CITATION REPORT List of articles citing

DOI: 10.1016/j.jaap.2013.10.004 Journal of Analytical and Applied Pyrolysis, 2014, 105, 55-74.

Source: https://exaly.com/paper-pdf/59018715/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
163	Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass. 2014 , 1-26		2
162	Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. 2014 , 86, 11255-62		44
161	Upgraded production of (1R,5S)-1-hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one from cellulose catalytic pyrolysis and its detection in bio-oils by spectroscopic methods. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 110, 285-290	6	11
160	Agro-residues implication in decentralized CHP production through a thermochemical conversion system with SOFC. 2014 , 6, 34-50		17
159	An overview on the production of bio-methanol as potential renewable energy. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 33, 578-588	16.2	131
158	Study of a new complex method for extraction of phenolic compounds from bio-oils. 2014 , 134, 132-13	8	24
157	Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics. 2015 , 8, 3283-93		86
156	Assessing the biofuel production potential of Botryococcus braunii strains by sensitive rapid qualitative chemotyping using chemometrically-assisted gas chromatography hass spectrometry. 2015 , 11, 33-42		4
155	Mild hydrotreatment of the light fraction of fast-pyrolysis oil produced from straw over nickel-based catalysts. <i>Biomass and Bioenergy</i> , 2015 , 83, 525-538	5.3	41
154	Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 115, 307-315	6	22
153	Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. <i>Energy Conversion and Management</i> , 2015 , 106, 1309-1317	10.6	57
152	Selective catalytic conversion of bio-oil over high-silica zeolites. 2015 , 179, 518-523		33
151	Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization. 2015 , 188, 258-64		61
150	Kinetic study of the catalytic pyrolysis of paddy husk by use of thermogravimetric data and the Coats R edfern model. 2015 , 41, 9743-9755		31
149	Fast co-pyrolysis of cellulose and polypropylene using Py-GC/MS and Py-FT-IR. 2015 , 5, 66861-66870		48
148	Upgrading of 4-methylanisole in a catalytic reactor with electric discharges: A novel approach to O-removal from bio-oils. 2015 , 281, 227-235		22
147	Comprehensive Characterization of Second-Generation Biofuel from Invasive Freshwater Plants by FT-ICR MS. 2015 , 8, 1938-1945		13

146	Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. 2015 , 185, 240-5		85
145	Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. 2015 , 120, 427-438		26
144	Multi-technique characterization of fast pyrolysis oils. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 116, 18-26	6	42
143	Conversion and extracting bio-oils from rod-shaped cornstalk by sub-critical water. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 115, 316-325	6	8
142	Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. 2015 , 503, 1-8		50
141	Fuel properties and chemical compositions of the tar produced from a 5 MW industrial biomass gasification power generation plant. 2015 , 88, 126-135		13
140	Chemical characterization of wood and extractives of fast-growing Schizolobium parahyba and Pinus taeda. 2016 , 11, 209-216		7
139	Fractionation of Lignocellulosic Material With Pyrolysis Processing. 2016 , 81-101		6
138	Advanced analytical techniques for bio-oil characterization. 2016 , 5, 614-639		49
137	A novel approach for the liquefaction of wood powder: usage of pyrolytic bio-oil as a reaction medium. <i>International Journal of Energy Research</i> , 2016 , 40, 1986-2001	4.5	7
136	Catalytic Fast Pyrolysis of Bagasse Using Activated Carbon Catalyst to Selectively Produce 4-Ethyl Phenol. <i>Energy & Camp; Fuels</i> , 2016 , 30, 10618-10626	4.1	37
135	Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High- Polymeric Materials. 2016 , 5, 574-	578	60
134	Fast Pyrolysis of Agricultural Wastes for Bio-fuel and Bio-char. 2016 , 301-332		2
133	Review of NMR Characterization of Pyrolysis Oils. <i>Energy & Damp; Fuels</i> , 2016 , 30, 6863-6880	4.1	67
132	Recycling of Solid Waste for Biofuels and Bio-chemicals. 2016 ,		6
131	Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review. <i>Energy & Discourt Stability</i> (1998) 1999-620	0 0 4.1	86
130	Pyrolysis of Etellulose using a multimode microwave oven. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 120, 284-296	6	21
129	Ozonation of Pyrolytic Aqueous Phase: Changes in the Content of Phenolic Compounds and Color. 2016 , 39, 1828-1834		3

