Ultrafast Long-Range Charge Separation in Organic Sen

Science 343, 512-516 DOI: 10.1126/science.1246249

Citation Report

#	Article	IF	CITATIONS
7	Theoretical description of the geometric and electronic structures of organic-organic interfaces in organic solar cells: a brief review. Science China Chemistry, 2014, 57, 1330-1339.	4.2	6
8	Constrained geometric dynamics of the Fenna–Matthews–Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer. Photosynthesis Research, 2014, 122, 275-292.	1.6	18
9	Charge separation energetics at organic heterojunctions: on the role of structural and electrostatic disorder. Physical Chemistry Chemical Physics, 2014, 16, 20279-20290.	1.3	67
10	Are hot charge transfer states the primary cause of efficient free-charge generation in polymer:fullerene organic photovoltaic devices? A kinetic Monte Carlo study. Physical Chemistry Chemical Physics, 2014, 16, 20310-20320.	1.3	33
11	Two-dimensional polaron coherence in Poly(3-hexylthiophene). Proceedings of SPIE, 2014, , .	0.8	0
12	Time-independent, high electron mobility in thin PC 61 BM films: Relevance to organic photovoltaics. Organic Electronics, 2014, 15, 3729-3734.	1.4	29
13	Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices. Journal of Applied Physics, 2014, 116, 114510.	1.1	6
14	Hot Excitons Increase the Donor/Acceptor Charge Transfer Yield. Journal of Physical Chemistry C, 2014, 118, 28527-28534.	1.5	23
15	Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method. Journal of Chemical Physics, 2014, 140, 214107.	1.2	20
16	Modulating the Exciton Dissociation Rate by up to More than Two Orders of Magnitude by Controlling the Alignment of LUMO + 1 in Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 27272-27280.	1.5	34
17	Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study. Journal of Chemical Physics, 2014, 141, 121102.	1.2	31
18	Polarization Imaging of Emissive Charge Transfer States in Polymer/Fullerene Blends. Chemistry of Materials, 2014, 26, 6695-6704.	3.2	14
19	Nanosecond Intersystem Crossing Times in Fullerene Acceptors: Implications for Organic Photovoltaic Diodes. Advanced Materials, 2014, 26, 4851-4854.	11.1	63
20	Bulk Charge Carrier Transport in Push–Pull Type Organic Semiconductor. ACS Applied Materials & Interfaces, 2014, 6, 20904-20912.	4.0	22
21	Correlating domain purity with charge carrier mobility in bulk heterojunction polymer solar cells. Proceedings of SPIE, 2014, , .	0.8	5
22	Enhanced charge photogeneration promoted by crystallinity in small-molecule donor-acceptor bulk heterojunctions. Applied Physics Letters, 2014, 105, 043301.	1.5	30
23	Organic Solar Cells. Springer Series in Materials Science, 2014, , 67-214.	0.4	17
24	The influence of molecular orientation on organic bulk heterojunction solar cells. Nature Photonics, 2014, 8, 385-391.	15.6	439

		CITATION REPORT		
#	Article		IF	CITATIONS
25	Nonequilibrium Charge Dynamics in Organic Solar Cells. Advanced Energy Materials, 20)14, 4, 1301743.	10.2	50
26	Ultrafast Charge Generation in an Organic Bilayer Film. Journal of Physical Chemistry Le 2000-2006.	tters, 2014, 5,	2.1	44
27	Coherent ultrafast charge transfer in an organic photovoltaic blend. Science, 2014, 34	4, 1001-1005.	6.0	470
28	Noise-induced quantum coherence drives photo-carrier generation dynamics at polyme semiconductor heterojunctions. Nature Communications, 2014, 5, 3119.	ric	5.8	111
29	When Electrons Leave Holes in Organic Solar Cells. Science, 2014, 343, 492-493.		6.0	35
30	Visible photon multiplication in Ce ³⁺ –Tb ³⁺ doped borate § solar cells. Journal Physics D: Applied Physics, 2014, 47, 445101.	glasses for enhanced	1.3	6
31	Impact of Electron Delocalization on the Nature of the Charge-Transfer States in Mode Pentacene/C ₆₀ Interfaces: A Density Functional Theory Study. Journal of F Chemistry C, 2014, 118, 27648-27656.		1.5	80
32	Coherent and Diffusive Time Scales for Exciton Dissociation in Bulk Heterojunction Pho Cells. Journal of Physical Chemistry C, 2014, 118, 27235-27244.	tovoltaic	1.5	23
33	Comprehensive device modeling of plasmon-enhanced and optical field-dependent pho generation in organic bulk heterojunctions. , 2014, , .	tocurrent		0
34	Charge-carrier generation in organic solar cells using crystalline donor polymers. Physic Chemistry Chemical Physics, 2014, 16, 20338-20346.	al	1.3	48
35	Charge generation in polymer–fullerene bulk-heterojunction solar cells. Physical Cher Physics, 2014, 16, 20291-20304.	nistry Chemical	1.3	190
36	Submolecular Spectroscopy?. Journal of Physical Chemistry Letters, 2014, 5, 3279-328	0.	2.1	0
37	Ultrafast charge separation and nongeminate electron–hole recombination in organi Physical Chemistry Chemical Physics, 2014, 16, 20305-20309.	c photovoltaics.	1.3	31
38	How disorder controls the kinetics of triplet charge recombination in semiconducting c polymer photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 20321-20328.	organic	1.3	37
39	Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principle Journal of Physical Chemistry Letters, 2014, 5, 2649-2656.	s Simulations.	2.1	48
40	Distance Distributions of Photogenerated Charge Pairs in Organic Photovoltaic Cells. Jo American Chemical Society, 2014, 136, 12018-12026.	ournal of the	6.6	102
41	Spatially Resolving Ordered and Disordered Conformers and Photocurrent Generation i Intercalated Conjugated Polymer/Fullerene Blend Solar Cells. Chemistry of Materials, 20 4395-4404.		3.2	30
42	Influence of Molecular Shape on Solid-State Packing in Disordered PC ₆₁ B PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2014, 5, 3427-3		2.1	40

ARTICLE IF CITATIONS # Understanding the Chargeâ€Transfer State and Singlet Exciton Emission from Solutionâ€Processed 43 11.1 27 Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2014, 26, 7405-7412. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene 44 heterojunction. Chemical Physics, 2014, 442, 111-118. Charge Carrier Generation and Transport in Different Stoichiometry APFO3:PC61BM Solar Cells. 45 6.6 31 Journal of the American Chemical Society, 2014, 136, 11331-11338. Quantum Coherence and its Impact on Biomimetic Light-Harvesting. Australian Journal of Chemistry, 0.5 2014, 67, 729. The Role of Photon Energy in Free Charge Generation in Bulk Heterojunction Solar Cells. Advanced 47 10.2 12 Energy Materials, 2014, 4, 1400416. Mesoscopic Features of Charge Generation in Organic Semiconductors. Accounts of Chemical Research, 2014, 47, 3385-3394. Relationship between Interchain Interaction, Exciton Delocalization, and Charge Separation in 49 6.6 88 Low-Bandgap Copolymer Blends. Journal of the American Chemical Society, 2014, 136, 10024-10032. Direct Optical Generation of Longâ€Range Chargeâ€Transfer States in Organic Photovoltaics. Advanced 50 11.1 57 Materials, 2014, 26, 6163-6167. Length-Dependent Conductance of Oligothiophenes. Journal of the American Chemical Society, 2014, 51 6.6 127 136, 10486-10492. Probing Transient Electric Fields in Photoexcited Organic Semiconductor Thin Films and Interfaces by 1.5 14 Time-Resolved Second Harmonic Generation. Journal of Physical Chemistry C, 2014, 118, 10670-10676. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene 53 131 5.8blends. Nature Communications, 2014, 5, 4933. Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors. Journal of the 6.6 414 American Chemical Society, 2014, 136, 15215-15221. From charge-transfer to a charge-separated state: a perspective from the real-time TDDFT excitonic dynamics. Physical Chemistry Chemical Physics, 2014, 16, 24457-24465. 55 1.3 51 Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers. Journal of the American Chemical Society, 2014, 136, 15566-15576. 6.6 249 Optical Pumping of Poly(3-hexylthiophene) Singlet Excitons Induces Charge Carrier Generation. 57 2.1 28 Journal of Physical Chemistry Letters, 2014, 5, 1040-1047. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 58 1,838 2014, 9, 682-686. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nature Materials, 59 13.3246 2014, 13, 1033-1038. Allâ€Inkjetâ€Printed, Allâ€Airâ€Processed Solar Cells. Advanced Energy Materials, 2014, 4, 1400432.

#	Article	IF	CITATIONS
61	Quantifying Charge Extraction in Organic Solar Cells: The Case of Fluorinated PCPDTBT. Journal of Physical Chemistry Letters, 2014, 5, 1131-1138.	2.1	88
62	Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nature Communications, 2014, 5, 4288.	5.8	140
63	Calculation from First-Principles of Golden Rule Rate Constants for Photoinduced Subphthalocyanine/Fullerene Interfacial Charge Transfer and Recombination in Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2014, 118, 9780-9789.	1.5	58
64	The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400922.	10.2	54
65	Femtosecond Pump–Push–Probe and Pump–Dump–Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities. Journal of Physical Chemistry Letters, 2014, 5, 3231-3240.	2.1	27
66	Theory of Stark spectroscopy transients from thin film organic semiconducting devices. Physical Review B, 2014, 89, .	1.1	13
67	Theoretical Study of the Local and Charge-Transfer Excitations in Model Complexes of Pentacene-C ₆₀ Using Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2014, 10, 2379-2388.	2.3	77
68	Theoretical Study on the Mechanism of Free Carrier Formation from Interfacial Electron-Hole Pair. Hyomen Kagaku, 2014, 35, 615-620.	0.0	0
69	Competing role of quantum localization and interfacial disorder in determining triplet exciton fission and recombination dynamics in polymer/fullerene photovoltaics. Proceedings of SPIE, 2014, , .	0.8	0
70	The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules. MRS Communications, 2015, 5, 155-167.	0.8	7
71	Photochemical Solar Energy Conversion. , 2015, , 20-29.		0
72	Interface Design Principles for Highâ€Performance Organic Semiconductor Devices. Advanced Science, 2015, 2, 1500024.	5.6	18
73	Phonon-assisted ultrafast charge separation in the PCBM band structure. Physical Review B, 2015, 91, .	1.1	34
74	Heterostructures of transition metal dichalcogenides. Physical Review B, 2015, 92, .	1.1	190
75	Dynamics of exciton formation and relaxation in photoexcited semiconductors. Physical Review B, 2015, 92, .	1.1	11
76	Direct Observation of Entropy-Driven Electron-Hole Pair Separation at an Organic Semiconductor Interface. Physical Review Letters, 2015, 114, 247003.	2.9	82
77	Charge transfer from delocalized excited states in a bulk heterojunction material. Physical Review B, 2015, 91, .	1.1	16
78	Competition between diagonal and off-diagonal coupling gives rise to charge-transfer states in polymeric solar cells. Scientific Reports, 2015, 5, 14555.	1.6	12

#	Article	IF	CITATIONS
79	Molecular orientation within thin films of isomorphic molecular semiconductors. RSC Advances, 2015, 5, 89144-89148.	1.7	8
80	Charge transfer excitons at ZnMgO/P3HT heterojunctions: Relation to photovoltaic performance. Applied Physics Letters, 2015, 107, .	1.5	11
81	Why Inverted Small Molecule Solar Cells Outperform Their Noninverted Counterparts. Advanced Functional Materials, 2015, 25, 6511-6518.	7.8	3
82	Charge arrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90%. Advanced Energy Materials, 2015, 5, 1500577.	10.2	214
83	The Evidence for Fullerene Aggregation in Highâ€Performance Smallâ€Molecule Solar Cells by Molecular Dynamics Simulation. Advanced Electronic Materials, 2015, 1, 1500217.	2.6	18
84	The Role of Higher Lying Electronic States in Charge Photogeneration in Organic Solar Cells. Advanced Functional Materials, 2015, 25, 6893-6899.	7.8	3
85	Deposition Growth and Morphologies of C ₆₀ on DTDCTB Surfaces: An Atomistic Insight into the Integrated Impact of Surface Stability, Landscape, and Molecular Orientation. Advanced Materials Interfaces, 2015, 2, 1500329.	1.9	23
86	Singlet fission of hot excitons in <i>Ï€</i> -conjugated polymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140327.	1.6	27
87	Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach. Photochemical and Photobiological Sciences, 2015, 14, 883-890.	1.6	8
88	Modeling ultrafast exciton deactivation in oligothiophenes via nonadiabatic dynamics. Physical Chemistry Chemical Physics, 2015, 17, 7787-7799.	1.3	48
89	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%. Chemical Science, 2015, 6, 4860-4866.	3.7	35
90	Resonance Raman spectroscopy and imaging of push–pull conjugated polymer–fullerene blends. Journal of Materials Chemistry C, 2015, 3, 6058-6066.	2.7	24
91	Low-Temperature Photoluminescence Spectroscopy of Solvent-Free PCBM Single-Crystals. Journal of Physical Chemistry C, 2015, 119, 11846-11851.	1.5	20
92	Time-Resolved Charge-Transfer State Emission in Organic Solar Cells: Temperature and Blend Composition Dependences of Interfacial Traps. Journal of Physical Chemistry C, 2015, 119, 13516-13523.	1.5	27
93	Effect of Solvent Additive on Generation, Recombination, and Extraction in PTB7:PCBM Solar Cells: A Conclusive Experimental and Numerical Simulation Study. Journal of Physical Chemistry C, 2015, 119, 8310-8320.	1.5	96
94	Beyond Shockley–Queisser: Molecular Approaches to High-Efficiency Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 2367-2378.	2.1	142
95	Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating. Nature Communications, 2015, 6, 6688.	5.8	38
96	Temperature Dependence of Charge Carrier Generation in Organic Photovoltaics. Physical Review Letters, 2015, 114, 128701.	2.9	96

