Low-Temperature Solution-Processed Perovskite Solar Flexibility

ACS Nano 8, 1674-1680 DOI: 10.1021/nn406020d

Citation Report

#	ARTICLE <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
3	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>G</mml:mi><mml:mi>Wxmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: Effect of spin-orbit interaction, semicore electrons, an. Physical Review B, 2014, 90, .</mml: </mml:msub></mml:mrow></mml:mi></mml:mrow>	1.1	126
5	Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Materials, 2014, 2, .	2.2	163
6	Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Research, 2014, 2, 111.	3.4	89
7	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials, 2014, 26, 7158-7165.	3.2	256
8	An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Materials, 2014, 2, .	2.2	99
9	CH ₃ NH ₃ PbI ₃ -Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Applied Materials & Interfaces, 2014, 6, 22862-22870.	4.0	214
10	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	1.5	667
11	Magnetron Sputtered Zinc Oxide Nanorods as Thickness-Insensitive Cathode Interlayer for Perovskite Planar-Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 20585-20589.	4.0	63
12	Impact of the organic halide salt on final perovskite composition for photovoltaic applications. APL Materials, 2014, 2, .	2.2	50
13	Rubidium carbonate modified gold electrodes for efficient electron injection in n-type organic field-effect transistors. Journal Physics D: Applied Physics, 2014, 47, 355101.	1.3	1
14	Nickel Oxide Electrode Interlayer in CH ₃ NH ₃ PbI ₃ Perovskite/PCBM Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 4107-4113.	11.1	646
15	A dual functional additive for the HTM layer in perovskite solar cells. Chemical Communications, 2014, 50, 5020.	2.2	110
16	Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5, 3586.	5.8	1,443
17	Solidâ€State Perovskiteâ€Sensitized pâ€Type Mesoporous Nickel Oxide Solar Cells. ChemSusChem, 2014, 7, 2150-2153.	3.6	69
18	The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2014, 5, 1312-1317.	2.1	744
19	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	15.6	1,220
20	Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chemical Communications, 2014, 50, 6931.	2.2	163
21	Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and Environmental Science, 2014, 7, 2518-2534.	15.6	694

#	Article	IF	CITATIONS
22	Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 2014, 26, 4653-4658.	11.1	1,735
23	Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Materials, 2014, 2, .	2.2	95
24	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2014, 2, .	2.2	136
25	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	5.8	2,214
26	Defect density and dielectric constant in perovskite solar cells. Applied Physics Letters, 2014, 105, .	1.5	221
27	Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Applied Physics Letters, 2014, 105, . Semiconducting ferroelectric photovoltaics through <mml:math< td=""><td>1.5</td><td>175</td></mml:math<>	1.5	175
28	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mi mathvariant="normal">Zn<mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow> into<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">KNbO<mml:mn>3</mml:mn></mml:mi </mml:msub></mml:math>and</mml:mi </mml:msup>	(mml:msi 1.1	ıp>
29	polarization rotation. Physical Review B, 2014, 89, . Vapor deposition of organic-inorganic hybrid perovskite thin-films for photovoltaic applications. , 2014, , .		5
30	Improved charge transport of Nb-doped TiO ₂ nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19616-19622.	5.2	127
31	Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances, 2014, 4, 43286-43314.	1.7	238
32	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2408-2413.	2.1	90
33	Enhancing the efficiency of TiO ₂ -perovskite heterojunction solar cell via evaporating Cs ₂ CO ₃ on TiO ₂ . Physica Status Solidi - Rapid Research Letters, 2014, 8, 912-916.	1.2	12
34	Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of Applied Physics, 2014, 116, .	1.1	252
35	Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy and Environmental Science, 2014, 7, 3326-3333.	15.6	272
36	Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A, 2014, 2, 10788-10817.	5.2	135
37	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Advances, 2014, 4, 62971-62977.	1.7	182
38	On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4115-4121.	2.1	73
39	Organic photovoltaics: key photophysical, device and design aspects. Journal of Modern Optics, 2014, 61, 1703-1713.	0.6	3

#	Article	IF	CITATIONS
40	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20105-20111.	5.2	194
41	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	4.5	185
42	Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate. Journal of Physical Chemistry C, 2014, 118, 26513-26520.	1.5	58
43	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	2.2	134
44	Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. Journal of Materials Chemistry C, 2014, 2, 9087-9090.	2.7	85
45	Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444.	2.8	150
46	Perovskite photovoltaics featuring solution-processable TiO2as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale, 2014, 6, 11403-11410.	2.8	24
47	Charge Transport and Recombination in Dye-Sensitized Solar Cells on Plastic Substrates. Journal of Physical Chemistry C, 2014, 118, 15154-15161.	1.5	7
48	Substrate-controlled band positions in CH ₃ NH ₃ PbI ₃ perovskite films. Physical Chemistry Chemical Physics, 2014, 16, 22122-22130.	1.3	177
49	Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 2014, 8, 10640-10654.	7.3	353
51	A Transparent Conductive Adhesive Laminate Electrode for Highâ€Efficiency Organicâ€Inorganic Lead Halide Perovskite Solar Cells. Advanced Materials, 2014, 26, 7499-7504.	11.1	169
52	Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, 2014, 2, 18508-18514.	5.2	276
53	Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO ₂ . Science, 2014, 345, 546-550.	6.0	1,114
54	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	6.0	5,936
55	High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research, 2014, 7, 1749-1758.	5.8	205
56	Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH ₃ NH ₃ Pbl ₃ Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 11851-11858.	4.0	319
58	Planar heterojunction perovskite/PC ₇₁ BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014, 2, 15897-15903.	5.2	317
59	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	15.6	266

#	Article	IF	CITATIONS
60	A strategy to stabilise the local structure of Ti4+ and Zn2+ species against aging in TiO2/aluminium-doped ZnO bi-layers for applications in hybrid solar cells. Journal of Applied Physics, 2014, 116, .	1.1	5
61	Integrating Perovskite Solar Cells into a Flexible Fiber. Angewandte Chemie - International Edition, 2014, 53, 10425-10428.	7.2	268
62	Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466.	11.1	321
63	Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. Journal of Materials Chemistry A, 2014, 2, 17291-17296.	5.2	274
64	Materials Processing Routes to Trap-Free Halide Perovskites. Nano Letters, 2014, 14, 6281-6286.	4.5	671
65	Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy and Environmental Science, 2014, 7, 3690-3698.	15.6	1,117
66	Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1545-1551.	1.5	123
67	A perspective on the production of dye-sensitized solar modules. Energy and Environmental Science, 2014, 7, 3952-3981.	15.6	381
68	Enhanced Photoluminescence and Solar Cell Performance <i>via</i> Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano, 2014, 8, 9815-9821.	7.3	1,439
69	Inkjet Printing and Instant Chemical Transformation of a CH ₃ NH ₃ PbI ₃ /Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 13239-13243.	7.2	370
70	The Role of Chlorine in the Formation Process of "CH ₃ NH ₃ PbI _{3â€x} Cl _x ―Perovskite. Advanced Functional Materials, 2014, 24, 7102-7108.	7.8	294
71	Highâ€Performance Holeâ€Extraction Layer of Sol–Gelâ€Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 12571-12575.	7.2	355
72	Performance enhancement of solution processed perovskite solar cells incorporating functionalized silica nanoparticles. Journal of Materials Chemistry A, 2014, 2, 17077-17084.	5.2	32
73	Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2014, 2, 19598-19603.	5.2	186
74	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505-10510.	2.8	352
75	Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy and Environmental Science, 2014, 7, 2944-2950.	15.6	657
76	Retarding the crystallization of PbI ₂ for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy and Environmental Science, 2014, 7, 2934-2938.	15.6	807
77	Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13, 897-903.	13.3	5,796

#	Article	IF	CITATIONS
78	One-step, solution-processed formamidinium lead trihalide (FAPbI _(3â~'x) Cl _x) for mesoscopic perovskite–polymer solar cells. Physical Chemistry Chemical Physics, 2014, 16, 19206-19211.	1.3	130
79	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	4.5	1,343
80	Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discussions, 2014, 176, 301-312.	1.6	115
81	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	3.2	178
82	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	2.8	105
83	Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Current Applied Physics, 2014, 14, 1428-1433.	1.1	123
84	Photo-induced charge recombination kinetics in MAPbl _{3â^'x} Cl _x perovskite-like solar cells using low band-gap polymers as hole conductors. Chemical Communications, 2014, 50, 14566-14569.	2.2	33
85	Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous TiO ₂ via Disorder–Order Phase Transition. Chemistry of Materials, 2014, 26, 4466-4471.	3.2	118
86	Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites. APL Materials, 2014, 2, .	2.2	89
87	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. Journal of Physical Chemistry C, 2014, 118, 17171-17177.	1.5	225
88	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
89	Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano, 2014, 8, 4730-4739.	7.3	269
90	Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy and Environmental Science, 2014, 7, 2642-2646.	15.6	622
91	Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. Journal of Materials Chemistry A, 2014, 2, 13827-13830.	5.2	163
92	Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 13211.	1.6	155
93	Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells. Scientific Reports, 2015, 5, 13657.	1.6	37
94	Enhanced Photovoltaic Performance of Perovskite Solar Cells via Modification of Surface Characteristics Using a Fullerene Interlayer. Chemistry Letters, 2015, 44, 1735-1737.	0.7	28
95	Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices. Chemistry Letters, 2015, 44, 720-729.	0.7	216

#	Article	IF	CITATIONS
96	Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Applied Physics Letters, 2015, 107, .	1.5	40
97	Microstructures and properties of CH3NH3Pbl3â [~] xClx hybrid solar cells. , 2015, , .		8
98	Bandgap tuning of MAPbI3â^'XBrx thin film perovskites for photovoltaic applications. , 2015, , .		3
99	Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering. Advanced Functional Materials, 2015, 25, 6875-6884.	7.8	57
100	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Employing Nanostructured pâ€Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015, 27, 4013-4019.	11.1	485
101	Highâ€Quality Mixedâ€Organicâ€Cation Perovskites from a Phaseâ€Pure Nonâ€stoichiometric Intermediate (FAI) _{1â^'} <i>_x</i> â€PbI ₂ for Solar Cells. Advanced Materials, 2015, 27, 4918-4923.	11.1	140
102	Copper(I) Iodide as Holeâ€Conductor in Planar Perovskite Solar Cells: Probing the Origin of <i>J</i> – <i>V</i> Hysteresis. Advanced Functional Materials, 2015, 25, 5650-5661.	7.8	260
103	Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500279.	10.2	271
104	Capillarityâ€Assisted Electrostatic Assembly of Hierarchically Functional 3D Graphene: TiO ₂ Hybrid Photoanodes. Advanced Materials Interfaces, 2015, 2, 1500292.	1.9	4
105	Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes. Advanced Energy Materials, 2015, 5, 1500569.	10.2	285
106	Tin―and Leadâ€Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. Advanced Energy Materials, 2015, 5, 1501119.	10.2	197
107	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
108	Monolithic Perovskiteâ€CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Advanced Energy Materials, 2015, 5, 1500799.	10.2	219
109	Highâ€Performance Planar Solar Cells Based On CH ₃ NH ₃ Pbl _{3â€<i>x</i>CH_{Cl<i>_x</i> Perovskites with Determined Chlorine Mole Fraction. Advanced Functional Materials, 2015, 25, 4867-4873.}}	7.8	95
110	Selfâ€Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500118.	1.9	61
111	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	10.2	131
112	Future Scope of Silicone Polymer based Functionalized Nanocomposites for Device Packaging: A Mini Review. Journal of Chemical Engineering & Process Technology, 2015, 06, .	0.1	3
113	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	19

#	Article	IF	CITATIONS
115	Solvent engineering of the electron transport layer using 1,8-diiodooctane for improving the performance of perovskite solar cells. Organic Electronics, 2015, 24, 101-105.	1.4	45
116	Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 13659-13665.	4.0	132
117	Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3. Journal of Power Sources, 2015, 293, 577-584.	4.0	56
118	Work function and interface control of amorphous IZO electrodes by MoO3 layer grading for organic solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 194-202.	3.0	36
119	Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis. Journal of Materials Chemistry A, 2015, 3, 14121-14125.	5.2	76
120	Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell. Electronic Materials Letters, 2015, 11, 259-265.	1.0	4
121	Improving efficiency of planar hybrid CH 3 NH 3 PbI 3â^' x Cl x perovskite solar cells by isopropanol solvent treatment. Organic Electronics, 2015, 24, 205-211.	1.4	41
122	Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	1.4	94
123	Wearable Doubleâ€Twisted Fibrous Perovskite Solar Cell. Advanced Materials, 2015, 27, 3831-3835.	11.1	184
124	Can graphene outperform indium tin oxide as transparent electrode in organic solar cells?. 2D Materials, 2015, 2, 045006.	2.0	10
125	DMSO-based PbI ₂ precursor with PbCl ₂ additive for highly efficient perovskite solar cells fabricated at low temperature. RSC Advances, 2015, 5, 104606-104611.	1.7	26
126	Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process. Solar Energy, 2015, 122, 1047-1051.	2.9	70
127	Beyond silicon: Alternative photovoltaic technologies. , 2015, , .		1
128	Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58, 953-960.	3.5	41
129	Two-step sequential substrate vibration-assisted spray coating (SVASC) as a path to high performance perovskite solar cells. , 2015, , .		0
130	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	10.2	241
131	Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 2359-2366.	4.0	82
132	Addressing dynamic photovoltaic processes at electrode:active layer and donor:acceptor interfaces in organic solar cells under device-operating conditions. Science China Chemistry, 2015, 58, 239-247.	4.2	5

#	Article	IF	CITATIONS
133	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
134	Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Advances, 2015, 5, 11175-11179.	1.7	111
135	Vacuum-Assisted Thermal Annealing of CH ₃ NH ₃ PbI ₃ for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 2015, 9, 639-646.	7.3	318
136	Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. Advanced Functional Materials, 2015, 25, 1213-1218.	7.8	86
137	Lead-Halide Perovskite Solar Cells by CH ₃ NH ₃ I Dripping on PbI ₂ –CH ₃ NH ₃ l–DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material. Journal of Physical Chemistry Letters, 2015, 6, 881-886.	2.1	78
138	Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.	5.2	91
139	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
140	Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chemistry of Materials, 2015, 27, 1720-1731.	3.2	388
141	Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites. Energy and Environmental Science, 2015, 8, 1256-1260.	15.6	202
142	Importance of Orbital Interactions in Determining Electronic Band Structures of Organo-Lead Iodide. Journal of Physical Chemistry C, 2015, 119, 4627-4634.	1.5	66
143	Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 4955-4961.	4.0	295
144	A facile, solvent vapor–fumigation-induced, self-repair recrystallization of CH ₃ NH ₃ PbI ₃ films for high-performance perovskite solar cells. Nanoscale, 2015, 7, 5427-5434.	2.8	61
145	High efficiency sequentially vapor grown n-i-p CH ₃ NH ₃ PbI ₃ perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Materials, 2015, 3, 016105.	2.2	87
146	Unravelling the Effects of Cl Addition in Single Step CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 2309-2314.	3.2	96
147	Pathways for solar photovoltaics. Energy and Environmental Science, 2015, 8, 1200-1219.	15.6	385
148	Low-Temperature Processed and Carbon-Based ZnO/CH ₃ NH ₃ PbI ₃ /C Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 4600-4605.	1.5	153
149	Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth. Journal of the American Chemical Society, 2015, 137, 2350-2358.	6.6	326
150	Zr Incorporation into TiO ₂ Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. Journal of Physical Chemistry Letters, 2015, 6, 669-675.	2.1	106

ARTICLE IF CITATIONS # Elimination of Burn-in Open-Circuit Voltage Degradation by ZnO Surface Modification in Organic 151 4.0 45 Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 1608-1615. The effect of external electric field on the performance of perovskite solar cells. Organic 1.4 Electronics, 2015, 18, 107-112. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 153 6.0 2,978 347, 522-525. Ultrasmooth organicâé"inorganic perovskite thin-film formation and crystallization for efficient 154 5.8 784 planar heterojunction solar cells. Nature Communications, 2015, 6, 6142. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution 155 6.4 148 process. Materials Horizons, 2015, 2, 203-211. Efficient CH₃NH₃Pbl₃ Perovskite Solar Cells Based on Graphdiyne (GD)â€Modified P3HT Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1401943. 10.2 Fabrication of metal-oxide-free CH₃NH₃Pbl₃perovskite solar cells 158 5.2 162 processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275. Perovskite thin-film solar cell: excitation in photovoltaic science. Science China Chemistry, 2015, 58, 4.2 221-238. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells. Applied 160 123 1.5 Physics Letters, 2015, 106, . Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. Journal of Materials 5.2 Chemistry A, 2015, 3, 4129-4133. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor 162 112 2.1 Annealing. Journal of Physical Chemistry Letters, 2015, 6, 493-499. Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH₃NH₃Pbl_{3-x}Cl_{<i>x</i>>V/i>} Derived from Two-Step Spin 4.0 Coating Method. ACS Applied Materials & amp; Interfaces, 2015, 7, 2242-2248. Unraveling film transformations and device performance of planar perovskite solar cells. Nano 164 8.2 65 Energy, 2015, 12, 494-500. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites. 1.1 Journal of Applied Physics, 2015, 117, 074901. Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochimica 166 89 2.6 Acta, 2015, 175, 151-161. Improving the TiO₂ electron transport layer in perovskite solar cells using 104 acetylacetonate-based additives. Journal of Materials Chemistry A, 2015, 3, 9108-9115. Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of 168 1.4 56 CH3NH3PbI3â^{*} xClx layer. Organic Electronics, 2015, 21, 19-26. Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite 289 Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.

