 2019, , 311-333.		0
566	Electrocatalysts for Lithium–Air Batteries: Current Status and Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 14288-14320.	3.2	42
567	Dual-active-sites design of CoSx anchored on nitrogen-doped carbon with tunable mesopore enables efficient Bi-Functional oxygen catalysis for ultra-stable zinc-air batteries. Journal of Power Sources, 2019, 438, 226953.	4.0	24
568	Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.	4.5	94
569	Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium–Oxygen Batteries. ACS Nano, 2019, 13, 9190-9197	7.3	29

#	Article	IF	CITATIONS
570	A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Computational Materials, 2019, 5, .	3.5	480
571	Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Central South University, 2019, 26, 1458-1468.	1.2	9
572	Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review. Materials, 2019, 12, 2134.	1.3	46
573	NiCo ₂ O ₄ nanoarray on CNT sponge: a bifunctional oxygen electrode material for rechargeable Zn–air batteries. Nanoscale Advances, 2019, 1, 3243-3251.	2.2	16
574	Mn-Doped Co–N–C Dodecahedron as a Bifunctional Electrocatalyst for Highly Efficient Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14180-14188.	3.2	78
575	Bismuth and cerium doped cryptomelane-type manganese dioxide nanorods as bifunctional catalysts for rechargeable alkaline metal-air batteries. Applied Catalysis B: Environmental, 2019, 258, 118014.	10.8	41
576	Hollow Mesoporous Fe2O3 Nanospindles/CNTs Composite: An Efficient Catalyst for High-Performance Li-O2 Batteries. Frontiers in Chemistry, 2019, 7, 511.	1.8	2
577	A Facile Route for Constructing Effective Cuâ^'N _{<i>x</i>} Active Sites for Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 4070-4079.	1.7	29
578	Oxygen Vacancy–Rich Inâ€Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small, 2019, 15, e1904210.	5.2	142
579	Highly Efficient Multifunctional Co–N–C Electrocatalysts with Synergistic Effects of Co–N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions. ACS Applied Materials & Interfaces, 2019, 11, 39809-39819.	4.0	80
580	Cation-Substitution-Tuned Oxygen Electrocatalyst of Spinel Cobaltite MCo ₂ O ₄ (M = Fe, Co, and Ni) Hexagonal Nanoplates for Rechargeable Zn-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A3448-A3455.	1.3	8
581	Mechanistic Understanding of Plasmon-Enhanced Electrochemistry. Journal of Physical Chemistry C, 2019, 123, 29360-29369.	1.5	54
582	Nanoscopic Combination of Edge and Flat Planes in the Active Site for Oxygen Reduction and Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 4117-4121.	1.0	6
584	The Preparation of Porous Carbon Materials with High Pyridinicâ€N Doping toward Efficient Oxygen Reduction Reactions. Energy Technology, 2019, 7, 1900610.	1.8	3
585	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	7.8	159
586	Mesoporous ruthenium metal organic framework core shell templated CdS/rGO nanosheets catalyst for efficient bifunctional electro-catalytic oxygen reactions. Materials Research Bulletin, 2019, 112, 95-103.	2.7	19
587	Highly Efficient Thin Zinc Air Batteries. Journal of the Electrochemical Society, 2019, 166, A2879-A2886.	1.3	11
588	Prolonging the Cycle Life of a Lithium–Air Battery by Alleviating Electrolyte Degradation with a Ceramic–Carbon Composite Cathode. ChemSusChem, 2019, 12, 4962-4967.	3.6	6

#	Article	IF	CITATIONS
589	Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chinese Journal of Catalysis, 2019, 40, 1298-1310.	6.9	111
590	A study of synergistic effect on oxygen reduction activity and capacitive performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor applications. Composites Part B: Engineering, 2019, 176, 107327.	5.9	29
591	AÂHighly Nanoporous Nitrogen-Doped Carbon Microfiber Derived from Bioresource as a New Kind of ORR Electrocatalyst. Nanoscale Research Letters, 2019, 14, 22.	3.1	17
592	Self-supported CoFe LDH/Co _{0.85} Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2019, 9, 5736-5744.	2.1	37
593	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. Inorganics, 2019, 7, 98.	1.2	17
594	Cyanogenic glycosides: A sustainable carbon and nitrogen source for developing resilient Janus reversible oxygen electrocatalysts for metal-air batteries. Carbon, 2019, 155, 155-165.	5.4	25
595	Bifunctional N-CoSe ₂ /3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. , 2019, 1, 432-439.		90
596	Interfacial Electronic Structure Modulation of Hierarchical Co(OH)F/CuCo ₂ S ₄ Nanocatalyst for Enhanced Electrocatalysis and Zn–Air Batteries Performances. ACS Applied Materials & Interfaces, 2019, 11, 37531-37540.	4.0	33
597	Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 22507-22513.	5.2	39
598	A low-cost portable cotton-based aluminum-air battery with high specific energy. Energy Procedia, 2019, 158, 179-185.	1.8	10
599	Carbonisation temperature dependence of electrochemical activity of nitrogen-doped carbon fibres from electrospinning as air-cathodes for aqueous-alkaline metal–air batteries. RSC Advances, 2019, 9, 27231-27241.	1.7	23
600	Electrocatalysis of Oxygen Reduction Reaction on Shape-Controlled Pt and Pd Nanoparticles—Importance of Surface Cleanliness and Reconstruction. Frontiers in Chemistry, 2019, 7, 648.	1.8	29
601	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews, 2019, 2, 518-538.	13.1	176
602	Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La _{1â~x} Sr _x CoO _{3â~î} perovskite composite electrodes. Physical Chemistry Chemical Physics, 2019, 21, 3327-3338.	1.3	26
603	Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery. Electrochimica Acta, 2019, 300, 455-460.	2.6	29
604	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	11.1	188
605	Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3624-3631.	5.2	53
606	Silkâ€Derived 2D Porous Carbon Nanosheets with Atomicallyâ€Dispersed Feâ€N <i>_x</i> Sites for Highly Efficient Oxygen Reaction Catalysts. Small, 2019, 15, e1804966.	5.2	64

#	Article	IF	CITATIONS
607	Direct Electrolysis of CO ₂ in a Symmetrical Solid Oxide Electrolysis Cell with Spinel MnCo ₂ O ₄ as Electrode. ChemElectroChem, 2019, 6, 1359-1364.	1.7	19
608	Single-source precursor synthesis of nitrogen-doped porous carbon for high-performance electrocatalytic ORR application. Ceramics International, 2019, 45, 8354-8361.	2.3	10
609	Influence of Fe Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5682-5686.	4.0	54
610	High-Density Cobalt Nanoparticles Encapsulated with Nitrogen-Doped Carbon Nanoshells as a Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Materials, 2019, 12, 243.	1.3	10
611	Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3- by CO2 thermal treatment. Journal of Materials Science and Technology, 2019, 35, 1184-1191.	5.6	8
612	N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Transactions, 2019, 48, 2352-2358.	1.6	22
613	One-step synthesis of nickel–iron layered double hydroxides with tungstate acid anions <i>via</i> flash nano-precipitation for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 237-244.	2.5	45
614	Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core–Shell Co ₃ O ₄ @NiFe LDH Catalysts for Zn–Air Batteries: Effects of Interfacial Cation Valences. ACS Applied Materials & Interfaces, 2019, 11, 21506-21514.	4.0	114
615	An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries. Science China Materials, 2019, 62, 1251-1264.	3.5	37
616	Optimizing the synthesis of Co/Co–Fe nanoparticles/N-doped carbon composite materials as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2019, 318, 281-289.	2.6	17
617	Investigation of Li–O ₂ Battery Performance Integrated with RuO ₂ Inverse Opal Cathodes in DMSO. ACS Applied Energy Materials, 2019, 2, 5109-5115.	2.5	10
618	Aminophenyl-substituted cobalt(<scp>iii</scp>) corrole: a bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. Dalton Transactions, 2019, 48, 11345-11351.	1.6	28
619	In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2019, 256, 117893.	10.8	184
620	Paper-based porous graphene/single-walled carbon nanotubes supported Pt nanoparticles as freestanding catalyst for electro-oxidation of methanol. Applied Catalysis B: Environmental, 2019, 257, 117886.	10.8	46
621	Mononuclear iron-dependent electrocatalytic activity of metal-nitrogen-carbon catalysts for efficient oxygen reduction reaction. Applied Catalysis A: General, 2019, 583, 117120.	2.2	8
622	High lithium-ion conducting solid electrolyte thin film of Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2 for aqueous lithium secondary batteries. Solid State Ionics, 2019, 338, 127-133.	1.3	13
623	Role of P-doping in Antipoisoning: Efficient MOF-Derived 3D Hierarchical Architectures for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 16796-16803.	1.5	50
624	Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides. Advanced Functional Materials, 2019, 29, 1901783.	7.8	152

#	Article	IF	CITATIONS
625	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie - International Edition, 2019, 58, 10486-10492.	7.2	90
626	Efficient oxygen reduction on sandwich-like metal@N–C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets. Nanoscale, 2019, 11, 12610-12618.	2.8	26
627	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie, 2019, 131, 10596-10602.	1.6	13
628	Advances in the development of power supplies for the Internet of Everything. InformaÄnÃ-Materiály, 2019, 1, 130-139.	8.5	97
629	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	5.2	99
630	Hierarchically Porous Co/Co <i>_x</i> M <i>_y</i> (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries. Small, 2019, 15, e1901518.	5.2	163
631	Perovskite La _{0.5} Sr _{0.5} CoO _{3â^îÎ} Grown on Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as Bifunctional Efficient Hybrid Catalysts for Li–Oxygen Batteries. ACS Applied Energy Materials, 2019, 2, 4144-4150.	2.5	26
632	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
633	Highly stable nitrogen-doped carbon nanotubes derived from carbon dots and metal-organic frameworks toward excellent efficient electrocatalyst for oxygen reduction reaction. Nano Energy, 2019, 63, 103788.	8.2	74
634	Three-dimensional Composite Catalysts for Al–O ₂ Batteries Composed of CoMn ₂ O ₄ Nanoneedles Supported on Nitrogen-Doped Carbon Nanotubes/Graphene. ACS Applied Materials & Interfaces, 2019, 11, 21526-21535.	4.0	42
635	Superior Oxygen Electrocatalysis on Nickel Indium Thiospinels for Rechargeable Zn–Air Batteries. , 2019, 1, 123-131.		199
636	Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries. Journal of Materials Chemistry A, 2019, 7, 15564-15574.	5.2	54
637	In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Letters, 2019, 11, 47.	14.4	181
638	Effect of nitrogen-containing polymer wrapped around carbon nanotubes for Li–O2 battery cathode. Polymer Journal, 2019, 51, 921-927.	1.3	4
639	Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2019, 6, 3478-3487.	1.7	58
640	Thermally Robust Porous Bimetallic (Ni _{<i>x</i>} Pt _{1–<i>x</i>}) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 21435-21444.	4.0	18
641	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
642	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for Highâ€Energy Flexible Znâ€Air Batteries. Advanced Energy Materials, 2019, 9, 1900911.	10.2	133