#	Article	IF	CITATIONS
97	Charge Transfer Excitons at van der Waals Interfaces. Journal of the American Chemical Society, 2015, 137, 8313-8320.	6.6	252
98	Non-fullerene acceptors: exciton dissociation with PTCDA versus C ₆₀ . Physical Chemistry Chemical Physics, 2015, 17, 15953-15962.	1.3	9
99	Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme. Annals of Physics, 2015, 360, 140-149.	1.0	1
100	Ultrafast Singlet Fission in a Push–Pull Low-Bandgap Polymer Film. Journal of the American Chemical Society, 2015, 137, 15980-15983.	6.6	77
101	The role of structural fluctuations and environmental noise in the electron/hole separation kinetics at organic polymer bulk-heterojunction interfaces. Physical Chemistry Chemical Physics, 2015, 17, 28853-28859.	1.3	13
102	Influence of Intermixed Donor and Acceptor Domains on the Ultrafast Charge Generation in Bulk Heterojunction Materials. Journal of Physical Chemistry C, 2015, 119, 26889-26894.	1.5	21
103	Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor–Bridge–Acceptor Systems. Journal of Physical Chemistry Letters, 2015, 6, 4889-4897.	2.1	32
104	Negative isotope effect for charge transport in acenes and derivatives – a theoretical conclusion. Physical Chemistry Chemical Physics, 2015, 17, 3273-3280.	1.3	19
105	Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing. Journal of Materials Chemistry C, 2015, 3, 1513-1520.	2.7	30
106	Impact of Blend Morphology on Interface State Recombination in Bulk Heterojunction Organic Solar Cells. Advanced Functional Materials, 2015, 25, 1090-1101.	7.8	29
107	Crystallization-Induced Energy Level Change of [6,6]-Phenyl-C ₆₁ -Butyric Acid Methyl Ester (PCBM) Film: Impact of Electronic Polarization Energy. Journal of Physical Chemistry C, 2015, 119, 23-28.	1.5	44
108	Materials Meets Concepts in Moleculeâ€Based Electronics. Advanced Functional Materials, 2015, 25, 1933-1954.	7.8	47
109	Ultrafast Charge Transfer in Operating Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 2036-2041.	11.1	31
110	Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes. Journal of Physical Chemistry B, 2015, 119, 7321-7327.	1.2	8
111	A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control. Journal of the American Chemical Society, 2015, 137, 2908-2918.	6.6	75
112	Light-Induced Open Circuit Voltage Increase in Polymer Solar Cells with Ternary Bulk Heterojunction Nanolayers. ACS Sustainable Chemistry and Engineering, 2015, 3, 55-62.	3.2	7
113	Impact of quantized vibrations on the efficiency of interfacial charge separation in photovoltaic devices. Physical Review B, 2015, 91, .	1.1	22
114	Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Scientific Reports, 2015, 5, 7787.	1.6	45

#	Article	IF	Citations
115	A design strategy for intramolecular singlet fission mediated by charge-transfer states inÂdonor–acceptor organic materials. Nature Materials, 2015, 14, 426-433.	13.3	298
116	Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Advanced Materials Interfaces, 2015, 2, 1400528.	1.9	122
117	Spin-dependent charge transfer state design rules in organic photovoltaics. Nature Communications, 2015, 6, 6415.	5.8	83
118	Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. Journal of the American Chemical Society, 2015, 137, 8192-8198.	6.6	86
119	Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment. Nano Letters, 2015, 15, 4274-4281.	4.5	32
120	Optical Characterization of the Hole Polaron in a Series of Diketopyrrolopyrrole Polymers Used for Organic Photovoltaics. Polymers, 2015, 7, 69-90.	2.0	8
121	Competition between singlet exciton fission, radiation, and dissociation measured in rubrene-doped amorphous films. Synthetic Metals, 2015, 207, 13-17.	2.1	13
122	Using lateral bulk heterojunctions to study the effects of additives on PTB7:PC61BM space charge regions. Synthetic Metals, 2015, 209, 158-163.	2.1	2
123	First Principle Analysis of Charge Dissociation and Charge Recombination Processes in Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 18870-18876.	1.5	8
124	Exciton intrachain transport induced by interchain packing configurations in conjugated polymers. Physical Chemistry Chemical Physics, 2015, 17, 18600-18605.	1.3	10
125	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energy and Environmental Science, 2015, 8, 3222-3232.	15.6	90
126	Synthesis and Electroluminescence of Novel Pyrene-Fused Chromophores. Organic Letters, 2015, 17, 3960-3963.	2.4	46
127	Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 2852-2858.	2.1	28
128	Exciton Mobility in Organic Photovoltaic Heterojunctions from Femtosecond Stimulated Raman. Journal of Physical Chemistry Letters, 2015, 6, 2919-2923.	2.1	16
129	Do "Hot―Charge-Transfer Excitons Promote Free Carrier Generation in Organic Photovoltaics?. Journal of Physical Chemistry C, 2015, 119, 15028-15035.	1.5	27
130	Enhanced performance of isotype planar heterojunction photoresponsive organic field-effect transistors by using Ag source-drain electrodes. Europhysics Letters, 2015, 110, 17006.	0.7	6
131	A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor–Acceptor Interface of Organic Solar Cells. Journal of Physical Chemistry B, 2015, 119, 10359-10371.	1.2	48
132	Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology. Energy and Environmental Science, 2015, 8, 2713-2724.	15.6	44

ARTICLE IF CITATIONS # Charge Dynamics in Organic Photovoltaic Materials: Interplay between Quantum Diffusion and 133 1.5 24 Quantum Relaxation. Journal of Physical Chemistry C, 2015, 119, 14989-14998. Origin of Effects of Additive Solvent on Film-Morphology in Solution-Processed Nonfullerene Solar 134 58 Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 6462-6471. Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary 135 1.4 37 solvent blends. Organic Electronics, 2015, 21, 216-222. Out-of-Phase Electron Spin Echo Studies of Light-Induced Charge-Transfer States in P3HT/PCBM 136 Composite. Journal of Physical Chemistry B, 2015, 119, 13543-13548. Coherent and Incoherent Contributions to Charge Separation in Multichromophore Systems. Journal 137 1.5 18 of Physical Chemistry C, 2015, 119, 7590-7603. Theoretical study of exciton dissociation through hot states at donorâ \in acceptor interface in organic photocell. Physical Chemistry Chemical Physics, 2015, 17, 12538-12544. 138 1.3 Design Rules for Organic Donorâ& Acceptor Heterojunctions: Pathway for Charge Splitting and 139 6.6 97 Detrapping. Journal of the American Chemical Society, 2015, 137, 6320-6326. Spin-boson theory for charge photogeneration in organic molecules: Role of quantum coherence. 140 1.1 Physical Review B, 2015, 91, . Elucidating the enhancement in optical properties of low band gap polymers by tuning the structure of alkyl side chains. Physical Chemistry Chemical Physics, 2015, 17, 9541-9551. 141 1.3 2 Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress 142 11.8 in synthesis and applications. Progress in Polymer Science, 2015, 47, 26-69. Design of organic ternary blends and small-molecule bulk heterojunctions: photophysical 143 0.8 8 considerations. Journal of Photonics for Energy, 2015, 5, 057208. The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the 1.6 Copolymer PBDTTT-C. Scientific Reports, 2015, 5, 8286. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends. Macromolecular 145 2.0 80 Rapid Communications, 2015, 36, 1001-1025. Polythienylene–Vinylene Structure–Function Correlations Revealed from Resonance Raman 146 1.5 14 Spectroscopy and Photocurrent Imaging. Journal of Physical Chemistry C, 2015, 119, 8980-8990. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiopheneâ€"Fullerene Heterojunctions. Journal of Physical Chemistry Letters, 2015, 6, 147 72 2.1 1702-1708. Raising efficiency of organic solar cells with electrotropic additives. Applied Physics Letters, 2015, 148 28 106, . Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated 149 1.6 5 Electron Tunneling and Emitting. Scientific Reports, 2015, 5, 8893. Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open ircuit Voltage of Organic Solar Cells. Advanced Energy Materials, 2015, 5, 354 1500123.

#	Article	IF	CITATIONS
151	Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nature Physics, 2015, 11, 352-357.	6.5	296
152	Device Performance of Small-Molecule Azomethine-Based Bulk Heterojunction Solar Cells. Chemistry of Materials, 2015, 27, 2990-2997.	3.2	45
153	High Electron Mobility and Its Role in Charge Carrier Generation in Merocyanine/Fullerene Blends. Journal of Physical Chemistry C, 2015, 119, 5761-5770.	1.5	10
154	Dominant Effects of First Monolayer Energetics at Donor/Acceptor Interfaces on Organic Photovoltaics. Advanced Materials, 2015, 27, 3025-3031.	11.1	53
155	The Impact of Donor–Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends. Macromolecular Rapid Communications, 2015, 36, 1054-1060.	2.0	29
156	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 10799-10812.	2.7	25
157	Nanoscale transport of charge-transfer states in organic donor–acceptor blends. Nature Materials, 2015, 14, 1130-1134.	13.3	159
158	New advances in non-fullerene acceptor based organic solar cells. RSC Advances, 2015, 5, 93002-93026.	1.7	157
159	Extreme electron polaron spatial delocalization in π-conjugated materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13779-13783.	3.3	48
160	Extended Charge Carrier Lifetimes in Hierarchical Donor–Acceptor Supramolecular Polymer Films. Journal of Physical Chemistry C, 2015, 119, 19584-19589.	1.5	25
161	Transient absorption characterization of Cu- and Zn-metallized derivatives of meso-tetrakis(4-caynophenyl) N-confused porphyrin. Proceedings of SPIE, 2015, , .	0.8	0
162	Nonparallel Stacks of Donor and Acceptor Chromophores Evade Geminate Charge Recombination. Journal of the American Chemical Society, 2015, 137, 15604-15607.	6.6	84
163	"Hot or cold†how do charge transfer states at the donor–acceptor interface of an organic solar cell dissociate?. Physical Chemistry Chemical Physics, 2015, 17, 28451-28462.	1.3	113
164	Spin-dependent recombination probed through the dielectric polarizability. Nature Communications, 2015, 6, 8534.	5.8	28
165	The influence of polaron formation on exciton dissociation. Physical Chemistry Chemical Physics, 2015, 17, 11553-11559.	1.3	6
166	Crystalline Alloys of Organic Donors and Acceptors Based on TIPS-Pentacene. Journal of Physical Chemistry C, 2015, 119, 20823-20832.	1.5	14
167	Bulk heterojunction organic solar cells based on carbazole–BODIPY conjugate small molecules as donors with high open circuit voltage. Physical Chemistry Chemical Physics, 2015, 17, 26580-26588.	1.3	53
168	Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nature Communications, 2015, 6, 8242.	5.8	525

