Mechanism of HIV-1 Neutralization by Antibodies Targe gp41

Journal of Virology 88, 1249-1258 DOI: 10.1128/jvi.02664-13

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Autoreactivity in HIV-1 broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2014, 9, 224-234.	1.5	71
2	Antibody to gp41 MPER Alters Functional Properties of HIV-1 Env without Complete Neutralization. PLoS Pathogens, 2014, 10, e1004271.	2.1	54
3	Capacity for Infectious HIV-1 Virion Capture Differs by Envelope Antibody Specificity. Journal of Virology, 2014, 88, 5165-5170.	1.5	41
4	Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nature Structural and Molecular Biology, 2014, 21, 1058-1067.	3.6	69
5	Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones. Journal of Translational Medicine, 2014, 12, 346.	1.8	14
6	Epitope target structures of Fc-mediated effector function during HIV-1 acquisition. Current Opinion in HIV and AIDS, 2014, 9, 263-270.	1.5	30
7	Stable, uncleaved HIV-1 envelope glycoprotein gp140 forms a tightly folded trimer with a native-like structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18542-18547.	3.3	67
8	Dramatic Potentiation of the Antiviral Activity of HIV Antibodies by Cholesterol Conjugation. Journal of Biological Chemistry, 2014, 289, 35015-35028.	1.6	17
9	Cholesterol-Dependent Membrane Fusion Induced by the gp41 Membrane-Proximal External Region–Transmembrane Domain Connection Suggests a Mechanism for Broad HIV-1 Neutralization. Journal of Virology, 2014, 88, 13367-13377.	1.5	39
10	A Fusion Intermediate gp41 Immunogen Elicits Neutralizing Antibodies to HIV-1. Journal of Biological Chemistry, 2014, 289, 29912-29926.	1.6	32
11	Anti-MPER antibodies with heterogeneous neutralization capacity are detectable in most untreated HIV-1 infected individuals. Retrovirology, 2014, 11, 44.	0.9	19
12	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
13	Chemically Modified Peptides Based on the Membrane-Proximal External Region of the HIV-1 Envelope Induce High-Titer, Epitope-Specific Nonneutralizing Antibodies in Rabbits. Vaccine Journal, 2014, 21, 1086-1093.	3.2	13
14	Antibody engineering for increased potency, breadth and half-life. Current Opinion in HIV and AIDS, 2015, 10, 151-159.	1.5	46
15	Elicitation of HIV-1 neutralizing antibodies by presentation of 4E10 and 10E8 epitopes on Norovirus P particles. Immunology Letters, 2015, 168, 271-278.	1.1	12
16	Active Targeted Drug Delivery for Microbes Using Nano-Carriers. Current Topics in Medicinal Chemistry, 2015, 15, 1525-1531.	1.0	17
17	Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission. Journal of Virology, 2015, 89, 7813-7828.	1.5	35
18	A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. Journal of Translational Medicine, 2015, 13, 60.	1.8	84

#	Article	IF	Citations
19	Fusion-competent state induced by a C-terminal HIV-1 fusion peptide in cholesterol-rich membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1014-1022.	1.4	12
20	Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science, 2015, 349, 191-195.	6.0	113
21	Glycan-Dependent Neutralizing Antibodies Are Frequently Elicited in Individuals Chronically Infected with HIV-1 Clade B or C. AIDS Research and Human Retroviruses, 2015, 31, 1192-1201.	0.5	5
22	Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. Journal of Immunology, 2015, 195, 3759-3768.	0.4	4
23	Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. International Journal of Molecular Sciences, 2016, 17, 1901.	1.8	14
24	Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks. International Journal of Molecular Sciences, 2016, 17, 1710.	1.8	21
25	Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. Journal of Virology, 2016, 90, 6127-6139.	1.5	117
26	Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host and Microbe, 2016, 19, 696-704.	5.1	426
27	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	1.5	62
28	Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology, 2016, 13, 70.	0.9	10
29	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.4	6
30	A Micro–Polyethylene Glycol Precipitation Assay as a Relative Solubility Screening Tool for Monoclonal Antibody Design and Formulation Development. Journal of Pharmaceutical Sciences, 2016, 105, 2319-2327.	1.6	29
31	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	5.8	86
32	Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353, 172-175.	6.0	169
33	Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 2016, 351, 1043-1048.	6.0	402
34	HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. Trends in Immunology, 2016, 37, 221-232.	2.9	96
35	Engineering broadly neutralizing antibodies for HIV prevention and therapy. Advanced Drug Delivery Reviews, 2016, 103, 157-173.	6.6	17
36	Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology, 2016, 490, 17-26.	1.1	11