#	Article	IF	CITATIONS
643	Advanced rechargeable Na–CO ₂ batteries enabled by a ruthenium@porous carbon composite cathode with enhanced Na ₂ CO ₃ reversibility. Chemical Communications, 2019, 55, 7946-7949.	2.2	30
644	One‧tep Route Synthesized Co ₂ P/Ru/Nâ€Doped Carbon Nanotube Hybrids as Bifunctional Electrocatalysts for Highâ€Performance Li–O ₂ Batteries. Small, 2019, 15, e1900001.	5.2	48
645	Modification of pyridinic N and O-rich defects in a bifunctional electrocatalyst with enhanced electrocatalytic performance. Journal of Alloys and Compounds, 2019, 789, 874-880.	2.8	8
646	Lithium-air batteries: Challenges coexist with opportunities. APL Materials, 2019, 7, .	2.2	47
647	Fe ₃ Câ€Co Nanoparticles Encapsulated in a Hierarchical Structure of Nâ€Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER. Advanced Functional Materials, 2019, 29, 1901949.	7.8	297
648	Electrode thickness-dependent formation of porous iron electrodes for secondary alkaline iron-air batteries. Electrochimica Acta, 2019, 314, 61-71.	2.6	12
649	<i>In situ</i> Surface Chemistry Engineering of Cobalt-Sulfide Nanosheets for Improved Oxygen Evolution Activity. ACS Applied Energy Materials, 2019, 2, 4439-4449.	2.5	49
650	Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 18295-18304.	4.0	28
651	Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Applied Catalysis B: Environmental, 2019, 253, 317-322.	10.8	41
652	Hierarchical nickel-cobalt phosphide hollow spheres embedded in P-doped reduced graphene oxide towards superior electrochemistry activity. Carbon, 2019, 149, 222-233.	5.4	114
653	Influence of Electrochemical Aging on Bead-Blasted Nickel Electrodes for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3166-3178.	2.5	5
654	Low-Cost Rapid Template-Free Synthesis of Nanoscale Zinc Spinels for Energy Storage and Electrocatalytic Applications. ACS Applied Energy Materials, 2019, 2, 3211-3219.	2.5	17
655	Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochimica Acta, 2019, 310, 86-95.	2.6	21
656	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy and Environmental Science, 2019, 12, 2327-2344.	15.6	125
657	Converting eggplant biomass into multifunctional porous carbon electrodes for self-powered capacitive deionization. Environmental Science: Water Research and Technology, 2019, 5, 1054-1063.	1.2	21
658	Solvothermal synthesis of BiVO4/WO3 heterostructures and their applicability towards electrochemical water oxidation reactions. European Physical Journal Plus, 2019, 134, 1.	1.2	3
659	Electrospun carbon nanofibers loaded with spinel-type cobalt oxide as bifunctional catalysts for enhanced oxygen electrocatalysis. Journal of Energy Storage, 2019, 23, 269-277.	3.9	46
660	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	5.5	79

#	Article	IF	CITATIONS
661	Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443.	4.6	64
662	Photoactive Zn–air batteries using spinel-type cobalt oxide as a bifunctional photocatalyst at the air cathode. Chemical Communications, 2019, 55, 5855-5858.	2.2	44
663	RuO2-particle-decorated graphene-nanoribbon cathodes for long-cycle Li–O2 batteries. Journal of Electroanalytical Chemistry, 2019, 842, 98-106.	1.9	28
664	Sponge Effect Boosting Oxygen Reduction Reaction at the Interfaces between Mullite SmMn ₂ O ₅ and Nitrogen-Doped Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2019, 11, 17482-17490.	4.0	18
665	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal–Air Batteries. ACS Nano, 2019, 13, 5502-5512.	7.3	87
666	Ultrasmall Co2P2O7 nanocrystals anchored on nitrogen-doped graphene as efficient electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2019, 43, 6492-6499.	1.4	13
667	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
668	Migration of Cobalt Species within Mixed Platinum-Cobalt Oxide Bifunctional Electrocatalysts in Alkaline Electrolytes. Journal of the Electrochemical Society, 2019, 166, F3093-F3097.	1.3	7
669	Ionicâ€State Cobalt and Iron Coâ€doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2088-2094.	1.7	26
670	Rational design of three-phase interfaces for electrocatalysis. Nano Research, 2019, 12, 2055-2066.	5.8	135
671	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
672	Nitrogen-Doped NiCo ₂ O ₄ Microsphere as an Efficient Catalyst for Flexible Rechargeable Zinc–Air Batteries and Self-Charging Power System. ACS Applied Energy Materials, 2019, 2, 2296-2304.	2.5	66
673	Realizing discrete growth of thin Li2O2 sheets on black phosphorus quantum dots-decorated δ-MnO2catalyst for long-life lithium–oxygen cells. Energy Storage Materials, 2019, 23, 684-692.	9.5	24
675	A highly efficient cathode catalyst γ-MnO2@CNT composite for sodium-air batteries. Science China Chemistry, 2019, 62, 727-731.	4.2	3
676	Recent advances in hybrid sodium–air batteries. Materials Horizons, 2019, 6, 1306-1335.	6.4	55
677	Provoking electrocatalytic activity with bio-molecules at inactive gas diffusion layers. Materials Today Energy, 2019, 12, 318-326.	2.5	5
678	Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries. Journal of Solid State Electrochemistry, 2019, 23, 1359-1369.	1.2	6
679	A high-energy-density and long-stable-performance zinc-air fuel cell system. Applied Energy, 2019, 241, 124-129.	5.1	40

#	Article	IF	CITATIONS
680	Direct Spectroscopy for Probing the Critical Role of Partial Covalency in Oxygen Reduction Reaction for Cobalt-Manganese Spinel Oxides. Nanomaterials, 2019, 9, 577.	1.9	28
681	Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy, 2019, 61, 86-95.	8.2	134
682	Synergetic contribution of Fe/Co and N/B dopants in mesoporous carbon nanosheets as remarkable electrocatalysts for zinc-air batteries. Chemical Engineering Journal, 2019, 371, 433-442.	6.6	64
683	Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 20987-20996.	3.8	46
684	Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 425, 138-146.	4.0	110
685	Electrospun Fe2C-loaded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Nanotechnology, 2019, 30, 325403.	1.3	9
686	Tuning the Electrochemical Property of the Ultrafine Metalâ€oxide Nanoclusters by Iron Phthalocyanine as Efficient Catalysts for Energy Storage and Conversion. Energy and Environmental Materials, 2019, 2, 5-17.	7.3	32
687	Low-temperature plasma technology for electrocatalysis. Chinese Chemical Letters, 2019, 30, 826-838.	4.8	57
688	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	5.2	225
689	Efficient Oxygen Electrocatalyst for Zn–Air Batteries: Carbon Dots and Co ₉ S ₈ Nanoparticles in a N,S-Codoped Carbon Matrix. ACS Applied Materials & Interfaces, 2019, 11, 14085-14094.	4.0	96
690	Biomass-derived hierarchically porous carbon skeletons with <i>in situ</i> decorated IrCo nanoparticles as high-performance cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 10662-10671.	5.2	34
692	Redox catalysts for aprotic Li-O2 batteries: Toward a redox flow system. Nano Materials Science, 2019, 1, 173-183.	3.9	10
693	Dual-nitrogen-source engineered Fe–N _x moieties as a booster for oxygen electroreduction. Journal of Materials Chemistry A, 2019, 7, 11007-11015.	5.2	62
694	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. Journal of Hazardous Materials, 2019, 369, 699-706.	6.5	34
695	Superâ€ S tretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	10.2	287
696	Highly Stable Oxygen Electrodes Enabled by Catalyst Redistribution through an In Situ Electrochemical Method. Advanced Energy Materials, 2019, 9, 1803598.	10.2	6
697	Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2804-2824.	2.1	45
698	Progress in Nonmetalâ€Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2019, 12, 2133-2146.	3.6	81

#	Article	IF	CITATIONS
699	Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. Science China Chemistry, 2019, 62, 385-392.	4.2	29
700	Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2019, 7, 5875-5897.	5.2	252
701	Efficiency of 3Dâ€Ordered Macroporous La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ as an Electrocatalyst for Aprotic Liâ€O ₂ Batteries. ChemistryOpen, 2019, 8, 206-209.	0.9	9
702	Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. Journal of Materials Chemistry A, 2019, 7, 8006-8029.	5.2	221
703	Low pressure chemical vapor deposition synthesis of large area hetero-doped mono- and few- layer graphene with nitrogen and oxygen species. Materials Research Express, 2019, 6, 055604.	0.8	7
704	Influence of Al Alloying on the Electrochemical Behavior of Zn Electrodes for Zn–Air Batteries With Neutral Sodium Chloride Electrolyte. Frontiers in Chemistry, 2019, 7, 800.	1.8	21
705	Toward a new generation of low cost, efficient, and durable metal–air flow batteries. Journal of Materials Chemistry A, 2019, 7, 26744-26768.	5.2	51
706	Preparation procedure for the electrode slurries of polymer electrolyte fuel cells utilizing the irreversibility of ionomer adsorption onto Pt–C particles. Journal of the Ceramic Society of Japan, 2019, 127, 942-951.	0.5	10
707	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	2.2	39
708	Coupling FeNi alloys and hollow nitrogen-enriched carbon frameworks leads to high-performance oxygen electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2019, 3, 136-141.	2.5	34
709	Transition metal (Fe, Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horizons, 2019, 4, 99-116.	4.1	90
710	Vertically self-standing C@NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Naâ^'O2 batteries. Journal of Alloys and Compounds, 2019, 772, 693-702.	2.8	20
711	In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Applied Catalysis B: Environmental, 2019, 241, 104-112.	10.8	167
712	Interface self-assembly preparation of multi-element doped carbon nanobowls with high electrocatalysis activity for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 533, 569-577.	5.0	8
713	Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries. Journal of Industrial and Engineering Chemistry, 2019, 72, 250-254.	2.9	19
714	An Interpenetrating Porous Organic Polymer as a Precursor for FeP/Fe ₂ Pâ€Embedded Porous Carbon toward a pHâ€Universal ORR Catalyst. ChemSusChem, 2019, 12, 915-923.	3.6	45
715	Fe and S co-doped N-enriched hierarchical porous carbon polyhedron as efficient non-noble-metal electrocatalyst toward oxygen reduction reaction in both alkaline and acidic medium. Electrochimica Acta, 2019, 298, 570-579.	2.6	54
716	Hierarchical porous FeCo2O4@Ni as a carbon- and binder-free cathode for lithiumâ^'oxygen batteries. Journal of Alloys and Compounds, 2019, 780, 107-115.	2.8	28