#	Article	IF	CITATIONS
169	Field-enhanced recombination at low temperatures in an organic photovoltaic blend. Physical Review B, 2015, 92, .	1.1	8
170	White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent π-Conjugated Polymers Based on Concepts of Band-Structure Engineering. Journal of Physical Chemistry C, 2015, 119, 28701-28710.	1.5	34
171	Observing Vibrational Wavepackets during an Ultrafast Electron Transfer Reaction. Journal of Physical Chemistry A, 2015, 119, 11837-11846.	1.1	33
172	Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells. Nature Communications, 2015, 6, 8778.	5.8	100
173	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. Journal of Physical Chemistry C, 2015, 119, 26866-26874.	1.5	28
174	High open-circuit voltage small-molecule p-DTS(FBTTh ₂) ₂ :ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 1530-1539.	5.2	35
175	The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses. Physical Chemistry Chemical Physics, 2015, 17, 2447-2456.	1.3	8
176	Polymer aggregation control in polymer–fullerene bulk heterojunctions adapted from solution. Journal of Materials Chemistry A, 2015, 3, 395-403.	5.2	26
177	Models of charge pair generation in organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2311-2325.	1.3	158
178	Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule. Chemical Science, 2015, 6, 402-411.	3.7	64
179	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	1.6	32
180	Time―and Temperatureâ€Independent Local Carrier Mobility and Effects of Regioregularity in Polymerâ€Fullerene Organic Semiconductors. Advanced Electronic Materials, 2016, 2, 1500351.	2.6	23
181	Electronic and structural properties in thermally annealed PSiF-DBT:PC71BM blends for organic photovoltaics. Thin Solid Films, 2016, 615, 165-170.	0.8	11
182	Understanding Openâ€Circuit Voltage Loss through the Density of States in Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501721.	10.2	80
183	Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor–Acceptor Organic Solar Cell Blends. Journal of Physical Chemistry Letters, 2016, 7, 2640-2646.	2.1	14
184	Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors. Advanced Energy Materials, 2016, 6, 1502176.	10.2	31
185	Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Materials Today Energy, 2016, 1-2, 1-10.	2.5	30
186	Subpicosecond Photon-Energy-Dependent Hole Transfer from PbS Quantum Dots to Conjugated Polymers. Journal of Physical Chemistry Letters, 2016, 7, 5150-5155.	2.1	3

ARTICLE IF CITATIONS # Criteria for validating polaron pair dissociation in polymer-fullerene bulk heterojunction solar 187 1.1 4 cells. Journal of Applied Physics, 2016, 119, 154504. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar 188 1.1 cells. Journal of Applied Physics, 2016, 120, . Tracking the coherent generation of polaron pairs in conjugated polymers. Nature Communications, 189 5.8 149 2016, 7, 13742. Rigid, Conjugated Macrocycles for High Performance Organic Photodetectors. Journal of the 190 98 American Chemical Society, 2016, 138, 16426-16431. Superintermolecular orbitals in the C60 -pentacene complex. Physical Review A, 2016, 94, . 191 1.0 1 Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach. Journal of Chemical Physics, 2016, 144, 214106. 1.2 Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic 193 0.9 34 supercontinuum. Structural Dynamics, 2016, 3, 062603. Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons. 194 10.2 16 Advanced Energy Materials, 2016, 6, 1301032. Polaron Delocalization in Conjugated Polymer Films. Journal of Physical Chemistry C, 2016, 120, 195 79 1.5 11394-11406. Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall 5.1 system. Applied Energy, 2016, 177, 25-39. A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient 197 5.2 12 opto-electronic conversion. Journal of Materials Chemistry A, 2016, 4, 9019-9028. Influence of Blend Ratio and Processing Additive on Free Carrier Yield and Mobility in PTB7:PC₇₁BM Photovoltaic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 198 1.5 9588-9594. Charge Delocalization in Oligomers of Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-<i>b</i>)thiophene) 199 1.5 25 (PBTTT). Journal of Physical Chemistry C, 2016, 120, 9671-9677. Does organic/organic interface mimic band bending by deforming structure?. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 181-185. Interâ€Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in 201 10.2 15 Organic Bulk Heterojunctions. Advanced Energy Materials, 2016, 6, 1601427. Electrostatic phenomena in organic semiconductors: fundamentals and implications for 131 photovoltaics. Journal of Physics Condensed Matter, 2016, 28, 433002. Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews, 2016, 116, 203 23.0 1,205 13279-13412. 204 Incoherent charge separation dynamics in organic photovoltaics., 2016, , .

#	Article	IF	CITATIONS
205	Extended Intermolecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3936-3944.	2.1	11
206	Light-induced charge separation in a P3HT/PC ₇₀ BM composite as studied by out-of-phase electron spin echo spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 28585-28593.	1.3	16
207	Charge Generation and Electron-Trapping Dynamics in Hybrid Nanocrystal-Polymer Solar Cells. Journal of Physical Chemistry C, 2016, 120, 19064-19069.	1.5	11
208	Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 21798-21805.	4.0	11
209	Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. Journal of Physical Chemistry A, 2016, 120, 6792-6799.	1.1	58
210	Ultrafast Photophysics of Singleâ€Walled Carbon Nanotubes. Advanced Optical Materials, 2016, 4, 1670-1688.	3.6	28
211	Theoretical Study of the Charge-Transfer State Separation within Marcus Theory: The C ₆₀ -Anthracene Case Study. ACS Applied Materials & Interfaces, 2016, 8, 24722-24736.	4.0	19
212	Dynamics of Photocarrier Separation in MAPbI ₃ Perovskite Multigrain Films under a Quasistatic Electric Field. Journal of Physical Chemistry C, 2016, 120, 19595-19602.	1.5	22
213	Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?. Physical Chemistry Chemical Physics, 2016, 18, 27761-27774.	1.3	67
214	What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends. Journal of the American Chemical Society, 2016, 138, 11672-11679.	6.6	179
215	Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells. Scientific Reports, 2016, 6, 29437.	1.6	52
216	Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Science Advances, 2016, 2, e1600076.	4.7	139
217	Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 32282-32291.	4.0	22
218	Design principles for block polymer organic double heterojunction solar cells. Materials Horizons, 2016, 3, 575-580.	6.4	4
219	Phase-dependent exciton transport and energy harvesting from thermal environments. Physical Review A, 2016, 93, .	1.0	28
220	Magnetophotocurrent in Organic Bulk Heterojunction Photovoltaic Cells at Low Temperatures and High Magnetic Fields. Physical Review Applied, 2016, 5, .	1.5	13
221	Simulating open quantum dynamics with time-dependent variational matrix product states: Towards microscopic correlation of environment dynamics and reduced system evolution. Physical Review B, 2016, 93, .	1.1	80
222	Morphological Tuning of the Energetics in Singlet Fission Organic Solar Cells. Advanced Functional Materials, 2016, 26, 6489-6494.	7.8	24

#	Article	IF	CITATIONS
223	Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C ₆₀ and PCBM. Journal of Physical Chemistry C, 2016, 120, 25083-25091.	1.5	39
224	Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, 2016, , .	0.4	19
225	Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature Energy, 2016, 1, .	19.8	1,167
226	Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells. Scientific Reports, 2016, 6, 29158.	1.6	42
227	Sub-10 fs Time-Resolved Vibronic Optical Microscopy. Journal of Physical Chemistry Letters, 2016, 7, 4854-4859.	2.1	44
228	Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. Journal of the American Chemical Society, 2016, 138, 15497-15505.	6.6	16
229	Prolonged Charge Separated States in Twisted Stacks of All-Carbon Donor and Acceptor Chromophores. Journal of Physical Chemistry Letters, 2016, 7, 4751-4756.	2.1	19
230	Ultrafast Long-Range Charge Separation in Organic Photovoltaics: Promotion by Off-Diagonal Vibronic Couplings and Entropy Increase. Journal of Physical Chemistry Letters, 2016, 7, 4830-4835.	2.1	50
231	Entropy and Disorder Enable Charge Separation in Organic Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4495-4500.	2.1	164
232	Slower carriers limit charge generation in organic semiconductor light-harvesting systems. Nature Communications, 2016, 7, 11944.	5.8	65
233	Molecular Spins in Biological Systems. Biological Magnetic Resonance, 2016, , 51-77.	0.4	1
234	The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nature Communications, 2016, 7, 12556.	5.8	68
235	Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer. Journal of Physical Chemistry B, 2016, 120, 10854-10859.	1.2	4
236	Dependence of Nonadiabatic Couplings with Kohn–Sham Orbitals on the Choice of Density Functional: Pure vs Hybrid. Journal of Physical Chemistry A, 2016, 120, 9028-9041.	1.1	39
237	Role of coherence and delocalization in photo-induced electron transfer at organic interfaces. Scientific Reports, 2016, 6, 32914.	1.6	41
238	Limits for Recombination in a Low Energy Loss Organic Heterojunction. ACS Nano, 2016, 10, 10736-10744.	7.3	79
239	How two-dimensional brick layer J-aggregates differ from linear ones: Excitonic properties and line broadening mechanisms. Journal of Chemical Physics, 2016, 144, 134310.	1.2	12
240	Photoinduced Electron Transfer in Organic Solar Cells. Chemical Record, 2016, 16, 734-753.	2.9	66

#	Article	IF	CITATIONS
241	Electronic Structure and Properties of Organic Bulkâ€Heterojunction Interfaces. Advanced Materials, 2016, 28, 3814-3830.	11.1	74
242	Acceptor Endâ€Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	11.1	87
243	The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 17546-17556.	1.3	17
245	Determining the spatial coherence of excitons from the photoluminescence spectrum in charge-transfer J-aggregates. Chemical Physics, 2016, 481, 262-271.	0.9	14
246	A Model of Charge-Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects. Journal of Physical Chemistry Letters, 2016, 7, 2246-2251.	2.1	18
247	Interfacial Charge Transfer States in Condensed Phase Systems. Annual Review of Physical Chemistry, 2016, 67, 113-133.	4.8	176
248	Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects. Nanoscale, 2016, 8, 15902-15910.	2.8	9
249	Charge-Transfer State Energy and Its Relationship with Open-Circuit Voltage in an Organic Photovoltaic Device. Journal of Physical Chemistry C, 2016, 120, 14059-14068.	1.5	28
250	Charge Carrier Generation and Extraction in Hybrid Polymer/Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2016, 120, 14356-14364.	1.5	5
251	Thermalâ€annealing dependence of crystallization on solutionâ€processed smallâ€molecule organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 412-418.	0.8	6
252	Description of the Charge Transfer States at the Pentacene/C ₆₀ Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. Journal of Physical Chemistry Letters, 2016, 7, 2616-2621.	2.1	66
253	Resonance Energy Transfer Enables Efficient Planar Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 87-97.	1.5	12
254	Effect of blend composition on ternary blend organic solar cells using a low band gap polymer. Synthetic Metals, 2016, 212, 142-153.	2.1	5
255	Locally resolved large scale phase separation in polymer:fullerene blends. Journal of Materials Chemistry A, 2016, 4, 1244-1250.	5.2	6
256	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	6.6	643
257	Chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride): synthesis, characterization, and materials properties. Journal of Solid State Electrochemistry, 2016, 20, 489-497.	1.2	13
258	Charge transport control via polymer polymorph modulation in ternary organic photovoltaic composites. Journal of Materials Chemistry A, 2016, 4, 1195-1201.	5.2	14
259	Photon-conversion and sensitization evaluation of Eu^3+ in a borate glass system. Applied Optics, 2016, 55, 1444.	2.1	1

#	Article	IF	CITATIONS
260	Electronic Structure Properties of Two-Dimensional π-Conjugated Polymers. Macromolecules, 2016, 49, 1305-1312.	2.2	32
261	Interface-induced crystallization and nanostructure formation of [6,6]-phenyl-C ₆₁ -butyric acid methyl ester (PCBM) in polymer blend films and its application in photovoltaics. Journal of Materials Chemistry A, 2016, 4, 3335-3341.	5.2	14
262	Charge Separation and Recombination at Polymer–Fullerene Heterojunctions: Delocalization and Hybridization Effects. Journal of Physical Chemistry Letters, 2016, 7, 536-540.	2.1	93
263	Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells Based on Alternating Polyquinoxaline Copolymer. Journal of Physical Chemistry C, 2016, 120, 4219-4226.	1.5	22
264	Charge generation in organic photovoltaics: a review of theory and computation. Molecular Systems Design and Engineering, 2016, 1, 10-24.	1.7	86
265	Unveiling the Role of <i>Hot</i> Charge-Transfer States in Molecular Aggregates via Nonadiabatic Dynamics. Journal of the American Chemical Society, 2016, 138, 4502-4511.	6.6	41
266	Migration of an exciton in organic polymers driven by a nonuniform internal electric field. Organic Electronics, 2016, 30, 171-175.	1.4	5
267	Do charges delocalize over multiple molecules in fullerene derivatives?. Journal of Materials Chemistry C, 2016, 4, 3747-3756.	2.7	44
268	Transient Absorption Spectroscopy for Polymer Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 100-111.	1.9	35
269	The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System. Journal of Physical Chemistry A, 2016, 120, 2970-2975.	1.1	20
270	Electronic Structure of Crystalline Buckyballs: fcc-C60. Journal of Electronic Materials, 2016, 45, 339-348.	1.0	26
271	Persistent Charge-Separated States in Self-Assembled Twisted Nonsymmetric Donor–Acceptor Triads. Journal of Physical Chemistry C, 2017, 121, 4765-4777.	1.5	19
272	Small is Powerful: Recent Progress in Solutionâ€Processed Small Molecule Solar Cells. Advanced Energy Materials, 2017, 7, 1602242.	10.2	371
273	Revelation of Interfacial Energetics in Organic Multiheterojunctions. Advanced Science, 2017, 4, 1600331.	5.6	33
274	Visualizing excitations at buried heterojunctions in organic semiconductor blends. Nature Materials, 2017, 16, 551-557.	13.3	98
275	Pushing the knowledge of interfaces. Nature Materials, 2017, 16, 503-505.	13.3	7
276	Modeling Ultrafast Exciton Migration within the Electron Donor Domains of Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 5467-5479.	1.5	2
277	A Multidimensional View of Charge Transfer Excitons at Organic Donor–Acceptor Interfaces. Journal of the American Chemical Society, 2017, 139, 4098-4106.	6.6	45