128	Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 59, 406-419	16.2	93
127	Upgrading of bio-oil from biomass pyrolysis over Cu-modified Ezeolite catalyst with high selectivity and stability. 2016 , 186, 166-172		85
126	Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector [] prospects and challenges. 2016 , 6, 32140-32170		42
125	Pyrolysis of Jatropha Curcas seed cake followed by optimization of liquid?liquid extraction procedure for the obtained bio-oil. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 118, 202-224	6	42
124	Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. <i>Waste and Biomass Valorization</i> , 2016 , 7, 201-235	3.2	182
123	Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres. 2016 , 94, 569-578		51
122	Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 57, 1126-1140	16.2	1036
121	Immediate catalytic upgrading of soybean shell bio-oil. 2016 , 94, 171-179		17
120	At-line characterisation of compounds evolved during biomass pyrolysis by solid-phase microextraction SPME-GC-MS. 2016 , 124, 36-44		11
119	Determination of lead in biomass and products of the pyrolysis process by direct solid or liquid sample analysis using HR-CS GF AAS. 2016 , 146, 166-74		25
118	Use of iron and bio-oil wastes to produce highly dispersed Fe/C composites for the photo-Fenton reaction. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 6151-6156	5.1	5
117	Characterization of crude and ethanol-stabilized bio-oils before and after accelerated aging treatment by comprehensive two-dimensional gas-chromatography with time-of-flight mass spectrometry. 2017 , 90, 646-659		7
116	TG-FTIR Method for the Characterization of Bio-oils in Chemical Families. <i>Energy & Discourt States</i> 2017, 31, 1689-1701	4.1	21
115	Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. <i>Energy & Energy & Ene</i>	4.1	56
114	Kinetic modeling for coprocessing of bio-oil and petroleum fraction. 2017 , 39, 441-449		
113	Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil. 2017 , 42, 18397-18409		12
112	Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis. 2017 , 131, 186-197		17
111	Selective production of 4-ethyl guaiacol from catalytic fast pyrolysis of softwood biomass using Pd/SBA-15 catalyst. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 123, 237-243	6	13

110	Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons. 2017 , 67, 155-162		37
109	Prospects for pyrolysis technologies in the bioenergy sector: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 77, 59-69	16.2	185
108	Plasma upgrading of 4methylanisole: A novel approach for hydrodeoxygenation of bio oil without using a hydrogen source. <i>Chemical Engineering Research and Design</i> , 2017 , 121, 113-124	5.5	26
107	Determination of the Aging Profile of Pyrolysis Oil Derived from Apricot Seed Cake through Solvent Extraction and GCMS Analysis. <i>Energy & Description of the Aging Profile of Pyrolysis amp; Fuels</i> , 2017 , 31, 12297-12304	4.1	2
106	Conversion of guaiacol over different Re active phases supported on CeO2-Al2O3. 2017 , 547, 256-264		14
105	Determining Bio-Oil Composition via Chemometric Tools Based on Infrared Spectroscopy. 2017 , 5, 8710	-8719	10
104	Application of the SARA method for determination of hydrocarbons by GC/qMS in bio-oil obtained by fast pyrolysis of rice husk. 2017 , 135, 226-238		3
103	CO2-looping in biomass pyrolysis or gasification. Sustainable Energy and Fuels, 2017 , 1, 1700-1729	5.8	69
102	Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: Effects of type of solvents. <i>Renewable Energy</i> , 2017 , 114, 376-382	8.1	18
101	Review of Denitrogenation of Algae Biocrude Produced by Hydrothermal Liquefaction. 2017 , 23, 301-31	4	24
100	Comprehensive Two-Dimensional Gas Chromatography and Its Application to the Investigation of Pyrolytic Liquids. 2017 ,		O
99	Catalytic Pyrolysis of Chilean Oak: Influence of Brfisted Acid Sites of Chilean Natural Zeolite. 2017 , 7, 356		10
98	Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass. 2017 , 2017, 9298523		16
97	Separation of Phenol from Bio-oil Produced from Pyrolysis of Agricultural Wastes. 2017, 05,		18
96	Application and Conversion of Soybean Hulls. 2017,		10
95	Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. 2018 , 6, 4717-4728		48
94	Characterization of catalytic fast pyrolysis oils: The importance of solvent selection for analytical method development. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 132, 190-199	6	9
93	A Succinct Review on Upgrading of Lignin-Derived Bio-oil Model Components. <i>Green Energy and Technology</i> , 2018 , 315-334	0.6	1