		CITATION REPORT		
#	Article		IF	CITATIONS
717	Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction. Joule, 2019	, 3, 557-569.	11.7	132
718	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related ap Nano Today, 2019, 24, 103-119.	plications.	6.2	357
719	Mg Doped Perovskite LaNiO ₃ Nanofibers as an Efficient Bifunctional Cata Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 923-931.	alyst for	2.5	103
720	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Mat and Engineering Reports, 2019, 137, 1-37.	erials Science	14.8	25
721	Elaboration, characterization and first principle studies of MnCo ₂ O _{ nanomaterials prepared from non-standard raw materials. Materials Research Express,}		0.8	12
722	Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by enhanced water oxidation. Electrochimica Acta, 2019, 296, 418-426.	Fe species for	2.6	25
723	Silica Coated ZnFe 2 O 4 Nanoparticles as Cathode Catalysts for Rechargeable Lithium Batteries and Supercaps, 2019, 2, 380-386.	â€Air Batteries.	2.4	5
724	Improved oxygen reduction activity and stability on N, S-enriched hierarchical carbon a with decorating core-shell iron group metal sulphides nanoparticles for Al-air batteries. 2019, 145, 53-60.		5.4	24
725	Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction re Carbon, 2019, 145, 481-487.	actions.	5.4	33
726	Three-Dimensional Graphene-Supported Ni ₃ Fe/Co ₉ S _{8 Rational Design and Active for Oxygen Reversible Electrocatalysis. ACS Applied Materia Interfaces, 2019, 11, 4028-4036.}	Composites: als &	4.0	79
727	Graphene–carbon nanotube hybrid catalyst layer architecture for reversible oxygen e rechargeable metal–air batteries. Journal of Applied Electrochemistry, 2019, 49, 281		1.5	7
728	Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-B-O@Co3 electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2019, 299, 213-22		2.6	18
729	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€A Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	ir Batteries:	2.4	36
730	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Fran Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 201	neworks as .9, 2, 355-363.	2.4	16
731	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zi Batteries and Supercaps, 2019, 2, 272-289.	incâ€Air Batteries.	2.4	121
732	Atomically thin two-dimensional metal oxide nanosheets and their heterostructures fo storage. Energy Storage Materials, 2019, 16, 455-480.	r energy	9.5	109
733	Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced ca activity towards electrochemical oxidation of methanol. Nano Energy, 2019, 55, 37-41		8.2	100
734	Porous Organic Polymer Gel Derived Electrocatalysts for Efficient Oxygen Reduction. ChemElectroChem, 2019, 6, 485-492.		1.7	19

#	Article	IF	CITATIONS
735	Flat Monolayer Graphene Cathodes for Li–Oxygen Microbatteries. ACS Applied Materials & Interfaces, 2019, 11, 489-498.	4.0	12
736	The Vital Balance of Graphitization and Defect Engineering for Efficient Bifunctional Oxygen Electrocatalyst Based on Nâ€doping Carbon/CNT Frameworks. ChemCatChem, 2019, 11, 861-867.	1.8	34
737	Lithiation-Induced Non-Noble Metal Nanoparticles for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 811-818.	4.0	16
738	Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst. Nanotechnology, 2019, 30, 075402.	1.3	13
739	Solid-state energy storage devices based on two-dimensional nano-materials. Energy Storage Materials, 2019, 20, 269-290.	9.5	50
740	Enhanced cyclic stability at elevated temperature of spinel LiNi0.5Mn1.5O4 by Li4Ti5O12 coating as cathode material for high voltage lithium ion batteries. Ceramics International, 2019, 45, 5072-5079.	2.3	18
741	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon, 2019, 142, 115-122.	5.4	57
742	Quantum chemistry of the oxygen reduction reaction (ORR) on Fe-G iron doped graphene for fuel cells. International Journal of Hydrogen Energy, 2019, 44, 12439-12445.	3.8	17
743	Non-noble Iron Group (Fe, Co, Ni)-Based Oxide Electrocatalysts for Aqueous Zinc–Air Batteries: Recent Progress, Challenges, and Perspectives. Organometallics, 2019, 38, 1186-1199.	1.1	51
744	Single crystalline Bi2Ru2O7 pyrochlore oxide nanoparticles as efficient bifunctional oxygen electrocatalyst for hybrid Na-air batteries. Chemical Engineering Journal, 2019, 358, 11-19.	6.6	67
745	Rational Design of Transition Metalâ€Based Materials for Highly Efficient Electrocatalysis. Small Methods, 2019, 3, 1800211.	4.6	250
746	Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery. Journal of Solid State Electrochemistry, 2019, 23, 53-62.	1.2	30
747	Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 24-30.	9.5	52
748	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	10.2	123
749	Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118188.	10.8	163
750	Test factors affecting the performance of zinc–air battery. Journal of Energy Chemistry, 2020, 44, 1-7.	7.1	41
751	Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 2020, 25, 585-612.	9.5	181
752	Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Storage Materials, 2020, 24, 402-411.	9.5	48

			2
#	ARTICLE	IF	CITATIONS
753	Synthesis and ORR performance of nitrogen-doped ordered microporous carbon by CVD of acetonitrile vapor using silanized zeolite as template. Applied Surface Science, 2020, 504, 144438.	3.1	25
754	Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery. Chemical Engineering Journal, 2020, 381, 122681.	6.6	49
755	Carbon Nanotubes-Supported Pt Electrocatalysts for O ₂ Reduction Reaction—Effect of Number of Nanotube Walls. Journal of Nanoscience and Nanotechnology, 2020, 20, 2736-2745.	0.9	10
756	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
757	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5.2	18
758	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	5.2	59
759	Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Applied Catalysis B: Environmental, 2020, 268, 118570.	10.8	147
760	Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. Journal of Colloid and Interface Science, 2020, 564, 28-36.	5.0	72
761	Co–Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4366-4372.	4.0	34
762	A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochimica Acta, 2020, 333, 135566.	2.6	71
763	Design and synthesis of carbon-based catalysts for zinc–air batteries. , 2020, , 161-190.		0
764	Advanced nanomaterials for efficient oxygen electrodes in metal–air batteries. , 2020, , 191-222.		0
765	Transition metal chalcogenides for energy storage and conversion. , 2020, , 355-391.		7
766	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8
767	Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118431.	10.8	96
768	Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.	5.4	27
769	Novel Co1-xS/C-3 supported on N-doped ketjen black as an efficient electrocatalyst for oxygen reduction reaction in alkaline media. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 215-226.	2.7	3
770	Co ₉ S ₈ integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustainable Energy and Fuels, 2020, 4, 1093-1098.	2.5	15

#	Article	IF	Citations
" 771	Ionic Liquid Electrolytes for Metal-Air Batteries: Interactions between O ₂ , Zn ²⁺ and H ₂ O Impurities. Journal of the Electrochemical Society, 2020, 167, 070505.	1.3	11
772	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	8.2	58
773	A New Porous Niâ€W Mixed Metal Phosphonate Open Framework Material for Efficient Photoelectrochemical OER. ChemCatChem, 2020, 12, 1504-1511.	1.8	22
774	Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 1588-1592.	4.8	31
775	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	10.2	102
776	Ultrafine SmMn2O5-δelectrocatalysts with modest oxygen deficiency for highly-efficient pH-neutral magnesium-air batteries. Journal of Power Sources, 2020, 449, 227482.	4.0	24
777	ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 2020, 10, 1735.	1.9	6
778	Co-doped carbon materials synthesized with polymeric precursors as bifunctional electrocatalysts. RSC Advances, 2020, 10, 35966-35978.	1.7	6
779	Recent Advances in Transition Metal Carbide Electrocatalysts for Oxygen Evolution Reaction. Catalysts, 2020, 10, 1164.	1.6	43
780	Synthesis and growth mechanism of bamboo like N-doped CNT/Graphene nanostructure incorporated with hybrid metal nanoparticles for overall water splitting. Carbon, 2020, 170, 452-463.	5.4	59
781	Membranes for zinc-air batteries: Recent progress, challenges and perspectives. Journal of Power Sources, 2020, 475, 228689.	4.0	58
782	Neural Network-Assisted Development of High-Entropy Alloy Catalysts: Decoupling Ligand and Coordination Effects. Matter, 2020, 3, 1318-1333.	5.0	83
783	Graphitic carbon nitride modified with Pd nanoparticles toward efficient cathode catalyst for Li-O ₂ batteries. Functional Materials Letters, 2020, 13, 2051045.	0.7	5
784	Novel and highly efficient catalyst for Li–O2 battery: Porous LaCo0.6Ni0.4O3 nanofibers decorated with ultrafine Co3O4 nanoparticles. Electrochimica Acta, 2020, 363, 137235.	2.6	7
785	Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nature Communications, 2020, 11, 5075.	5.8	226
786	Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy and Environmental Science, 2020, 13, 4536-4563.	15.6	209
787	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	8.2	157
788	Bimetallic Sulfide with Controllable Mg Substitution Anchored on CNTs as Hierarchical Bifunctional Catalyst toward Oxygen Catalytic Reactions for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37164-37172.	4.0	32

#	Article	IF	CITATIONS
789	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	2.4	53
790	Trifunctional Singleâ€Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small, 2020, 16, e2002888.	5.2	120
791	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	2.6	28
792	Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Advances, 2020, 2, 5659-5665.	2.2	7
793	Functionalizing Gold Nanoparticles with Calix[4]arenes Monolayers for Enhancing Selectivity and Stability in ORR Electrocatalysis. Advanced Materials Interfaces, 2020, 7, 2001557.	1.9	12
794	3D Printing of a V ₈ C ₇ –VO ₂ Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries. Advanced Materials, 2020, 32, e2005967.	11.1	140
795	The Effect of Heteroatom Doping on Nickel Cobalt Oxide Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemPlusChem, 2020, 85, 1710-1718.	1.3	10
796	A facile top-down approach for constructing perovskite oxide nanostructure with abundant oxygen defects as highly efficient water oxidation electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 22808-22816.	3.8	15
797	S-Doped hierarchical graphene decorated with Co-porphyrins as an efficient electrocatalyst for zinc–air batteries. New Journal of Chemistry, 2020, 44, 14343-14349.	1.4	7
798	Hydrophobic electrocatalyst for the enhanced activity of oxygen reduction reaction through controllable liquid/gas/solid interface. Applied Surface Science, 2020, 532, 147357.	3.1	16
799	A Flexible and Safe Aqueous Zinc–Air Battery with a Wide Operating Temperature Range from â^'20 to 70 °C. ACS Sustainable Chemistry and Engineering, 2020, 8, 11501-11511.	3.2	63
800	Engineering Porous Quasiâ€5pherical Feâ~'Nâ~'C Nanocatalysts with Robust Oxygen Reduction Performance for Znâ€Air Battery Application. ChemNanoMat, 2020, 6, 1782-1788.	1.5	11
801	Piezotronic-enhanced oxygen evolution reaction enabled by a Au/MoS ₂ nanosheet catalyst. Catalysis Science and Technology, 2020, 10, 6180-6187.	2.1	22
802	Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catalysis Science and Technology, 2020, 10, 6420-6448.	2.1	33
803	Practical energy densities, cost, and technical challenges for magnesiumâ€sulfur batteries. EcoMat, 2020, 2, e12056.	6.8	17
804	Structural evolution, electronic and physicochemical properties of tin ozonide nanoclusters: a density functional theory perspective. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	0
805	Editorial: Carbon-Based Bifunctional Oxygen Electrocatalysts. Frontiers in Chemistry, 2020, 8, 713.	1.8	2
806	Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. Advanced Energy Materials, 2020, 10, 2002019.	10.2	85