#	Article	IF	CITATIONS
278	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. Journal of Materials Chemistry A, 2017, 5, 5351-5361.	5.2	26
279	Photoexcited State Confinement in Two-Dimensional Crystalline Anthracene Monolayer at Room Temperature. ACS Nano, 2017, 11, 4307-4314.	7.3	17
280	Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing. Advanced Energy Materials, 2017, 7, 1602713.	10.2	28
281	Charge Separation Mechanisms in Ordered Films of Self-Assembled Donor–Acceptor Dyad Ribbons. ACS Applied Materials & Interfaces, 2017, 9, 33493-33503.	4.0	20
282	The molecular way. Nature Materials, 2017, 16, 505-506.	13.3	116
283	Importance of side-chain anchoring atoms on electron donor/fullerene interfaces for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9316-9321.	5.2	34
284	Unoccupied surface state induced by ozone and ammonia on H-terminated diamond electrodes for photocatalytic ammonia synthesis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 04D102.	0.9	5
285	Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. ACS Applied Materials & Interfaces, 2017, 9, 18095-18102.	4.0	90
286	Time-resolved photoemission studies of exciton dissociation in organic photovoltaics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 03E115.	0.9	1
287	Towards laser control of open quantum systems: memory effects. Molecular Physics, 2017, 115, 1944-1954.	0.8	6
288	Separation of geminate electron-hole pairs at donor-acceptor interfaces in the approximation of prescribed diffusion. Chemical Physics, 2017, 491, 102-111.	0.9	0
289	Charge Separation in Intermixed Polymer:PC ₇₀ BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. Journal of Physical Chemistry C, 2017, 121, 9790-9801.	1.5	20
290	Efficient Charge Separation of Cold Charge-Transfer States in Organic Solar Cells Through Incoherent Hopping. Journal of Physical Chemistry Letters, 2017, 8, 2093-2098.	2.1	58
291	Evaluating the Effect of Heteroatoms on the Photophysical Properties of Donor–Acceptor Conjugated Polymers Based on 2,6-Di(thiophen-2-yl)benzo[1,2-b:4,5-bâ€2]difuran: Two-Photon Cross-Section and Ultrafast Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 14382-14392.	1.5	27
292	The thickness of the two-dimensional charge transfer state at the TTF-TCNQ interface. Organic Electronics, 2017, 48, 371-376.	1.4	5
293	On the energetics of bound charge-transfer states in organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 11949-11959.	5.2	23
294	Origin of the Excited-State Absorption Spectrum of Polythiophene. Journal of Physical Chemistry Letters, 2017, 8, 2806-2811.	2.1	18
295	Higher-Energy Charge Transfer States Facilitate Charge Separation in Donor–Acceptor Molecular Dyads. Journal of Physical Chemistry C, 2017, 121, 13043-13051.	1.5	13

#	Article	IF	CITATIONS
296	Engineering charge transport by heterostructuring solution-processed semiconductors. Nature Reviews Materials, 2017, 2, .	23.3	105
297	<i>N</i> -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	3.1	30
298	Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research, 2017, 32, 1798-1824.	1.2	16
299	Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices. Advanced Materials, 2017, 29, 1606909.	11.1	32
300	Is back-electron transfer process in Betaine-30 coherent?. Chemical Physics Letters, 2017, 683, 500-506.	1.2	10
301	Origin of space-separated charges in photoexcited organic heterojunctions on ultrafast time scales. Physical Review B, 2017, 95, .	1.1	17
302	Charge Localization after Ultrafast Photoexcitation of a Rigid Perylene Perylenediimide Dyad Visualized by Transient Stark Effect. Journal of the American Chemical Society, 2017, 139, 5530-5537.	6.6	33
303	Light Harvesting for Organic Photovoltaics. Chemical Reviews, 2017, 117, 796-837.	23.0	457
304	Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer. Physical Chemistry Chemical Physics, 2017, 19, 3627-3639.	1.3	39
305	Influence of Anion Delocalization on Electron Transfer in a Covalent Porphyrin Donor–Perylenediimide Dimer Acceptor System. Journal of the American Chemical Society, 2017, 139, 749-756.	6.6	68
306	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multi‣ength Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	10.2	232
307	Triplet Excitons in Highly Efficient Solar Cells Based on the Soluble Small Molecule pâ€ÐTS(FBTTh 2) 2. Advanced Energy Materials, 2017, 7, 1602016.	10.2	15
308	Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. Journal of Physical Chemistry C, 2017, 121, 2059-2068.	1.5	22
309	Simulating charge transport in organic semiconductors and devices: a review. Reports on Progress in Physics, 2017, 80, 026502.	8.1	56
310	Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, 2017, , .	0.4	15
311	Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nature Materials, 2017, 16, 35-44.	13.3	243
312	Electronic Properties of Interfaces with Oligo- and Polythiophenes. Advances in Polymer Science, 2017, , 377-399.	0.4	3
313	Optoelectronic Properties of PCPDTBT for Photovoltaics: Morphology Control and Molecular Doping. Advances in Polymer Science, 2017, , 109-138.	0.4	3

	Сітаті	ION REPORT	
# 314	ARTICLE Thiophene-Based Organic Semiconductors. Topics in Current Chemistry, 2017, 375, 84.	IF 3.0	Citations 88
315	Charge Generation in Organic Solar Cells: Interplay of Quantum Dynamics, Decoherence, and Recombination. Journal of Physical Chemistry C, 2017, 121, 23276-23286.	1.5	15
316	Organic long persistent luminescence. Nature, 2017, 550, 384-387.	13.7	788
317	Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5171-5176.	2.1	28
318	Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nature Reviews Materials, 2017, 2, .	23.3	309
319	Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22170-22179.	5.2	71
320	Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors. Journal of Chemical Physics, 2017, 147, 114905.	1.2	15
321	Cyclic Emitter with Tetraphenylsilane and Tetraphenylethene Units Exhibiting Tunable Color Emissions. Chemistry Letters, 2017, 46, 1546-1549.	0.7	1
322	Impact of Active Layer Morphology on Bimolecular Recombination Dynamics in Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 24954-24961.	1.5	26
323	Exciton-Coupled Electron Transfer Process Controlled by Non-Markovian Environments. Journal of Physical Chemistry Letters, 2017, 8, 5390-5394.	2.1	12
324	Barrierless Slow Dissociation of Photogenerated Charge Pairs in High-Performance Polymer–Fullerene Solar Cells. Journal of Physical Chemistry C, 2017, 121, 14060-14065.	1.5	11
325	Charge Generation in Non-Fullerene Donor–Acceptor Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 18412-18422.	1.5	7
326	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	3.2	139
327	Role of Hybrid Charge Transfer States in the Charge Generation at ZnMgO/P3HT Heterojunctions. Journal of Physical Chemistry C, 2017, 121, 21955-21961.	1.5	12
328	Hot and Cold Charge-Transfer Mechanisms in Organic Photovoltaics: Insights into the Excited States of Donor/Acceptor Interfaces. Journal of Physical Chemistry Letters, 2017, 8, 4727-4734.	2.1	36
329	Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 4858-4864.	2.1	13
330	Ultrafast Exciton Migration and Dissociation in π-Conjugated Polymers Driven by Local Nonuniform Electric Fields. Journal of Physical Chemistry C, 2017, 121, 20546-20552.	1.5	18
331	Uncovering nonperturbative dynamics of the biased sub-Ohmic spin-boson model with variational matrix product states. Physical Review B, 2017, 96, .	1.1	9

#	Article	IF	CITATIONS
332	Identification of Ultrafast Photophysical Pathways in Photoexcited Organic Heterojunctions. Journal of Physical Chemistry C, 2017, 121, 19602-19618.	1.5	9
333	Photogeneration of Charge Carriers in (Phenyl-C61-butyric Acid Methyl Ester) Mixed with a Small Amount of Polymers. Journal of Physical Chemistry C, 2017, 121, 20650-20661.	1.5	6
334	Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC ₆₀ BM revealed using Q-band pulse EPR. Physical Chemistry Chemical Physics, 2017, 19, 22141-22152.	1.3	11
335	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
336	Analysis of the non-Markovianity for electron transfer reactions in an oligothiophene-fullerene heterojunction. Chemical Physics, 2017, 494, 90-102.	0.9	13
337	Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials, 2017, 29, 10248-10283.	3.2	286
338	The Enhancement of Interfacial Exciton Dissociation by Energetic Disorder Is a Nonequilibrium Effect. ACS Central Science, 2017, 3, 1262-1270.	5.3	44
339	Kinetic Competition between Charge Separation and Triplet Formation in Small-Molecule Photovoltaic Blends. Journal of Physical Chemistry C, 2017, 121, 26667-26676.	1.5	17
340	Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells. ACS Nano, 2017, 11, 12473-12481.	7.3	82
341	Perturbation expansions of stochastic wavefunctions for open quantum systems. Journal of Chemical Physics, 2017, 147, 184103.	1.2	14
342	Direct estimation of the transfer integral for photoinduced electron transfer from TD DFT calculations. Physical Chemistry Chemical Physics, 2017, 19, 31007-31010.	1.3	3
343	Photoinduced Charge Transfer in Poly(3-hexylthiophene)/TiO2 Hybrid Inverse Opals: Photonic vs Interfacial Effects. Journal of Physical Chemistry C, 2017, 121, 26987-26996.	1.5	6
344	Magnetic field enhancement of organic photovoltaic cells performance. Scientific Reports, 2017, 7, 4297.	1.6	16
345	Vibronic coupling in organic semiconductors for photovoltaics. Physical Chemistry Chemical Physics, 2017, 19, 18813-18830.	1.3	70
346	The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays. Physical Chemistry Chemical Physics, 2017, 19, 18709-18720.	1.3	5
347	Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional. Journal of Physical Chemistry Letters, 2017, 8, 3277-3283.	2.1	84
348	Synthesis and electroluminescence properties of new blue dual-core OLED emitters using bulky side chromophores. Dyes and Pigments, 2017, 136, 255-261.	2.0	20
349	Sulfur rich electron donors – formation of singlet versus triplet radical ion pair states featuring different lifetimes in the same conjugate. Chemical Science, 2017, 8, 1360-1368.	3.7	12

#	Article	IF	CITATIONS
350	Monomolecular and Bimolecular Recombination of Electron–Hole Pairs at the Interface of a Bilayer Organic Solar Cell. Advanced Functional Materials, 2017, 27, 1604906.	7.8	57
351	Molecular Understanding of Fullerene – Electron Donor Interactions in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601370.	10.2	66
352	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. Advanced Energy Materials, 2017, 7, 1601081.	10.2	43
353	Simulating exciton delocalization in organic solar cells by a modified drift-diffusion model. , 2017, , .		0
354	Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems. Structural Dynamics, 2017, 4, 061503.	0.9	13
355	Ultrafast bridge planarization in donor-ï€-acceptor copolymers drives intramolecular charge transfer. Nature Communications, 2017, 8, 1716.	5.8	77
356	Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State. Journal of Spectroscopy, 2017, 2017, 1-16.	0.6	24
357	Exciton and Charge Dynamics in Polymer Solar Cells. Kobunshi Ronbunshu, 2017, 74, 430-451.	0.2	0
358	Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells. Journal of Chemical Physics, 2018, 148, 084109.	1.2	17
359	The isotope effect on charge transport for bithiophene and di(n-hexyl)-bithiophene: impacts of deuteration position, deuteration number and side chain substitution position. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	2
360	Delocalization Drives Free Charge Generation in Conjugated Polymer Films. ACS Energy Letters, 2018, 3, 735-741.	8.8	23
361	Polymer network hole transport layers based on photochemically cross-linkable <i>N</i> ′ <i>N</i> ′-diallyl amide tri-N-substituted triazatruxene monomers. RSC Advances, 2018, 8, 8580-8585.	1.7	8
362	Increases in the Charge Separation Barrier in Organic Solar Cells Due to Delocalization. Journal of Physical Chemistry Letters, 2018, 9, 1359-1364.	2.1	18
363	Figures of Merit Guiding Research on Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 5829-5843.	1.5	34
364	Multifunctional Bilayer Template for Near-Infrared-Sensitive Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16681-16689.	4.0	3
365	Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS ₂ van der Waals Heterojunction. Journal of Physical Chemistry Letters, 2018, 9, 2484-2491.	2.1	57
366	Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1707126.	7.8	25
367	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43