92	Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. 2018 , 172, 97-105		49
91	Valorization of coffee silverskin industrial waste by pyrolysis: From optimization of bio-oil production to chemical characterization by GC IGC/qMS. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 129, 43-52	6	30
90	Codensification of Agroforestry Residue with Bio-Oil for Improved Fuel Pellets. <i>Energy & Discourt Senior S</i>	4.1	13
89	Comparison of dairy wastewater and synthetic medium for biofuels production by microalgae cultivation. 2018 , 40, 751-758		4
88	Nuclear Magnetic Resonance Characterization of Renewable Products from a Two-Step Ex-Situ Hydropyrolysis Vapor Upgrading Process. <i>ChemistrySelect</i> , 2018 , 3, 297-307	1.8	4
87	Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 133, 117-127	6	43
86	Prediction of elemental composition, water content and heating value of upgraded biofuel from the catalytic cracking of pyrolysis bio-oil vapors by infrared spectroscopy and partial least square regression models. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 132, 102-110	6	4
85	Effects of Biomass Particle Size on Slow Pyrolysis Kinetics and Fast Pyrolysis Product Distribution. <i>Waste and Biomass Valorization</i> , 2018 , 9, 465-477	3.2	38
84	Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry. 2018 , 179, 828-835		10
83	Stabilisation of pyrolysis oils. 2018 , 193-247		6
83	Stabilisation of pyrolysis oils. 2018 , 193-247 Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Energy</i> 2018 , 32, 8905-8920	4.1	18
	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy</i>	4.1	
82	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Methods</i> , 2018, 32, 8905-8920 Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis. 2018,	7.1	18
82	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Mamp; Fuels</i> , 2018 , 32, 8905-8920 Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis. 2018 , 1029, 116-124 Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography. <i>Fuel</i> ,		18
82 81 80	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Description</i> 2018, 32, 8905-8920 Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis. 2018, 1029, 116-124 Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography. <i>Fuel</i> , 2018, 232, 572-580 Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft		18 10 30
82 81 80	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Description</i> 2018, 32, 8905-8920 Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis. 2018, 1029, 116-124 Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography. <i>Fuel</i> , 2018, 232, 572-580 Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin. 2018, 66, 72-77 A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses.	7.1	18 10 30 28
82 81 80 79	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. <i>Energy & Determination of Molecular Weight Metrics of Bio-oils. Energy & Determination of Molecular Weight Metrics of Bio-oils. Energy & Determination of Bio-oils and Section 1988.</i> Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis. 2018, 1029, 116-124 Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography. <i>Fuel</i> , 2018, 232, 572-580 Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin. 2018, 66, 72-77 A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. <i>Renewable and Sustainable Energy Reviews</i> , 2019, 114, 109313	7.1	18 10 30 28

(2020-2019)