#	Article	IF	Citations
170	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
171	Room temperature optical properties of organic–inorganic lead halide perovskites. Solar Energy Materials and Solar Cells, 2015, 137, 253-257.	3.0	96
172	Mesoporous SnO ₂ nanoparticle films as electron-transporting material in perovskite solar cells. RSC Advances, 2015, 5, 28424-28429.	1.7	154
173	Hotâ€Electron Injection in a Sandwiched TiO <i>_x</i> –Au–TiO <i>_x</i> Structure for Highâ€Performance Planar Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500038.	10.2	119
174	Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Solar Energy Materials and Solar Cells, 2015, 137, 303-310.	3.0	195
175	Magnetic field effects in hybrid perovskite devices. Nature Physics, 2015, 11, 427-434.	6.5	227
176	Once again, organometallic tri-halide perovskites. Materials Today, 2015, 18, 172-173.	8.3	13
177	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	5.2	91
178	Bulk intermixing-type perovskite CH ₃ NH ₃ PbI ₃ /TiO ₂ nanorod hybrid solar cells. Nanoscale, 2015, 7, 14532-14537.	2.8	15
179	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
180	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	6.6	347
181	Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297, 53-58.	4.0	59
182	High efficiency stable inverted perovskite solar cells without current hysteresis. Energy and Environmental Science, 2015, 8, 2725-2733.	15.6	533
183	Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Organic Electronics, 2015, 26, 265-272.	1.4	83
184	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
185	Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15024-15029. First-principles calculation of the bulk photovoltaic effect in <mml:math< td=""><td>5.2</td><td>107</td></mml:math<>	5.2	107
186	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">KNbO</mml:mi </mml:mrow><mml:mn>3</mml:mn></mml:msub> and (K,Ba)(Ni,Nb) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi< td=""><td>1.1</td><td>53</td></mml:mi<></mml:mrow></mml:msub></mml:math 	1.1	53
187	mathvariant="normal">O <mml:mrow><mml:mn>3</mml:mn><mml:mo>â^'</mml:mo> Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.</mml:mrow>	kmml:mi>Î 2.2	<pre>/mml:mi>< 78</pre>

#	Article	IF	CITATIONS
188	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	5.2	85
189	Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* â^¼ 33%) solar cell. Applied Physics Letters, 2015, 106, .	1.5	82
190	High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Organic Electronics, 2015, 26, 30-35.	1.4	92
191	Controlling CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16330-16337.	4.0	86
192	Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17776-17781.	4.0	75
193	Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. Journal of Materials Chemistry A, 2015, 3, 17780-17787.	5.2	29
194	Study of planar heterojunction perovskite photovoltaic cells using compact titanium oxide by chemical bath deposition. Japanese Journal of Applied Physics, 2015, 54, 08KF02.	0.8	9
195	Towards design of metal oxide free perovskite solar cell paradigm: Materials processing and enhanced device performance. Chemical Engineering Journal, 2015, 281, 599-605.	6.6	6
196	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
197	Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S) ₂ Four Terminal Tandem Solar Cells. ACS Nano, 2015, 9, 7714-7721.	7.3	157
198	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	5.8	281
199	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
200	High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 5122-5130.	3.2	203
201	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	4.0	201
202	Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11750-11755.	5.2	122
203	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces, 2015, 7, 9645-9651.	4.0	114
204	Hybrid Perovskite Films by a New Variant of Pulsed Excimer Laser Deposition: A Room-Temperature Dry Process. Journal of Physical Chemistry C, 2015, 119, 9177-9185.	1.5	68
205	A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.	5.2	213

#	Article	IF	Citations
206	Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 2015, 7, 9771-9778.	2.8	102
207	Layered ultrathin PbI ₂ single crystals for high sensitivity flexible photodetectors. Journal of Materials Chemistry C, 2015, 3, 4402-4406.	2.7	119
208	TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 150-157.	3.0	72
209	Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348, 683-686.	6.0	1,833
210	Perovskite photovoltachromic cells for building integration. Energy and Environmental Science, 2015, 8, 1578-1584.	15.6	125
211	Direct observation of an inhomogeneous chlorine distribution in CH ₃ NH ₃ PbI _{3â^'x} Cl _x layers: surface depletion and interface enrichment. Energy and Environmental Science, 2015, 8, 1609-1615.	15.6	97
212	Origin of High Electronic Quality in Structurally Disordered CH ₃ NH ₃ Pbl ₃ and the Passivation Effect of Cl and O at Grain Boundaries. Advanced Electronic Materials, 2015, 1, 1500044.	2.6	175
213	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	5.2	116
214	Multifaceted Excited State of CH ₃ NH ₃ PbI ₃ . Charge Separation, Recombination, and Trapping. Journal of Physical Chemistry Letters, 2015, 6, 2086-2095.	2.1	107
215	Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates. Solar Energy Materials and Solar Cells, 2015, 140, 224-231.	3.0	77
216	Perovskites: transforming photovoltaics, a mini-review. Journal of Photonics for Energy, 2015, 5, 057402.	0.8	47
217	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	2.8	21
218	Selfâ€Powered Electronics by Integration of Flexible Solidâ€State Grapheneâ€Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 2420-2427.	7.8	142
219	Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 1249-1253.	2.1	477
220	Inverted perovskite solar cells with inserted cross-linked electron-blocking interlayers for performance enhancement. Journal of Materials Chemistry A, 2015, 3, 9291-9297.	5.2	45
221	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, 2015, 3, 9128-9132.	5.2	52
222	Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Letters, 2015, 15, 2756-2762.	4.5	338
223	Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. Journal of Materials Chemistry A, 2015, 3, 9141-9145.	5.2	133

#	Article	IF	CITATIONS
224	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
225	CH ₃ NH ₃ PbI ₃ from non-iodide lead salts for perovskite solar cells via the formation of PbI ₂ . Physical Chemistry Chemical Physics, 2015, 17, 10369-10372.	1.3	27
226	Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15372-15385.	5.2	120
227	Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials Chemistry A, 2015, 3, 12133-12138.	5.2	86
228	Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. Journal of Materials Chemistry A, 2015, 3, 12081-12088.	5.2	123
229	Thermally-activated recombination in one component of (CH ₃ NH ₃)PbI ₃ /TiO ₂ observed by photocurrent spectroscopy. Chemical Communications, 2015, 51, 7309-7312.	2.2	5
230	Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A, 2015, 3, 9401-9405.	5.2	146
231	Hysteresis-less inverted CH ₃ NH ₃ Pbl ₃ planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1602-1608.	15.6	1,079
232	Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. Journal of Materials Chemistry A, 2015, 3, 9406-9410.	5.2	77
233	The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications, 2015, 5, 7-26.	0.8	132
234	Understanding the low-loss mechanism of general organic–inorganic perovskites from first-principles calculation. Chemical Physics Letters, 2015, 627, 13-19.	1.2	13
235	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	2.2	28
236	A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters, 2015, 106, .	1.5	80
237	Multifunctional MgO Layer in Perovskite Solar Cells. ChemPhysChem, 2015, 16, 1727-1732.	1.0	70
238	Hierarchical i–p and i–n porous heterojunction in planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10526-10535.	5.2	14
239	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	7.3	63
240	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015, 137, 13130-13137.	6.6	394
241	New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21807-21818.	4.0	80

#	Article	IF	CITATIONS
242	Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Optics Express, 2015, 23, A83.	1.7	53
243	Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer. Chemistry of Materials, 2015, 27, 7119-7127.	3.2	78
244	An electron beam evaporated TiO ₂ layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015, 3, 22824-22829.	5.2	116
245	Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chemical Communications, 2015, 51, 17413-17416.	2.2	76
246	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
247	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
248	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 17343-17349.	2.8	64
249	TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 717-721.	7.1	16
250	A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 707-711.	7.1	17
251	Vibrational Properties of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. Journal of Physical Chemistry C, 2015, 119, 25703-25718.	1.5	276
252	Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. RSC Advances, 2015, 5, 94290-94295.	1.7	76
253	Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 2015, 3, 23888-23894.	5.2	161
254	Materials Design of Visible-Light Ferroelectric Photovoltaics from First Principles. Ferroelectrics, 2015, 483, 1-12.	0.3	27
255	Functional p-Type, Polymerized Organic Electrode Interlayer in CH ₃ NH ₃ Pbl ₃ Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24973-24981.	4.0	36
256	Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy, 2015, 18, 118-125.	8.2	232
257	Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 24008-24015.	4.0	257
258	Texture of MAPbI ₃ Layers Assisted by Chloride on Flat TiO ₂ Substrates. Journal of Physical Chemistry C, 2015, 119, 19808-19816.	1.5	36
259	Layered V ₂ O ₅ /PEDOT Nanowires and Ultrathin Nanobelts Fabricated with a Silk Reelinglike Process. Chemistry of Materials, 2015, 27, 5813-5819.	3.2	74

#	Article	IF	CITATIONS
260	Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation. AIP Advances, 2015, 5, 087125.	0.6	14
261	Organic Solar Cells. , 2015, , 75-100.		Ο
262	Effect of temperature on the efficiency of organometallic perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 729-735.	7.1	54
263	High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy and Environmental Science, 2015, 8, 3550-3556.	15.6	384
264	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	10.2	1,788
265	Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. ACS Applied Materials & Interfaces, 2015, 7, 23110-23116.	4.0	118
266	Dopants Control Electron–Hole Recombination at Perovskite–TiO ₂ Interfaces: <i>Ab Initio</i> Time-Domain Study. ACS Nano, 2015, 9, 11143-11155.	7.3	108
267	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 2015, 9, 10287-10295.	7.3	335
268	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19353-19359.	5.2	239
269	Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 3565-3571.	2.1	105
270	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	4.5	179
271	Consecutive Morphology Controlling Operations for Highly Reproducible Mesostructured Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 20707-20713.	4.0	43
272	Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Materials, 2015, 7, e208-e208.	3.8	117
273	Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology. IEEE Journal of Photovoltaics, 2015, 5, 1402-1407.	1.5	4
274	Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite. ACS Applied Materials & Interfaces, 2015, 7, 20280-20284.	4.0	19
275	Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Physical Chemistry Chemical Physics, 2015, 17, 24342-24348.	1.3	41
276	High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, 2015, 3, 19294-19298.	5.2	35
277	Effects of Porosity and Amount of Surface Hydroxyl Groups of a Porous TiO ₂ Layer on the Performance of a CH ₃ NH ₃ Pol ₃ Perovskite Photovoltaic Cell.	1.5	18

#	Article	IF	Citations
278	Investigation on thermal evaporated CH3NH3PbI3 thin films. AIP Advances, 2015, 5, .	0.6	42
279	CH ₃ NH ₃ PbCl ₃ Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. Journal of Physical Chemistry Letters, 2015, 6, 3781-3786.	2.1	636
280	Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Applied Physics Letters, 2015, 107, .	1.5	67
281	Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Organic Electronics, 2015, 27, 12-17.	1.4	37
282	Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21760-21771.	5.2	96
283	Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT:PSS hole transport layer. Solar Energy, 2015, 122, 892-899.	2.9	43
284	High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A, 2015, 3, 9098-9102.	5.2	192
285	Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 2015, 12, 96-104.	8.2	328
286	Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. Journal of Power Sources, 2015, 278, 325-331.	4.0	89
287	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233
288	TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728-735.	8.2	293
289	Nanoscale Charge Localization Induced by Random Orientations of Organic Molecules in Hybrid Perovskite CH ₃ NH ₃ Pbl ₃ . Nano Letters, 2015, 15, 248-253.	4.5	243
290	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522
291	Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 129-138.	2.1	173
292	Layerâ€byâ€Layer Growth of CH ₃ NH ₃ PbI _{3â^'<i>x</i>} Cl _{<i>x</i>} for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2015, 27, 1053-1059.	11.1	211
293	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, 1401855.	10.2	337
294	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
295	Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 695-701.	11.1	751

ARTICLE IF CITATIONS # Multicolored Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 296 11.1 1,077 1248-1254. Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC 1.7 Advances, 2015, 5, 775-783. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific 298 1.6 371 Reports, 2014, 4, 4756. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Bladeâ€Coating. Advanced Energy Materials, 2015, 5, 1401229. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 300 5.8 65 2015, 8, 1116-1127. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale, 2015, 7, 896-900. 2.8 Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. 302 5.2 164 Journal of Materials Chemistry A, 2015, 3, 8992-9010. Theoretical analysis on effect of band offsets in perovskite solar cells. Solar Energy Materials and 410 Solar Cells, 2015, 133, 8-14. Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4, 304 208 1.6 6953. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Physical 1.3 Chemistry Chemical Physics, 2015, 17, 1619-1629. Optical properties of organometal halide perovskite thin films and general device structure design 306 5.2 240 rules for perovskite single and tandem solar cells. Journal of Materials Chemistry A, 2015, 3, 9152-9159. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 5.2 1,114 2015, 3, 8926-8942. Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap 308 10.2 117 Perovskites. Advanced Energy Materials, 2015, 5, 1400960. Predicting the Openâ€Circuit Voltage of CH₃NH₃Pbl₃ Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Nonâ€Radiative Recombination. Advanced Energy Materials, 2015, 5, 1400812. 309 10.2 Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy 310 15.6 602 and Environmental Science, 2015, 8, 916-921. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in 4.4 Photovoltaics: Research and Applications, 2016, 24, 436-445. Recent Advances in Fabrication Techniques of Perovskite Solar Cells: A Review. American Journal of 312 0.13 Applied Sciences, 2016, 13, 1290-1314. Efficient and stable of perovskite solar cells., 2016, , .

#	Article	IF	CITATIONS
314	Planar Perovskite Solar Cells using CH ₃ NH ₃ PbI ₃ Films: A Simple Process Suitable for Large cale Production. Energy Technology, 2016, 4, 473-478.	1.8	32
315	Controllable ZnMgO Electronâ€Transporting Layers for Longâ€Term Stable Organic Solar Cells with 8.06% Efficiency after Oneâ€Year Storage. Advanced Energy Materials, 2016, 6, 1501493.	10.2	72
316	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
317	Stability issues of the next generation solar cells. Physica Status Solidi - Rapid Research Letters, 2016, 10, 281-299.	1.2	69
318	Physical mechanisms responsible for the waterâ€induced degradation of PC ₆₁ BM P3HT photovoltaic thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 141-146.	2.4	22
319	Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 18309-18320.	4.0	24
320	Cableâ€Type Waterâ€Survivable Flexible Liâ€O ₂ Battery. Small, 2016, 12, 3101-3105.	5.2	102
321	New Horizons for Perovskite Solar Cells Employing DNAâ€CTMA as the Holeâ€Transporting Material. ChemSusChem, 2016, 9, 1736-1742.	3.6	32
322	Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material. Advanced Functional Materials, 2016, 26, 4464-4471.	7.8	136
323	Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization. Advanced Energy Materials, 2016, 6, 1502356.	10.2	14
324	An easy method to modify PEDOT:PSS/perovskite interfaces for solar cells with efficiency exceeding 15%. RSC Advances, 2016, 6, 65594-65599.	1.7	31
325	Improved Performance and Reliability of pâ€iâ€n Perovskite Solar Cells via Doped Metal Oxides. Advanced Energy Materials, 2016, 6, 1600285.	10.2	67
326	Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer. RSC Advances, 2016, 6, 64962-64966.	1.7	6
327	Mixedâ€Halide CH ₃ NH ₃ PbI _{3â^'<i>x</i>} X _{<i>x</i>} (X=Cl, Br,) T ChemPhysChem, 2016, 17, 2382-2388.	[j ETQq1] 1.0	l 0.784314 40
328	Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithiumâ€Neutralized Graphene Oxide as Electron Transporting Layer. Advanced Functional Materials, 2016, 26, 2686-2694.	7.8	180
329	Perovskite Solar Cells Employing Dopantâ€Free Organic Hole Transport Materials with Tunable Energy Levels. Advanced Materials, 2016, 28, 440-446.	11.1	249
330	Transparent Conductive Oxideâ€Free Grapheneâ€Based Perovskite Solar Cells with over 17% Efficiency. Advanced Energy Materials, 2016, 6, 1501873.	10.2	206
331	Improving Film Formation and Photovoltage of Highly Efficient Invertedâ€Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers. Advanced Energy Materials, 2016, 6. 1502021	10.2	152

#	Article	IF	CITATIONS
332	Semitransparent Solar Cells with Ultrasmooth and Low-Scattering Perovskite Thin Films. Journal of Physical Chemistry C, 2016, 120, 28933-28938.	1.5	32
333	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH ₃ NH ₃ PbI ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 28448-28455.	1.5	47
334	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	4.0	24
335	Effects of chlorine addition to perovskite-type CH ₃ NH ₃ PbI ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 234-238.	0.5	33
336	Seed-mediated superior organometal halide films by GeO ₂ nano-particles for high performance perovskite solar cells. Applied Physics Letters, 2016, 108, 053301.	1.5	58
337	Effect of PCBM film thickness on the performance of inverted perovskite solar cells. , 2016, , .		2
338	Degradation mechanism for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 04ES07.	0.8	10
339	Fabrication and characteristics of CH ₃ NH ₃ PbI ₃ perovskite solar cells with molybdenum-selenide hole-transport layer. Applied Physics Express, 2016, 9, 122301.	1.1	13
340	Planar mixed halide perovskite-PCBM solar cells on flexible glass substrates processed at low temperature without ITO. , 2016, , .		4
341	Thermodynamic origin of instability in hybrid halide perovskites. Scientific Reports, 2016, 6, 37654.	1.6	76
342	Iodine and Chlorine Element Evolution in CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	3.2	48
343	Laser Processing in the Manufacture of Dye ensitized and Perovskite Solar Cell Technologies. ChemElectroChem, 2016, 3, 9-30.	1.7	67
344	Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. ChemSusChem, 2016, 9, 31-35.	3.6	90
345	The Effect of Humidity upon the Crystallization Process of Two‣tep Spin oated Organic–Inorganic Perovskites. ChemPhysChem, 2016, 17, 112-118.	1.0	35
346	Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective. ACS Applied Materials & Interfaces, 2016, 8, 9811-9820.	4.0	54
347	Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 2016, 26, 208-215.	8.2	419
348	Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. Chemical Communications, 2016, 52, 8099-8102.	2.2	71
349	High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Applied Materials & Interfaces, 2016, 8, 14503-14512.	4.0	120

#	Article	IF	CITATIONS
350	Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy and Environmental Science, 2016, 9, 2262-2266.	15.6	265
352	Transfer-Printed PEDOT:PSS Electrodes Using Mild Acids for High Conductivity and Improved Stability with Application to Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 14029-14036.	4.0	145
353	Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews, 2016, 62, 1012-1031.	8.2	111
354	Crystalline Mixed Halide Halobismuthates and Their Induced Second Harmonic Generation. Chemistry of Materials, 2016, 28, 4421-4431.	3.2	43
355	Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L)APW+lo calculations. Solid State Sciences, 2016, 58, 1-13.	1.5	23
356	Highly reproducible perovskite solar cells with excellent CH ₃ NH ₃ PbI _{3â°'x} Cl _x film morphology fabricated via high precursor concentration. RSC Advances, 2016, 6, 51279-51285.	1.7	9
357	Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT:PSS hole-transporter. Organic Electronics, 2016, 33, 221-226.	1.4	26
358	High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions. Chemical Communications, 2016, 52, 4784-4787.	2.2	39
359	Low-Temperature TiO _{<i>x</i>} Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11076-11083.	4.0	100
360	Sulfamic Acid-Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrates. Journal of the American Chemical Society, 2016, 138, 5410-5416.	6.6	86
361	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances, 2016, 6, 38079-38091.	1.7	154
362	Wire-shaped perovskite solar cell based on TiO ₂ nanotubes. Nanotechnology, 2016, 27, 20LT01.	1.3	21
363	Thin films for photovoltaic application. Ferroelectrics, 2016, 496, 187-195.	0.3	0
364	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
365	Promising photovoltaic application of multi-walled carbon nanotubes in perovskites solar cells for retarding recombination. RSC Advances, 2016, 6, 42413-42420.	1.7	27
366	p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8, 10528-10540.	2.8	125
367	Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Materials Today, 2016, 19, 580-594.	8.3	79
368	ZnO nanowalls grown at low-temperature for electron collection in high-efficiency perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 154, 18-22.	3.0	46