CITATION REPORT

#	Article	IF	Citations
37	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	5.1	143
38	Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10. Immunity, 2016, 44, 21-31.	6.6	87
39	Germlineâ€ŧargeting immunogens. Immunological Reviews, 2017, 275, 203-216.	2.8	105
40	Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Scientific Reports, 2017, 7, 40800.	1.6	12
41	Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Colloids and Surfaces B: Biointerfaces, 2017, 152, 311-316.	2.5	7
42	Peripheral Membrane Interactions Boost the Engagement by an Anti-HIV-1 Broadly Neutralizing Antibody. Journal of Biological Chemistry, 2017, 292, 5571-5583.	1.6	9
43	Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. MBio, 2017, 8, .	1.8	28
44	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	5.6	119
45	Development of a DNA vaccine expressing a secreted HIV-1 gp41 ectodomain that includes the membrane-proximal external region. Vaccine, 2017, 35, 2736-2744.	1.7	3
46	Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4477-4482.	3.3	18
47	Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Current Opinion in HIV and AIDS, 2017, 12, 250-256.	1.5	23
48	A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles. Virology, 2017, 507, 242-256.	1.1	5
49	Eliciting 10E8-like antibodies by the membrane proximal external region peptide of HIV-1 in guinea pigs. Biotechnology Letters, 2017, 39, 367-373.	1.1	0
50	Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Frontiers in Immunology, 2017, 8, 1154.	2.2	30
51	The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein and Cell, 2018, 9, 596-615.	4.8	37
52	Induction of broadly neutralizing antibodies in Germinal Centre simulations. Current Opinion in Biotechnology, 2018, 51, 137-145.	3.3	33
53	Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions. Journal of Virology, 2018, 92, .	1.5	21
54	Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840007.	0.3	5

D

#	Article	IF	CITATIONS
55	Optimization of the EC26-2A4 Epitope in the gp41 Membrane Proximal External Region Targeted by Neutralizing Antibodies from an Elite Controller. AIDS Research and Human Retroviruses, 2018, 34, 365-374.	0.5	8
56	HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. Molecular Therapy - Nucleic Acids, 2018, 13, 347-364.	2.3	10
57	DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses, 2018, 10, 100.	1.5	11
58	Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8892-E8899.	3.3	72
59	HIV-1 Membrane-Proximal External Region Fused to Diphtheria Toxin Domain-A Elicits 4E10-Like Antibodies in Mice. Immunology Letters, 2019, 213, 30-38.	1.1	3
60	Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host and Microbe, 2019, 26, 623-637.e8.	5.1	56
61	Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions. Nature Communications, 2019, 10, 78.	5.8	31
62	Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines, 2019, 7, 119.	2.1	5
63	Unidirectional Presentation of Membrane Proteins in Nanoparticle‣upported Liposomes. Angewandte Chemie, 2019, 131, 9971-9975.	1.6	0
64	Unidirectional Presentation of Membrane Proteins in Nanoparticleâ€Supported Liposomes. Angewandte Chemie - International Edition, 2019, 58, 9866-9870.	7.2	9
65	Broadly Neutralizing Antibodies against HIV: Back to Blood. Trends in Molecular Medicine, 2019, 25, 228-240.	3.5	19
66	A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chemical Biology, 2020, 15, 2299-2310.	1.6	27
67	Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity, 2020, 53, 1230-1244.e5.	6.6	61
68	The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Scientific Reports, 2020, 10, 14313.	1.6	12
69	Neutralizing Antibodies Targeting HIV-1 gp41. Viruses, 2020, 12, 1210.	1.5	22
70	HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nature Chemical Biology, 2020, 16, 529-537.	3.9	28
71	HIVâ€l Envelope Spike MPER: From a Vaccine Target to a New Druggable Pocket for Novel and Effective Fusion Inhibitors. ChemMedChem, 2021, 16, 105-107.	1.6	5
72	Systematic Assessment of Antiviral Potency, Breadth, and Synergy of Triple Broadly Neutralizing Antibody Combinations against Simian-Human Immunodeficiency Viruses. Journal of Virology, 2021, 95, .	1.5	6

CITATION REPORT

#	Article	IF	CITATIONS
73	HIV-1 Entry and Membrane Fusion Inhibitors. Viruses, 2021, 13, 735.	1.5	34
74	Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies. ELife, 2021, 10, .	2.8	15
75	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.1	4
76	Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.	1.1	44
77	Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells. PLoS Pathogens, 2015, 11, e1005233.	2.1	82
78	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	2.1	33
79	Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathogens, 2017, 13, e1006212.	2.1	58
80	Selection and immune recognition of HIV-1 MPER mimotopes. Virology, 2020, 550, 99-108.	1.1	4
82	Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chemical Biology, 2022, 29, 757-773.	2.5	4
83	Antiviral Activities of HIV-1-Specific Human Broadly Neutralizing Antibodies Are Isotype-Dependent. Vaccines, 2022, 10, 903.	2.1	3
84	Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Current Protein and Peptide Science, 2023, 24, 59-77.	0.7	4
86	Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. Journal of Virology, 0, , .	1.5	0