#	Article	IF	CITATIONS
807	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
808	Graphite Nanoarrays-Confined Fe and Co Single-Atoms within Graphene Sponges as Bifunctional Oxygen Electrocatalyst for Ultralong Lasting Zinc-Air Battery. ACS Applied Materials & Interfaces, 2020, 12, 40415-40425.	4.0	27
809	Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview. Catalysts, 2020, 10, 1472.	1.6	24
810	Fiber Electronics. , 2020, , .		4
811	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
812	Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renewable Energy, 2020, 156, 1040-1054.	4.3	108
813	Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries. Applied Sciences (Switzerland), 2020, 10, 3165.	1.3	35
814	Bimetallic manganese-vanadium functionalized N,S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Applied Catalysis B: Environmental, 2020, 277, 119195.	10.8	76
815	A Humidityâ€Induced Nontemplating Route toward Hierarchical Porous Carbon Fiber Hybrid for Efficient Bifunctional Oxygen Catalysis. Small, 2020, 16, e2001743.	5.2	36
816	Ant-Cave-Structured Nanopore-Embedded CoMn2O4 Microspheres with Stable Electrochemical Reaction for Li-Air Battery. Journal of the Electrochemical Society, 2020, 167, 080537.	1.3	1
817	The Stabilization Effect of CO ₂ in Lithium–Oxygen/CO ₂ Batteries. Angewandte Chemie - International Edition, 2020, 59, 16661-16667.	7.2	71
820	Oxygen Electrocatalysis with Mesoporous Coâ^'Nâ^'C Catalysts: Towards Understanding the Active Site and Development of Rechargeable Znâ€Air Batteries. ChemElectroChem, 2020, 7, 2877-2887.	1.7	12
821	Hexagonal La ₂ O ₃ Nanocrystals Chemically Coupled with Nitrogenâ€Doped Porous Carbon as Efficient Catalysts for the Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 12606-12614.	1.7	12
822	Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Transactions, 2020, 49, 11430-11450.	1.6	12
823	Recent Developments for Aluminum–Air Batteries. Electrochemical Energy Reviews, 2020, 3, 344-369.	13.1	96
824	Investigation on the Discharge and Charge Behaviors of Li-CO ₂ Batteries with Carbon Nanotube Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 9742-9750.	3.2	25
825	Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries. Chemical Research in Chinese Universities, 2020, 36, 1261-1264.	1.3	5
826	The Stabilization Effect of CO 2 in Lithium–Oxygen/CO 2 Batteries. Angewandte Chemie, 2020, 132, 16804.	1.6	6

CITATION REPORT IF CITATIONS Nitrogen-doped hollow carbon nanoflowers from a preformed covalent triazine framework for metal-free bifunctional electrocatalysis. Nanoscale, 2020, 12, 14441-14447. 2.8 41

828	Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution. Chemical Communications, 2020, 56, 8770-8773.	2.2	10
830	Controllable Synthesis of Co@CoO _{<i>x</i>} /Helical Nitrogen-Doped Carbon Nanotubes toward Oxygen Reduction Reaction as Binder-free Cathodes for Al–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16512-16520.	4.0	20
831	Iridic oxide nanoparticles grown in situ on BCN nanotubes as highly efficient dual electrocatalyst for rechargeable lithium-O2 batteries. Journal of Energy Chemistry, 2020, 49, 291-298.	7.1	15
832	Core-shell-structured Co@Co4N nanoparticles encapsulated into MnO-modified porous N-doping carbon nanocubes as bifunctional catalysts for rechargeable Zn–air batteries. Journal of Energy Chemistry, 2020, 50, 52-62.	7.1	49
833	Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium. Journal of Solid State Electrochemistry, 2020, 24, 891-904.	1.2	25
834	Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.	18.7	233
835	Surface Modification for Promoting Durable, Efficient, and Selective Electrocatalysts. ChemElectroChem, 2020, 7, 2345-2363.	1.7	26
836	Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. Journal of Catalysis, 2020, 384, 199-207.	3.1	32
837	Porous Organic Polymer-Derived Fe ₂ P@N,P-Codoped Porous Carbon as Efficient Electrocatalysts for pH Universal ORR. ACS Omega, 2020, 5, 7225-7234.	1.6	20
838	Effect of the Oxygen Vacancies and Structural Order on the Oxygen Evolution Activity: A Case Study of SrMnO _{3â^îſ} Featuring Four Different Structure Types. Inorganic Chemistry, 2020, 59, 4685-4692.	1.9	32
839	A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.	5.2	95
840	Construction and Application of Interfacial Inorganic Nanostructures. Chinese Journal of Chemistry, 2020, 38, 772-786.	2.6	13
841	MOF-derived ZnCo ₂ O ₄ porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Advances, 2020, 10, 9063-9069.	1.7	34
842	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	7.8	19
843	CoNiFe Layered Double Hydroxide/RuO _{2.1} Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33083-33093.	4.0	47
844	Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. Polymers, 2020, 12, 238.	2.0	35
845	Hydrothermally Carbonized Waste Biomass as Electrocatalyst Support for α-MnO2 in Oxygen Reduction Reaction. Catalysts, 2020, 10, 177.	1.6	11

ARTICLE

#

#	Article	IF	CITATIONS
846	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using Inâ€ s itu Xâ€ r ay Absorption Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 15314-15324.	7.2	22
847	Tailor-made open porous 2D CoFe/SN-carbon with slightly weakened adsorption strength of ORR/OER intermediates as remarkable electrocatalysts toward zinc-air batteries. Applied Catalysis B: Environmental, 2020, 269, 118771.	10.8	70
848	Tuning cobalt eg occupation of Co-NCNT by manipulation of crystallinity facilitates more efficient oxygen evolution and reduction. Journal of Catalysis, 2020, 383, 221-229.	3.1	11
849	Role of strontium as doping agent in LaMn0.5Ni0.5O3 for oxygen electro-catalysis. Journal of Industrial and Engineering Chemistry, 2020, 85, 94-101.	2.9	13
850	Bifunctional nickel ferrite-decorated carbon nanotube arrays as free-standing air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 5070-5077.	5.2	43
851	Aluminum–air batteries: A viability review. Journal of Energy Storage, 2020, 28, 101287.	3.9	102
852	Space-confined iron nanoparticles in a 3D nitrogen-doped rGO-CNT framework as efficient bifunctional electrocatalysts for rechargeable Zinc–Air batteries. Microporous and Mesoporous Materials, 2020, 298, 110100.	2.2	14
853	Ultrafast Activating Strategy to Significantly Enhance the Electrocatalysis of Commercial Carbon Cloth for Oxygen Evolution Reaction and Overall Water Splitting. ChemNanoMat, 2020, 6, 542-549.	1.5	7
854	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
855	Polymeric redox mediator as a stable cathode catalyst for lithium-O2 batteries. Journal of Power Sources, 2020, 453, 227850.	4.0	13
856	Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 3906-3929.	1.7	90
857	MOF-Derived Fe ₂ O ₃ /Nitrogen/Carbon Composite as a Stable Heterogeneous Electro-Fenton Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 1800-1808.	1.8	54
858	Nitrogenâ€doped nanoarrayâ€modified 3D hierarchical graphene as a cofunction host for highâ€performance flexible Liâ€6 battery. EcoMat, 2020, 2, e12010.	6.8	50
859	Fabrication, improved performance, and response mechanism of binary Ag–Sb alloy pH electrodes. Electrochimica Acta, 2020, 337, 135746.	2.6	7
860	Bifunctional electrocatalysts of lanthanum-based perovskite oxide with Sb-doped SnO2 for oxygen reduction and evolution reactions. Journal of Power Sources, 2020, 451, 227736.	4.0	26
861	Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020, 41, 847-852.	6.9	53
862	Effects of Oxygen Mobility in La–Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation. ACS Catalysis, 2020, 10, 3707-3719.	5.5	132
863	Self-reconstructed interlayer derived by in-situ Mn diffusion from La0.5Sr0.5MnO3 via atomic layer deposition for an efficient bi-functional electrocatalyst. Nano Energy, 2020, 71, 104564.	8.2	26

#	Article	IF	CITATIONS
864	Oxygen Reduction Electrocatalysis on Ordered Intermetallic Pd–Bi Electrodes Is Enhanced by a Low Coverage of Spectator Species. Journal of Physical Chemistry C, 2020, 124, 5220-5224.	1.5	25
865	Effect of cation substitution in MnCo2O4 spinel anchored over rGO for enhancing the electrocatalytic activity towards oxygen evolution reaction (OER). International Journal of Hydrogen Energy, 2020, 45, 6391-6403.	3.8	81
866	A competitive self-powered sensing platform based on a visible light assisted zinc–air battery system. Chemical Communications, 2020, 56, 5739-5742.	2.2	17
867	Li–air Battery with a Superhydrophobic Li-Protective Layer. ACS Applied Materials & Interfaces, 2020, 12, 23010-23016.	4.0	33
868	A metal free electrocatalyst for high-performance zinc-air battery applications with good resistance towards poisoning species. Carbon, 2020, 164, 12-18.	5.4	40
869	Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms. Carbon, 2020, 165, 434-454.	5.4	231
870	High-Power Aqueous Zn-H2O2 Batteries for Multiple Applications. Cell Reports Physical Science, 2020, 1, 100027.	2.8	14
871	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In‣itu Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2020, 132, 15427-15437.	1.6	2
872	Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg 2+ â€Containing Ionic Liquid N â€Butyl―N â€Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)imide. ChemSusChem, 2020, 13, 3919-3927.	3.6	6
873	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Scale Production. Advanced Functional Materials, 2020, 30, 2000503.	7.8	226
874	A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. Journal of Power Sources, 2020, 463, 228161.	4.0	9
875	Electrocatalytic properties and modification of the compound perovskite oxide with SBA-15. Materials Chemistry and Physics, 2020, 250, 122996.	2.0	4
876	Doping optimization mechanism of a bi-functional perovskite catalyst La0.8Sr0.2Co0.8Ni0.2O3-δ for Li–O2 battery cathode. Journal of Alloys and Compounds, 2020, 831, 154728.	2.8	10
877	Enhanced Catalytic Activity and Stability of the Oxygen Evolution Reaction on Tetravalent Mixed Metal Oxide. Chemistry of Materials, 2020, 32, 3893-3903.	3.2	36
878	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	10.2	106
879	Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 1033-1059.	3.2	64
880	Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis. Science Bulletin, 2021, 66, 44-51.	4.3	54
881	Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts. Journal of Energy Chemistry, 2021, 55, 572-579.	7.1	29