ARTICLE IF CITATIONS Coherence from Light Harvesting to Chemistry. Journal of Physical Chemistry Letters, 2018, 9, 368 2.128 1568-1572. The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymerâ€Based Solar 10.2 Cells. Advanced Energy Materials, 2018, 8, 1703355. Highly efficient chrysene emitters based on optimized side groups for deep blue emission. Dyes and 370 2.0 14 Pigments, 2018, 156, 299-306. Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. 371 Organic Electronics, 2018, 55, 177-186. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. 372 13.3 556 Nature Materials, 2018, 17, 253-260. Evidence on Enhanced Exciton Polarizability in Donor/Acceptor Bulk Heterojunction Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2018, 10, 7256-7262. 4.0 Unraveling the Ultrafast Exciton Relaxation and Hidden Energy State in 374 CH₃NH₃PbBr₃Nanoparticles. Journal of Physical Chemistry C, 1.5 15 2018, 122, 5209-5214. Crystallization and Polymorphism of Organic Semiconductor in Thin Film Induced by Surface 1.6 21 Segregated Monolayers. Scientific Reports, 2018, 8, 481. From Molecular Packing Structures to Electronic Processes: Theoretical Simulations for Organic 376 10.2 93 Solar Cells. Advanced Energy Materials, 2018, 8, 1702743. Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices. Journal of Physical Chemistry A, 2018, 122, 1.1 1253-1260. Structural determinants in the bulk heterojunction. Physical Chemistry Chemical Physics, 2018, 20, 378 3 1.3 5708-5720. The Impact of Local Morphology on Organic Donor/Acceptor Charge Transfer States. Advanced Energy 379 Materials, 2018, 8, 1702816. Effect of Halogenation on the Energetics of Pure and Mixed Phases in Model Organic Semiconductors Composed of Anthradithiophene Derivatives and C₆₀. Journal of Physical Chemistry C, 380 1.5 8 2018, 122, 4757-4767. Order enables efficient electron-hole separation at an organic heterojunction with a small energy 5.8 loss. Nature Communications, 2018, 9, 277. 382 Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17, 119-128. 13.3 2.315 A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction. Result's in Physics, 2018, 8, 468-472. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions. Journal of Physics B: Atomic, Molecular and Optical 384 0.6 27 Physics, 2018, 51, 014003. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent 2.1 34 Density Matrix Renormalization Group Method. Journal of Physical Chemistry Letters, 2018, 9, 413-419.

#	Article	IF	CITATIONS
386	Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC. Journal of Magnetic Resonance, 2018, 288, 1-10.	1.2	12
387	Hot kinetic model as a guide to improve organic photovoltaic materials. Physical Chemistry Chemical Physics, 2018, 20, 3658-3671.	1.3	15
388	Efficient Charge Transport in Disordered Conjugated Polymer Microstructures. Macromolecular Rapid Communications, 2018, 39, e1800096.	2.0	36
389	Field-Assisted Exciton Dissociation in Highly Efficient PffBT4T-2OD:Fullerene Organic Solar Cells. Chemistry of Materials, 2018, 30, 2660-2667.	3.2	49
390	Basic mechanisms in the laser control of non-Markovian dynamics. Physical Review A, 2018, 97, .	1.0	5
391	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
392	Femtosecond Dynamics of Photoexcited C ₆₀ Films. Journal of Physical Chemistry Letters, 2018, 9, 1885-1892.	2.1	22
393	Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator. Physical Review X, 2018, 8, .	2.8	44
394	Graphene Field-Effect Transistor as a High-Throughput Platform to Probe Charge Separation at Donor–Acceptor Interfaces. Journal of Physical Chemistry Letters, 2018, 9, 1633-1641.	2.1	11
395	Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime. Joule, 2018, 2, 25-35.	11.7	440
396	Quantum modeling of ultrafast photoinduced charge separation. Journal of Physics Condensed Matter, 2018, 30, 013002.	0.7	29
397	Quantum dynamical studies of ultrafast charge separation in nanostructured organic polymer materials: Effects of vibronic interactions and molecular packing. International Journal of Quantum Chemistry, 2018, 118, e25502.	1.0	30
398	Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets. Advanced Energy Materials, 2018, 8, 1701073.	10.2	60
399	From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine‣ubstituted Polymer Donors. Advanced Energy Materials, 2018, 8, 1701678.	10.2	33
400	Small Molecule Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 1-43.	0.4	4
401	Time-Resolved Laser Spectroscopy in Molecular Devices for Solar Energy Conversion. Green Chemistry and Sustainable Technology, 2018, , 385-432.	0.4	2
402	Holeâ€Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. Advanced Materials, 2018, 30, 1704263.	11.1	101
403	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	11.1	214

23

#	Article	IF	CITATIONS
404	The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor–acceptor junction solar cells. Nanoscale, 2018, 10, 451-459.	2.8	5
405	Bandâ€like Charge Photogeneration at a Crystalline Organic Donor/Acceptor Interface. Advanced Energy Materials, 2018, 8, 1701494.	10.2	23
406	The 3 D Structure of Twisted Benzo[ghi]peryleneâ€Triimide Dimer as a Nonâ€Fullerene Acceptor for Inverted Perovskite Solar Cells. ChemSusChem, 2018, 11, 415-423.	3.6	27
407	Dynamics of Photoexcited Charges in Organic Heterojunctions - Insights from Theory and Simulation. , 2018, , .		0
408	Thousand-atom <i>ab initio</i> calculations of excited states at organic/organic interfaces: toward first-principles investigations of charge photogeneration. Physical Chemistry Chemical Physics, 2018, 20, 26443-26452.	1.3	7
409	Effects of end-on oriented polymer chains at the donor/acceptor interface in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 22889-22898.	5.2	22
410	Unveiling the Molecular Symmetry Dependence of Exciton Dissociation Processes in Small-Molecular Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 26851-26856.	1.5	5
411	Prototyping Ultrafast Charge Separation by Means of Time-Dependent Density Functional Methods. , 2018, , 1-19.		0
412	Relating free energy and open-circuit voltage to disorder in organic photovoltaic systems. Journal of Chemical Physics, 2018, 149, 244123.	1.2	6
413	Electrical characterization of two analogous Schottky contacts produced from <i>N</i> -substituted 1,8-naphthalimide. Physical Chemistry Chemical Physics, 2018, 20, 30502-30513.	1.3	3
414	Impact of Structural Polymorphs on Charge Collection and Nongeminate Recombination in Organic Photovoltaic Devices. Journal of Physical Chemistry C, 2018, 122, 29141-29149.	1.5	5
415	Establishing a microscopic model for nonfullerene organic solar cells: Self-accumulation effect of charges. Journal of Chemical Physics, 2018, 149, 194902.	1.2	4
416	Anomalous Exciton Quenching in Organic Semiconductors in the Low-Yield Limit. Journal of Physical Chemistry Letters, 2018, 9, 6144-6148.	2.1	6
417	Donor–acceptor photoexcitation dynamics in organic blends investigated with a high sensitivity pump–probe system. Journal of Materials Chemistry C, 2018, 6, 10822-10828.	2.7	2
418	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123.	3.2	4
419	The relationship between the coherent size, binding energy and dissociation dynamics of charge transfer excitons at organic interfaces. Journal of Physics Condensed Matter, 2018, 30, 454001.	0.7	13
420	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	11.1	161
421	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. Advanced Energy Materials, 2018, 8, 1801537.	10.2	22

#	Article	IF	CITATIONS
422	Magnetic fields: a tool for the study of organic solar cells. European Physical Journal: Special Topics, 2018, 227, 259-268.	1.2	6
423	Ultrafast relaxation dynamics in a polymer: fullerene blend for organic photovoltaics probed by two-dimensional electronic spectroscopy. European Physical Journal B, 2018, 91, 1.	0.6	27
424	Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field. Science Advances, 2018, 4, eaat9722.	4.7	29
425	Nonthermal Site Occupation at the Donor-Acceptor Interface of Organic Solar Cells. Physical Review Applied, 2018, 10, .	1.5	16
426	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 36037-36046.	4.0	21
427	Push–pull architecture eliminates chain length effects on exciton dissociation. Journal of Materials Chemistry A, 2018, 6, 22758-22767.	5.2	5
428	Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces. Materials, 2018, 11, 1530.	1.3	3
429	Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light: Science and Applications, 2018, 7, 55.	7.7	29
430	Improvement of polymer:fullerene bulk heterojunction morphology via temperature and anti-solvent effect. Synthetic Metals, 2018, 243, 8-16.	2.1	7
431	Key Tradeoffs Limiting the Performance of Organic Photovoltaics. Advanced Energy Materials, 2018, 8, 1703551.	10.2	71
432	Unveiling of polymer/fullerene blend films morphology by ellipsometrically determined optical order within polymer and fullerene phases. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1094-1100.	2.4	8
433	Charge Generation via Relaxed Charge-Transfer States in Organic Photovoltaics by an Energy-Disorder-Driven Entropy Gain. Journal of Physical Chemistry C, 2018, 122, 12640-12646.	1.5	24
434	Surface States Mediate Triplet Energy Transfer in Nanocrystal–Acene Composite Systems. Journal of the American Chemical Society, 2018, 140, 7543-7553.	6.6	88
435	Ternary Blend Strategy for Achieving Highâ€Efficiency Organic Solar Cells with Nonfullerene Acceptors Involved. Advanced Functional Materials, 2018, 28, 1802004.	7.8	85
436	Effect of fullerene acceptor on the performance of solar cells based on PffBT4T-2OD. Physical Chemistry Chemical Physics, 2018, 20, 19023-19029.	1.3	14
437	Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Topics in Current Chemistry, 2018, 376, 28.	3.0	5
438	Organic Photovoltaics over Three Decades. Advanced Materials, 2018, 30, e1800388.	11.1	540
439	Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors. Communications Physics, 2018, 1, .	2.0	23

#	Article	IF	CITATIONS
440	A comprehensively theoretical and experimental study of carrier generation and transport for achieving high performance ternary blend organic solar cells. Nano Energy, 2018, 51, 206-215.	8.2	14
441	Quantum Simulations of Charge Separation at a Model Donor-Acceptor Interface: Role of Delocalization and Local Packing. Advances in Condensed Matter Physics, 2018, 2018, 1-10.	0.4	3
442	Effect of substitution positions of alkyl side chains in phenanthrodithiophene–isoindigo copolymers: The enhancement of crystallinity and control of molecular orders. Journal of Polymer Science Part A, 2018, 56, 1757-1767.	2.5	4
443	Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model. International Journal of Molecular Sciences, 2018, 19, 1134.	1.8	7
444	Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations. Polymers, 2018, 10, 123.	2.0	67
445	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	13.3	701
446	Non-Markovian Quantum-Classical Ratchet for Ultrafast Long-Range Electron-Hole Separation in Condensed Phases. Physical Review Letters, 2018, 121, 026001.	2.9	14
447	Theoretical estimation of the dissociation energy of CT states at the acenes/C60 interfaces using fragmental-based ALMO method. Computational and Theoretical Chemistry, 2018, 1140, 32-37.	1.1	2
448	Oxidation inhibition of poly(3-hexylthiophene-2,5-diyl) in the bulk heterojunction by an electron acceptor. Applied Surface Science, 2018, 458, 43-48.	3.1	1
449	Effects of Surface Passivation on Trap States, Band Bending, and Photoinduced Charge Transfer in P3HT/TiO ₂ Hybrid Inverse Opals. Journal of Physical Chemistry C, 2018, 122, 17301-17308.	1.5	4
450	Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 2018, 140, 9996-10008.	6.6	73
451	Excited-state structural relaxation and exciton delocalization dynamics in linear and cyclic Ĩ€-conjugated oligothiophenes. Chemical Society Reviews, 2018, 47, 4279-4294.	18.7	38
452	Controlling donor crystallinity and phase separation in bulk heterojunction solar cells by the introduction of orthogonal solvent additives. MRS Advances, 2018, 3, 1891-1900.	0.5	5
453	Rationalizing Smallâ€Molecule Donor Design toward Highâ€Performance Organic Solar Cells: Perspective from Molecular Architectures. Advanced Theory and Simulations, 2018, 1, 1800091.	1.3	29
454	Charge Separation from a "Cold―Charge-Transfer State Driven by a Nonuniform Electric Field in Polymer-Based Donor/Acceptor Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 20676-20683.	1.5	11
455	Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility. Journal of Materials Chemistry A, 2018, 6, 12484-12492.	5.2	43
456	Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex. Physical Review A, 2018, 97, .	1.0	13
457	Increased Exciton Delocalization of Polymer upon Blending with Fullerene. Advanced Materials, 2018, 30, 1801392.	11.1	20