#	Article	IF	CITATIONS
369	Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1845-1851.	2.1	93
370	Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. ACS Nano, 2016, 10, 5479-5489.	7.3	125
371	Coordination engineering toward high performance organic–inorganic hybrid perovskites. Coordination Chemistry Reviews, 2016, 320-321, 53-65.	9.5	34
372	Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers. Journal of Materials Chemistry A, 2016, 4, 7903-7913.	5.2	64
373	High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO _x hole transport layer. Nanoscale, 2016, 8, 10806-10813.	2.8	206
374	Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Advances, 2016, 6, 43299-43303.	1.7	52
375	Blending of n-type Semiconducting Polymer and PC ₆₁ BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 12822-12829.	4.0	30
376	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing. RSC Advances, 2016, 6, 48449-48454.	1.7	10
377	Efficient planar heterojunction perovskite solar cells fabricated via roller-coating. Solar Energy Materials and Solar Cells, 2016, 155, 14-19.	3.0	15
378	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	15.6	345
379	Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Organic Electronics, 2016, 39, 1-9.	1.4	24
380	Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells. , 2016, , .		1
381	High-coverage organic-inorganic perovskite film fabricated by double spin coating for improved solar power conversion and amplified spontaneous emission. Chemical Physics Letters, 2016, 661, 131-135.	1.2	11
382	Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27438-27443.	4.0	70
383	A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells. Nanoscale, 2016, 8, 19189-19194.	2.8	45
384	Coexistence of Two Electronic Nano-Phases on a CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Surface Observed in STM Measurements. ACS Applied Materials & Interfaces, 2016, 8, 29110-29116.	4.0	21
385	Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating. Nanoscale Research Letters, 2016, 11, 408.	3.1	57
386	Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale, 2016, 8, 15954-15960.	2.8	170

#	Article	IF	CITATIONS
387	Preparation of ZnO electron transport layers by spray technology for perovskite solar cells. Journal of Alloys and Compounds, 2016, 689, 192-198.	2.8	13
388	Ultrafast Spectroscopy of Photoexcitations in Organometal Trihalide Perovskites. Advanced Functional Materials, 2016, 26, 1617-1627.	7.8	35
389	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	8.2	14
390	Flexible and efficient ITO-free semitransparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 660-665.	3.0	57
391	A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V. Synthetic Metals, 2016, 220, 462-468.	2.1	38
392	Quantum Confinement Effects in Organic Lead Tribromide Perovskite Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 18333-18339.	1.5	30
393	High Performance Perovskite Solar Cells. Advanced Science, 2016, 3, 1500201.	5.6	105
394	A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353.	5.6	67
395	Inverted Planar Structure of Perovskite Solar Cells. , 2016, , 307-324.		2
396	Flexible Perovskite Solar Cell. , 2016, , 325-341.		2
396 397	Flexible Perovskite Solar Cell. , 2016, , 325-341. One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533.	5.2	2 90
	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and	5.2	
397	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533. Low temperature fabrication of formamidinium based perovskite solar cells with enhanced		90
397 398	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533. Low temperature fabrication of formamidinium based perovskite solar cells with enhanced performance by chlorine incorporation. Organic Electronics, 2016, 38, 144-149. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite	1.4	90 8
397 398 399	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533. Low temperature fabrication of formamidinium based perovskite solar cells with enhanced performance by chlorine incorporation. Organic Electronics, 2016, 38, 144-149. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2016, 8, 24603-24611. Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar	1.4 4.0	90 8 37
397 398 399 400	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533. Low temperature fabrication of formamidinium based perovskite solar cells with enhanced performance by chlorine incorporation. Organic Electronics, 2016, 38, 144-149. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2016, 8, 24603-24611. Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 24703-24711. Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for	1.4 4.0 4.0	90 8 37 38
 397 398 399 400 401 	One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of Materials Chemistry A, 2016, 4, 13525-13533. Low temperature fabrication of formamidinium based perovskite solar cells with enhanced performance by chlorine incorporation. Organic Electronics, 2016, 38, 144-149. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2016, 8, 24603-24611. Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 24703-24711. Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15088-15094. Cooperative Effect of GO and Glucose on PEDOT:PSS for High <i>V Kefferee Solutiona& Processed Perovskite Solar Cells. Advanced Functional Materials, 2016, 26,</i>	1.4 4.0 4.0 5.2	 90 8 37 38 70

#	Article	IF	CITATIONS
405	Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells. Nano Energy, 2016, 28, 311-318.	8.2	147
406	Dopantâ€Free Donor (D)–π–D–π–D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	3.6	83
407	Efficient, monolithic large area organohalide perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13830-13836.	5.2	47
408	Improved Ambientâ€Stable Perovskite Solar Cells Enabled by a Hybrid Polymeric Electronâ€Transporting Layer. ChemSusChem, 2016, 9, 2586-2591.	3.6	26
409	Highly-Efficient and Long-Term Stable Perovskite Solar Cells Enabled by a Cross-Linkable <i>n</i> -Doped Hybrid Cathode Interfacial Layer. Chemistry of Materials, 2016, 28, 6305-6312.	3.2	38
410	Revealing the unfavorable role of superfluous CH ₃ NH ₃ PbI ₃ grain boundary traps in perovskite solar cells on carrier collection. RSC Advances, 2016, 6, 83264-83272.	1.7	13
411	Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.	1.7	15
412	Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34446-34454.	4.0	36
413	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
414	Grain structure control and greatly enhanced carrier transport by CH3NH3PbCl3 interlayer in two-step solution processed planar perovskite solar cells. Organic Electronics, 2016, 38, 362-369.	1.4	11
415	Effects of Gas Blowing Condition on Formation of Perovskite Layer on Organic Scaffolds. Chemistry Letters, 2016, 45, 822-824.	0.7	10
416	Highly stabilized perovskite solar cell prepared using vacuum deposition. RSC Advances, 2016, 6, 93525-93531.	1.7	10
417	MAPbi2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties. Applied Surface Science, 2016, 390, 744-750.	3.1	16
418	Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chemical Physics Letters, 2016, 662, 35-41.	1.2	43
419	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
420	Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12463-12470.	5.2	28
421	Polarization-selective three-photon absorption and subsequent photoluminescence in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsPbBr</mml:mi><mml:mn>3crystal at room temperature. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	ml ı mın > < /r	nnøl22msub> </td
422	Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506.	3.5	7

ARTICLE IF CITATIONS Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films. 423 2.7 100 Journal of Materials Chemistry C, 2016, 4, 7775-7782. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. 424 10.2 Advanced Energy Materials, 2016, 6, 1600664. 425 Organic-Inorganic Halide Perovskite Photovoltaics., 2016,,. 115 An amorphous precursor route to the conformable oriented crystallization of CH₃NH₃PbBr₃in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12897-12912 Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 427 3.3 269 113, 8910-8915. Highly reproducible and photocurrent hysteresis-less planar perovskite solar cells with a modified solvent annealing method. Solar Energy, 2016, 136, 210-216. 16 Twoâ€Step Physical Deposition of a Compact Cul Holeâ€Transport Layer and the Formation of an 429 3.6 64 Interfacial Species in Perovskite Solar Cells. ChemSusChem, 2016, 9, 1929-1937. Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar 430 8.2 cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346. Optoelectronic modelling of perovskite solar cells under humid conditions and their correlation 431 1.4 11 with power losses to quantify material degradation. Organic Electronics, 2016, 39, 258-266. Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 33899-33906. Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772. 433 79 0.8 Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature 434 5.8 147 Communications, 2016, 7, 13319. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell 435 1.6 81 Applications. Scientific Reports, 2016, 5, 17684. Preparation and evaluation of perovskite solar cells in the absolute atmospheric environment., 2016, Highly efficient light management for perovskite solar cells. Scientific Reports, 2016, 6, 18922. 437 105 1.6 Undesirable role of remnant Pbl₂ layer on low temperature processed planar perovskite solar cells. RSC Advances, 2016, 6, 101250-101258. Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and 439 8.2 56 stable planar solar cells with module-scales. Nano Energy, 2016, 30, 667-676. Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells. 440 168 Advanced Energy Materials, 2016, 6, 1502317.

#	Article	IF	CITATIONS
441	Numerical simulation and light trapping in perovskite solar cell. Journal of Photonics for Energy, 2016, 6, 025507.	0.8	18
442	N and p-type properties in organo-metal halide perovskites studied by Seebeck effects. Organic Electronics, 2016, 35, 216-220.	1.4	15
443	Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 57793-57798.	1.7	24
444	An all-solid-state fiber-type solar cell achieving 9.49% efficiency. Journal of Materials Chemistry A, 2016, 4, 10105-10109.	5.2	77
445	Formation and evolution of the unexpected PbI ₂ phase at the interface during the growth of evaporated perovskite films. Physical Chemistry Chemical Physics, 2016, 18, 18607-18613.	1.3	58
446	Pure- or mixed-solvent assisted treatment for crystallization dynamics of planar lead halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 166-175.	3.0	19
447	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	23.0	1,343
448	Band Gaps of the Lead-Free Halide Double Perovskites Cs ₂ BiAgCl ₆ and Cs ₂ BiAgBr ₆ from Theory and Experiment. Journal of Physical Chemistry Letters, 2016, 7, 2579-2585.	2.1	529
449	Dissociation of Methylammonium Cations in Hybrid Organic–Inorganic Perovskite Solar Cells. Nano Letters, 2016, 16, 4720-4725.	4.5	49
450	Systematic study on the impact of water on the performance and stability of perovskite solar cells. RSC Advances, 2016, 6, 52448-52458.	1.7	29
451	Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy, 2016, 25, 91-99.	8.2	41
452	Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Solar Energy Materials and Solar Cells, 2016, 157, 318-325.	3.0	69
453	High performance planar-heterojunction perovskite solar cells using amino-based fulleropyrrolidine as the electron transporting material. Journal of Materials Chemistry A, 2016, 4, 10130-10134.	5.2	44
454	Spatial confinement growth of perovskite nanocrystals for ultra-flexible solar cells. RSC Advances, 2016, 6, 59429-59437.	1.7	3
455	TiO ₂ passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. RSC Advances, 2016, 6, 57996-58002.	1.7	41
456	Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif. Physical Chemistry Chemical Physics, 2016, 18, 17957-17964.	1.3	3
457	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	8.2	35
458	Cuprous Oxide as a Potential Low ost Holeâ€Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 302-313.	3.6	122

#	Article	IF	CITATIONS
459	Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 18410-18417.	4.0	50
460	Oxidized Ni/Au Transparent Electrode in Efficient CH ₃ NH ₃ PbI ₃ Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Advanced Materials, 2016, 28, 3290-3297.	11.1	57
461	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	10.2	161
462	Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates, 2016, 42, 625-639.	1.3	11
463	High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Solar Energy Materials and Solar Cells, 2016, 149, 121-127.	3.0	69
464	Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3970-3990.	5.2	472
465	Impacts of Ion Segregation on Local Optical Properties in Mixed Halide Perovskite Films. Nano Letters, 2016, 16, 1485-1490.	4.5	79
466	Shape-controlled CH ₃ NH ₃ PbI ₃ nanoparticles for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF05.	0.8	11
467	Novel Surface Passivation Technique for Low-Temperature Solution-Processed Perovskite PV Cells. ACS Applied Materials & Interfaces, 2016, 8, 4644-4650.	4.0	83
468	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107
469	Perovskite sensitized solar cell using solid polymer electrolyte. International Journal of Hydrogen Energy, 2016, 41, 2847-2852.	3.8	32
470	Carrier-Activated Polarization in Organometal Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 2536-2541.	1.5	27
471	A perovskite cell with a record-high-V _{oc} of 1.61 V based on solvent annealed CH ₃ NH ₃ PbBr ₃ /ICBA active layer. Nanoscale, 2016, 8, 4077-4085.	2.8	122
472	Fiber-shaped perovskite solar cells with 5.3% efficiency. Journal of Materials Chemistry A, 2016, 4, 3901-3906.	5.2	65
473	Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 /PC 61 BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30, 281-288.	1.4	69
474	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	1.9	457
475	Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. Journal of Materials Chemistry C, 2016, 4, 793-800.	2.7	171
476	A room-temperature CuAlO ₂ hole interfacial layer for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1326-1335.	5.2	122

#	Article	IF	CITATIONS
477	Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 242-251.	3.2	53
478	Planar heterojunction type perovskite solar cells based on TiOxcompact layer fabricated by chemical bath deposition. , 2016, , .		4
479	Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Advances, 2016, 6, 30978-30985.	1.7	28
480	Time-resolved fluorescence anisotropy study of organic lead halide perovskite. Solar Energy Materials and Solar Cells, 2016, 151, 102-112.	3.0	14
481	Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC). Nanoscale Research Letters, 2016, 11, 71.	3.1	58
482	Origin of <i><i>J</i>–<i>V</i></i> Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 905-917.	2.1	631
483	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	14.8	117
484	A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells. RSC Advances, 2016, 6, 19923-19927.	1.7	50
485	Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nature Photonics, 2016, 10, 196-200.	15.6	559
486	Perovskite solar cells fabricated using dicarboxylic fullerene derivatives. New Journal of Chemistry, 2016, 40, 2829-2834.	1.4	23
487	Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4523-4531.	4.0	56
488	Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale, 2016, 8, 12892-12899.	2.8	98
489	An efficient electron transport material of tin oxide for planar structure perovskite solar cells. Journal of Power Sources, 2016, 307, 891-897.	4.0	76
490	sec-Butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3438-3445.	5.2	46
491	Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (0 0 1) and (0 1 0) facets. Applied Catalysis B: Environmental, 2016, 187, 342-349.	10.8	129
492	High-Performance, Semitransparent, Easily Tunable Vivid Colorful Perovskite Photovoltaics Featuring Ag/ITO/Ag Microcavity Structures. Journal of Physical Chemistry C, 2016, 120, 4233-4239.	1.5	67
493	A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale, 2016, 8, 5847-5851.	2.8	25
494	Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946-5953.	2.8	83

#	Article	IF	CITATIONS
495	Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH ₃ NH ₂)-containing atmosphere for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4305-4311.	5.2	44
496	Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 7284-7292.	1.3	94
497	The solvent treatment effect of the PEDOT:PSS anode interlayer in inverted planar perovskite solar cells. RSC Advances, 2016, 6, 24501-24507.	1.7	38
498	Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications, 2016, 52, 5674-5677.	2.2	77
499	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
500	Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO _{<i>x</i>} Hole Contacts. ACS Nano, 2016, 10, 3630-3636.	7.3	426
501	Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electronics, 2016, 30, 30-35.	1.4	100
502	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534
503	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	15.6	535
504	Highly efficient low temperature solution processable planar type CH ₃ NH ₃ Pbl ₃ perovskite flexible solar cells. Journal of Materials Chemistry A, 2016, 4, 1572-1578.	5.2	223
505	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137
506	Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 155-165.	7.6	559
507	An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Advances, 2016, 6, 2778-2784.	1.7	51
508	Pinhole-Free and Surface-Nanostructured NiO _{<i>x</i>} Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016, 10, 1503-1511.	7.3	477
509	Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A, 2016, 4, 1591-1597.	5.2	183
510	Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Materials Letters, 2016, 164, 472-475.	1.3	71
511	Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Solar Energy Materials and Solar Cells, 2016, 146, 35-43.	3.0	76
512	Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale, 2016, 8, 1513-1522.	2.8	156

ARTICLE IF CITATIONS A halide exchange engineering for CH3NH3PbI3â[°]Br perovskite solar cells with high performance and 513 8.2 123 stability. Nano Energy, 2016, 19, 17-26. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area 514 5.2 perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 640-648. The influence of the I/Cl ratio on the performance of CH₃NH₃Pbl_{3â[°]x}Cl_x-based solar cells: why is CH₃NH₃l : PbCl₂ = 3 : 1 the "magic―ratio?. Nanoscate, 2016, 8, 515 6361-6368 Growth and evolution of solution-processed CH3NH3PbI3-xClx layer for highly efficient 516 planar-heterojunction perovskite solar cells. Journal of Power Sources, 2016, 301, 242-250. Mesoscopic perovskite solar cells with an admixture of nanocrystalline TiO₂and 517 Al₂O₃: role of interconnectivity of TiO₂in charge collection. 2.8 26 Nanoscale, 2016, 8, 6341-6351. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81. 15.6 1,890 Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy 519 15.6 449 and Environmental Science, 2016, 9, 12-30. Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental 520 15.6 1,457 Science, 2016, 9, 323-356. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells 521 3.0 81 achieved via blade-coating. Solar Energy Materials and Solar Cells, 2016, 144, 309-315. Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy 1.8 Technology, 2017, 5, 312-320. Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of 523 an amine-modified fullerene derivative as a cathode buffer layer. Science China Chemistry, 2017, 60, 4.2 25 136-143. Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar 524 2.7 120 cells. Journal of Materials Chemistry C, 2017, 5, 1714-1723. Formation, location and beneficial role of PbI₂ in lead halide perovskite solar cells. 525 2.5 99 Sustainable Energy and Fuels, 2017, 1, 119-126. Photoluminescence in Organometal Halide Perovskites: Free Carrier Versus Exciton. IEEE Journal of 1.5 Photovoltaics, 2017, 7, 513-517. Flexible photovoltaic power systems: integration opportunities, challenges and advances. Flexible and 527 1.5 41 Printed Electronics, 2017, 2, 013001. Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p-Type Character. 48 Journal of Physical Chemistry C, 2017, 121, 3673-3679. Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 529 8.2 20 2017, 72, 907-915. Fast and Controllable Electricâ€Fieldâ€Assisted Reactive Deposited Stable and Annealingâ€Free Perovskite toward Applicable Highâ€Performance Solar Cells. Advanced Functional Materials, 2017, 27, 1606156.