#	Article	IF	CITATIONS
882	Highly dispersed Fe-Nx active sites on Graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon, 2021, 171, 1-9.	5.4	46
883	Transition Metal and Nitrogen Coâ€Doped Carbonâ€based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. ChemSusChem, 2021, 14, 33-55.	3.6	49
884	Modulating electronic structure of honeycomb-like Ni2P/Ni12P5 heterostructure with phosphorus vacancies for highly efficient lithium-oxygen batteries. Chemical Engineering Journal, 2021, 413, 127404.	6.6	39
885	LI-O <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>4.0</td><td>10</td></mmi:math>	4.0	10
886	2021, 464, 229261. Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coordination Chemistry Reviews, 2021, 431, 213678.	9.5	69
887	Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc–air batteries. Materials Today Advances, 2021, 9, 100116.	2.5	40
888	Interplay of the functional units of a binder in the oxygen reduction process of zinc-air battery. Catalysis Today, 2021, 370, 66-74.	2.2	9
889	Optimization of specific capacitance and water splitting efficiency of N-enriched carbon by incorporating oxides of transition metals via an ancient chemical technique. Journal of Electroanalytical Chemistry, 2021, 880, 114929.	1.9	2
890	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Naâ€CO ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	7.3	25
891	Recent Advances in the Controlled Synthesis and Catalytic Applications of Two-Dimensional Rhodium Nanomaterials. , 2021, 3, 121-133.		28
892	Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts. Journal of Power Sources, 2021, 485, 229335.	4.0	43
893	Fabrication of Pressure-Responsive Energy Device from Nanofluidic Vanadium Pentoxide and Polymeric Hydrogel. ACS Applied Electronic Materials, 2021, 3, 277-284.	2.0	8
894	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	6.8	48
895	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	3.7	40
896	Thermally regenerable metal-organic framework with high monovalent metal ion selectivity. Chemical Engineering Journal, 2021, 405, 127037.	6.6	31
897	Amino functionalized carbon nanotubes supported CoNi@CoO–NiO core/shell nanoparticles as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. International Journal of Hydrogen Energy, 2021, 46, 374-388.	3.8	28
898	Reduced mesoporous Co3O4 nanowires grown on 3D graphene as efficient catalysts for oxygen reduction and binder-free electrodes in aluminum–air batteries. Journal of Materials Science, 2021, 56, 3861-3873.	1.7	7
899	Advanced Carbon Materials: Base of 21st Century Scientific Innovations in Chemical, Polymer, Sensing and Energy Engineering. , 0, , .		2

#	Article	IF	CITATIONS
900	Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries. ACS Central Science, 2021, 7, 335-344.	5.3	24
901	NaBH ₄ -reduction induced tunable oxygen vacancies in LaNiO _{2.7} to enhance the oxygen evolution reaction. Chemical Communications, 2021, 57, 7168-7171.	2.2	11
902	Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Advances, 2021, 11, 15738-15747.	1.7	1
903	Understanding the mechanisms and design principles for oxygen evolution and oxygen reduction activity on perovskite catalysts for alkaline zinc–air batteries. Catalysis Science and Technology, 2021, 11, 5200-5211.	2.1	3
904	MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media. Dalton Transactions, 2021, 50, 5473-5482.	1.6	44
905	Ru ^{III} (edta) complexes as molecular redox catalysts in chemical and electrochemical reduction of dioxygen and hydrogen peroxide: inner-sphere <i>versus</i> outer-sphere mechanism. RSC Advances, 2021, 11, 21359-21366.	1.7	7
906	Structural and electronic engineering of biomass-derived carbon nanosheet composite for electrochemical oxygen reduction. Sustainable Energy and Fuels, 2021, 5, 2114-2126.	2.5	8
907	Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 18222-18230.	5.2	135
908	Lithium–Air Batteries: Air-Electrochemistry and Anode Stabilization. Accounts of Chemical Research, 2021, 54, 632-641.	7.6	104
909	A review of the synergistic effect of multi-coordination crystal fields on electrocatalysts. Materials Chemistry Frontiers, 2021, 5, 6718-6734.	3.2	3
910	Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green Energy and Environment, 2022, 7, 16-34.	4.7	36
911	Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn–air battery. RSC Advances, 2021, 11, 15753-15761.	1.7	10
912	Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction. Acta Chimica Sinica, 2021, 79, 369.	0.5	4
913	N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 5751-5758.	5.2	46
914	Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives. Nanotechnology Reviews, 2021, 10, 137-157.	2.6	28
915	A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371, 46-51.	6.0	551
916	Ionic liquids as precursors for Fe–N doped carbon nanotube electrocatalysts for the oxygen reduction reaction. Nanoscale, 2021, 13, 15804-15811.	2.8	12
917	Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol. Turkish Journal of Chemistry, 2021, 45, 248-260.	0.5	2

#	Article	IF	CITATIONS
918	Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Reports Physical Science, 2021, 2, 100328.	2.8	55
919	Structural Engineering of Ultrathin ReS ₂ on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction. ACS Nano, 2021, 15, 5560-5566.	7.3	24
920	Study of Activated Carbon Sheets Used for <scp>Airâ€Cathodes</scp> of Portable <scp>Quasiâ€Solid Aluminumâ€Air</scp> Batteries. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 653-655.	0.8	2
921	Free-standing nitrogen doped graphene/Co(OH)2 composite films with superior catalytic activity for aprotic lithium-oxygen batteries. Chinese Chemical Letters, 2021, 32, 594-597.	4.8	3
922	Heterogenization of Ionic liquid Boosting Electrochemical Oxygen Reduction Performance of Co 3 O 4 Supported on Graphene Oxide. ChemCatChem, 2021, 13, 1546-1551.	1.8	6
923	2D Materials Bridging Experiments and Computations for Electro/Photocatalysis. Advanced Energy Materials, 2022, 12, 2003841.	10.2	116
924	Engineering Mesopores and Unsaturated Coordination in Metal–Organic Frameworks for Enhanced Oxygen Reduction and Oxygen Evolution Activity and Li–Air Battery Capacity. ACS Sustainable Chemistry and Engineering, 2021, 9, 4509-4519.	3.2	25
925	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	2.8	29
926	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Fuels, 2021, 35, 6483-6503.	2.5	26
927	Dominating Role of Interfacial N–Ni Coordination in Spinel Nickel Ferrite/Nâ€Đoped Graphene Hybrids for Boosting Reversible Oxygen Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2000106.	2.8	4
928	Recent advances in vacancy engineering of metalâ€organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1, 66-87.	7.8	230
929	A Robust Ternary Heterostructured Electrocatalyst with Conformal Graphene Chainmail for Expediting Biâ€Directional Sulfur Redox in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2100586.	7.8	71
930	Metal-Supported Perovskite as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution: Substrate Effect. Journal of the Electrochemical Society, 2021, 168, 034504.	1.3	10
931	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	10.2	78
932	Self-templating construction of hollow Fe-CoxP nanospheres for oxygen evolution reaction. Chemical Engineering Journal, 2021, 409, 128227.	6.6	39
933	Zinc–Air Batteries Catalyzed Using Co ₃ O ₄ Nanorod-Supported N-Doped Entangled Graphene for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 4570-4580.	2.5	14
934	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	7.8	76
935	Pyridinic-Type N-Doped Graphene on Cobalt Substrate as Efficient Electrocatalyst for Oxygen Reduction Reaction in Acidic Solution in Fuel Cell. Journal of Physical Chemistry Letters, 2021, 12, 3552-3559.	2.1	20

#	Article	IF	CITATIONS
936	Activation Strategies of Perovskiteâ€Type Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	4.6	29
937	<i>In Situ</i> Activation of a Manganese Perovskite Oxygen Reduction Catalyst in Concentrated Alkaline Media. Journal of the American Chemical Society, 2021, 143, 6505-6515.	6.6	25
938	A Safe and Sustainable Lithiumâ€lon–Oxygen Battery based on a Lowâ€Cost Dualâ€Carbon Electrodes Architecture. Advanced Materials, 2021, 33, e2100827.	11.1	14
939	Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. Journal of Alloys and Compounds, 2021, 863, 158742.	2.8	17
940	Metal air battery: A sustainable and low cost material for energy storage. Journal of Physics: Conference Series, 2021, 1913, 012065.	0.3	17
941	Review of Sorted Metallic Singleâ€Walled Carbon Nanotubes. Advanced Materials Interfaces, 2021, 8, 2002106.	1.9	9
942	The Untold Tale of the ORR Polarization Curve. Journal of Physical Chemistry C, 2021, 125, 10378-10385.	1.5	15
943	Synthesis, Characterization and Applications of Spinel Cobaltite Nanomaterials. Current Pharmaceutical Biotechnology, 2021, 22, 773-792.	0.9	7
944	Strengthening absorption ability of Co–N–C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy and Environment, 2023, 8, 459-469.	4.7	22
945	Fe/Fe ₃ C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24710-24722.	4.0	19
946	Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources, 2021, 494, 229779.	4.0	37
947	Spin Effect on Oxygen Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100034.	2.8	32
948	First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24984-24994.	4.0	7
949	Lanthanide based double perovskites: Bifunctional catalysts for oxygen evolution/reduction reactions. International Journal of Hydrogen Energy, 2021, 46, 17163-17172.	3.8	20
950	Controlled Synthesis of Porous Hollow Fe–N/C Nanoshells as Highâ€Performance Oxygen Reduction Reaction Electrocatalysts for Zn–Air Battery. Energy Technology, 2021, 9, 2100142.	1.8	4
951	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2021, 33, e2006461.	11.1	63
952	Aerophilic Co-Embedded N-Doped Carbon Nanotube Arrays as Highly Efficient Cathodes for Aluminum–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26853-26860.	4.0	15
953	Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy, 2021, 84, 105932.	8.2	63