#	Article	IF	CITATIONS
458	The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1375.	6.2	23
459	Rational design non-fullerene acceptor-based high efficiency BHJ polymer solar cells through theoretical investigations. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111985.	2.0	6
460	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & amp; Interfaces, 2019, 11, 31191-31199.	4.0	9
462	Tunable optoelectronic properties in h-BP/h-BAs bilayers: The effect of an external electrical field. Applied Surface Science, 2019, 493, 308-319.	3.1	23
463	Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. Journal of the American Chemical Society, 2019, 141, 12789-12796.	6.6	76
464	Rhodanine-based nonfullerene acceptors for organic solar cells. Science China Materials, 2019, 62, 1574-1596.	3.5	19
465	Signatures of Strong Vibronic Coupling Mediating Coherent Charge Transfer in Two-Dimensional Electronic Spectroscopy. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 721-737.	0.7	10
467	Ultrafast Charge Separation from a "Cold―Charge-Transfer State Driven by Nonuniform Packing of Polymers at Donor/Acceptor Interfaces. Journal of Physical Chemistry C, 2019, 123, 2746-2754.	1.5	11
468	Are Transport Models Able To Predict Charge Carrier Mobilities in Organic Semiconductors?. Journal of Physical Chemistry C, 2019, 123, 29499-29512.	1.5	12
469	Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells. Nano Energy, 2019, 66, 104176.	8.2	14
470	Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale. Journal of Physical Chemistry Letters, 2019, 10, 6727-6733.	2.1	42
471	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. ACS Energy Letters, 0, , .	8.8	11
472	Switching between Coherent and Incoherent Singlet Fission via Solvent-Induced Symmetry Breaking. Journal of the American Chemical Society, 2019, 141, 17558-17570.	6.6	81
473	Donor–Acceptor Distance-Dependent Charge Transfer Dynamics Controlled by Metamaterial Structures. ACS Photonics, 2019, 6, 2649-2654.	3.2	10
474	Coherent Real-Space Charge Transport Across a Donor–Acceptor Interface Mediated by Vibronic Couplings. Nano Letters, 2019, 19, 8630-8637.	4.5	14
475	A generalized Stark effect electromodulation model for extracting excitonic properties in organic semiconductors. Nature Communications, 2019, 10, 5089.	5.8	15
476	Disorder vs Delocalization: Which Is More Advantageous for High-Efficiency Organic Solar Cells?. Journal of Physical Chemistry Letters, 2019, 10, 7107-7112.	2.1	41
477	Impact of the donor polymer on recombination <i>via</i> triplet excitons in a fullerene-free organic solar cell. Physical Chemistry Chemical Physics, 2019, 21, 22999-23008.	1.3	5

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
478	Building Blocks for Highâ€Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Postâ€Fullerene ITIC Ensembles. ChemPhysChem, 2019, 20, 2608-2626.	1.0	42
479	Vibrational solvatochromism of the ester carbonyl vibration of PCBM in organic solutions. Journal of Chemical Physics, 2019, 151, 064501.	1.2	3
480	Functionality of Nonâ€Fullerene Electron Acceptors in Ternary Organic Solar Cells. Solar Rrl, 2019, 3, 1900322.	3.1	26
481	Ultra-narrow bandgap non-fullerene acceptors for organic solar cells with low energy loss. Materials Chemistry Frontiers, 2019, 3, 2157-2163.	3.2	19
482	Charge-transfer electronic states inÂorganic solar cells. Nature Reviews Materials, 2019, 4, 689-707.	23.3	229
483	Molecular origin of efficient hole transfer from non-fullerene acceptors: insights from first-principles calculations. Journal of Materials Chemistry C, 2019, 7, 12180-12193.	2.7	28
484	A molecular movie of ultrafast singlet fission. Nature Communications, 2019, 10, 4207.	5.8	54
485	Designing difluoro substituted benzene ring based fullerene free acceptors for small Naphthalene Di-Imide based molecules with DFT approaches. Optical and Quantum Electronics, 2019, 51, 1.	1.5	12
486	Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. Journal of Chemical Physics, 2019, 151, 114109.	1.2	9
487	Non-equilibrium relaxation of hot states in organic semiconductors: Impact of mode-selective excitation on charge transfer. Journal of Chemical Physics, 2019, 151, 084104.	1.2	15
488	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	6.6	362
489	Polycyclic <i>N</i> -oxides: high performing, low sensitivity energetic materials. Chemical Communications, 2019, 55, 2461-2464.	2.2	53
490	Energetics and Escape of Interchainâ€Delocalized Ion Pairs in Nonpolar Media. Advanced Materials, 2019, 31, 1806863.	11.1	10
491	Structure–Function Relationship of Organic Semiconductors: Detailed Insights From Time-Resolved EPR Spectroscopy. Frontiers in Chemistry, 2019, 7, 10.	1.8	46
492	Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nature Communications, 2019, 10, 398.	5.8	56
493	How charges separate: correlating disorder, free energy, and open-circuit voltage in organic photovoltaics. Faraday Discussions, 2019, 216, 236-251.	1.6	4
494	New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770.	5.2	5
495	Liberation of Charge Carriers by Optical Pumping Excitons in Poly(3-hexylthiophene) Aggregates. Journal of Physical Chemistry C, 2019, 123, 3441-3448.	1.5	7

#	Article	IF	CITATIONS
496	Millimeter-Scale Unipolar Transport in High Sensitivity Organic–Inorganic Semiconductor X-ray Detectors. ACS Nano, 2019, 13, 6973-6981.	7.3	30
497	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	1.7	5
498	Engineering Ultrafast Carrier Dynamics at the Graphene/GaAs Interface by Bulk Doping Level. Advanced Optical Materials, 2019, 7, 1900580.	3.6	6
499	Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting― Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.	3.2	15
500	Influence of static disorder and polaronic band formation on the interfacial electron transfer in organic photovoltaic devices. Physical Review B, 2019, 99, .	1.1	6
501	Self-Coupled <i>g</i> -C ₃ N ₄ van der Waals Heterojunctions for Enhanced Photocatalytic Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 4692-4699.	2.5	27
502	Entropy promotes charge separation in bulk heterojunction organic photovoltaics. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111875.	2.0	5
503	Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 3473-3480.	2.1	26
504	Origin of Photocurrent and Voltage Losses in Organic Solar Cells. Advanced Theory and Simulations, 2019, 2, 1900067.	1.3	46
505	Visualising the role of non-perturbative environment dynamics in the dissipative generation of coherent electronic motion. Chemical Physics, 2019, 525, 110392.	0.9	8
506	The interface effect between ZIXLIB crystal surface and C60: Strong charge-transfer (CT) vs weak CT state. Chemical Physics Letters, 2019, 730, 266-270.	1.2	1
507	Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 2911-2918.	2.1	73
508	What is the Binding Energy of a Charge Transfer State in an Organic Solar Cell?. Advanced Energy Materials, 2019, 9, 1900814.	10.2	52
509	Charge transport and transfer phenomena involving conjugated acenes and heteroacenes. Bulletin of Materials Science, 2019, 42, 1.	0.8	3
510	Understanding the open circuit voltage in organic solar cells on the basis of a donor-acceptor abrupt (p-n++) heterojunction. Solar Energy, 2019, 184, 610-619.	2.9	16
511	14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. Journal of the American Chemical Society, 2019, 141, 7743-7750.	6.6	379
512	Theoretical Investigations into the Electron and Ambipolar Transport Properties of Anthracene-Based Derivatives. Journal of Physical Chemistry A, 2019, 123, 3300-3314.	1.1	10
513	Ultrafast Dynamic Microscopy of Carrier and Exciton Transport. Annual Review of Physical Chemistry, 2019, 70, 219-244.	4.8	75

		CITATION R	EPORT	
#	ARTICLE Spintronics and magnetic field effects in organic semiconductors and devices. , 2019,	385-427	IF	CITATIONS
514	Spintionics and magnetic field effects in organic semiconductors and devices. , 2019,	, 505 427.		1
515	Voltage-induced long-range coherent electron transfer through organic molecules. Pro the National Academy of Sciences of the United States of America, 2019, 116, 5931-5	ceedings of 936.	3.3	39
516	Hole delocalization as a driving force for charge pair dissociation in organic photovolta Materials Horizons, 2019, 6, 1050-1056.	iics.	6.4	18
517	Towards the Organic Double Heterojunction Solar Cell. Chemical Record, 2019, 19, 11	31-1141.	2.9	7
518	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Ce Functional Materials, 2019, 29, 1804419.	ells. Advanced	7.8	42
519	Giant Photocurrent Enhancement by Coulomb Interaction in a Single Quantum Dot for Harvesting. Physical Review Applied, 2019, 11, .	r Energy	1.5	5
520	A review of non-fullerene polymer solar cells: from device physics to morphology contr on Progress in Physics, 2019, 82, 036601.	ol. Reports	8.1	184
521	Photogenerated Charge Transport in Organic Electronic Materials: Experiments Confin Simulations. Advanced Materials, 2019, 31, e1806004.	med by	11.1	30
522	Coherent acoustic phonon dynamics in chiral copolymers. Structural Dynamics, 2019,	6, 064502.	0.9	6
523	Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic sola Journal of Materials Chemistry A, 2019, 7, 27632-27639.	ar cells.	5.2	86
524	Insights into the Charge Separation Dynamics in Photoexcited Molecular Junctions. Jou Physical Chemistry C, 2019, 123, 30885-30892.	urnal of	1.5	6
525	Theoretical investigation of various aspects of two dimensional holey boroxine, B ₃ O ₃ . RSC Advances, 2019, 9, 37526-37536.		1.7	21
526	Photovoltaic applications: Status and manufacturing prospects. Renewable and Sustai Reviews, 2019, 102, 318-332.	nable Energy	8.2	86
527	Emerging solar cells energy trade-off: Interface engineering materials impact on stabilite efficiency progress. International Journal of Energy Research, 2019, 43, 1670-1688.	ty and	2.2	13
528	From Fundamental Theories to Quantum Coherences in Electron Transfer. Journal of th Chemical Society, 2019, 141, 708-722.	1e American	6.6	85
529	Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge G Donor–Acceptor Materials. Advanced Functional Materials, 2019, 29, 1804858.	eneration in	7.8	17
530	Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: Th Low-Donor-Content Blends. Journal of the American Chemical Society, 2019, 141, 232		6.6	54
531	Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer So Scientific Reports, 2019, 9, 74.	blar Cells.	1.6	8

#	Article	IF	CITATIONS
532	Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Topics in Current Chemistry Collections, 2019, , 1-25.	0.2	0
533	Spin-dependent recombination of the charge-transfer state in photovoltaic polymer/fullerene blends. Molecular Physics, 2019, 117, 2654-2663.	0.8	9
534	Dissociation and localization dynamics of charge transfer excitons at a donor-acceptor interface. Chemical Physics, 2020, 528, 110525.	0.9	5
535	Trendsetters in Highâ€Efficiency Organic Solar Cells: Toward 20% Power Conversion Efficiency. Solar Rrl, 2020, 4, 1900342.	3.1	66
536	Lawsone isomers, lawsone ether and bilawsone for dye-sensitized solar cells applications: DFT and UV–Vis studies. Journal of Molecular Graphics and Modelling, 2020, 94, 107457.	1.3	11
537	Effective design of novel low band gap acceptors for non-fullerene solar cells via modulating molecular planarity and F atom substitution. Materials Letters, 2020, 258, 126785.	1.3	1
538	Exciton dissociation and charge separation at donor–acceptor interfaces from quantum-classical dynamics simulations. Faraday Discussions, 2019, 221, 547-563.	1.6	9
539	Photoinduced electron transfer from zinc <i>meso</i> -tetraphenylporphyrin to a one-dimensional perylenediimide aggregate: Probing anion delocalization effects. Journal of Porphyrins and Phthalocyanines, 2020, 24, 143-152.	0.4	5
540	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	14.8	50
541	Tuning optoelectronic properties of triphenylamine based dyes through variation of pi-conjugated units and anchoring groups: A DFT/TD-DFT investigation. Journal of Molecular Graphics and Modelling, 2020, 94, 107480.	1.3	31
542	The roles of heteroatoms and substituents on the molecular packing motif from herringbone to Ï€-stacking: A theoretical study on electronic structures and intermolecular interaction of pentacene derivatives. Organic Electronics, 2020, 78, 105606.	1.4	8
543	Reduced Recombination and Capacitor-like Charge Buildup in an Organic Heterojunction. Journal of the American Chemical Society, 2020, 142, 2562-2571.	6.6	27
544	Translating local binding energy to a device effective one. Sustainable Energy and Fuels, 2020, 4, 760-771.	2.5	8
545	Bulk-Heterojunction with Long-Range Ordering: C ₆₀ Single-Crystal with Incorporated Conjugated Polymer Networks. Journal of the American Chemical Society, 2020, 142, 1630-1635.	6.6	30
546	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	6.6	344
547	Ultrafast Spectroscopy: State of the Art and Open Challenges. Journal of the American Chemical Society, 2020, 142, 3-15.	6.6	183
548	Ultrafast direct generation of quasiparticles in graphene nanoribbons. Carbon, 2020, 158, 553-558.	5.4	15
549	Photophysics, morphology and device performances correlation on non-fullerene acceptor based binary and ternary solar cells. Journal of Energy Chemistry, 2020, 47, 180-187.	7.1	21