#	Article	IF	CITATIONS
531	Recent Advances in Energetics of Metal Halide Perovskite Interfaces. Advanced Materials Interfaces, 2017, 4, 1600694.	1.9	51
532	Inverted CH ₃ NH ₃ PbI ₃ perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor. Journal of Materials Chemistry C, 2017, 5, 2883-2891.	2.7	20
533	Multifunctional Optoelectronic–Spintronic Device Based on Hybrid Organometal Trihalide Perovskites. Advanced Electronic Materials, 2017, 3, 1600426.	2.6	13
534	Impact of Excess CH ₃ NH ₃ I on Free Carrier Dynamics in High-Performance Nonstoichiometric Perovskites. Journal of Physical Chemistry C, 2017, 121, 3143-3148.	1.5	49
535	Strain Mediated Bandgap Reduction, Light Spectrum Broadening, and Carrier Mobility Enhancement of Methylammonium Lead/Tin Iodide Perovskites. Particle and Particle Systems Characterization, 2017, 34, 1600288.	1.2	13
536	High efficiency planar Sn–Pb binary perovskite solar cells: controlled growth of large grains via a one-step solution fabrication process. Journal of Materials Chemistry C, 2017, 5, 2360-2367.	2.7	60
537	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	1.9	40
538	Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO ₂ electron transporting layers. Nanoscale, 2017, 9, 3095-3104.	2.8	92
539	Solution-processed chalcopyrite–perovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. Journal of Materials Chemistry A, 2017, 5, 3214-3220.	5.2	23
540	Thermal Precursor Approach to Pristine Fullerene Film as Electron Selective Layer in Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3078-M3083.	0.9	12
541	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	10.2	132
542	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
543	Decorating Waste Cloth via Industrial Wastewater for Tubeâ€Type Flexible and Wearable Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1603719.	11.1	131
544	Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407, 427-433.	3.1	18
545	A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 2017, 5, 7326-7332.	5.2	50
546	Deep level trapped defect analysis in CH ₃ NH ₃ PbI ₃ perovskite solar cells by deep level transient spectroscopy. Energy and Environmental Science, 2017, 10, 1128-1133.	15.6	206
547	Simulation design of P–I–N-type all-perovskite solar cells with high efficiency. Chinese Physics B, 2017, 26, 028803.	0.7	38
548	The synergistic effect of H ₂ O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy and Environmental Science, 2017, 10, 808-817.	15.6	383

#	Article	IF	CITATIONS
549	Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. Molecular Simulation, 2017, 43, 774-796.	0.9	4
550	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
551	A life cycle assessment of perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 679-695.	4.4	74
552	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	1.4	20
553	Recent progress in stability of perovskite solar cells. Journal of Semiconductors, 2017, 38, 011002.	2.0	89
554	The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 782-794.	8.8	217
555	Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6597-6605.	5.2	188
556	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 9096-9101.	4.0	10
557	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	2.8	42
558	Low-cost transparent graphene electrodes made by ultrasonic substrate vibration-assisted spray coating (SVASC) for thin film devices. Graphene Technology, 2017, 2, 1-11.	1.9	16
559	Simulation of perovskite solar cell with P ₃ HT hole-transporting materials. Journal of Nanophotonics, 2017, 11, 032510.	0.4	34
560	Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics, 2017, 44, 120-125.	1.4	25
561	Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7148-7153.	4.0	203
562	Simplification of device structures for low-cost, high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4756-4773.	5.2	57
563	CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 7859-7865.	4.0	23
564	Low-toxic metal halide perovskites: opportunities and future challenges. Journal of Materials Chemistry A, 2017, 5, 11436-11449.	5.2	123
565	Multichannel Interdiffusion Driven FASnI ₃ Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Leadâ€Free Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606964.	11.1	137
566	Highly efficient CH 3 NH 3 PbI 3 perovskite solar cells prepared by AuCl 3 -doped graphene transparent conducting electrodes. Chemical Engineering Journal, 2017, 323, 153-159.	6.6	61

ARTICLE IF CITATIONS Highâ€Performance Integrated Selfâ€Package Flexible Li–O₂ Battery Based on Stable Composite 567 11.1 72 Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378. Numerical simulation and analysis of hybrid physical-chemical vapor deposition to grow uniform perovskite MAPbI3. Journal of Applied Physics, 2017, 121, . 568 1.1 Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. 569 8.2 87 Nano Energy, 2017, 36, 102-109. Synergetic Effect of Chloride Doping and CH₃NH₃PbCl₃ On CH₃NH₃Pbl_{3a^'<i>x</i>}Cl_{<i>x</i>}Perovskiteâ€Based Solar Cells. ChemSusChem, 2017, 10, 2365-2369. Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond 571 3.0 38 fullerenes. Solar Energy Materials and Solar Cells, 2017, 169, 78-85. Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with 10.2 Small Molecule as Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1700522. Influence of the surface treatment of PEDOT:PSS layer with high boiling point solvent on the 573 1.4 26 performance of inverted planar perovskite solar cells. Organic Electronics, 2017, 47, 220-227. Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent 574 5.2 303 advances and perspectives. Journal of Materials Chemistry A, 2017, 5, 12602-12652. Fully Printable Organic and Perovskite Solar Cells with Transfer-Printed Flexible Electrodes. ACS 575 4.0 19 Applied Materials & amp; Interfaces, 2017, 9, 18730-18738. Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials 5.2 Chemistry Ă, 2017, Ś, 10092-10109. Synthesis of a nanostructured rutile TiO₂ electron transporting layer via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of 577 5.2 25 TiO₂. Journal of Materials Chemistry A, 2017, 5, 12340-12353. Multistep Photoluminescence Decay Reveals Dissociation of Geminate Charge Pairs in Organolead Trihalide Perovskites. Advanced Energy Materials, 2017, 7, 1700405. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect 579 8.8 826 lons. ACS Energy Letters, 2017, 2, 1214-1222. Functionalization of transparent conductive oxide electrode for TiO₂-free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11882-11893. 580 5.2 56 Large area, waterproof, air stable and cost effective efficient perovskite solar cells through modified 581 20 1.7 carbon hole extraction layer. Materials Today Chemistry, 2017, 4, 53-63. Spray deposited lanthanum doped TiO 2 compact layers as electron selective contact for perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 85-90. Increased Efficiency for Perovskite Photovoltaics Based on Aluminum-Doped Zinc Oxide Transparent 583 1.514 Electrodes via Surface Modification. Journal of Physical Chemistry C, 2017, 121, 10282-10288. Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.

#	Article	IF	CITATIONS
586	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
587	Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. Journal of Materials Chemistry A, 2017, 5, 13957-13965.	5.2	80
588	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23181-23188.	4.0	120
589	Secondary Hydrothermally Processed Engineered Titanium Dioxide Nanostructures for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1775-1787.	1.8	6
590	NiOx mesoporous films derived from Ni(OH)2 nanosheets for perovskite solar cells. Journal of Alloys and Compounds, 2017, 722, 839-845.	2.8	19
591	Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells. Journal of the American Chemical Society, 2017, 139, 9598-9604.	6.6	77
592	Efficient Flexible Solar Cell based on Compositionâ€Tailored Hybrid Perovskite. Advanced Materials, 2017, 29, 1605900.	11.1	184
593	PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. Journal of Power Sources, 2017, 360, 11-20.	4.0	84
594	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
595	The photocurrent response in the perovskite device based on coordination polymers: structure, topology, band gap and matched energy levels. Dalton Transactions, 2017, 46, 7866-7877.	1.6	9
596	On the Structural and Optoelectronic Properties of Chemically Modified Oligothiophenes with Electron-Withdrawing Substituents for Organic Solar Cell Applications: A DFT/TDDFT Study. Journal of the Physical Society of Japan, 2017, 86, 064802.	0.7	8
597	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
598	Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. Journal of Materials Chemistry A, 2017, 5, 13817-13822.	5.2	86
599	Nanostructured Materials for Next-Generation Energy Storage and Conversion. , 2017, , .		7
600	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
601	Enhanced Efficiency and Stability of an Aqueous Lead-Nitrate-Based Organometallic Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 14023-14030.	4.0	30
602	Low-temperature processed compact layer for perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2017, 235, 640-645.	2.6	14
603	Effective hot-air annealing for improving the performance of perovskite solar cells. Solar Energy, 2017, 146, 359-367.	2.9	20

#	Article	IF	CITATIONS
604	Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. Journal of Materials Chemistry A, 2017, 5, 7905-7911.	5.2	99
605	Single-Crystal-like Perovskite for High-Performance Solar Cells Using the Effective Merged Annealing Method. ACS Applied Materials & Interfaces, 2017, 9, 12382-12390.	4.0	41
606	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	1.7	30
607	Dry-Stamping-Transferred PC71BM Charge Transport Layer via an Interface-Controlled Polyurethane Acrylate Mold Film for Efficient Planar-Type Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 15623-15630.	4.0	15
608	Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9, 6136-6144.	2.8	42
609	Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells. Small, 2017, 13, 1700007.	5.2	36
610	Improved interface of ZnO/CH ₃ NH ₃ PbI ₃ by a dynamic spin-coating process for efficient perovskite solar cells. RSC Advances, 2017, 7, 19030-19038.	1.7	62
611	Effect of Blend Composition on Bulk Heterojunction Organic Solar Cells: A Review. Solar Rrl, 2017, 1, 1700035.	3.1	29
612	Study on the role of additional ions in CH 3 NH 3 PbI 3â^'x Cl x planar solar cells. Solar Energy, 2017, 148, 70-77.	2.9	5
613	A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6974-6980.	5.2	60
614	Elucidating the role of chlorine in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7423-7432.	5.2	95
615	Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 2017, 7, 17044-17062.	1.7	317
616	Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor. Sustainable Energy and Fuels, 2017, 1, 755-766.	2.5	77
617	Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale, 2017, 9, 4700-4706.	2.8	133
618	Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer. Nano-Micro Letters, 2017, 9, 39.	14.4	122
619	Correlation of annealing time with crystal structure, composition, and electronic properties of CH ₃ NH ₃ PbI _{3â°'x} Cl _x mixed-halide perovskite films. Physical Chemistry Chemical Physics, 2017, 19, 828-836.	1.3	40
620	Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor. Advanced Energy Materials, 2017, 7, 1602333.	10.2	209
621	Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells. Chemical Physics Letters, 2017, 669, 143-149.	1.2	9

#	Article	IF	CITATIONS
622	Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways. Journal of Physical Chemistry C, 2017, 121, 1062-1071.	1.5	22
623	Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Letters, 2017, 17, 523-530.	4.5	232
624	ZrO ₂ /TiO ₂ Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2342-2349.	4.0	41
625	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	8.8	196
626	An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017, 71, 675-686.	8.2	153
627	Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. Journal of Materials Chemistry C, 2017, 5, 531-538.	2.7	80
628	Kinetic Control of Perovskite Thin-Film Morphology and Application in Printable Light-Emitting Diodes. ACS Energy Letters, 2017, 2, 81-87.	8.8	16
629	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	1.8	26
630	A highly efficient self-power pack system integrating supercapacitors and photovoltaics with an area-saving monolithic architecture. Journal of Materials Chemistry A, 2017, 5, 1906-1912.	5.2	43
631	2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2346-2354.	5.2	92
632	Understanding the Role of the Electronâ€Transport Layer in Highly Efficient Planar Perovskite Solar Cells. ChemPhysChem, 2017, 18, 617-625.	1.0	44
633	High-efficiency perovskite solar cells prepared by using a sandwich structure MAI–PbI ₂ –MAI precursor film. Nanoscale, 2017, 9, 4691-4699.	2.8	27
634	Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electronic Materials Letters, 2017, 13, 72-76.	1.0	19
635	Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer. Nano Energy, 2017, 32, 165-173.	8.2	63
636	Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Materials and Solar Cells, 2017, 161, 338-346.	3.0	49
637	Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2017, 4, 146-155.	3.2	19
638	Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. Journal of Physical Chemistry C, 2017, 121, 25743-25749.	1.5	89
639	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20

#	Article	IF	CITATIONS
640	The influence of hybrid alumina/titania materials as electron transmission layer in planar high-performance perovskite solar cells. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
641	Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT:PSS as hole transporting layer. RSC Advances, 2017, 7, 50410-50419.	1.7	21
642	Evolution characteristics of perovskite solar cells in air and vacuum environments. Optik, 2017, 150, 111-116.	1.4	4
643	High-Performance and Hysteresis-Free Planar Solar Cells with PC ₇₁ BM and C ₆₀ Composed Structure Prepared Irrespective of Humidity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9718-9724.	3.2	11
644	High-Performance Field-Effect Transistor Based on Novel Conjugated P- <i>o</i> -Fluoro- <i>p</i> -alkoxyphenyl-Substituted Polymers by Graphdiyne Doping. Journal of Physical Chemistry C, 2017, 121, 23300-23306.	1.5	25
645	Coveâ€Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 14840-14844.	1.6	16
646	Coveâ€Edge Nanoribbon Materials for Efficient Inverted Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 14648-14652.	7.2	51
647	Physicochemical Interface Engineering of Cul/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21935-21944.	1.5	65
648	Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl ₃ -doped graphene electrodes. Journal of Materials Chemistry A, 2017, 5, 21146-21152.	5.2	92
649	Thermal nanoimprint to improve the morphology of MAPbX3 (MA = methylammonium, X = I o of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	r Br). Jourr 0.6	al ₂₀
650	Outstanding Performance of Holeâ€Blocking Layerâ€Free Perovskite Solar Cell Using Hierarchically Porous Fluorineâ€Doped Tin Oxide Substrate. Advanced Energy Materials, 2017, 7, 1700749.	10.2	50
651	Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy. Applied Energy, 2017, 205, 834-846.	5.1	51
652	Impact of fullerene derivative isomeric purity on the performance of inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 19485-19490.	5.2	33
653	Peculiarities of photoconversion efficiency modeling in perovskite solar cells. Technical Physics Letters, 2017, 43, 678-680.	0.2	3
654	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	10.2	85
655	Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21604-21624.	5.2	86
656	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287.	2.7	15
657	Improvement of the Dynamic Spin-Washing Effect with an Optimized Process of a Perovskite Solar Cell in Ambient Air by the Kriging Method. Industrial & Engineering Chemistry Research, 2017, 56, 11142-11150.	1.8	1

#	ARTICLE	IF	CITATIONS
658	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	5.2	10
659	Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals. Applied Physics Letters, 2017, 111, .	1.5	19
660	Efficient and thermally stable inverted perovskite solar cells by introduction of non-fullerene electron transporting materials. Journal of Materials Chemistry A, 2017, 5, 20615-20622.	5.2	74
661	Perovskites beyond photovoltaics: field emission from morphology-tailored nanostructured methylammonium lead triiodide. Physical Chemistry Chemical Physics, 2017, 19, 26708-26717.	1.3	10
662	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	3.3	83
663	A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10777-10784.	2.7	25
664	Effect of calcination environments and plasma treatment on structural, optical and electrical properties of FTO transparent thin films. AIP Advances, 2017, 7, 075101.	0.6	4
665	The interface degradation of planar organic–inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances, 2017, 7, 42973-42978.	1.7	12
666	Effects of SbBr3 addition to CH3NH3PbI3 solar cells. AIP Conference Proceedings, 2017, , .	0.3	11
667	Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: Optical and Morphological studies. Materials Today: Proceedings, 2017, 4, 5082-5089.	0.9	31
668	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
669	Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale, 2017, 9, 12677-12683.	2.8	18
670	One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 27832-27838.	4.0	51
671	Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 2017, 9, 12316-12323.	2.8	169
672	Highly efficient interfacial layer using SILAR-derived Ag2S quantum dots for solid-state bifacial dye-sensitized solar cells. Materials Today Energy, 2017, 5, 320-330.	2.5	18
673	Potassium doped methylammonium lead iodide (MAPbI 3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties. Physica B: Condensed Matter, 2017, 522, 57-65.	1.3	30
674	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	15.6	41
675	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276

#	Article	IF	CITATIONS
676	Tetrathiafulvalene derivative as a new hole-transporting material for highly efficient perovskite solar cell. Dyes and Pigments, 2017, 147, 113-119.	2.0	35
677	High-performance planar perovskite solar cells: Influence of solvent upon performance. Applied Materials Today, 2017, 9, 598-604.	2.3	66
678	Transfer Matrix Formalism-Based Analytical Modeling and Performance Evaluation of Perovskite Solar Cells. IEEE Transactions on Electron Devices, 2017, 64, 5034-5041.	1.6	16
679	Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH ₃ NH ₃ PbI ₃ :CdS perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12112-12120.	2.7	16
680	Predictive Modeling of Ion Migration Induced Degradation in Perovskite Solar Cells. ACS Nano, 2017, 11, 11505-11512.	7.3	63
681	Use of gas cluster ion source depth profiling to study the oxidation of fullerene thin films by XPS. Organic Electronics, 2017, 49, 85-93.	1.4	5
682	Carbon Nano-Onions as a Functional Dopant to Modify Hole Transporting Layers for Improving Stability and Performance of Planar Perovskite Solar Cells. Electrochimica Acta, 2017, 247, 548-557.	2.6	53
683	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	23.3	927
684	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	4.0	453
685	Microscopic Analysis of Inherent Void Passivation in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1705-1710.	8.8	14
686	Realization of efficient perovskite solar cells with MEH:PPV hole transport layer. Journal of Materials Science: Materials in Electronics, 2017, 28, 3451-3457.	1.1	12
687	Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy and Environmental Science, 2017, 10, 337-345.	15.6	391
688	Effect of temperature annealing treatments and acceptors in CH3NH3PbI3 perovskite solar cell fabrication. Journal of Alloys and Compounds, 2017, 695, 2453-2457.	2.8	9
689	Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017, 2, .	19.8	1,633
690	Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. Journal of Materials Chemistry A, 2017, 5, 8280-8286.	5.2	60
691	Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study. Applied Surface Science, 2017, 394, 488-497.	3.1	6
692	Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. Journal of Power Sources, 2017, 339, 33-40.	4.0	52
693	Structurally tuned lead magnesium titanate perovskite as a photoelectrode material for enhanced photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 309, 682-690.	6.6	33