#	Article	IF	CITATIONS
954	The use of reactive binder for carbon-based oxygen reduction reaction catalyst in neutral medium. Electrochimica Acta, 2021, 380, 138155.	2.6	2
955	Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance Liâ€CO ₂ Batteries. Advanced Energy Materials, 2021, 11, 2101390.	10.2	60
956	Experimental Measurement of Molecular Diffusion and Evaporation Rate of Battery Organic Electrolytes in Ambient Air. Journal of the Electrochemical Society, 2021, 168, 060505.	1.3	2
957	An ultrahigh power Li–O2 battery. Materials Today Communications, 2021, 27, 102412.	0.9	1
958	Magnesium alloys as anodes for neutral aqueous magnesium-air batteries. Journal of Magnesium and Alloys, 2021, 9, 1861-1883.	5.5	66
959	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	10.2	132
960	Carbon nitride decorated nitrogen doped graphene hollow spheres loaded Ni/Co and corresponding oxides nanoparticles as reversible air electrode catalysts for rechargeable zinc-air batteries. Journal of Alloys and Compounds, 2021, 865, 158940.	2.8	14
961	Pulse current charging strategy towards high performance of lithium-oxygen batteries. Surfaces and Interfaces, 2021, 24, 101106.	1.5	5
962	Hierarchical <scp> ReS ₂ </scp> / <scp>nitrogenâ€doped</scp> graphene hybrid nanoarchitectures for efficient oxygen reduction. International Journal of Energy Research, 2021, 45, 19586-19596.	2.2	2
963	Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano, 2021, 15, 11218-11230.	7.3	45
964	High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries. Nano Energy, 2021, 84, 105877.	8.2	65
965	The impact of indium metal as a minor bimetal on the anodic dissolution and passivation performance of zinc for alkaline batteries: part l—potentiodynamic, potentiostatic, XRD, SEM, and EDAX studies. Journal of Solid State Electrochemistry, 2021, 25, 2161-2174.	1.2	3
966	Defected molybdenum disulfide catalyst engineered by nitrogen doping for advanced lithium–oxygen battery. Electrochimica Acta, 2021, 383, 138369.	2.6	13
967	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. Small Structures, 2021, 2, 2100069.	6.9	30
968	Revisiting the Role of the Tripleâ€Phase Boundary in Promoting the Oxygen Reduction Reaction in Aluminum–Air Batteries. Advanced Functional Materials, 2021, 31, 2101720.	7.8	7
969	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	2.3	40
970	Embedding Fe2P nanocrystals in bayberry-like N, P-enriched carbon nanospheres as excellent oxygen reduction electrocatalyst for zinc-air battery. Journal of Power Sources, 2021, 501, 230006.	4.0	52
971	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47

#	Article	IF	CITATIONS
972	Investigation of morphologically tuned Sb2S3 nanostructures as an effective electrocatalyst for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126612.	2.3	8
973	Moisture resistance of Nd1+Ba2â^Cu3O -based ceramics. Ceramics International, 2021, 47, 33577-33583.	2.3	1
974	Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Materials Research Bulletin, 2021, 140, 111315.	2.7	35
975	Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 418, 129409.	6.6	35
976	Recent Advances in Waste Plastic Transformation into Valuable Platinumâ€Group Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. ChemSusChem, 2021, 14, 3785-3800.	3.6	24
977	Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 24817-24824.	1.6	39
978	Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Research, 2022, 15, 1942-1948.	5.8	49
979	Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials, 2021, 43, 509-530.	9.5	60
980	Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Materials Today Sustainability, 2021, 13, 100072.	1.9	33
981	High-throughput computational screening of cathode materials for Li-O2 battery. Computational Materials Science, 2021, 197, 110592.	1.4	10
982	Importance of Doping Sequence in Multiple Heteroatom-Doped Reduced Graphene Oxide as Efficient Oxygen Reduction Reaction Electrocatalysts. Applied Nano, 2021, 2, 267-277.	0.9	0
983	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	8.2	76
984	Insight into Fe Activating One-Dimensional α-Ni(OH) ₂ Nanobelts for Efficient Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 20301-20308.	1.5	17
985	Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 24612-24619.	7.2	259
986	Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 2021, 143, 15616-15623.	6.6	82
987	Porous carbon layers wrapped CoFe alloy for ultrastable Zn-Air batteries exceeding 20,000 charging-discharging cycles. Journal of Energy Chemistry, 2021, 61, 327-335.	7.1	44
988	Porous MoWN/MoWC@N C Nano-octahedrons synthesized via confined carburization and vapor deposition in MOFs as efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Journal of Colloid and Interface Science, 2021, 601, 626-639.	5.0	10
989	Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Storage Materials, 2021, 42, 118-128.	9.5	64

		15	6
#	ARTICLE (i) coupling of Ag papaparticles with high antropy ovides as highly stable bifunctional	IF	CITATIONS
991	<i>In situ</i> coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale, 2021, 13, 16164-16171.	2.8	18
992	Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications, 2021, 57, 8190-8193.	2.2	12
993	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	2.2	28
994	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	18.7	63
995	Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal–air battery systems. Journal of Materials Chemistry A, 2021, 9, 6671-6693.	5.2	37
996	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
997	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	11.1	302
998	Redox Mediators for Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2018, 30, 1704162.	11.1	258
999	Flexible Metal–Air Batteries: Progress, Challenges, and Perspectives. Small Methods, 2018, 2, 1700231.	4.6	157
1000	Recent progress on understanding and constructing reliable Na anode for aprotic Na-O2 batteries: A mini review. Electrochemistry Communications, 2020, 118, 106797.	2.3	12
1001	Influence of synthesis parameters on amorphous manganese dioxide catalyst electrocatalytic performance. Electrochimica Acta, 2017, 245, 615-624.	2.6	13
1002	A flexible composite electrolyte membrane with ultrahigh LLZTO garnet content for quasi solid state Li-air batteries. Solid State Ionics, 2020, 351, 115340.	1.3	10
1003	Sustainable Electrocatalytic Architectures Enable Rechargeable Zinc–Air Batteries with Low Voltage Hysteresis. ACS Applied Energy Materials, 2020, 3, 10485-10494.	2.5	3
1004	Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery. APL Materials, 2020, 8, .	2.2	27
1005	Effect of Deformation on Electrochemical Performance of Aluminum-Air Battery. Journal of the Electrochemical Society, 2020, 167, 100505.	1.3	4
1006	Hybrid Electrochemical Behaviour of La _{1-x} CaxMnO ₃ Nano Perovskites and Recycled Polar Interspersed Graphene for Metal-Air Battery System. Journal of the Electrochemical Society, 2020, 167, 120539.	1.3	26
1007	An Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solutions Derived from a Copper Chelate Polymer via In Situ Electrochemical Transformation. Catalysts, 2020, 10, 233.	1.6	17
1008	Progress of Non-Aqueous Electrolyte for Li-Air Batteries. Journal of Materials Science and Chemical Engineering, 2015, 03, 1-8.	0.2	2

#	Article	IF	CITATIONS
1009	Reimagining the <i>e_g</i> ¹ Electronic State in Oxygen Evolution Catalysis: Oxidation‣tateâ€Modulated Superlattices as a New Type of Heterostructure for Maximizing Catalysis. Advanced Energy Materials, 2021, 11, 2101636.	10.2	6
1010	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
1011	Co/Co ₂ P Nanoparticles Encapsulated within Hierarchically Porous Nitrogen, Phosphorus, Sulfur Coâ€doped Carbon as Bifunctional Electrocatalysts for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 4286-4295.	1.7	8
1012	1.3 V Inorganic Sequential Redox Chain with an All-Anionic Couple 1–/2– in a Single Framework. Inorganic Chemistry, 2021, 60, 16168-16177.	1.9	5
1013	A novel superimposed porous copper/carbon film derived from polymer matrix as catalyst support for metal-air battery. Journal of Porous Materials, 2022, 29, 249-255.	1.3	8
1014	Electrochemical Performance Analysis of Heat Treatment of Metal-Air Battery. Journal of the Korean Society for Precision Engineering, 2018, 35, 1137-1140.	0.1	0
1015	Metal Air Battery: Working Principle and Research Trends. Seikei-Kakou, 2020, 32, 206-209.	0.0	1
1016	Mechanistic insight into the electrochemical absorption adsorption behaviour of Cd2+ and Na+ on MnO2 in a deionization supercapacitor. Desalination, 2022, 521, 115384.	4.0	32
1017	Charge regulation engineering to suppress Jahn-Teller distortion in low crystallinity In-doping MnCo2O4 for high activity pseudocapacitors and hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430, 132886.	6.6	20
1019	Heat Treatment Effect in the Corrosion Resistance of the Al-Co-Mn Alloys Immersed in 3 M KOH. International Journal of Corrosion, 2021, 2021, 1-8.	0.6	0
1020	Designing Long-Term Cycle Life for a Lithium–Air Battery with a Modified Gas Diffusion Layer in Terms of the Moisture Intrusion and Electrolyte Volatilization. Journal of Physical Chemistry C, 2021, 125, 24787-24795.	1.5	13
1021	Metal-Air Batteries—A Review. Energies, 2021, 14, 7373.	1.6	59
1022	Scanning probe microscopy for electrocatalysis. Matter, 2021, 4, 3483-3514.	5.0	17
1023	Hydrophobic, Carbon Free Gas Diffusion Electrode for Alkaline Applications. Journal of the Electrochemical Society, 2020, 167, 144502.	1.3	5
1024	Aerosolâ€assisted synthesis of bimetallic nanoparticleâ€loaded bambooâ€like Nâ€doped carbon nanotubes as an efficient bifunctional oxygen catalyst for Znâ€air batteries. International Journal of Energy Research, 2022, 46, 5215-5225.	2.2	8
1025	Effect of quinoline-8-sulfonic acid and CaO as hybrid electrolyte additives on microstructure and property of AA5052 alloy anode for aluminum-air battery. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104150.	2.7	16
1026	Facilely synthesized honeycomb-like NiCo2O4 nanoflakes with an increased content of oxygen vacancies as an efficient cathode catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2022, 898, 162774.	2.8	10
1027	Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen Evolution in an Alkaline Solution. Catalysts, 2021, 11, 1408.	1.6	7

#	Article	IF	CITATIONS
1028	(La _{0.65} Sr _{0.3}) _{0.95} FeO _{3â~`<i>δ</i>} perovskite with high oxygen vacancy as efficient bifunctional electrocatalysts for Zn–air batteries. RSC Advances, 2021, 11, 38977-38981.	1.7	4
1029	Chapter 6. Applications of Metal–Organic Framework/Polymer Hybrid Materials. RSC Smart Materials, 2021, , 142-225.	0.1	0
1030	Strategy for boosting Co-Nx content for oxygen reduction reaction in aqueous metal-air batteries. Journal of Power Sources, 2022, 520, 230891.	4.0	47
1032	Multiple roles of graphene in electrocatalysts for metal-air batteries. Catalysis Today, 2023, 409, 2-22.	2.2	12
1033	Atomically dispersed Fe–N _{<i>x</i>} species within a porous carbon framework: an efficient catalyst for Li–CO ₂ batteries. Nanoscale, 2022, 14, 4511-4518.	2.8	9
1034	Bifunctional Single-Atom Cobalt Electrocatalysts with Dense Active Sites Prepared via a Silica Xerogel Strategy for Rechargeable Zinc–Air Batteries. Nanomaterials, 2022, 12, 381.	1.9	13
1036	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	5.2	23
1037	Atomically Dispersed Intrinsic Hollow Sites of <i>M</i> â€ <i>M</i> ₁ â€ <i>M</i> (<i>M</i> ₁ Â= Pt, Ir; <i>M</i> Â= Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox. Advanced Functional Materials, 2022, 32, .	7.8	33
1038	Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Singleâ€Atom for Metal–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	165
1039	Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Singleâ€Atom for Metal–Air Batteries. Angewandte Chemie, 2022, 134, e202116068.	1.6	32
1040	Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K–Se Batteries. ACS Nano, 2022, 16, 3373-3382.	7.3	25
1041	Substituent effects of symmetric cobalt porphyrins using graphene oxide as substrate on catalytic oxygen reduction reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128499.	2.3	6
1042	Morphology-controlled synthesis of Cu2S for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 907, 116020.	1.9	7
1043	MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity. Electrochimica Acta, 2022, 407, 139929.	2.6	12
1044	A facile templating fabrication of porous CoP nanoparticles towards electrocatalytic oxygen evolution. Applied Surface Science, 2022, 583, 152402.	3.1	16
1045	A review of lithium-O2/CO2 and lithium-CO2 batteries: Advanced electrodes/materials/electrolytes and functional mechanisms. Nano Energy, 2022, 95, 106964.	8.2	27
1046	In-site salt template-assisted synthesis of FeP self-embedded P, N co-doped hierarchical porous carbon for efficient oxygen reduction reaction. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104252.	2.7	4
1047	Two-Dimensional Cobalt Sulfide/Iron–Nitrogen–Carbon Holey Sheets with Improved Durability for Oxygen Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 11538-11546.	4.0	12