74	Pyrolysis of Garden Waste: Comparative Study of Leucaena leucocephala (Subabul Leaves) and Azadirachta indica (Neem Leaves) Wastes. 2019 , 293-306		1
73	Influence of Chemical Surface Characteristics of Ammonium-Modified Chilean Zeolite on Oak Catalytic Pyrolysis. 2019 , 9, 465		1
72	Hydrogen Transfer between Hydrocarbons and Oxygenated Compounds in Coprocessing Bio-Oils in Fluid Catalytic Cracking. <i>Energy & Discounty of Compounds in Coprocessing Bio-Oils in Coprocessing Bio-</i>	4.1	11
71	Comparison of catalytic and noncatalytic pyrolysis and product yields of some waste biomass species. <i>International Journal of Energy Research</i> , 2019 , 43, 2032	4.5	6
70	Prototyping of a Laboratory-Scale Cyclone Separator for Biofuel Production from Biomass Feedstocks Using a Fused Deposition Modeling Printer. 2019 , 289-297		
69	Centrifugal partition chromatography as a fractionation tool for the analysis of lignocellulosic biomass products by liquid chromatography coupled to mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1597, 159-166	4.5	13
68	Fast pyrolysis bio-oil from lignocellulosic biomass for the development of bio-based cyanate esters and cross-linked networks. 2019 , 31, 1140-1152		4
67	Thermal behavior and kinetics of pyrolysis of areca nut husk. 2019 , 41, 2906-2916		19
66	Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production. 2019 , 173, 413-422		77
65	Life Cycle Assessment (LCA) in Municipal Waste Management Decision Making. 2019, 377-402		2
64	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. <i>Progress in Energy and Combustion Science</i> , 2019 , 71, 1-80	33.6	184
63	Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization. <i>Journal of Environmental Management</i> , 2019 , 234, 138-144	7.9	33
62	Preparation of jet engine range fuel from biomass pyrolysis oil through hydrogenation and its comparison with aviation kerosene. <i>International Journal of Green Energy</i> , 2019 , 16, 350-360	3	15
61	Effect of P/Ni ratio on the performance of nickel phosphide phases supported on zirconia for the hydrodeoxygenation of m-cresol. <i>Catalysis Communications</i> , 2019 , 119, 33-38	3.2	14
60	Fast Pyrolysis of Corn Stalks at Different Growth Stages to Selectively Produce 4-Vinyl Phenol and 5-Hydroxymethyl Furfural. <i>Waste and Biomass Valorization</i> , 2019 , 10, 3867-3878	3.2	12
59	Off-line comprehensive size exclusion chromatography Ireversed-phase liquid chromatography coupled to high resolution mass spectrometry for the analysis of lignocellulosic biomass products. <i>Journal of Chromatography A</i> , 2020 , 1609, 460505	4.5	9
58	A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 118, 109548	16.2	82
57	Analytical strategies for chemical characterization of bio-oil. <i>Journal of Separation Science</i> , 2020 , 43, 360	D ₃ 3.71	15