#	Article	IF	Citations
694	CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 77-84.	3.0	39
695	Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik, 2017, 130, 650-658.	1.4	114
696	Mesoscopic CH ₃ NH ₃ PbI ₃ perovskite solar cells using TiO ₂ inverse opal electron-conducting scaffolds. Journal of Materials Chemistry A, 2017, 5, 1972-1977.	5.2	39
697	Reflective perovskite solar cells for efficient tandem applications. Journal of Materials Chemistry C, 2017, 5, 134-139.	2.7	27
698	A comparative study on different HTMs in perovskite solar cell with ZnOS electron transport layer. , 2017, , .		14
699	Exciton-phonon scattering effects on photoluminescence of hybrid lead halide perovskite. , 2017, , .		1
700	Recent advances of flexible hybrid perovskite solar cells. Journal of the Korean Physical Society, 2017, 71, 593-607.	0.3	16
701	Improved perovskite morphology and crystallinity using porous PbI2 layers for efficient planar heterojunction solar cells. Applied Physics Letters, 2017, 111, .	1.5	13
702	Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nature Communications, 2017, 8, 1722.	5.8	107
703	High Efficiency Perovskite Solar Cells by a Modified Low-Temperature Solution Process Inter-Diffusion Method. , 2017, , .		0
704	One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials, 2017, 7, 95.	1.9	41
705	Electroluminescence Analysis For Separation of Series Resistance From Recombination Effects in Silicon Solar Cells with Interdigitated Back Contact Design. , 2017, , .		1
706	The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells. Energies, 2017, 10, 599.	1.6	40
707	Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes. Optics Letters, 2017, 42, 1958.	1.7	32
708	A Short Review of Synthesis of Graphdiyne and Its Potential Applications. International Journal of Electrochemical Science, 2017, 12, 10348-10358.	0.5	19
709	Recent Research Progress on Lead-free or Less-lead Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, , 4915-4927.	0.5	2
711	Strategic Synthesis of Ultrasmall NiCo ₂ O ₄ NPs as Hole Transport Layer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702722.	10.2	112
712	Effects of organic solvents for the phenyl-C61-butyric acid methyl ester layer on the performance of inverted perovskite solar cells. Organic Electronics, 2018, 56, 247-253.	1.4	5

#	Article	IF	CITATIONS
713	MoS ₂ : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018, 29, 205201.	1.3	73
714	Evaporation-Induced Self-Assembly of Semi-Crystalline PbI2(DMSO) Complex Films as a Facile Route to Reproducible and Efficient Planar p-i-n Perovskite Solar Cells. MRS Advances, 2018, 3, 1807-1817.	0.5	2
715	Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5507-5537.	5.2	104
716	Improving performance of organic solar cells by supplying additional acceptors to surface of bulk-heterojunction layers. Journal of Materials Chemistry C, 2018, 6, 2793-2800.	2.7	16
717	High-detectivity perovskite-based photodetector using a Zr-doped TiO _x cathode interlayer. RSC Advances, 2018, 8, 8302-8309.	1.7	48
718	TiO ₂ composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO ₂ nanoparticles. Chinese Physics B, 2018, 27, 018810.	0.7	6
719	Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 14039-14063.	1.5	171
720	Lowâ€Temperature Combustion Synthesis of a Spinel NiCo ₂ O ₄ Hole Transport Layer for Perovskite Photovoltaics. Advanced Science, 2018, 5, 1701029.	5.6	78
721	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
722	Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. Communications Physics, 2018, 1, .	2.0	32
723	A Simple Perylene Derivative as a Solution-Processable Cathode Interlayer for Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 15933-15942.	4.0	22
724	Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 8886-8894.	5.2	80
725	Slot-Die Coated Perovskite Films Using Mixed Lead Precursors for Highly Reproducible and Large-Area Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16133-16139.	4.0	92
726	Synthesis of SnO ₂ nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale, 2018, 10, 8275-8284.	2.8	51
727	WO _{<i>x</i>} @PEDOT Core–Shell Nanorods: Hybrid Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1742-1752.	2.5	15
728	Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 14153-14159.	4.0	71
729	Efficient and Stable Inverted Planar Perovskite Solar Cells Using a Triphenylamine Holeâ€Transporting Material. ChemSusChem, 2018, 11, 1467-1473.	3.6	45
730	The Deposition Environment Controlling Method: A Vapor-Phase Solvent-Assisted Approach to Fabricate High-Quality Crystalline Perovskite. IEEE Journal of Photovoltaics, 2018, , 1-6.	1.5	1

#	Article	IF	CITATIONS
731	Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells. Materials Letters, 2018, 223, 109-111.	1.3	20
732	Tunable Crystallization and Nucleation of Planar CH ₃ NH ₃ PbI ₃ through Solvent-Modified Interdiffusion. ACS Applied Materials & Interfaces, 2018, 10, 14673-14683.	4.0	14
733	Cost effective perovskite solar cells with a high efficiency and open-circuit voltage based on a perovskite-friendly carbon electrode. Journal of Materials Chemistry A, 2018, 6, 8271-8279.	5.2	57
734	Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Applied Surface Science, 2018, 441, 258-264.	3.1	106
735	Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4721-4728.	5.2	57
736	Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode. Applied Physics Letters, 2018, 112, .	1.5	16
737	Covalent organic nanosheets for effective charge transport layers in planar-type perovskite solar cells. Nanoscale, 2018, 10, 4708-4717.	2.8	31
738	Influence of coating steps of perovskite on low-temperature amorphous compact TiO <i> _x </i> upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 03EJ06.	0.8	8
739	Manipulation of the crystallization of perovskite films induced by a rotating magnetic field during blade coating in air. Journal of Materials Chemistry A, 2018, 6, 3986-3995.	5.2	13
740	Fabrication and characterization of rubidium/formamidinium-incorporated methylammonium-lead-halide perovskite solar cells. AIP Conference Proceedings, 2018, , .	0.3	5
741	Low-temperature processed non-TiO ₂ electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4572-4589.	5.2	65
742	Electrodeposition of organic–inorganic tri-halide perovskites solar cell. Journal of Power Sources, 2018, 378, 717-731.	4.0	36
743	All arbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	7.8	242
744	Highly Efficient and Stable Flexible Perovskite Solar Cells with Metal Oxides Nanoparticle Charge Extraction Layers. Small, 2018, 14, e1702775.	5.2	111
745	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	5.8	763
746	Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. Chemistry - A European Journal, 2018, 24, 8708-8716.	1.7	26
747	<i>In situ</i> growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheets. Chemical Communications, 2018, 54, 2365-2368.	2.2	36
748	Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21, 483-500.	8.3	99

#	Article	IF	CITATIONS
749	Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells. , 2018, , 267-356.		34
750	Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 2018, 42, 2896-2902.	1.4	43
751	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	1.6	144
752	Preferential Orientation of Crystals Induced by Incorporation of Organic Ligands in Mixedâ€Đimensional Hybrid Perovskite Films. Advanced Optical Materials, 2018, 6, 1701311.	3.6	28
753	Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH ₃ NH ₃ PbI ₃ to Phase-Pure CH ₃ NH ₃ PbCl ₃ via Hydrochloric Acid Vapor Annealing Post-Treatment. ACS Applied Materials & Interfaces, 2018, 10, 1897-1908.	4.0	62
754	Effective approach for reducing the migration of ions and improving the stability of organic–inorganic perovskite solar cells. Journal of Alloys and Compounds, 2018, 741, 489-494.	2.8	20
755	Controllable Crystal Film Growth via Appropriate Substrate-Preheating Treatment for Perovskite Solar Cells Using Mixed Lead Sources. IEEE Journal of Photovoltaics, 2018, 8, 162-170.	1.5	6
756	Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	44
757	Grapheneâ€Based Inverted Planar Perovskite Solar Cells: Advancements, Fundamental Challenges, and Prospects. Chemistry - an Asian Journal, 2018, 13, 240-249.	1.7	16
758	Recent advances of flexible perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 673-689.	7.1	75
760	Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative. Solar Energy Materials and Solar Cells, 2018, 178, 1-7.	3.0	29
761	Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells. Nano Energy, 2018, 46, 241-248.	8.2	54
762	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
763	Theoretical insight into the carrier mobility anisotropy of organic-inorganic perovskite CH3NH3PbI3. Journal of Electroanalytical Chemistry, 2018, 810, 11-17.	1.9	16
764	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	8.2	19
765	Effect of Interfacial Energetics on Charge Transfer from Lead Halide Perovskite to Organic Hole Conductors. Journal of Physical Chemistry C, 2018, 122, 1326-1332.	1.5	32
766	Alignment of Cascaded Band-Gap via PCBM/ZnO Hybrid Interlayers for Efficient Perovskite Photovoltaic Cells. Macromolecular Research, 2018, 26, 472-476.	1.0	16
767	Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9220-9227.	5.2	55

#	ARTICLE	IF	CITATIONS
768	Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators. Nano Energy, 2018, 49, 247-256.	8.2	68
769	Improved Stability in Perovskite Solar Cells by Solution-Processed Fluorocarbon Passivation. IEEE Electron Device Letters, 2018, 39, 843-846.	2.2	5
770	Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018, 9, 1-10.	2.5	48
771	Metal Oxide CrO _x as a Promising Bilayer Electron Transport Material for Enhancing the Performance Stability of Planar Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700245.	3.1	16
772	Importance of ligands on TiO 2 nanocrystals for perovskite solar cells. Chinese Physics B, 2018, 27, 018401.	0.7	1
773	Fabrication and characterization of a solution-processed electron transport layer for organic-inorganic hybrid halide perovskite photovoltaics. Thin Solid Films, 2018, 660, 789-796.	0.8	2
774	Inorganic based hole transport materials for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 8847-8853.	1.1	17
775	Boosting efficiency and stability of perovskite solar cells with nickel phthalocyanine as a low-cost hole transporting layer material. Journal of Materials Science and Technology, 2018, 34, 1474-1480.	5.6	45
776	Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Materials Today Energy, 2018, 8, 57-64.	2.5	35
777	Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 2018, 8, 10489-10508.	1.7	171
778	Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52, 172-183.	1.4	83
779	Effect of excessive Pb content in the precursor solutions on the properties of the lead acetate derived CH3NH3PbI3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 478-484.	3.0	31
780	Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Applied Surface Science, 2018, 434, 375-381.	3.1	27
781	Using photoluminescence to monitor the optoelectronic properties of methylammonium lead halide perovskites in light and dark over periods of days. Journal of Luminescence, 2018, 194, 353-358.	1.5	14
782	Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 2018, 82, 845-857.	8.2	83
783	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	10.2	77
784	Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics, 2018, 24, 1227-1233.	1.2	12
785	Stability of Molecular Devices: Halide Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 477-531.	0.4	1

#	Article	IF	CITATIONS
786	V2O5 -PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells. Organic Electronics, 2018, 53, 66-73.	1.4	63
787	Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment. Solar Energy Materials and Solar Cells, 2018, 179, 169-177.	3.0	34
788	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	5.2	274
789	Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation. ACS Energy Letters, 2018, 3, 92-97.	8.8	273
790	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1
791	Work function optimization of vacuum free top-electrode by PEDOT:PSS/PEI interaction for efficient semi-transparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 176, 435-440.	3.0	36
792	A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improving the Performance and Stability in Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 236-244.	1.5	50
793	Enhancing Ferroelectric Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ : Strain and Doping Engineering. Journal of Physical Chemistry C, 2018, 122, 177-184.	1.5	35
794	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	7.8	69
795	Enhanced electrical properties of Li–doped NiO x hole extraction layer in p–i–n type perovskite solar cells. Current Applied Physics, 2018, 18, S55-S59.	1.1	27
796	Warm white light-emitting diodes using organic–inorganic halide perovskite materials coated YAG:Ce3+ phosphors. Ceramics International, 2018, 44, 3868-3872.	2.3	22
797	Flexible Perovskite Solar Cells onto Plastic Substrate Exceeding 13% Efficiency Owing to the Optimization of CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film via H ₂ O Additive. ACS Sustainable Chemistry and Engineering, 2018, 6, 1083-1090.	3.2	21
798	Pinhole-free mixed perovskite film for bending durable mixed perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 111-117.	3.0	26
799	Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1701791.	10.2	556
800	Effect of Halide Compositions on the Performance of Perovskite Solar Cells. , 2018, , .		0
801	Flexible ZnO Nanowires-Graphene Stack by Hot Lamination Method. , 2018, , .		0
802	Inkjet-Printing of Methylammonium Lead Trihalide Perovskite-Based Flexible Optoelectronic Devices. , 2018, , .		2
803	Promising photovoltaic and solid-state-lighting materials: two-dimensional Ruddlesdena€ "Popper type lead-free halide double perovskites Cs _{n+1} ln _{n/2} Sb _{n/2} l _{3n+1} (<i>n</i> = 3) and Cs _{n+1} ln _{n/2} Sb _{n/2} Cl _{3n+1} /Cs _{m+1} /Cs _{/Cs<su< td=""><td>2.7 /sub>Bi<si< td=""><td>19 ub>m/2</td></si<></td></su<>}}}	2.7 /sub>Bi <si< td=""><td>19 ub>m/2</td></si<>	19 ub>m/2

ARTICLE IF CITATIONS Excellent Light Confinement of Hemiellipsoid- and Inverted Hemiellipsoid-Modified Semiconductor 805 3.16 Nanowire Arrays. Nanoscale Research Letters, 2018, 13, 236. Levitation Force Computation of HTS/PM system by H-formu-lation.., 2018, , . 806 TiO₂/SnO₂ Nanocomposites as Electron Transporting Layer for Efficiency Enhancement in Planar CH₃NH₃Pbl₃-Based Perovskite Solar Cells. 808 2.5 18 ACS Applied Energy Materials, 2018, 1, 6936-6944. In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 41849-41854. First-Principle Insights of Electronic and Optical Properties of Cubic Organic–Inorganic MAGe_{<i>x</i>}Pb_(1–<i>x</i>)I₃ Perovskites for Photovoltaic 810 1.5 34 Applications. Journal of Physical Chemistry C, 2018, 122, 28245-28255. Anomalous Scaling Exponents in the Capacitance–Voltage Characteristics of Perovskite Thin Film Devices. Journal of Physical Chemistry C, 2018, 122, 27935-27940. 1.5 A Novel Nitrogen-Assisted Method for the Perovskite Active Layer Optimization in the Inverted Planar 812 Heterojunction Perovskite Solar Cells. IOP Conference Series: Materials Science and Engineering, 2018, 0.3 3 446, 012004. Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based 814 Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037. Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. 815 7.8 145 Advanced Functional Materials, 2018, 28, 1803753. MoS₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH₃NH₃Pbl₃Perovskite Solar Cell with an Efficiency of over 20%. 7.3 ACS Nano, 2018, 12, 10736-10754. A Method for the Preparation of Highly Oriented MAPbI₃ Crystallites for High-Efficiency 817 7.3113 Perovskite Solar Cells to Achieve an 86% Fill Factor. ACS Nano, 2018, 12, 10355-10364. Perovskite solar cells with versatile electropolymerized fullerene as electron extraction layer. 2.6 Electrochimica Acta, 2018, 292, 697-706. Perovskite photovoltaic cells with ultra-thin buffer layers for tandem applications. Japanese Journal 819 0.8 3 of Applied Physics, 2018, 57, 102303. C60-assisted crystal engineering for perovskite solar cells with enhanced efficiency and stability. 1.4 Organic Electronics, 2018, 63, 276-282. Solvent engineering approach via introducing poly (3, 4-ethylene dioxy-thiophene)–poly (styrene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 821 2.9 12 efficient inverted planar perovskite solar cells. Solar Energy, 2018, 176, 1-9. Suppressed Decomposition of Perovskite Film on ZnO Via a Selfâ€Assembly Monolayer of Methoxysilane. 3.1 Solar Rrl, 2018, 2, 1800240. Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and 823 8.8 17 Its Influence on Hysteresis. ACS Energy Letters, 2018, 3, 2743-2749. Inverted structure perovskite solar cells: A theoretical study. Current Applied Physics, 2018, 18, 824 1.1 1583-1591.

#	Article	IF	CITATIONS
825	Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency. Journal of the American Chemical Society, 2018, 140, 15655-15660.	6.6	20
826	In Situ Measurement of Electric-Field Screening in Hysteresis-Free PTAA/FA _{0.83} Cs _{0.17} Pb(I _{0.83} Br _{0.17}) ₃ /C60 Perovskite Solar Cells Gives an Ion Mobility of â ¹ /43 × 10 ^{–7} cm ² /(V s), 2 Orders of Magnitude Faster than Reported for Metal-Oxide-Contacted Perovskite Cells with Hysteresis. Journal	6.6	47
827	Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2018, 288, 115-125.	2.6	40
828	Stretchable IR metamaterial with ultra-narrowband perfect absorption. Applied Physics Letters, 2018, 113, .	1.5	50
829	Influence of solvent additive on the chemical and electronic environment of wide bandgap perovskite thin films. Journal of Materials Chemistry C, 2018, 6, 12052-12061.	2.7	31
830	Two Anthracene-Based Copolymers as the Hole-Transporting Materials for High-Performance Inverted (p-i-n) Perovskite Solar Cells. Macromolecules, 2018, 51, 7407-7416.	2.2	10
831	Improving photovoltaic performance of inverted planar structure perovskite solar cells via introducing photogenerated dipoles in the electron transport layer. Organic Electronics, 2018, 63, 137-142.	1.4	15
832	Investigation of Inverted Perovskite Solar Cells for Viscosity of PEDOT:PSS Solution. Crystals, 2018, 8, 358.	1.0	7
833	Application of copper phthalocyanin for surface modification of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 18187-18192.	1.1	3
834	Study of transport and recombination mechanism in hole transporter free perovskite solar cell. Materials Research Express, 2018, 5, 105508.	0.8	2
835	Performance Enhancement of Inverted Perovskite Solar Cells Based on Smooth and Compact PC ₆₁ BM:SnO ₂ Electron Transport Layers. ACS Applied Materials & Interfaces, 2018, 10, 20128-20135.	4.0	43
836	Non-fullerene-based small molecules as efficient n-type electron transporting layers in inverted organic–inorganic halide perovskite solar cells. Journal of Industrial and Engineering Chemistry, 2018, 65, 406-410.	2.9	14
837	Dimethyl-sulfoxide-assisted improvement in the crystallization of lead-acetate-based perovskites for high-performance solar cells. Journal of Materials Chemistry C, 2018, 6, 6705-6713.	2.7	35
838	Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Organic Electronics, 2018, 59, 330-336.	1.4	13
839	Investigation of wireless power transfer applications with a focus on renewable energy. Renewable and Sustainable Energy Reviews, 2018, 91, 888-902.	8.2	38
840	Organic–Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses. Advanced Materials, 2018, 30, e1704002.	11.1	205
841	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	4.0	22
842	Alcohol based vapor annealing of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer for performance improvement of inverted perovskite solar cells. Nanoscale, 2018, 10, 11043-11051.	2.8	20