#	Article	IF	CITATIONS
1048	Recent progress of mesoporous carbons applied in electrochemical catalysis. New Carbon Materials, 2022, 37, 152-179.	2.9	13
1049	Preparation of Waterproof and Air-Permeable Membrane by Water Surface Spreading Method for Metal-Air Battery. ACS Sustainable Chemistry and Engineering, 2022, 10, 2903-2913.	3.2	15
1050	Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 2022, 41, 1703-1726.	3.6	37
1051	Preparation of nitrogen-doped porous carbon modified by iron carbide and its application in an oxygen reduction reaction. Journal of Chemical Sciences, 2022, 134, 1.	0.7	1
1052	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	5.2	25
1053	Lowâ€Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Longâ€Term Stability. Advanced Functional Materials, 2022, 32, .	7.8	51
1054	Facile Construction of Cu/ZnO Heterojunctions for Enhanced Photocatalytic Performance. Nano, 2022, 17, .	0.5	1
1055	High-performance solid-state metal-air batteries with an innovative dual-gel electrolyte. International Journal of Hydrogen Energy, 2022, 47, 15024-15034.	3.8	13
1056	Formation/Decomposition of Li ₂ O ₂ Induced by Porous NiCeO _{<i>x</i>} Nanorod Catalysts in Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, , .	4.0	6
1057	Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Research, 2022, 15, 8751-8759.	5.8	61
1058	Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes, 2022, 10, 643.	1.3	7
1059	Size-Dependent Effects in Fullerene-Based Catalysts for Nonaqueous Li–Air Battery Applications. ACS Applied Energy Materials, 2022, 5, 3380-3391.	2.5	10
1060	Safe and Energy-Dense Flexible Solid-State Lithium–Oxygen Battery with a Structured Three-Dimensional Polymer Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 4894-4903.	3.2	4
1061	Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nature Communications, 2022, 13, 1734.	5.8	56
1062	Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells. ACS Omega, 2022, 7, 11777-11787.	1.6	7
1063	Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chemical Engineering Journal, 2022, 437, 135295.	6.6	45
1064	Energetic MOF-derived hollow carbon tubes with interconnected channels and encapsulated nickel-cobalt alloy sites as bifunctional catalysts for Zn–air batteries with stable cycling over 600 cycles. Applied Surface Science, 2022, 591, 153070.	3.1	10
1065	Rapid screening of NixFe1â^'x/Fe2O3/Ni(OH)2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method. Applied Surface Science, 2022, 592, 153251.	3.1	9

#	Article	IF	CITATIONS
1066	Perovskite-Based Nanocomposite Electrocatalysts: An Alternative to Platinum ORR Catalyst in Microbial Fuel Cell Cathodes. Energies, 2022, 15, 272.	1.6	11
1067	Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles. Sustainability, 2021, 13, 13779.	1.6	16
1068	Recent Advances in Synthesis and Applications of Singleâ€Atom Catalysts for Rechargeable Batteries. Chemical Record, 2022, 22, .	2.9	14
1069	Ultrafine TaOx/CB Oxygen Reduction Electrocatalyst Operating in Both Acidic and Alkaline Media. Catalysts, 2022, 12, 35.	1.6	3
1070	Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. Chinese Chemical Letters, 2022, 33, 3903-3908.	4.8	16
1071	Synthesis of Cobalt-Nickel Nanoparticles via a Liquid-Phase Reduction Process. Journal of Nanotechnology, 2021, 2021, 1-7.	1.5	6
1072	Recent progress and future perspectives of flexible metalâ€air batteries. SmartMat, 2021, 2, 519-553.	6.4	43
1073	Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance. Advanced Materials Technologies, 2022, 7, .	3.0	8
1074	Fiber Materials for Electrocatalysis Applications. Advanced Fiber Materials, 2022, 4, 720-735.	7.9	48
1077	Engineering the semiconducting CdS nanostructures by N-doped rGO for enhancing the adsorption sites: Promising electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 16106-16120.	3.8	1
1078	Controlled Atmosphere Corrosion Engineering toward Inhomogeneous NiFe-LDH for Energetic Oxygen Evolution. ACS Nano, 2022, 16, 7794-7803.	7.3	51
1080	A N-doped NbO _{<i>x</i>} nanoparticle electrocatalyst deposited on carbon black for oxygen reduction and evolution reactions in alkaline media. Materials Advances, 2022, 3, 5315-5324.	2.6	2
1081	Ionic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem, 2022, 4, 100075.	10.1	25
1082	Recent progress on layered double hydroxides: comprehensive regulation for enhanced oxygen evolution reaction. Materials Today Energy, 2022, , 101036.	2.5	6
1083	Transformation of waste onion peels into core-shell Fe3C@ N-doped carbon as a robust electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2022, 422, 140545.	2.6	12
1084	Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202812119.	3.3	21
1085	Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214602.	9.5	71
1086	Low-temperature liquid reflux synthesis of core@shell structured Ni@Fe-doped NiCo nanoparticles decorated on carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 13088-13096.	5.2	7

#	Article	IF	CITATIONS
1087	Enhanced Water Oxidation reaction activity of Mn3O4 nanocrystals in alkaline medium by doping Transition-metal lons. Nano Futures, 0, , .	1.0	0
1088	Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24404-24414.	4.0	12
1089	Revealing the illumination effect on the discharge products in highâ€performance Li–O ₂ batteries with heterostructured photocatalysts. , 2022, 4, 1169-1181.		16
1091	Conductive Co-triazole metal-organic framework exploited as an oxygen evolution electrocatalyst. Chemical Communications, 2022, 58, 7124-7127.	2.2	9
1092	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	7.8	59
1093	Preparation of waterproof and air-permeable silicalite-1/PDMS/PTFE membrane by casting method for metal-air battery. Electrochimica Acta, 2022, 424, 140623.	2.6	4
1094	Oxygen reduction reaction by metal-free catalysts. , 2022, , 241-275.		1
1095	Controlled synthesis of a porous single-atomic Fe–N–C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction. Inorganic Chemistry Frontiers, 2022, 9, 4101-4110.	3.0	8
1096	PVP-Assisted Iron-Doped ZIF-8 as an Efficient Fe-N-C Oxygen Reduction Electrocatalyst for Zinc-Air Batteries. Journal of the Electrochemical Society, 0, , .	1.3	0
1098	Highly effective biâ€functional electrochemical activity of <scp> Ag ₂ Oâ€PrO ₂ </scp> / <scp> γâ€Al ₂ O ₃ </scp> electrocatalysts towards <scp>OER</scp> and <scp>ORR</scp> . International Journal of Energy Research, 2022, 46, 14161-14173.	2.2	12
1099	Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction. Journal of Solid State Electrochemistry, 2022, 26, 2171-2182.	1.2	18
1100	Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2022, 13, 6187-6193.	2.1	1
1101	Synthesis and structure of hexaaquacobalt bis(2-methyl-1 <i>H</i> -imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato-κ <i>O</i>)cobalt. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 814-817.	0.2	1
1102	A rechargeable Mg O2 battery. IScience, 2022, 25, 104711.	1.9	7
1103	Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Applied Surface Science, 2022, 601, 154253.	3.1	17
1104	FeCo nanoalloys encapsulated in pod-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts for zinc-air batteries. Journal of Alloys and Compounds, 2022, 921, 166122.	2.8	9
1105	Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2022, 33, 18180-18186.	1.1	2
1106	Electrodeposited Nickel Oxide Thin Film for Electrochemical Water Splitting. International Journal of Advanced Research in Science, Communication and Technology, 0, , 38-42.	0.0	1

ARTICLE IF CITATIONS # MOF-Derived Co and Fe Species Loaded on N-Doped Carbon Networks as Efficient Oxygen 1107 14.4 61 Electrocatalysts for Zn-Air Batteries. Nano-Micro Letters, 2022, 14, . Sustainable aqueous metal-air batteries: An insight into electrolyte system. Energy Storage Materials, 2022, 52, 573-597. A High-Energy-Density Magnesium-Air Battery with Nanostructured Polymeric Electrodes. Polymers, 1109 2.0 2 2022, 14, 3187. Proton Chemistry Induced Long ycle Air Self harging Aqueous Batteries. Angewandte Chemie, 0, , . Proton Chemistry Induced Longâ€Cycle Air Selfâ€Charging Aqueous Batteries. Angewandte Chemie -1111 7.2 24 International Edition, 2022, 61, . Recent advances in nonâ€precious Niâ€based promising catalysts for water splitting application. International Journal of Energy Research, 2022, 46, 17829-17847. 2.2 Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon 1113 quantum dots for efficient oxygen reduction. Colloids and Surfaces A: Physicochemical and 2.310 Engineering Aspects, 2022, 652, 129818. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion 1.9 reactions. Journal of Electroanalytical Chemistry, 2022, 922, 116799. Doping engineering: modulating the intrinsic activity of bifunctional carbon-based oxvgen 1115 electrocatalysts for high-performance zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 5.2 28 21797-21815. Application of Ru(edta) complexes in biomimetic activation of small molecules. Kinetic and 0.4 mechanistic impact. Advances in Inorganic Chemistry, 2023, , 389-431. Suppressing H₂O₂ formation in the oxygen reduction reaction using 1117 5.2 0 Co-doped copper oxide electrodes. Journal of Materials Chemistry A, 2022, 10, 22042-22057. å•ā.....ç"µé"Œ-空æ°"ç"µæ±çš,,ç"µæžç"究介绕 Scientia Sinica Chimica, 2022, , . 1118 Advanced polymer-based electrolytes in zincâ€"air batteries. EScience, 2022, 2, 453-466. 1119 25.0 117 Recent Advances of Single-atom Catalysts for Electro-catalysis. Chemical Research in Chinese Universities, 2022, 38, 1146-1150. 1.3 1121 Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751. 23.0 340 Doping Effect on Mesoporous Carbon-Supported Single-Site Bifunctional Catalyst for Zinc<Ď>–Air Batteries. ACS Nano, 2022, 16, 15994-16002. An investigation of the characteristics of oxygen sensors using a Nd1+Ba2â^'Cu3O -based ceramics rod. 1123 2.31 Ceramics International, 2023, 49, 4571-4577. Role of Morphology of Platinum-Based Nanoclusters in ORR/OER Activity for Nonaqueous Li–Air 1124 Battery Applications. ACS Applied Energy Materials, 2022, 5, 12561-12570.