#	Article	IF	CITATIONS
550	Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. Journal of Physical Chemistry Letters, 2020, 11, 210-216.	2.1	14
551	Time resolved photo-induced optical spectroscopy. , 2020, , 139-160.		2
552	Slow charge transfer from pentacene triplet states at the Marcus optimum. Nature Chemistry, 2020, 12, 63-70.	6.6	36
553	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. Journal of the American Chemical Society, 2020, 142, 14532-14547.	6.6	214
554	Electric field effects on organic photovoltaic heterojunction interfaces: The model case of pentacene/C60. Computational and Theoretical Chemistry, 2020, 1186, 112914.	1.1	14
555	A Family of Small Molecular Materials Enabling Consistently Lower Recombination Losses in Organic Photovoltaic Devices. Solar Rrl, 2020, 4, 2000245.	3.1	4
556	Revealing Complex Relaxation Processes of Collapsed Conjugated Polymer Nanoparticles in the Presence of Different Shapes of Gold Nanoparticles Using Global and Target Analysis. Journal of Physical Chemistry C, 2020, 124, 26165-26173.	1.5	8
557	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	5.8	458
558	Charge generation mechanism tuned <i>via</i> film morphology in small molecule bulk-heterojunction photovoltaic materials. Journal of Materials Chemistry C, 2020, 8, 15234-15252.	2.7	8
559	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
560	Role of the multiple-excitation manifold in a driven quantum simulator of an antenna complex. Physical Review A, 2020, 102, .	1.0	1
561	Collective Effects of Band Offset and Wave Function Dimensionality on Impeding Electron Transfer from 2D to Organic Crystals. Journal of Physical Chemistry Letters, 2020, 11, 7495-7501.	2.1	18
562	Role of Spontaneous Orientational Polarization in Organic Donor–Acceptor Blends for Exciton Binding. Advanced Optical Materials, 2020, 8, 2000896.	3.6	18
563	The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non-fullerene acceptor organic solar cells. Energy and Environmental Science, 2020, 13, 3679-3692.	15.6	126
564	Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy. Nature Reviews Materials, 2020, 5, 910-930.	23.3	69
565	Charge Energetics and Electronic Level Changes At the Copper(II) Phthalocyanine/Fullerene Junction Upon Photoexcitation. ACS Applied Materials & Interfaces, 2020, 12, 42992-42996.	4.0	2
566	The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nature Energy, 2020, 5, 711-719.	19.8	214
567	Charge transfer via deep hole in the J51/N2200 blend. Journal of Chemical Physics, 2020, 153, 054705.	1.2	1

#	Article	IF	Citations
568	From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292.	1.5	8
569	Ultrafast Charge Generation Enhancement in Nanoscale Polymer Solar Cells with DIO Additive. Nanomaterials, 2020, 10, 2174.	1.9	5
570	Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 5617.	5.8	73
571	TIPS-pentacene triplet exciton generation on PbS quantum dots results from indirect sensitization. Chemical Science, 2020, 11, 5690-5696.	3.7	19
572	Semiconducting Supramolecular Organic Frameworks Assembled from a Near-Infrared Fluorescent Macrocyclic Probe and Fullerenes. Journal of the American Chemical Society, 2020, 142, 11497-11505.	6.6	24
573	Roles of Acceptor Guests in Tuning the Organic Solar Cell Property Based on an Efficient Binary Material System with a Nearly Zero Hole-Transfer Driving Force. Chemistry of Materials, 2020, 32, 5182-5191.	3.2	22
574	Ultrafast Charge Dynamics in Dilute-Donor versus Highly Intermixed TAPC:C ₆₀ Organic Solar Cell Blends. Journal of Physical Chemistry Letters, 2020, 11, 5610-5617.	2.1	15
575	Electric Field Facilitating Hole Transfer in Non-Fullerene Organic Solar Cells with a Negative HOMO Offset. Journal of Physical Chemistry C, 2020, 124, 15132-15139.	1.5	26
576	Unifying Charge Generation, Recombination, and Extraction in Lowâ€Offset Nonâ€Fullerene Acceptor Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001203.	10.2	74
577	Length-dependence of light-induced currents in graphene. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 154001.	0.6	12
578	Two-Dimensional Exciton Diffusion in an HJ-Aggregate of Naphthobisoxadiazole-Based Copolymer Films. Journal of Physical Chemistry C, 2020, 124, 13063-13070.	1.5	11
579	Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. , 2020, 2, 395-402.		37
580	Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells. Nature Communications, 2020, 11, 1488.	5.8	40
581	Barrier-Free Charge Separation Enabled by Electronic Polarization in High-Efficiency Non-fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 2585-2591.	2.1	47
582	Diverse Polymeric Carbon Nitride-Based Semiconductors for Photocatalysis and Variations. , 2020, 2, 975-980.		54
583	Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. Journal of the American Chemical Society, 2020, 142, 12751-12759.	6.6	228
584	Revisiting the Charge-Transfer States at Pentacene/C60 Interfaces with the GW/Bethe–Salpeter Equation Approach. Materials, 2020, 13, 2728.	1.3	2
585	Nongeminate charge recombination in organic photovoltaics. Sustainable Energy and Fuels, 2020, 4, 4321-4351.	2.5	21

#	Article	IF	CITATIONS
586	Bimolecular photoinduced electron transfer in non-polar solvents beyond the diffusion limit. Journal of Chemical Physics, 2020, 152, 244501.	1.2	12
587	Ultrafast Energy Transfer from Local Exciton to Intermolecular CT States in a Supramolecular Model of the Donor–Acceptor Interfaces. Journal of Physical Chemistry C, 2020, 124, 16248-16260.	1.5	6
588	Efficient Charge Generation via Hole Transfer in Dilute Organic Donor–Fullerene Blends. Journal of Physical Chemistry Letters, 2020, 11, 2203-2210.	2.1	19
589	Spontaneous Exciton Dissociation at Organic Semiconductor Interfaces Facilitated by the Orientation of the Delocalized Electron–Hole Wavefunction. Advanced Energy Materials, 2020, 10, 1904013.	10.2	22
590	Magnetic pulses enable multidimensional optical spectroscopy of dark states. Journal of Chemical Physics, 2020, 152, 084201.	1.2	0
591	Effects of 1,8-diiodooctane on ultrafast charge carrier dynamics and photovoltaic performance in organic solar cells: A comparison of PC71BM and nonfullerene acceptor IT-M. Organic Electronics, 2020, 81, 105690.	1.4	3
592	Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. Nature Communications, 2020, 11, 833.	5.8	130
593	Geminate recombination in organic photovoltaic blend PCDTBT/PC71BM studied by out-of-phase electron spin echo spectroscopy. Journal of Chemical Physics, 2020, 152, 044706.	1.2	9
594	Donor–Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Applied Materials & Interfaces, 2020, 12, 6144-6150.	4.0	60
595	On the Physical Origins of Charge Separation at Donor–Acceptor Interfaces in Organic Solar Cells: Energy Bending versus Energy Disorder. Advanced Theory and Simulations, 2020, 3, 1900230.	1.3	11
596	Balancing charge generation and voltage loss toward efficient nonfullerene organic solar cells. Materials Today Advances, 2020, 5, 100048.	2.5	23
597	Ultrafast Electron Transfer Before Singlet Fission and Slow Triplet State Electron Transfer in Pentacene Single Crystal/C60 Heterostructure. Journal of Physical Chemistry A, 2020, 124, 4185-4192.	1.1	11
598	Energy Loss in Organic Solar Cells: Mechanisms, Strategies, and Prospects. Solar Rrl, 2020, 4, 2000130.	3.1	59
599	Effect of interfacial dipoles on the attraction energy of geminate electron-hole pairs generated at the donor-acceptor interfaces. Chemical Physics Letters, 2020, 749, 137448.	1.2	1
600	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
601	The Role of Delocalization and Excess Energy in the Quantum Efficiency of Organic Solar Cells and the Validity of Optical Reciprocity Relations. Journal of Physical Chemistry Letters, 2020, 11, 3563-3570.	2.1	17
602	Delocalization boosts charge separation in organic solar cells. Polymer Journal, 2020, 52, 691-700.	1.3	18
603	Influence of donor:acceptor ratio on charge transfer dynamics in non-fullerene organic bulk heterojunctions. Chinese Chemical Letters, 2021, 32, 529-534.	4.8	8

#	Article	IF	CITATIONS
604	Carrier losses in non-geminate charge-transferred states of nonfullerene acceptor-based organic solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119227.	2.0	6
605	Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells. Materials Advances, 2021, 2, 115-145.	2.6	47
606	Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nature Chemistry, 2021, 13, 70-76.	6.6	51
607	The Path to 20% Power Conversion Efficiencies in Nonfullerene Acceptor Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003441.	10.2	154
608	How to reprogram the excitonic properties and solid-state morphologies of π-conjugated supramolecular polymers. Physical Chemistry Chemical Physics, 2021, 23, 2703-2714.	1.3	8
609	Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Materials Horizons, 2021, 8, 401-425.	6.4	81
610	Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron–phonon interactions in a donor domain. Journal of Chemical Physics, 2021, 154, 034107.	1.2	14
611	Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic materials from atomistic viewpoint for next-generation energy solutions. Energy and Environmental Science, 2021, 14, 4760-4802.	15.6	12
612	Tracking ultrafast reactions in organic materials through vibrational coherence: vibronic coupling mechanisms in singlet fission. Advances in Physics: X, 2021, 6, .	1.5	12
613	Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Frontiers in Chemistry, 2020, 8, 600731.	1.8	8
614	Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Physical Chemistry Chemical Physics, 2021, 23, 14549-14563.	1.3	6
615	Impact of Cyclic Strain on the Structural Relaxation Dynamics of Macrocyclic Thiophenes. Journal of Physical Chemistry C, 2021, 125, 1947-1953.	1.5	2
616	Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials. Chemical Science, 2021, 12, 2276-2285.	3.7	24
617	Direct observation and evolution of electronic coupling between organic semiconductors. Physical Review Materials, 2021, 5, .	0.9	1
618	Kinetic Modeling of the Electric Field Dependent Exciton Quenching at the Donor–Acceptor Interface. Journal of Physical Chemistry C, 2021, 125, 4436-4448.	1.5	8
619	Probing the properties of polymer/non-fullerene/fullerene bulk heterojunction ternary blend solar cells, study of varied blend ratios of PBDB-T:ITIC-Th:PC71BM. European Physical Journal Plus, 2021, 136, 1.	1.2	3
620	Effect of varying the TD-lc-DFTB range-separation parameter on charge and energy transfer in a model pentacene/buckminsterfullerene heterojunction. Journal of Chemical Physics, 2021, 154, 054102.	1.2	9
621	Unraveling the Temperature Dependence of Exciton Dissociation and Free Charge Generation in Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000789.	3.1	10