	Сіт.	ATION REPORT	
#	Article	IF	Citations
843	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
844	High performance organo-lead halide perovskite light-emitting diodes via surface passivation of phenethylamine. Organic Electronics, 2018, 60, 57-63.	1.4	20
845	Semiconducting Metal Oxides for High Performance Perovskite Solar Cells. , 2018, , 241-265.		4
846	Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. ACS Applied Materials & Interfaces, 2018, 10, 23928-23937.	4.0	84
847	Exposed the mechanism of lead chloride dopant for high efficiency planar-structure perovskite solar cells. Organic Electronics, 2018, 62, 499-504.	1.4	6
848	Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials, 2018, 2018, 1-15.	1.5	224
849	Evolution of Perovskite Solar Cells. , 2018, , 43-88.		18
850	Fabrication and Life Time of Perovskite Solar Cells. , 2018, , 231-287.		7
851	Perovskite Photovoltaics. , 2018, , 447-480.		7
852	Fullerenes: the stars of photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2480-2493.	2.5	99
853	High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers. Chemical Engineering Journal, 2018, 351, 391-398.	6.6	35
854	Charge-Transporting Materials for Perovskite Solar Cells. Advances in Inorganic Chemistry, 2018, , 185-246.	0.4	8
855	Graphene Oxide-Like Materials in Organic and Perovskite Solar Cells. , 2018, , 357-394.		5
856	A step towards environmental benign Mg/Pb based binary metal mixed halide perovskite material. Solar Energy, 2018, 170, 769-779.	r 2.9	20
857	Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P30 salt as hole transport layer. Materials Today Energy, 2018, 9, 487-495.	CT 2.5	27
858	Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800260.	1.9	215
859	Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800645.	1.9	43
860	All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238.	8.2	85

#	Article	IF	CITATIONS
861	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	2.5	58
862	Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61, 1257-1277.	3.5	84
863	Preparation and Characteristics of MAPbBr3 Perovskite Quantum Dots on NiOx Film and Application for High Transparent Solar Cells. Micromachines, 2018, 9, 205.	1.4	16
864	Improved Performance of Perovskite Light-Emitting Diodes by Quantum Confinement Effect in Perovskite Nanocrystals. Nanomaterials, 2018, 8, 459.	1.9	9
865	A dopantâ€free polymer as holeâ€transporting material for highly efficient and stable perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 994-1002.	4.4	7
866	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
867	Mechanism suppressing charge recombination at iodine defects in CH3NH3PbI3 by polaron formation. Journal of Materials Chemistry A, 2018, 6, 16863-16867.	5.2	26
868	Conversion of metal-organic halide perovskite from Pbl2 precursor films grown by hot-wall method. MATEC Web of Conferences, 2018, 192, 01031.	0.1	0
869	Flexible solar cells based on carbon nanomaterials. Carbon, 2018, 139, 1063-1073.	5.4	102
870	Allâ€Solutionâ€Processed Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1804137.	11.1	77
871	Stateâ€ofâ€theâ€Art Electronâ€5elective Contacts in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800408.	1.9	38
872	Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Holeâ€Transportâ€Materialsâ€Free Perovskite Solar Cell. Solar Rrl, 2018, 2, 1800175.	3.1	37
873	Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films. Nano Energy, 2018, 53, 46-56.	8.2	111
874	Towards high performance perovskite solar cells: A review of morphological control and HTM development. Applied Materials Today, 2018, 13, 69-82.	2.3	43
875	Bio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31280-31290.	4.0	51
876	Fast two-step deposition of perovskite <i>via</i> mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 12447-12454.	5.2	83
877	Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 2018, 91, 1025-1044.	8.2	153
878	High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C, 2018, 6, 6975-6981.	2.7	51

ARTICLE IF CITATIONS Studies on the fabrication and characteristics of photoelectrochemical cells using IrO₂-coated TiO₂ photoanode for Z-scheme water splitting and perovskite 879 0.4 2 solar cell bias. Molecular Crystals and Liquid Crystals, 2018, 662, 75-81. Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Applied Materials & Amp; Interfaces, 2018, 10, 22143-22155 Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar 881 2.6 31 cell application. Electrochimica Acta, 2018, 282, 81-88. Organic Flexible Electronics. Small Methods, 2018, 2, 1800070. 882 Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for 883 2.7 19 inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6982-6987. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. Journal of Power Sources, 2018, 396, 49-56. 884 4.0 Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small 885 4.6 71 Methods, 2018, 2, 1800031. Formation of Large Grain and Compact CH3NH3Pb(I<inline-formula> <tex-math) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 472 1 1.5 886 Iournal of Photovoltaics, 2018, 8, 1017-1022, Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. 887 1.0 17 Electronic Materials Letters, 2018, 14, 657-668. Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrodeâ€Based Flexible Perovskite 3.1 Solar Cells and the Suppression Method. Solar Rrl, 2018, 2, 1800118. Thermo-evaporated pentacene and perylene as hole transport materials for perovskite solar cells. 889 2.0 13 Dyes and Pigments, 2019, 160, 285-291. A Transparent Photonic Artificial Visual Cortex. Advanced Materials, 2019, 31, e1903095. 890 11.1 Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Advanced Materials, 2019, 891 11.1 71 31, e1902037. Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on 6.6 61 Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328. High-Efficiency Perovskite Solar Cell Based on Sequential Doping of PTAA. IEEE Journal of 893 1.5 13 Photovoltaics, 2019, 9, 1025-1030. Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in 894 95 Materials Science, 2019, 106, 100580. Enhanced Electrons Extraction of Lithium-Doped SnO\$_{2} Nanoparticles for Efficient Planar 895 1.510 Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1273-1279. Exploring a hybrid ferroelectric with a 1-D perovskite-like structure: bis(pyrrolidinium) 896 pentachloroantimonate(<scp>iii</scp>). Journal of Materials Chemistry C, 2019, 7, 10360-10370.

#	Article	IF	CITATIONS
897	Thermal Control of PbI ₂ Film Growth for Two-Step Planar Perovskite Solar Cells. Crystal Growth and Design, 2019, 19, 5320-5325.	1.4	18
898	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
899	Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment. Scientific Reports, 2019, 9, 15159.	1.6	52
900	Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells. Journal of Materials Chemistry A, 2019, 7, 2773-2779.	5.2	65
901	Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974.	8.8	124
903	Enhanced Efficiencies of Perovskite Solar Cells by Incorporating Silver Nanowires into the Hole Transport Layer. Micromachines, 2019, 10, 682.	1.4	13
904	Guideline for Optical Optimization of Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900944.	3.6	24
905	Antiâ€Oxidizing Radical Polymerâ€Incorporated Perovskite Layers and their Photovoltaic Characteristics in Solar Cells. ChemSusChem, 2019, 12, 5207-5212.	3.6	20
906	A facile way to improve the efficiency of perovskite/silicon four-terminal tandem solar cell based on the optimization of long-wavelength spectral response. AIP Conference Proceedings, 2019, , .	0.3	1
907	Design of a Tunable Absorber Based on Graphene in the THz Range. , 2019, , .		2
908	Morphological and opto-electrical studies of newly decorated nano organo-lead halide-based perovskite photovoltaics. Journal of Sol-Gel Science and Technology, 2019, 92, 548-553.	1.1	1
909	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220.	1.9	7
910	Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic–Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies. Journal of Physical Chemistry C, 2019, 123, 23323-23333.	1.5	15
911	Well-grown low-defect MAPbI3–xClx films for perovskite solar cells with over 20% efficiency fabricated under controlled ambient humidity conditions. Electrochimica Acta, 2019, 326, 134950.	2.6	10
912	NaCl doped electrochemical PEDOT:PSS layers for inverted perovskite solar cells with enhanced stability. Synthetic Metals, 2019, 257, 116178.	2.1	10
913	Ultrasonically sprayed-on perovskite solar cells-effects of organic cation on defect formation of CH3NH3PbI3 films. Current Applied Physics, 2019, 19, 1427-1435.	1.1	3
914	Alkali metal ions passivation to decrease interface defects of perovskite solar cells. Solar Energy, 2019, 193, 220-226.	2.9	8
915	Green low-temperature-solution-processed in situ HI modified TiO2/SnO2 bilayer for efficient and stable planar perovskite solar cells build at ambient air conditions. Electrochimica Acta, 2019, 326, 134924.	2.6	19

#	Article	IF	CITATIONS
916	Energy level-modulated non-fullerene small molecule acceptors for improved <i>V</i> _{OC} and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	5.2	29
917	Room temperature growth of CH ₃ NH ₃ PbCl ₃ single crystals by solvent evaporation method. CrystEngComm, 2019, 21, 656-661.	1.3	45
918	Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment. RSC Advances, 2019, 9, 730-737.	1.7	4
919	Recent Progress of Flexible Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800566.	1.2	36
920	Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5522-5529.	5.2	41
921	Bright perovskite light-emitting diodes with improved film morphology and reduced trap density via surface passivation using quaternary ammonium salts. Organic Electronics, 2019, 67, 187-193.	1.4	28
922	Intergrain Connection of Organometal Halide Perovskites: Formation Mechanism and Its Effects on Optoelectrical Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 7037-7045.	4.0	5
923	Pressure-induced effects in the inorganic halide perovskite CsGel ₃ . RSC Advances, 2019, 9, 3279-3284.	1.7	73
924	Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food and Function, 2019, 10, 479-489.	2.1	64
925	Structural design considerations of solution-processable graphenes as interfacial materials <i>via</i> a controllable synthesis method for the achievement of highly efficient, stable, and printable planar perovskite solar cells. Nanoscale, 2019, 11, 890-900.	2.8	10
926	A polyaspartic acid sodium interfacial layer enhances surface trap passivation in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 23895-23903.	5.2	37
928	Graphene and carbon nanotube-based solar cells. , 2019, , 603-660.		2
929	Carbon nanotubes embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid hole collector for inverted planar perovskite solar cells. Journal of Power Sources, 2019, 435, 226765.	4.0	22
930	Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-corrosive devices. Journal of Materials Research, 2019, 34, 2789-2795.	1.2	10
931	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	7.3	1
932	Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Optical Materials, 2019, 7, 1900542.	3.6	24
933	Improving the Performance of Planar Perovskite Solar Cells through a Preheated, Delayed Annealing Process To Control Nucleation and Phase Transition of Perovskite Films. Crystal Growth and Design, 2019, 19, 4314-4323.	1.4	7
934	Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210.	8.5	111

#	Article	IF	CITATIONS
935	A comparative study of structural, electronic and optical properties based on metal-doped methylammonium lead halides <i>via</i> first-principles calculations. New Journal of Chemistry, 2019, 43, 9453-9457.	1.4	6
936	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	2.7	72
937	Facile and Controllable Fabrication of Highâ€Performance Methylammonium Lead Triiodide Films Using Lead Acetate Precursor for Lowâ€Threshold Amplified Spontaneous Emission and Distributedâ€Feedback Lasers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900176.	1.2	3
938	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	3.1	28
939	Solution-Processed Bismuth Halide Perovskite Thin Films: Influence of Deposition Conditions and A-Site Alloying on Morphology and Optical Properties. Journal of Physical Chemistry Letters, 2019, 10, 3134-3139.	2.1	23
940	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	4.5	42
941	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	1.1	13
942	Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells. Journal of Alloys and Compounds, 2019, 797, 1018-1024.	2.8	23
943	Efficiency of all-perovskite two-terminal tandem solar cells: A drift-diffusion study. Solar Energy, 2019, 187, 39-46.	2.9	27
944	Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Solar Energy, 2019, 186, 156-165.	2.9	30
945	Star-shaped molecule with planar triazine core and perylene diimide branches as an n-type additive for bulk-heterojunction perovskite solar cells. Dyes and Pigments, 2019, 170, 107562.	2.0	18
946	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
947	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
948	Improving the phase stability of inorganic lead halide perovskites through K/Rb doping. Applied Physics Express, 2019, 12, 051017.	1.1	3
949	High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. Journal of Materials Chemistry C, 2019, 7, 6956-6963.	2.7	29
950	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
951	High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO ₂ and CH ₃ NH ₃ PbI ₃ Layers. ACS Applied Energy Materials, 2019, 2, 3676-3682.	2.5	60
952	ACS Journals Celebrate 10 Years of Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1055-1056.	8.8	2

#	Article	IF	CITATIONS
953	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476-484.	8.2	66
954	Point defect-reduced colloidal SnO2 electron transport layers for stable and almost hysteresis-free perovskite solar cells. RSC Advances, 2019, 9, 7334-7337.	1.7	10
955	Highly efficient flexible MAPbI ₃ solar cells with a fullerene derivative-modified SnO ₂ layer as the electron transport layer. Journal of Materials Chemistry A, 2019, 7, 6659-6664.	5.2	77
956	Hybrid carbon dots platform enabling opportunities for desired optical properties and redox characteristics by-design. Chemical Physics Letters, 2019, 724, 8-12.	1.2	12
957	Aging of low-temperature derived highly flexible nanostructured TiO ₂ /P3HT hybrid films during bending. Journal of Materials Chemistry A, 2019, 7, 10805-10814.	5.2	7
958	Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 7984-7991.	1.7	25
959	Performance enhancement of AgBi ₂ I ₇ solar cells by modulating a solvent-mediated adduct and tuning remnant Bil ₃ in one-step crystallization. Chemical Communications, 2019, 55, 4031-4034.	2.2	54
960	Planar Perovskite Solar Cells with High Efficiency and Fill Factor Obtained Using Two-Step Growth Process. ACS Applied Materials & Interfaces, 2019, 11, 15680-15687.	4.0	18
961	Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 2019, 130, 20-27.	1.4	20
962	Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New Journal of Chemistry, 2019, 43, 7130-7135.	1.4	31
963	Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state. APL Materials, 2019, 7, .	2.2	42
964	Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Organic Electronics, 2019, 70, 63-70.	1.4	40
966	Bismuth perovskite as a viable alternative to Pb perovskite solar cells: device simulations to delineate critical efficiency dynamics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9438-9443.	1.1	10
967	One-step-spin-coating route for homogeneous perovskite/pyrrole-C60 fullerene bulk heterojunction for high performance solar cells. Journal of Power Sources, 2019, 419, 27-34.	4.0	16
968	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
969	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
970	Enhanced optical absorption and efficient cascade electron extraction based on energy band alignment double absorbers perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 168-176.	3.0	20
971	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835

#	Article	IF	CITATIONS
972	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of Materials Chemistry A, 2019, 7, 26154-26161.	5.2	12
973	Study on the Movements of Organometallic Halide Perovskite Crystals on their Films. ChemistrySelect, 2019, 4, 13904-13907.	0.7	0
974	Pulsed laser deposition of amorphous InGaZnO ₄ as an electron transport layer for perovskite solar cells. Journal of Advanced Dielectrics, 2019, 09, 1950042.	1.5	4
975	A Novel Perovskite Solar Cell with ZnO-Cu ₂ O as Electron Transport Material-Hole Transport Material. , 2019, , .		3
976	Advanced materials for flexible solar cell applications. Nanotechnology Reviews, 2019, 8, 452-458.	2.6	19
977	Microplasma-synthesized ultra-small NiO nanocrystals, a ubiquitous hole transport material. Nanoscale Advances, 2019, 1, 4915-4925.	2.2	15
978	Polystyrene enhanced crystallization of perovskites towards high performance solar cells. Nanoscale Advances, 2019, 1, 76-85.	2.2	15
979	Low temperature solution-derived TiO2-SnO2 bilayered electron transport layer for high performance perovskite solar cells. Applied Surface Science, 2019, 464, 700-707.	3.1	48
980	CH3NH3PbIxCl(3â^`x) thin film prepared by vapor transfer method for perovskite solar cells. Materials Letters, 2019, 239, 163-166.	1.3	9
981	Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 888-900.	5.2	60
982	Understanding macroscale functionality of metal halide perovskites in terms of nanoscale heterogeneities. JPhys Energy, 2019, 1, 011002.	2.3	3
983	Mazeâ€Like Halide Perovskite Films for Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800268.	3.1	49
984	Dimethyl Sulfoxide Solvent Engineering for High Quality Cationâ€Anionâ€Mixed Hybrid and High Efficiency Perovskite Solar Cells. Energy Technology, 2019, 7, 346-351.	1.8	3
985	Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air. Solar Energy, 2019, 177, 255-261.	2.9	32
986	CdSe tetrapod interfacial layer for improving electron extraction in planar heterojunction perovskite solar cells. Nanotechnology, 2019, 30, 065401.	1.3	6
987	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	7.1	129
988	High-efficiency perovskite solar cells based on self-assembly n-doped fullerene derivative with excellent thermal stability. Journal of Power Sources, 2019, 413, 459-466.	4.0	24
989	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80

#	Article	IF	CITATIONS
990	Highâ€Efficient Flexible Perovskite Solar Cells with Low Temperature TiO ₂ Layer via UV/Ozone Photoâ€Annealing Treatment. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800669.	0.8	14
991	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
992	High-performance metal-oxide-free perovskite solar cells based on organic electron transport layer and cathode. Organic Electronics, 2019, 64, 195-201.	1.4	12
993	Enhanced efficiency and ambient stability of planar heterojunction perovskite solar cells by using organic-inorganic double layer electron transporting material. Electrochimica Acta, 2019, 294, 337-344.	2.6	23
994	High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 2019, 65, 19-25.	1.4	13
995	The dependence of chain length of phenylalkylamine on the performance of perovskite light emitting diode. Organic Electronics, 2019, 65, 56-62.	1.4	8
996	Flexible Perowskitâ€Solarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27
997	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
998	Novel Insight into the Role of Chlorobenzene Antisolvent Engineering for Highly Efficient Perovskite Solar Cells: Gradient Diluted Chlorine Doping. ACS Applied Materials & Interfaces, 2019, 11, 792-801.	4.0	40
999	Improved performance of inverted planar MAPbI3 based perovskite solar cells using bromide post-synthesis treatment. Solar Energy, 2019, 177, 538-544.	2.9	10
1000	Enhanced interface of polyurethane acrylate via perfluoropolyether for efficient transfer printing and stable operation of PEDOT:PSS in perovskite photovoltaic cells. Applied Surface Science, 2019, 467-468, 168-177.	3.1	9
1001	Employing tetraethyl orthosilicate additive to enhance trap passivation of planar perovskite solar cells. Electrochimica Acta, 2019, 293, 174-183.	2.6	18
1002	Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Materials Science in Semiconductor Processing, 2019, 90, 1-6.	1.9	45
1003	Alternate Photovoltaic Material: Its Environmental Consequences. , 2020, , 250-264.		1
1004	A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 2020, 13, 2526-2557.	2.3	150
1005	Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review. Solar Energy Materials and Solar Cells, 2020, 204, 110212.	3.0	56
1006	Polymer Amplification to Improve Performance and Stability toward Semitransparent Perovskite Solar Cells Fabrication. Energy Technology, 2020, 8, 1900728.	1.8	14
1007	Lead-free, stable mixed halide double perovskites Cs2AgBiBr6 and Cs2AgBiBr6â^'xClx – A detailed theoretical and experimental study. Chemical Physics, 2020, 529, 110547.	0.9	38