		CITATION REPORT		
#	Article	I	IF	CITATIONS
1125	Lightâ€Assisted Metalâ€Air Batteries: Progress, Challenges, and Perspectives. Angewandte	Chemie, O, , .	1.6	3
1126	Lightâ€Assisted Metal–Air Batteries: Progress, Challenges, and Perspectives. Angewandte International Edition, 2022, 61, .	Chemie -	7.2	29
1127	Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologi Energies, 2022, 15, 7397.	es.	1.6	7
1128	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water s and metalâ \in "air batteries. Nano Materials Science, 2022, , .	plitting	3.9	12
1129	Iron phthalocyanine as electron pool for boosted electrocatalytic activity of nickel oxide nanoclusters. Materials Today Sustainability, 2022, 20, 100249.	:	1.9	2
1130	Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conve Reactions. Electrochemical Energy Reviews, 2022, 5, .	rsion	13.1	20
1131	Optical band gap enhancements of chemically synthesized αâ€Ni(OH) ₂ nanop novel technique: Precipitator molarity variation. Luminescence, 2023, 38, 1287-1296.	particles by a	1.5	1
1132	Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous or electrolyte solvents from first-principles simulations. Chinese Journal of Catalysis, 2022, 43, 2850-2857.		6.9	2
1133	Designing catalysts via evolutionary-based optimization techniques. Computational Materia 2023, 216, 111833.	ls Science,	1.4	4
1134	Electrochemical hydroxidation of sulfide for preparing sulfur-doped NiFe (oxy) hydroxide tov efficient oxygen evolution reaction. Chemical Engineering Journal, 2023, 454, 140030.	vards	6.6	7
1135	Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting ir Carbon-Encapsulated Ni (111)/Ni3C (113) Heterostructures. Catalysts, 2022, 12, 1367.	1	1.6	2
1136	Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction r anion exchange membrane fuel cells. International Journal of Hydrogen Energy, 2023, 48, 3	eaction in 593-3631.	3.8	33
1137	Aerogels-Inspired based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen Materials Today, 2022, 29, 101670.	. Applied	2.3	4
1138	An overview of metal-air batteries, current progress, and future perspectives. Journal of Ener Storage, 2022, 56, 106075.	бу	3.9	12
1139	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Z batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-787.	n–air	6.4	24
1140	Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbo 237-260.	n, 2023, 203,	5.4	22
1141	Hydroxide ion-conducting viologen–bakelite organic frameworks for flexible solid-state zi battery applications. Nanoscale Horizons, 2023, 8, 224-234.	າc–air	4.1	3
1142	Optimal and systematic design of large-scale electrodes for practical Li–air batteries. Elec Acta, 2023, 439, 141642.	trochimica	2.6	0

ARTICLE IF CITATIONS Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486. 4.3 61 1143 Boosting the kinetics with graphene quantum dots (GQDs)-decorated NiCo2O4 nanosheets towards 1144 2.6 high-performance Li-O2 batteries. Electrochimica Acta, 2023, 441, 141752. Organic ligand-assisted synthesis of Ir0.3Cr0.7O2 solid solution oxides for efficient oxygen evolution 1145 3 3.8 in acidic media. International Journal of Hydrogen Energy, 2023, 48, 5402-5412. Development of polymer-wrapping methods for functionalization of carbon materials. Polymer 1146 1.3 Journal, 2023, 55, 181-191. One dimensional nickel phosphide polymorphic heterostructure as carbon-free functional support 1147 loading single-atom iridium for promoted electrocatalytic water oxidation. Journal of Energy 7.1 7 Chemistry, 2023, 79, 410-417. Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy & amp; Fuels, 2023, 37, 1545-1576. 2.5 Application of Photo-inactive Ru(edta) Complexes in Photocatalytic Small Molecules Transformation 1149 0.5 0 over Semiconductor Surface - A Perspective. Current Catalysis, 2023, 11, 87-93. Catalytic active interfacial B–C bonds of boron nanosheet/reduced graphene oxide heterostructures 1150 5.9 for efficient oxygen reduction reaction. Composites Part B: Engineering, 2023, 252, 110496. Carbonâ€Hybridized Hydroxides for Energy Conversion and Storage: Interface Chemistry and 1151 11.1 5 Manufacturing. Advanced Materials, 2023, 35, . Innovating Rechargeable Zn-Air Batteries for Low Charging Voltage and High Energy Efficiency. Energy 2.5 & Fuels, 2023, 37, 1414-1420. Chemical Tuning of Metal Nanocatalysts Interface for ORR Electrocatalysis. Advanced Materials 1153 1.9 1 Interfaces, 0, , 2202219. One-Dimensional Self-Assembled Heterostructured Perovskite Hybrid for Oxygen Reduction and 1154 2.5 Zn–Air Batteries. Energy & Fuels, 2023, 37, 3218-3226. Aligned silver nanoparticles anchored on pyrrolic and pyridinic-nitrogen induced carbon nanotubes for enhanced oxygen reduction reaction. Thin Solid Films, 2023, 769, 139710. 1155 0.8 7 Facile synthesis approach of bifunctional Co–Ni–Fe oxyhydroxide and spinel oxide composite electrocatalysts from hydroxide and layered double hydroxide composite precursors. RSC Advances, 1.7 2023, 13, 10681-10692. Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for 1157 2 3.8 rechargeable Zn-air batteries. International Journal of Hydrogen Energy, 2023, 48, 19126-19136. Review on Molecularly Controlled Design of Electrodes for Metalâ€"Air Batteries: Fundamental Concepts and Future Directions. Energy & amp; Fuels, 2023, 37, 5689-5711. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. 1159 25.0 24 EScience, 2023, 3, 100112. Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced 1.7 Technology, 2023, 292, 116400.

#	Article	IF	CITATIONS
1161	Reviewing perovskite oxide sites influence on electrocatalytic reactions for high energy density devices. Journal of Energy Chemistry, 2023, 81, 1-19.	7.1	11
1162	Stainless steel supported NiCo2O4 active layer for oxygen evolution reaction. Electrochimica Acta, 2023, 453, 142295.	2.6	3
1163	In Situ Xâ€ray Absorption Spectroscopy of Metal/Nitrogenâ€doped Carbons in Oxygen Electrocatalysis. Angewandte Chemie, 2023, 135, .	1.6	2
1164	Design strategy and comprehensive performance assessment towards Zn anode for alkaline rechargeable batteries. Journal of Energy Chemistry, 2023, 82, 122-138.	7.1	14
1165	Co ₂ P Nanoparticles Encapsulated in N-Doped Carbon Nanotubes as a Bifunctional Oxygen Catalyst for a High-Performance Rechargeable Zn–Air Battery. ACS Applied Nano Materials, 2023, 6, 2027-2034.	2.4	1
1166	Perovskiteâ€based electrocatalyst discovery and design using word embeddings from retrained <scp>SciBERT</scp> language model. AICHE Journal, 2023, 69, .	1.8	1
1167	The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. International Journal of Molecular Sciences, 2023, 24, 3975.	1.8	6
1168	In Situ Xâ€ray Absorption Spectroscopy of Metal/Nitrogenâ€doped Carbons in Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1169	Recent Advances in Wearable Aqueous Metalâ€Air Batteries: From Configuration Design to Materials Fabrication. Advanced Materials Technologies, 2023, 8, .	3.0	10
1170	CO2 Capture Membrane for Long-Cycle Lithium-Air Battery. Molecules, 2023, 28, 2024.	1.7	0
1171	<i>Meso</i> â€substituted Metalloporphyrinâ€based Composites for Electrocatalytic Oxygen Reduction Reactions. ChemNanoMat, 2023, 9, .	1.5	6
1172	Metal–Organic Framework-Derived Mn/Ni Dual-Metal Single-Atom Catalyst for Efficient Oxygen Reduction Reaction. Inorganics, 2023, 11, 101.	1.2	0
1173	Recent advances and challenges of cobalt-based materials as air cathodes in rechargeable Zn–air batteries. Results in Chemistry, 2023, 5, 100896.	0.9	3
1174	Nickel Oxide Thin Films for Oxygen Evolution Reaction. International Journal of Advanced Research in Science, Communication and Technology, 0, , 543-547.	0.0	0
1175	2D MoSi2N4 as electrode material of Li-air battery — A DFT study. Journal of Nanoparticle Research, 2023, 25, .	0.8	5
1176	Metal–organic framework-loaded carbon-encapsulated nano-catalyst as a pH-universal oxygen reduction reaction electrocatalyst for various fuel cell devices. Catalysis Science and Technology, 0,	2.1	0
1177	Synergistic Catalytic Effects of CeCuO ₃ @ Vulcan Carbon Composites on the Oxygen Reduction Reaction. ChemistrySelect, 2023, 8, .	0.7	1
1178	Highâ€Density Cationic Defects Coupling with Local Alkalineâ€Enriched Environment for Efficient and Stable Water Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8

#	Article	IF	CITATIONS
1179	Highâ€Đensity Cationic Defects Coupling with Local Alkalineâ€Enriched Environment for Efficient and Stable Water Oxidation. Angewandte Chemie, 2023, 135, .	1.6	2
1180	High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nature Sustainability, 2023, 6, 816-826.	11.5	49
1182	A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	3
1183	Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for Highâ€Performance Metal–Carbon Dioxide Batteries. Small Structures, 2023, 4, .	6.9	2
1184	Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance. Electrochemical Energy Reviews, 2023, 6, .	13.1	6
1199	Environmental applications of single-atom catalysts based on graphdiyne. Catalysis Science and Technology, 2023, 13, 5154-5174.	2.1	2
1200	Understanding the mechanism and synergistic interaction of cobalt-based electrocatalysts containing nitrogen-doped carbon for 4 e ^{â^'} ORR. Journal of Materials Chemistry A, 2023, 11, 10095-10124.	5.2	13
1211	é«~æ•^åﷺ"碳基å,¬åŒ—å‰,çš"ç"ç©¶èį›å±•åŠå¶åœ¨é"Œç©ºæº"电æ±ä,应用. Science China Materials, 202	23,3666, 338	3123400.
1229	Advanced nano-bifunctional electrocatalysts in Li–air batteries for high coulombic efficiency. Green Chemistry, 2023, 25, 10182-10208.	4.6	2
1230	Bimetal synergistically regulates Ni and P oxidation states for efficient oxygen evolution reaction. Catalysis Science and Technology, 2023, 13, 6625-6630.	2.1	0
1233	Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives. Energy and Environmental Science, 0, , .	15.6	2
1242	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	18.7	2
1250	Recent development in metal-organic frameworks and their derivatives for separators. , 2024, , 331-366.		0
1251	Metal-organic frameworks and their derivatives for metal-air batteries. , 2024, , 221-257.		0
1258	Nanocomposites of Carbon for Metal-Air Batteries. Engineering Materials, 2024, , 131-150.	0.3	0