56	Catalytic Cracking of Inedible Oils for the Production of Drop-In Biofuels over a SO42//TiO2-ZrO2 Catalyst. <i>Energy & Drop Supples Source (Source of Drop Supples Source of Drop Supple</i>	4.1	7
55	Production and characterization of two fractions of pyrolysis liquid from agricultural and wood residues. <i>Biomass Conversion and Biorefinery</i> , 2020 , 1	2.3	
54	Synthesis and characterisation of polyurethane made from pyrolysis bio-oil of pine wood. <i>European Polymer Journal</i> , 2020 , 133, 109725	5.2	8
53	Potential of cattle manure pyrolysis liquid as an alternative environmentally friendly source of agricultural fungicides. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 149, 104862	6	5
52	The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis. <i>Journal of CO2 Utilization</i> , 2020 , 40, 101193	7.6	44
51	Preparation and Properties of Wood Tar-based Rejuvenated Asphalt. <i>Materials</i> , 2020 , 13,	3.5	7
50	Practices and Perspectives in Sustainable Bioenergy. <i>Green Energy and Technology</i> , 2020 ,	0.6	1
49	Spray combustion of fast pyrolysis bio-oils: Applications, challenges, and potential solutions. <i>Progress in Energy and Combustion Science</i> , 2020 , 79, 100834	33.6	26
48	A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. <i>Energy Conversion and Management</i> , 2020 , 209, 112634	10.6	115
47	Effect of nanofibers on the structure and properties of biocomposites. 2020 , 321-357		2
46	Thermochemical conversion of plastic waste to fuels: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 123-148	13.3	68
45	Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples. <i>Journal of Separation Science</i> , 2021 , 44, 115-134	3.4	5
44	Production of Aromatic Hydrocarbons from Biomass. <i>Petroleum Chemistry</i> , 2021 , 61, 15-34	1.1	1
43	Bio-oil production from Moringa oleifera Lam. residue through fixed-bed pyrolysis. <i>Brazilian Journal of Chemical Engineering</i> , 2021 , 38, 123-131	1.7	
42	Pyrolysis of biomass for value-added products. 2021 , 167-183		1
41	Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. <i>Journal of the Indian Chemical Society</i> , 2021 , 98, 100018		6
40	Pilot-scale hydrotreating of catalytic fast pyrolysis biocrudes: process performance and product analysis. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 4668-4679	5.8	1
39	Biomass pyrolysis technologies for value-added products: a state-of-the-art review. <i>Environment, Development and Sustainability</i> , 2021 , 23, 14324-14378	4.5	18

(2015-2021)

38	Study of rice husk continuous torrefaction as a pretreatment for fast pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 154, 104994	6	6
37	A review on catalytic pyrolysis for high-quality bio-oil production from biomass. <i>Biomass Conversion and Biorefinery</i> , 1	2.3	10
36	Next-generation biofuels and platform biochemicals from lignocellulosic biomass. <i>International Journal of Energy Research</i> , 2021 , 45, 14145-14169	4.5	26
35	The long-term performance of reconstructed MgAl hydrotalcite in the aldol condensation of furfural and acetone. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2021 , 133, 341-353	1.6	3
34	Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. <i>Energy Conversion and Management: X</i> , 2021 , 10, 100071	2.5	4
33	Study of pequi peel pyrolysis: Thermal decomposition analysis and product characterization. <i>Biomass and Bioenergy</i> , 2021 , 149, 106095	5.3	2
32	Secondary Reactions of Primary Tar from Biomass Pyrolysis: Characterization of Heavy Products by FT-ICR MS. <i>Energy & Energy & En</i>	4.1	2
31	Characteristics of torrefied fuel pellets obtained from co-pelletization of agriculture residues with pyrolysis oil. <i>Biomass and Bioenergy</i> , 2021 , 150, 106139	5.3	8
30	Characterization of Heavy Products from Lignocellulosic Biomass Pyrolysis by Chromatography and Fourier Transform Mass Spectrometry: A Review. <i>Energy & Description</i> (2013) 8 (2013) 8 (2013) 9 (2013) 10 (20	4.1	3
29	Pyrolysis of agricultural crop residues: An overview of researches by Indian scientific community. <i>Bioresource Technology Reports</i> , 2021 , 15, 100761	4.1	5
28	A heterogeneous catalytic process to mitigate the acidity of bio-oils caused by the presence of volatile organic acids. <i>Fuel</i> , 2021 , 299, 120919	7.1	1
27	Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass. 2015 , 1219-1250		1
26	Thermochemical Conversion of Biomass. <i>Green Energy and Technology</i> , 2020 , 159-194	0.6	1
25	Biochars for the removal of naphthenic acids from water: A prospective approach towards remediation of petroleum refinery wastewater. <i>Journal of Cleaner Production</i> , 2020 , 266, 121986	10.3	19
24	Steam gasification of poultry litter biochar for bio-syngas production. <i>Chemical Engineering Research and Design</i> , 2017 , 109, 478-488	5.5	30
23	Chromatographic analysis of bio-oil formed in fast pyrolysis of lignocellulosic biomass. <i>Reviews in Analytical Chemistry</i> , 2020 , 39, 65-77	2.3	5
22	Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis. <i>Journal of the Korean Oil Chemists Society</i> , 2014 , 31, 453-465		
21	Technical and Marketing Criteria for the Development of Fast Pyrolysis Technologies. 2015 , 274-297		