#	Article	IF	CITATIONS
1008	A series of porphyrins as interfacial materials for inverted perovskite solar cells. Organic Electronics, 2020, 77, 105522.	1.4	18
1009	Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.	1.4	7
1010	Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer. Journal of Alloys and Compounds, 2020, 812, 152091.	2.8	49
1011	The Effect of SnO2 and ZnO on the Performance of Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 364-376.	1.0	26
1012	Conformal perovskite films on 100Âcm2 textured silicon surface using two-step vacuum process. Thin Solid Films, 2020, 693, 137694.	0.8	17
1013	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	1.5	17
1014	Effect of Plasmonic Ag Nanoparticles on the Performance of Inverted Perovskite Solar Cells. Advanced Engineering Materials, 2020, 22, 1900976.	1.6	14
1015	The physics of ion migration in perovskite solar cells: Insights into hysteresis, device performance, and characterization. Progress in Photovoltaics: Research and Applications, 2020, 28, 533-537.	4.4	36
1016	Mechanically tuning spin-orbit coupling effects in organic-inorganic hybrid perovskites. Nano Energy, 2020, 67, 104285.	8.2	6
1017	Tumorâ€Đerived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology, 2020, 71, 1626-1642.	3.6	20
1018	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	6.4	345
1019	Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials, 2020, 3, 785-793.	2.5	23
1020	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
1021	Rapid Layerâ€5pecific Annealing Enabled by Ultraviolet LED with Estimation of Crystallization Energy for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902898.	10.2	8
1022	Characterization of Perovskite Solar Cell with Fe ³⁺ Doped TiO ₂ Layer. Journal of Nanoscience and Nanotechnology, 2020, 20, 552-556.	0.9	3
1023	Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Advanced Materials, 2020, 32, e1905766.	11.1	172
1024	Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer. Solar Energy, 2020, 195, 475-482.	2.9	22
1025	Lead Oxalate-Induced Nucleation Retardation for High-Performance Indoor and Outdoor Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 836-843.	4.0	15

#	Article	IF	CITATIONS
1026	Improvement of photovoltaic performance of perovskite solar cells by interface modification with CaTiO3. Journal of Power Sources, 2020, 449, 227504.	4.0	16
1027	Tuning the optoelectronic properties of oligothiophenes for solar cell applications by varying the number of cyano and fluoro substituents for solar cell applications: A theoretical study. Journal of Chemical Research, 2020, 44, 235-242.	0.6	3
1028	The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. JPhys Energy, 2020, 2, 022001.	2.3	76
1029	Creation and Annihilation of Nonradiative Recombination Centers in Polycrystalline Metal Halide Perovskites by Alternating Electric Field and Light. Advanced Optical Materials, 2020, 8, 1901642.	3.6	7
1030	Defects at the interface electron transport layer and alternative counter electrode, their impact on perovskite solar cells performance. Solar Energy, 2020, 195, 610-617.	2.9	8
1031	Interface engineering with a novel n-type small organic molecule for efficient inverted perovskite solar cells. Chemical Engineering Journal, 2020, 392, 123677.	6.6	31
1032	Enhanced charge-transportation properties of low-temperature processed Al-doped ZnO and its impact on PV cell parameters of organic-inorganic perovskite solar cells. Solid-State Electronics, 2020, 164, 107714.	0.8	21
1033	Improving the performance of lead-acetate-based perovskite solar cells using solvent controlled crystallization process. Organic Electronics, 2020, 78, 105552.	1.4	12
1034	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	4.6	127
1035	Interlayer Engineering for Flexible Large-Area Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 777-784.	2.5	13
1036	Growth process control produces high-crystallinity and complete-reaction perovskite solar cells. RSC Advances, 2020, 10, 35898-35905.	1.7	4
1037	Light-induced improvement of dopant-free PTAA on performance of inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110606.	3.0	36
1038	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
1039	Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 2020, 32, 5958-5972.	3.2	8
1040	A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal of Materials Chemistry A, 2020, 8, 16166-16188.	5.2	130
1041	ZnO Nanorods: An Advanced Cathode Buffer Layer for Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 11781-11791.	2.5	18
1042	UV–O ₃ treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells. Nanoscale Advances, 2020, 2, 4062-4069.	2.2	15
1043	In situ TEM observation of the heat–induced degradation of single– and triple–cation planar perovskite solar cells. Nano Energy, 2020, 77, 105164.	8.2	25

#	Article	IF	CITATIONS
1044	Graded heterojunction of perovskite/dopant-free polymeric hole-transport layer for efficient and stable metal halide perovskite devices. Nano Energy, 2020, 78, 105159.	8.2	36
1045	Durable strategies for perovskite photovoltaics. APL Materials, 2020, 8, .	2.2	7
1046	A study on optoelectronic performance of perovskite solar cell under different stress testing conditions. Optical Materials, 2020, 109, 110377.	1.7	8
1047	Solution-Phase Halide Exchange and Targeted Annealing Kinetics in Lead Chloride Derived Hybrid Perovskites. Inorganic Chemistry, 2020, 59, 13364-13370.	1.9	5
1048	Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3â^'xClx) perovskites powders. Journal of Materials Science: Materials in Electronics, 2020, 31, 19415-19428.	1.1	4
1049	Improvement of Characteristics of Metal Doped TiO2 Thin Film and Application to Perovskite Solar Cell. Journal of Nanoscience and Nanotechnology, 2020, 20, 7130-7134.	0.9	2
1050	An Emerging Leadâ€Free Doubleâ€Perovskite Cs ₂ AgFeCl ₆ :In Single Crystal. Advanced Functional Materials, 2020, 30, 2002225.	7.8	48
1051	Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. Journal of Applied Physics, 2020, 128, 085501.	1.1	5
1052	Constructing Graded Perovskite Homojunctions by Adding Large Radius Phenylmethylamine Ions for Sequential Spin-Coating Deposition Method To Improve the Efficiency of Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 20765-20772.	1.5	15
1053	Facile Physical Modifications of Polymer Hole Transporting Layers for Efficient and Reproducible Perovskite Solar Cells with Fill Factor Exceeding 80%. Solar Rrl, 2020, 4, 2000365.	3.1	13
1054	Efficient Naphthalene Imide-Based Interface Engineering Materials for Enhancing Perovskite Photovoltaic Performance and Stability. ACS Applied Materials & Interfaces, 2020, 12, 42348-42356.	4.0	16
1055	Mechanochemical Synthesis of Nitrogen-Deficient Mesopore-Rich Polymeric Carbon Nitride with Highly Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 18606-18615.	3.2	33
1056	Perovskite solar cells based on CH3NH3SnI3 Structure. IOP Conference Series: Materials Science and Engineering, 2020, 928, 072148.	0.3	3
1057	Titanium Dioxide in Chromogenic Devices: Synthesis, Toxicological Issues, and Fabrication Methods. Applied Sciences (Switzerland), 2020, 10, 8896.	1.3	1
1058	Elucidating the Roles of Hole Transport Layers in pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 2000149.	2.6	11
1059	Photoemission Spectroscopy Characterization of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1904007.	10.2	66
1060	Stretchable Hole Extraction Layer for Improved Stability in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 8004-8010.	3.2	13
1061	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 26050-26059.	4.0	26

#	Article	IF	CITATIONS
1062	Improved Interface Contact for Highly Stable All-Inorganic CsPbI ₂ Br Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5173-5181.	2.5	16
1063	A linear conjugated tetramer as a surface-modification layer to increase perovskite solar cell performance and stability. Journal of Materials Chemistry A, 2020, 8, 11728-11733.	5.2	21
1064	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	1.2	34
1065	Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies: An ab-initio investigation. Materials Today Communications, 2020, 24, 101216.	0.9	20
1066	Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13, 1997-2018.	5.8	52
1067	Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Reports on Progress in Physics, 2020, 83, 086502.	8.1	48
1068	Passivation by pyridine-induced PbI ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	1.7	8
1069	Growth of metal halide perovskite materials. Science China Materials, 2020, 63, 1438-1463.	3.5	31
1070	Active Perovskite Hyperbolic Metasurface. ACS Photonics, 2020, 7, 1754-1761.	3.2	27
1071	Significantly Enhanced <i>V</i> -oc and Efficiency in Perovskite Solar Cells through Composition Adjustment of SnS ₂ Electron Transport Layers. ACS Sustainable Chemistry and Engineering, 2020, 8, 9250-9256.	3.2	18
1072	Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. Journal of Materials Chemistry A, 2020, 8, 6882-6892.	5.2	49
1073	Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synthetic Metals, 2020, 262, 116286.	2.1	23
1074	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
1075	Room-Temperature-Processed ZrO ₂ Interlayer toward Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3328-3336.	2.5	7
1076	Effect of Sr substitution on the property and stability of CH ₃ NH ₃ SnI ₃ perovskite: A firstâ€principles investigation. International Journal of Energy Research, 2020, 44, 5765-5778.	2.2	19
1077	Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells. ACS Omega, 2020, 5, 6082-6089.	1.6	17
1078	A study of perovskite solar cell with a Fe ³⁺ /Ga ³⁺ doped TiO ₂ layer. Japanese Journal of Applied Physics, 2020, 59, SGGF05.	0.8	2
1079	Emerging opportunities for 2D-black phosphorus as a carrier transporting material in perovskite solar cells. Materials Letters, 2020, 276, 128234.	1.3	6

#	Article	IF	CITATIONS
1080	The Characteristics of Perovskite Solar Cells Fabricated Using DMF and DMSO/GBL Solvents. Journal of Electronic Materials, 2020, 49, 6823-6828.	1.0	13
1081	The role of hafnium acetylacetonate buffer layer on the performance of lead halide perovskite solar cells derived from dehydrated lead acetate as Pb source. AIP Advances, 2020, 10, .	0.6	1
1082	Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells. Dyes and Pigments, 2020, 182, 108634.	2.0	9
1083	Exploring Electron Transporting Layer in Combination with a Polyelectrolyte for nâ€iâ€p Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000412.	1.9	13
1084	Flexible Solar Yarns with 15.7% Power Conversion Efficiency, Based on Electrospun Perovskite Composite Nanofibers. Solar Rrl, 2020, 4, 2000269.	3.1	41
1085	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	1.3	10
1086	Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Materials and Design, 2020, 191, 108587.	3.3	43
1087	Radiation effects on the performance of flexible perovskite solar cells for space applications. Emergent Materials, 2020, 3, 9-14.	3.2	32
1088	Solutionâ€Processed Flexible Broadband Photodetectors with Solutionâ€Processed Transparent Polymeric Electrode. Advanced Functional Materials, 2020, 30, 1909487.	7.8	61
1089	Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Applied Surface Science, 2020, 514, 145880.	3.1	29
1090	Study on the effect of chlorine on the growth of CH ₃ NH ₃ PbI _{3â^'x} Cl _x crystals. Materials Research Express, 2020, 7, 015522.	0.8	1
1092	The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores. Inorganic Chemistry Frontiers, 2020, 7, 1451-1466.	3.0	17
1093	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
1094	Nanochemical Investigation of Degradation in Organic–Inorganic Hybrid Perovskite Films Using Infrared Nanoscopy. Journal of Physical Chemistry C, 2020, 124, 3915-3922.	1.5	12
1095	Highly (100)-oriented CH3NH3PbI3 thin film fabricated by bar-coating method and its additive effect of ammonium chloride. Solar Energy Materials and Solar Cells, 2020, 208, 110409.	3.0	12
1096	Light-Induced Defect Healing and Strong Many-Body Interactions in Formamidinium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1239-1246.	2.1	18
1097	Progress of Highâ€Throughput and Lowâ€Cost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
1098	Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy and Environmental Science, 2020, 13, 685-743.	15.6	340

#	Article	IF	CITATIONS
1099	Bismuth chalcogenide iodides Bi ₁₃ S ₁₈ 1 ₂ and BiSI: solvothermal synthesis, photoelectric behavior, and photovoltaic performance. Journal of Materials Chemistry C, 2020, 8, 3821-3829.	2.7	38
1100	High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903487.	10.2	210
1101	Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing, 2020, 109, 104916.	1.9	18
1102	Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for Highâ€Efficiency Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908408.	7.8	78
1103	Pressure-Assisted Fabrication of Perovskite Solar Cells. Scientific Reports, 2020, 10, 7183.	1.6	34
1104	Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	7.8	103
1105	The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells. Crystals, 2020, 10, 236.	1.0	6
1106	Naphthalene imide dimer as interface engineering material: An efficient strategy for achieving high-performance perovskite solar cells. Chemical Engineering Journal, 2020, 395, 125062.	6.6	27
1107	The diverse passivation effects of fullerene derivative on hysteresis behavior for normal and inverted perovskite solar cells. Journal of Power Sources, 2020, 461, 228156.	4.0	4
1108	Improvement of the stability of perovskite solar cells in terms of humidity/heat via compositional engineering. Journal Physics D: Applied Physics, 2020, 53, 285501.	1.3	12
1109	Fabrication of perovskite solar cells in ambient conditions. Materials Today: Proceedings, 2021, 34, 654-657.	0.9	3
1110	Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15, 180-186.	2.3	18
1111	Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. Journal of Energy Chemistry, 2021, 54, 151-173.	7.1	51
1112	Sequential Formation of Tunableâ€Bandgap Mixedâ€Halide Leadâ€Based Perovskites: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, .	3.1	15
1113	Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. ChemSusChem, 2021, 14, 512-538.	3.6	38
1114	Novel thieno-imidazole salt-based hole transport material for dopant-free, efficient inverted perovskite solar cell applications. Journal of Power Sources, 2021, 483, 229177.	4.0	9
1115	Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Materials Today Energy, 2021, 19, 100590.	2.5	14
1116	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96

#	Article	IF	Citations
1117	Perovskite solar cells: A review of architecture, processing methods, and future prospects. , 2021, , 375-412.		6
1118	All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method. Journal of Materials Chemistry C, 2021, 9, 15056-15064.	2.7	13
1120	TiO2 oxides for chromogenic devices and dielectric mirrors. , 2021, , 483-505.		1
1121	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
1122	The dual effect of "inorganic fullerene―{Mo ₁₃₂ } doped with SnO ₂ for efficient perovskite-based photodetectors. Materials Chemistry Frontiers, 2021, 5, 6931-6940.	3.2	5
1123	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
1124	A bromide-induced highly oriented low-dimensional Ruddlesden–Popper phase for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15068-15075.	5.2	5
1125	Ambient Prepared Mesoporous Perovskite Solar Cells with Longer Stability. Journal of Electronic Materials, 2021, 50, 1535-1543.	1.0	2
1126	Inorganic hole transport layers in inverted perovskite solar cells: A review. Nano Select, 2021, 2, 1081-1116.	1.9	65
1127	Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5, 7467-7478.	3.2	9
1128	Optically tunable ultra-fast resistive switching in lead-free methyl-ammonium bismuth iodide perovskite films. Nanoscale, 2021, 13, 6184-6191.	2.8	21
1129	Correlations between Electrochemical Ion Migration and Anomalous Device Behaviors in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1003-1014.	8.8	39
1130	Inverted planer perovskite solar cells fabricated by all vapor phase process. Japanese Journal of Applied Physics, 2021, 60, SBBF10.	0.8	6
1131	Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific Reports, 2021, 11, 3082.	1.6	121
1132	ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Solar Energy, 2021, 216, 164-170.	2.9	20
1133	A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 834-843.	4.2	21
1134	Polymeric Hole Transport Materials for Red CsPbI3 Perovskite Quantum-Dot Light-Emitting Diodes. Polymers, 2021, 13, 896.	2.0	7
1135	Airâ€Stable Selfâ€Powered Photodetectors Based on Leadâ€Free CsBi ₃ I ₁₀ /SnO ₂ Heterojunction for Weak Light Detection. Advanced Functional Materials, 2021, 31, 2100773.	7.8	60

#	Article	IF	CITATIONS
1136	Bi ₁₃ S ₁₈ <i>X</i> ₂ -Based Solar Cells (<i>X</i> = Cl, Br, I): Photoelectric Behavior and Photovoltaic Performance. Physical Review Applied, 2021, 15, .	1.5	11
1137	2Dâ€MA ₃ Sb ₂ I ₉ Back Surface Field for Efficient and Stable Perovskite Solar Cells. Small Methods, 2021, 5, e2001090.	4.6	8
1138	Flexible Piezoelectric Nanogenerators Based on P(VDF-TrFE)/CsPbBr ₃ Quantum Dot Composite Films. ACS Applied Electronic Materials, 2021, 3, 2136-2144.	2.0	33
1139	Hybrid organic–inorganic perovskite ferroelectrics bring light to semiconducting applications: Bandgap engineering as a starting point. APL Materials, 2021, 9, .	2.2	29
1140	Exotic optoelectronic behaviors in CH3NH3PbCl3 perovskite single crystals: Co-existence of free and bound excitons with structural phase transitions. Applied Physics Letters, 2021, 118, 143301.	1.5	5
1141	Fabrication and Characterization of an Efficient Inverted Perovskite Solar Cells with POSS Passivating Hole Transport Layer. Nanomaterials, 2021, 11, 974.	1.9	10
1142	Impact of precursor concentration on the properties of perovskite solar cells obtained from the dehydrated lead acetate precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	5
1143	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
1144	Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabrication. Small, 2021, 17, e2008145.	5.2	53
1145	Charge transporting materials for perovskite solar cells. Rare Metals, 2021, 40, 2690-2711.	3.6	23
1146	N-doped anatase TiO2 as an efficient electron-transporting layer for mesoporous perovskite solar cells. Applied Physics Express, 0, , .	1.1	3
1147	Review-Emerging Applications of g-C3N4 Films in Perovskite-Based Solar Cells. ECS Journal of Solid State Science and Technology, 0, , .	0.9	10
1148	Spectral Red Shift of Cs ₄ Mn(Bi _{1–<i>x</i>} In _{<i>x</i>}) ₂ Cl ₁₂ Layered Double Perovskite by Adjusting the Microstructure of the [MnCl ₆] ^{4–} Octahedron. Journal of Physical Chemistry C, 2021, 125, 16938-16945.	1.5	13
1149	Inorganic top electron transport layer for high performance inverted perovskite solar cells. EcoMat, 2021, 3, e12127.	6.8	26
1150	8â€Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100506.	1.9	2
1151	Mesoporous Au@Cu _{2â^'<i>x</i>} S Core–Shell Nanoparticles with Double Localized Surface Plasmon Resonance and Ligand Modulation for Holeâ€Selective Passivation in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100358.	3.1	13
1152	Effect of Growth Temperature on the Characteristics of CsPbI3-Quantum Dots Doped Perovskite Film. Molecules, 2021, 26, 4439.	1.7	8
1153	Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array. ChemSusChem, 2021, 14, 3351-3358.	3.6	11

#	Article	IF	CITATIONS
1154	A mini review: Constructing perovskite p-n homojunction solar cells. Chinese Chemical Letters, 2022, 33, 1772-1778.	4.8	13
1155	Quasi-2D Halide Perovskite Memory Device Formed by Acid–Base Binary Ligand Solution Composed of Oleylamine and Oleic Acid. ACS Applied Materials & Interfaces, 2021, 13, 40891-40900.	4.0	10
1156	Optical Properties of Ion Accumulation Areas in MAPbX 3 Single Crystals. Advanced Optical Materials, 0, , 2100850.	3.6	8
1157	Direct Deposition of Nonaqueous SnO2 Dispersion by Blade Coating on Perovskites for the Scalable Fabrication of p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	12
1158	Low-Temperature-Processed Transparent Electrodes Based on Compact and Mesoporous Titanium Oxide Layers for Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5318-5330.	2.5	5
1159	Investigation of CH3NH3PbI3 and CH3NH3SnI3 based perovskite solar cells with CuInSe2 nanocrystals. Optik, 2021, 246, 167839.	1.4	7
1160	A design strategy of additive molecule for PSCs: Anchoring intrinsic properties of functional groups by suppressing long-range conjugation effect. Chemical Engineering Journal, 2022, 427, 131676.	6.6	8
1161	Nanocarbons for emerging photovoltaic applications. , 2021, , 49-80.		0
1162	Perovskite CH ₃ NH ₃ PbI _{3–X} Cl _x Solar Cells and their Degradation (Part 1: A Short Review). Latvian Journal of Physics and Technical Sciences, 2021, 58, 44-52.	0.4	1
1163	CsPbBr ₃ Nanocrystal Light-Emitting Diodes with Efficiency up to 13.4% Achieved by Careful Surface Engineering and Device Engineering. Journal of Physical Chemistry C, 2021, 125, 3110-3118.	1.5	29
1164	Porous Gold Nanolayer Coated Halide Metal Perovskite-Based Broadband Metamaterial Absorber in the Visible and Near-IR Regime. IEEE Access, 2021, 9, 8912-8919.	2.6	12
1165	Hybrid Perovskite Terahertz Photoconductive Antenna. Nanomaterials, 2021, 11, 313.	1.9	11
1166	Rationally Induced Interfacial Dipole in Planar Heterojunction Perovskite Solar Cells for Reduced <i>J</i> – <i>V</i> Hysteresis. Advanced Energy Materials, 2018, 8, 1800568.	10.2	32
1167	Composite Encapsulation Enabled Superior Comprehensive Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27277-27285.	4.0	54
1168	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	1.7	51
1169	Numerical analysis of inverted-structure perovskite solar cell based on all-inorganic charge transport layers. Journal of Photonics for Energy, 2019, 9, 1.	0.8	6
1170	Numerical modeling of inverted perovskite solar cell based on CZTSSe hole transport layer for efficiency improvement. Journal of Photonics for Energy, 2019, 9, 1.	0.8	3
1171	Enhanced light absorption of textured perovskite solar cells employing two-dimensional nanoarrays. Journal of Photonics for Energy, 2019, 9, 1.	0.8	5

ARTICLE IF CITATIONS Review on methods for improving the thermal and ambient stability of perovskite solar cells. Journal 1172 0.8 32 of Photonics for Energy, 2019, 9, 1. On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light 1173 1.7 sensing. Optics Letters, 2019, 44, 463. Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure. 1174 1.8 19 OSA Continuum, 2018, 1, 573. Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar 34 cells. Photonics Research, 2020, 8, A39. Optical Analysis of Ag-NPs Containing Methyl Ammonium Lead Tri-Iodide Thin Films. Traektoriâ Nauki, 1177 0.1 1 2017, 3, 2007-2015. Recent Progress in Flexible Perovskite Solar Cell Development. Journal of the Korean Ceramic Society, 2018, 55, 325-336. 1179 1.1 A Review of Inductively Coupled Plasma-Assisted Magnetron Sputter System. Applied Science and 1180 0.3 8 Convergence Technology, 2019, 28, 131-138. Progress of research on new hole transporting materials used in perovskite solar cells. Wuli 1181 0.2 Xuebao/Acta Physica Sinica, 2015, 64, 033301. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli 1182 0.2 16 Xuebao/Acta Physica Sinica, 2015, 64, 038401. A review of the perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038805. 0.2 Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two 1184 3 0.2 additives on perovskite solar cell performance. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 118801. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society 18.7 Reviews, 2021, 50, 12915-12984. Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Nonâ€Halide Engineering. 1186 10.2 35 Advanced Energy Materials, 2021, 11, 2102169. Chemical and Electronic Investigation of Buried NiO_{1â[^]Î}, PCBM, and PTAA/MAPbI_{3–<i>x</i>}CI_{<i>x</i>} Interfaces Using Hard X-ray Photoelectron 1187 4.0 Spectroscopy and Transmission Electron Microscopy. ACS Applied Materials & amp; Interfaces, 2021, 13, 50481-50490 Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced 1188 10.2 40 Energy Materials, 2021, 11, . Room-Temperature-Grown amorphous Indium-Tin-Silicon-Oxide thin film as a new electron 3.1 transporting layer for perovskite solar cells. Applied Surface Science, 2022, 581, 151570. Super Flexible Transparent Conducting Oxideâ€Free Organic–Inorganic Hybrid Perovskite Solar Cells 1190 3.110 with 19.01% Efficiency (Active Area = 1 cm²). Solar Rrl, 2021, 5, 2100733. Correlation between Structural Evolution and Device Performance of CH3NH3Pbl3 Solar Cells under 1191 Proton Irradiation. ACS Applied Energy Materials, 0, , .

#	Article	IF	CITATIONS
1192	Review of solar photovoltaic cooling systems technologies with environmental and economical assessment. Journal of Cleaner Production, 2021, 326, 129421.	4.6	46
1193	S-shaped current-voltage characteristics in perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038402.	0.2	8
1194	Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038104.	0.2	0
1195	Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 186102.	0.2	3
1196	Fabrication and Properties of Titanium Based Flexible Organic Perovskite Solar Cells. Material Sciences, 2016, 06, 378-385.	0.0	0
1197	2.有機é‡ʿ属ãfãf©ã,₿f‰ãfšãfãf−ã,¹ã,«ã,₿fˆå輕™½é›»æ±ã®å®Ÿç"¨åŒ−ã«å⁵ãʿã┥. Electrochemistry,	2 0. £6, 84,	4045-448.
1198	Chapter 6. Structural, Electronic, and Optical Properties of Lead Halide Perovskites. RSC Energy and Environment Series, 2016, , 177-201.	0.2	0
1199	Photocatalytic Hydrogen Evolution. , 2017, , 1-41.		0
1200	Stability of perovskite solar cells on flexible substrates. , 2018, , .		0
1201	Semiconductor photovoltaics: Ñurrent state and actual directions of research. OptoÃ"lektronika I Poluprovodnikovaâ Tehnika, 2018, 53, 13-37.	0.3	1
1202	Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance. , 2019, , 227-246.		1
1203	Solar elements based on organic and organo-inorganic materials. Surface, 2019, 11(26), 270-343.	0.4	0
1204	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	5.2	6
1205	Advanced self-charging power packs: The assimilation of energy harvesting and storage systems. , 2022, , 441-477.		1
1206	Study on Preparation and Stability of Perovskite Solar Cells with Supramolecular Interaction. E3S Web of Conferences, 2020, 185, 01065.	0.2	1
1207	Fiber Perovskite Solar Cells. , 2020, , 137-159.		Ο
1208	A COMPREHENSIVE REVIEW OF PHOTOVOLTAIC DEVICES BASED ON PEROVSKITES. Open Journal of Engineering Science, 2020, 1, 26-52.	0.0	0
1209	Device simulation of all-perovskite four-terminal tandem solar cells: towards 33% efficiency. EPJ Photovoltaics, 2021, 12, 4.	0.8	3

#	Article	IF	CITATIONS
1210	Improved Efficiency of Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Carbon by Introduction of a Dopingâ€Free Polymeric Hole Conductor. Solar Rrl, 2022, 6, 2100773.	3.1	6
1211	Allâ€5lotâ€Dieâ€Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives. Solar Rrl, 2022, 6, 2100807.	3.1	19
1212	Tuning the Band Gaps of Oxide and Halide Perovskite Compounds via Biaxial Strain in All Directions. Journal of Physical Chemistry C, 2021, 125, 25951-25958.	1.5	6
1213	Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials, 2021, 11, 3119.	1.9	35
1214	Fieldâ€Effect Control in Hole Transport Layer Composed of Li:NiO/NiO for Highly Efficient Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, 2101562.	1.9	12
1215	Studying the influence of heat treatment on structural and morphological properties of thin CH3NH3PbI3-xClx films prepared by spin coating method. AIP Conference Proceedings, 2021, , .	0.3	1
1216	A tale of two organic small molecular hole transporting materials: Showing same extended shelf-life but very different efficiency of inverted MAPbI3 perovskite solar cells. Organic Electronics, 2022, 102, 106428.	1.4	3
1217	Recent progress in perovskite solar cells: challenges from efficiency to stability. Materials Today Chemistry, 2022, 23, 100686.	1.7	26
1218	A short review on progress in perovskite solar cells. Materials Research Bulletin, 2022, 149, 111700.	2.7	48
1219	Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 420-438.	7.1	27
1220	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	46
1221	Effect of Iodine Octahedral Rotations on Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. Journal of Physical Chemistry C, 2022, 126, 779-785.	1.5	2
1222	Oxide free materials for perovskite solar cells. , 2022, , 287-306.		2
1223	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
1224	Framework structure materials in photovoltaics based on perovskites 3D. , 2022, 5, .		0
1226	Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10, .	1.8	11
1227	Interfacial Molecular Engineering for Enhanced Polarization of Negative Tribo-Materials. SSRN Electronic Journal, O, , .	0.4	0
1228	Lead-free layered Aurivillius-type Sn-based halide perovskite Ba ₂ X ₂ [Cs _{<i>n</i>â^{^1}1} Sn _{<i>n</i>} X _{3<i>n</i>+1}] (X = I/Br/Cl) with an optimal band gap of â ^{^1} /41.26 eV and theoretical efficiency beyond 27% for photovoltaics, lournal of Materials Chemistry A. 2022. 10. 10682-10691.	5.2	1

#	Article	IF	CITATIONS
1229	Investigation of AZO as an Alternative to ITO for Cathode Material in Organic Solar Cells. Springer Proceedings in Physics, 2022, , 609-615.	0.1	0
1230	In Situ Ethanolamine ZnO Nanoparticle Passivation for Perovskite Interface Stability and Highly Efficient Solar Cells. Nanomaterials, 2022, 12, 823.	1.9	3
1231	Wideâ€Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells. Advanced Science, 2022, 9, e2105085.	5.6	60
1232	Interfacial molecular engineering for enhanced polarization of negative tribo-materials. Nano Energy, 2022, 96, 107110.	8.2	12
1233	Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells. Journal of Central South University, 2021, 28, 3714-3727.	1.2	3
1234	Perovskite fiber-shaped optoelectronic devices for wearable applications. Journal of Materials Chemistry C, 2022, 10, 6957-6991.	2.7	18
1235	Rear Electrode Materials for Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	49
1236	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 117.	14.4	68
1237	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
1238	A dual plasmonic core—shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement. Nano Research, 2022, 15, 7071-7080.	5.8	17
1239	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
1240	Terahertz Detection with Optically Gated Halide Perovskites. ACS Photonics, 2022, 9, 1663-1670.	3.2	2
1241	Performance improvement of organic solar cells using a hybrid hole transport layer of poly(triarylamine) and molybdenum trioxide. Organic Electronics, 2022, 107, 106565.	1.4	6
1242	Solar Perovskite Technologies. , 2022, , .		1
1243	Electronic structure of oxide and halide perovskites. , 2022, , .		0
1244	Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive. Cell Reports Physical Science, 2022, 3, 100906.	2.8	7
1245	Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100905.	2.8	17
1246	Counter electrodes for perovskite solar cells: materials, interfaces and device stability. Journal of Materials Chemistry C, 2022, 10, 10775-10798.	2.7	10

#	Article	IF	CITATIONS
1247	Controlling the device functionality by solvent engineering, solar cell <i>versus</i> light emitting diode. Journal of Materials Chemistry C, 2022, 10, 10037-10046.	2.7	2
1248	Impact of HTM on lead-free perovskite solar cell with high efficiency. Optical and Quantum Electronics, 2022, 54, .	1.5	4
1249	Enhanced Thermal Stability of Lowâ€Temperature Processed Carbonâ€Based Perovskite Solar Cells by a Combined Antisolvent/Polymer Deposition Method. Energy Technology, 2022, 10, .	1.8	3
1250	Bulk Restructure of Perovskite Films via Surface Passivation for Highâ€Performance Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	32
1251	Synthesis and Characterization of Methylammonium Lead Bromide Perovskite Based Photovoltaic Device. East European Journal of Physics, 2021, , 70-73.	0.1	0
1252	Study of lead-free vacancy ordered double perovskites Cs ₂ TeX ₆ (XÂ=ÂCl, Br, I) for solar cells, and renewable energy. Physica Scripta, 2022, 97, 095801.	1.2	16
1253	Thermally induced failure mechanisms in double and triple cations perovskite solar cells. AIP Advances, 2022, 12, .	0.6	2
1254	Selection of a Suitable Solvent Additive for 2-Methoxyethanol-Based Antisolvent-Free Perovskite Film Fabrication. ACS Applied Materials & Interfaces, 2022, 14, 39132-39140.	4.0	8
1255	Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells. Materials Today Advances, 2022, 16, 100300.	2.5	8
1256	Photoelectron spectroscopic studies on metal halide perovskite materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	1
1257	Activate whole-body passivation ability of small isomeric D-Ï€-A molecules via amino position effect to improve the photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2023, 452, 139321.	6.6	13
1258	Recent advances in the interfacial engineering of organic–inorganic hybrid perovskite solar cells: a materials perspective. Journal of Materials Chemistry C, 2022, 10, 13611-13645.	2.7	12
1259	Chiral 2D organic–inorganic hybrid perovskites based on <scp>l</scp> -histidine. Dalton Transactions, 2022, 51, 16536-16544.	1.6	2
1260	Early Crystal Growth Suppression by Washing Solvent for Efficient Self-Powered Perovskite Photodetector. SSRN Electronic Journal, 0, , .	0.4	0
1261	Strategy of Enhancing Builtâ€in Field to Promote the Application of Câ€TiO ₂ /SnO ₂ Bilayer Electron Transport Layer in Highâ€Efficiency Perovskite Solar Cells (24.3%). Small, 2022, 18, .	5.2	16
1262	Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	18
1263	Structural, optical and dielectric properties of low temperature assisted grown crystals of CH3NH3Pb1-xCdxBr3. Materials Chemistry and Physics, 2022, 292, 126852.	2.0	2
1264	Multifunctional Ionic Fullerene Additive for Synergistic Boundary and Defect Healing of Tin Perovskite to Achieve High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 46603-46614.	4.0	4

#	Article	IF	CITATIONS
1265	Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication. International Journal of Molecular Sciences, 2022, 23, 11792.	1.8	12
1266	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
1267	Interfacial engineering of halide perovskites and two-dimensional materials. Chemical Society Reviews, 2023, 52, 212-247.	18.7	13
1268	Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025.	2.7	3
1269	Spirobifluorene-based hole-blocking material with enhanced efficiency through hole and exciton confinement in blue fluorescent OLEDs. Dyes and Pigments, 2023, 210, 110961.	2.0	4
1270	Photo-synaptic properties of CH3NH3Pb1-xMnxBr2x+1 hybrid perovskite thin film-based artificial synapse. Ceramics International, 2023, 49, 11140-11148.	2.3	3
1271	Recent Strategies for High-Performing Indoor Perovskite Photovoltaics. Nanomaterials, 2023, 13, 259.	1.9	2
1272	Amorphous Fâ€doped TiO _x Caulked SnO ₂ Electron Transport Layer for Flexible Perovskite Solar Cells with Efficiency Exceeding 22.5%. Advanced Functional Materials, 2023, 33, .	7.8	17
1273	Enhancement of Perovskite Solar Cells by TiO2-Carbon Dot Electron Transport Film Layers. Nanomaterials, 2023, 13, 186.	1.9	3
1274	Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC). Physica B: Condensed Matter, 2023, 654, 414690.	1.3	5
1275	Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Structures, 2023, 4, .	6.9	32
1276	Review on Enhancement of Stability and Efficiency of Perovskite Solar Cell. Journal of Physics: Conference Series, 2023, 2426, 012015.	0.3	0
1277	2D-3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Science China Materials, 2023, 66, 2013-2022.	3.5	4
1278	Relevance of Long Diffusion Lengths for Efficient Halide Perovskite Solar Cells. , 2023, 2, .		8
1279	Timeâ€Resolved Spectroscopy for the Study of Perovskite. Chinese Journal of Electronics, 2022, 31, 1053-1071.	0.7	3
1280	Pathway to the Polyvinylâ€Acetateâ€Assisted PEDOT:PSS as a Dopantâ€Free Hole Transporting Material in Planar Heterojunction Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	3
1281	Toward a Diagnostic Method for Efficient Perovskite Solar Cells Based on Equivalent Circuit Parameters. Journal of Physical Chemistry C, 2023, 127, 5663-5675.	1.5	2
1282	The Latest Progress in Effect Factors and Related Applications of Perovskite Solar Cells. , 0, 37, 363-369.		0

#	Article	IF	CITATIONS
1283	Phase Control of Organometal Halide Perovskites for Development of Highly Efficient Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 21974-21981.	4.0	1
1284	Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60.		0
1285	Investigating the Molecular Orientation and Thermal Stability of Spiroâ€OMeTAD and its Dopants by Near Edge Xâ€Ray Absorption Fine Structure. , 2023, 2, .		1
1286	High Performing Inverted Flexible Perovskite Solar Cells via Solution Phase Deposition of Yttrium-Doped SnO ₂ Directly on Perovskite. ACS Applied Energy Materials, 2023, 6, 4496-4502.	2.5	3
1287	Review of recent trends and architecture developments of perovskite solar cells. AIP Conference Proceedings, 2023, , .	0.3	0
1296	Recent progress and developments of ionic liquids assimilated materials for solar cell. , 2023, , 79-95.		0
1306	1D Versus 2D Carbon Nanostructures for Flexible and Ultrathin Solar Cells. , 2023, , 1-39.		0
1314	Solvent Vapor Annealing of CH ₃ NH ₃ PbI ₃ Films for Improved Photovoltaic Performance of Perovskite Solar Cells. , 2023, , .		0