20	CHAPTER 6. Application of Heterogeneous Catalysts for the Conversion of Biomass-derived Feedstocks into Fuel Components and Eco-additives. <i>RSC Energy and Environment Series</i> , 2020 , 150-179	0.6	О
19	Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process. <i>Renewable Energy</i> , 2022 , 183, 627-650	8.1	O
18	Utilization of oil palm empty fruit bunches biomass through slow pyrolysis process. <i>IOP Conference Series: Earth and Environmental Science</i> , 2021 , 913, 012018	0.3	1
17	Synthesis of cyclohexylphenol via phenol hydroalkylation using Co2P/zeolite catalysts. <i>Catalysis Today</i> , 2021 ,	5.3	O
16	Influence of Thermal and Morphological Behaviour on Biomass Waste Materials during Pyrolysis. <i>E3S Web of Conferences</i> , 2021 , 321, 01005	0.5	
15	Pyrolysis liquids from lignocellulosic biomass as a potential tool for insect pest management: A comprehensive review. <i>Industrial Crops and Products</i> , 2022 , 177, 114533	5.9	O
14	Effects of Bio-Based Additives on Fuel Pellet Quality from Oat Hull: Optimization of Additive Concentration and Process Conditions. SSRN Electronic Journal,	1	
13	Catalytic Hydropyrolysis and Hydrodeoxygenation of Biomass and Model Compounds for Fuels and Chemicals. <i>Clean Energy Production Technologies</i> , 2022 , 293-332	0.8	
12	Thermal and Catalytic Pyrolysis Process of Neem Seed to Produce Valuable Fuels over RFCC Catalyst: Process Development and Evaluation. <i>ChemistrySelect</i> , 2022 , 7,	1.8	1
11	Compositional Ligno-cellulosic behaviour of some residual biomass. <i>Materials Today: Proceedings</i> , 2022 ,	1.4	
10	Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 165, 112607	16.2	1
9	Environmental life cycle assessment of spent coffee ground pellet. <i>Energy Reports</i> , 2022 , 8, 6976-6986	4.6	O
8	Decolorization of Biofuels and Biofuel Blends for Biogenic Carbon Quantification with Liquid Scintillation Radiocarbon Direct Measurement. <i>Energy & Decolorization Research</i> 2015 (2015) <i>Energy & Decolorization Re</i>	4.1	O
7	Evaluation of Queen Palm residues and kraft lignin in the production of biofuels using densification and slow pyrolysis technology. <i>Environmental Science and Pollution Research</i> ,	5.1	O
6	Preliminary Studies on the Electrochemical Conversion of Liquefied Forest Biomass. 2022 , 3, 553-575		1
5	Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass. 1-22		O
4	At-Line Sampling and Characterization of Pyrolytic Vapors from Biomass Feedstock Blends Using SPME-GC/MS-PCA: Influence of Char on Fast Pyrolysis. 2022 , 70, 15509-15516		О
3	Next Challenges for the Comprehensive Molecular Characterization of Complex Organic Mixtures in the Field of Sustainable Energy. 2022 , 27, 8889		O

Perspectives of Biomass Catalytic Fast Pyrolysis for Co-refining: Review and Correlation of Literature Data from Continuously Operated Setups. **2023**, 37, 805-832

О

A characteristic-based decision tree approach for sustainable energy applications of biomass residues from two major classes. **2023**, 339, 127483

C