#	Article	IF	CITATIONS
622	Direct observation of charge separation in an organic light harvesting system by femtosecond time-resolved XPS. Nature Communications, 2021, 12, 1196.	5.8	17
623	Using plasmonics and nanoparticles to enhance the efficiency of solar cells: review of latest technologies. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 638.	0.9	28
624	Panchromatic Ternary Polymer Dots Involving Sub-Picosecond Energy and Charge Transfer for Efficient and Stable Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 2875-2885.	6.6	87
625	Ultrafast Charge Transfer Dynamics at the Origin of Photoconductivity in Doped Organic Solids. Journal of Physical Chemistry C, 2021, 125, 7086-7096.	1.5	4
626	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.	5.8	27
627	Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. Journal of the American Chemical Society, 2021, 143, 4359-4366.	6.6	60
628	Insights into Photosynthetic Energy Transfer Gained from Free-Energy Structure: Coherent Transport, Incoherent Hopping, and Vibrational Assistance Revisited. Journal of Physical Chemistry B, 2021, 125, 3286-3295.	1.2	9
629	How the Size and Density of Charge-Transfer Excitons Depend on Heterojunction's Architecture. Journal of Physical Chemistry C, 2021, 125, 5458-5474.	1.5	6
630	Mechanistic Study of Charge Separation in a Nonfullerene Organic Donor–Acceptor Blend Using Multispectral Multidimensional Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3410-3416.	2.1	11
631	Photoisomerization and its effect in the opto-electronic properties of organic photovoltaic materials: A quantum chemistry study. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113155.	2.0	5
632	Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules, 2021, 54, 4030-4041.	2.2	16
633	Exciton Heating Versus Cooling: Charge Separation Driven by Entropy and Delocalization at Interfaces with Planar Molecules. Physical Review Applied, 2021, 15, .	1.5	6
634	Vibrationally Resolved Absorption Spectra and Exciton Dynamics in Zinc Phthalocyanine Aggregates: Effects of Aggregation Lengths and Remote Exciton Transfer. Journal of Physical Chemistry A, 2021, 125, 2932-2943.	1.1	11
635	Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems. Annual Review of Physical Chemistry, 2021, 72, 591-616.	4.8	31
636	Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition. Nature Communications, 2021, 12, 2250.	5.8	20
637	Vibration-mediated resonant charge separation across the donor–acceptor interface in an organic photovoltaic device. Journal of Chemical Physics, 2021, 154, 154703.	1.2	1
638	Factors That Prevent Spin-Triplet Recombination in Non-fullerene Organic Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 5045-5051.	2.1	7
639	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	5.2	60

#	Article	IF	CITATIONS
640	Comparative Investigation of Fullerene PC71BM and Non-fullerene ITIC-Th Acceptors Blended With P3HT or PBDB-T Donor Polymers for PV Applications. Frontiers in Energy Research, 2021, 9, .	1.2	7
641	Modeling and Simulating the Excited-State Dynamics of a System with Condensed Phases: A Machine Learning Approach. Journal of Chemical Theory and Computation, 2021, 17, 3618-3628.	2.3	8
642	Hybrid inorganic-organic light-emitting heterostructure devices based on ZnO. Optics and Laser Technology, 2021, 138, 106896.	2.2	15
643	Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Science China Chemistry, 2021, 64, 1569-1576.	4.2	2
644	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	3.2	11
645	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie - International Edition, 2021, 60, 15988-15994.	7.2	60
646	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie, 2021, 133, 16124-16130.	1.6	11
647	Optically Induced Coherent Phonons in Bismuth Oxyiodide (BiOI) Nanoplatelets. Nano Letters, 2021, 21, 7887-7893.	4.5	22
648	Revealing generation, migration, and dissociation of electron-hole pairs and current emergence in an organic photovoltaic cell. Science Advances, 2021, 7, .	4.7	15
649	Ultrafast Charge Transfer and Relaxation at a Donor–Acceptor Interface. Journal of Physical Chemistry B, 2021, 125, 8869-8875.	1.2	5
650	Detailed balance analysis of advanced geometries for singlet fission solar cells. Applied Physics Letters, 2021, 119, 013301.	1.5	8
651	Enhanced Charge Separation in Ternary Bulk-Heterojunction Organic Solar Cells by Fullerenes. Journal of Physical Chemistry Letters, 2021, 12, 6418-6424.	2.1	10
652	Transient Spectroscopic Dynamics of Excitons and Polarons in the P3HT:FLR Blend. Journal of Physical Chemistry C, 2021, 125, 16033-16040.	1.5	1
653	All organic multiferroic magnetoelectric complexes with strong interfacial spin-dipole interaction. Npj Flexible Electronics, 2021, 5, .	5.1	5
654	Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. Innovation(China), 2021, 2, 100137.	5.2	7
655	Ultrafast Kinetics Investigation of a Fluorinated-Benzothiadiazole Polymer with an Increased Excited State Transition Dipole Moment Applied in Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9627-9638.	2.5	14
656	Quantification of Temperatureâ€Đependent Charge Separation and Recombination Dynamics in Nonâ€Fullerene Organic Photovoltaics. Advanced Functional Materials, 2021, 31, 2107157.	7.8	13
657	Incorporating polymers within a singleâ€crystal: From heterogeneous structure to multiple functions. Journal of Polymer Science, 2022, 60, 1151-1173.	2.0	16

#	Article	IF	CITATIONS
658	Short Excitedâ€&tate Lifetimes Mediate Chargeâ€Recombination Losses in Organic Solar Cell Blends with Low Chargeâ€Transfer Driving Force. Advanced Materials, 2022, 34, e2101784.	11.1	11
659	Inorganic–organic interfaces in hybrid solar cells. Electronic Structure, 2021, 3, 033002.	1.0	20
660	Longâ€Range Charge Transportation Induced Organic Host–Guest Dual Color Long Persistent Luminescence. Advanced Optical Materials, 2021, 9, 2101337.	3.6	17
661	Reconciling the Driving Force and the Barrier to Charge Separation in Donor–Nonfullerene Acceptor Films. ACS Energy Letters, 2021, 6, 3572-3581.	8.8	10
662	The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597, 666-671.	13.7	225
663	Extracting Electrons from Delocalized Excitons by Flattening the Energetic Pathway for Charge Separation. Journal of Physical Chemistry Letters, 2021, 12, 9047-9054.	2.1	3
664	Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule, 2021, 5, 2261-2272.	11.7	44
665	Efficiency of exciton dissociation at the interface between a conjugated polymer and an electron acceptor with consideration for a two-dimensional arrangement of interfacial dipoles. Chemical Physics, 2021, 551, 111327.	0.9	3
666	Trilayer organic narrowband photodetector with electrically-switchable spectral range and color sensing ability. Journal of Materials Chemistry C, 2021, 9, 3814-3819.	2.7	8
667	Why ultrafast charge separation occurs in bulk-heterojunction organic solar cells: a multichain tight binding model study. Physical Chemistry Chemical Physics, 2021, 23, 22685-22691.	1.3	3
668	Imaging Carrier Transport Properties in Halide Perovskites using Timeâ€Resolved Optical Microscopy. Advanced Energy Materials, 2020, 10, 1903814.	10.2	21
670	Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nature Communications, 2020, 11, 617.	5.8	28
671	Chapter 13. 3D Simulations of Organic Solar Cells. RSC Energy and Environment Series, 2016, , 420-452.	0.2	3
672	Kinetic model for photoluminescence quenching by selective excitation of D/A blends: implications for charge separation in fullerene and non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 8755-8769.	2.7	16
673	Chapter 11 Ultrafast Energy and Charge Transfer in Functional Molecular Nanoscale Aggregates. , 2017, , 407-436.		1
674	Charge carrier mobility dynamics in organic semiconductors and solar cells. Lithuanian Journal of Physics, 2020, 60, .	0.1	3
675	Controlling the Coherent Versus Incoherent Character of Singlet Fission. Springer Theses, 2021, , 169-196.	0.0	0
676	Resolving buried optoelectronic features in metal halide perovskites <i>via</i> modulation spectroscopy studies. Journal of Materials Chemistry A, 2021, 9, 23746-23764.	5.2	6

		CITATION REPORT	
#	Article	IF	Citations
677	Interplay of Vibrational Relaxation andÂCharge Transfer. Springer Theses, 2021, , 115-142.	0.0	0
678	Deciphering the capacitance frequency technique for performance-limiting defect-state param energy-harvesting perovskites. Physical Chemistry Chemical Physics, 2021, 23, 24421-24427.	eters in 1.3	4
680	Development of Dithieno[3,2-b:2′,3′-d]thiophene (DTT) Derivatives as Solution-Processa Molecular Semiconductors for Organic Thin Film Transistors. Coatings, 2021, 11, 1222.	ble Small 1.2	6
681	Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes. , 201	4, , .	1
683	Chapter 11. Modeling Organic Solar Cells: What are the Challenges Ahead?. RSC Energy and Environment Series, 2016, , 367-390.	0.2	0
684	A Look Forward with Organic Solar Fuels. , 2017, , 137-149.		0
685	A Look Forward with Organic Solar Fuels. , 2017, , 137-149.		0
686	Charge Transfer States at Donor–Acceptor Heterojunctions. Springer Theses, 2018, , 105-12	25. 0.0	0
687	Study on Electron Dynamics at Nanoscale Functional Films. Molecular Science, 2019, 13, A010	05. 0.2	0
688	Ultrafast third-order nonlinear optical properties of self-assembled PCPDTPhSO3Na/C70-(EDA) periodically overlapping film. Journal of Modern Optics, 0, , 1-6.	8 0.6	2
689	Prototyping Ultrafast Charge Separation by Means of Time-Dependent Density Functional Met 2020, , 325-343.	hods. ,	0
690	First-Principles Investigations of Electronically Excited States in Organic Semiconductors. , 202 155-193.	:1,,	1
691	Reliable Predictions of Benzophenone Singlet–Triplet Transition Rates: A Second-Order Cum Approach. Journal of Physical Chemistry A, 2021, 125, 43-49.	ulant 1.1	3
692	Charge Carrier Dynamics in Polymer Solar Cells. , 2021, , 123-154.		0
693	Charge Recombination in Organic Solar Cells. , 2020, , 5-1-5-32.		4
694	Low energy excited state vibrations revealed in conjugated copolymer PCDTBT. Journal of Cher Physics, 2020, 152, 044201.	mical 1.2	1
695	Charge generation mediated by bound polaron pairs and delocalized charge transfer states in non-fullerene organic solar cells. , 2020, , .		1
696	Revealing the Influence of Annealing Treatment on the Performance of Non-Fullerene Organic Photovoltaics. , 2021, , .		1

#	Article	IF	CITATIONS
697	Observing halogen-bond-assisted electron transport in high-performance polymer solar cells. Applied Physics Letters, 2021, 119, 183302.	1.5	4
698	Spectroscopic comparison of charge dynamics in fullerene and non fullerene acceptor-based organic photovoltaic cells. Journal of Materials Chemistry C, 0, , .	2.7	6
699	Short and long-range electron transfer compete to determine free-charge yield in organic semiconductors. Materials Horizons, 2022, 9, 312-324.	6.4	4
700	Dynamic variation of excitonic coupling in excited bilayer graphene quantum dots. Chinese Journal of Chemical Physics, 2021, 34, 591-597.	0.6	0
701	Quantum Dynamics of Electron–Hole Separation in Stacked Perylene Diimide-Based Self-Assembled Nanostructures. Journal of Physical Chemistry C, 2021, 125, 25030-25043.	1.5	6
702	Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nature Materials, 2022, 21, 338-344.	13.3	91
703	Rational strategy of exciplex-type thermally activated delayed fluorescent (TADF) emitters: Stacking of donor and acceptor units of the intramolecular TADF molecule. Chemical Engineering Journal, 2022, 433, 133546.	6.6	11
704	Spontaneous Construction of Multidimensional Heterostructure Enables Enhanced Hole Extraction for Inorganic Perovskite Solar Cells to Exceed 20% Efficiency. Advanced Energy Materials, 2022, 12, 2103007.	10.2	42
705	Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors. Chinese Journal of Chemical Physics, 0, , .	0.6	6
706	Theoretical exploration of diverse electron-deficient core and terminal groups in A–DAâ€2D–A type non-fullerene acceptors for organic solar cells. New Journal of Chemistry, 2022, 46, 3370-3382.	1.4	12
707	Thermally activated delayed fluorescence exciplexes in organic light-emitting diodes. , 2022, , 353-426.		2
708	Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chemical Reviews, 2022, 122, 4257-4321.	23.0	47
709	Energetics of the charge generation in organic donor–acceptor interfaces. Journal of Chemical Physics, 2022, 156, 024104.	1.2	2
710	Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 1123-1130.	2.1	27
711	Thermally Activated Reverse Electron Transfer Limits Carrier Generation Efficiency in PM6:Y6 Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
712	<i>>m</i> -MTDATA on Au(111): Spectroscopic Evidence of Molecule–Substrate Interactions. Journal of Physical Chemistry C, 2022, 126, 3202-3210.	1.5	4
714	Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells. Energy and Environmental Science, 2022, 15, 1545-1555.	15.6	53
715	Performance Prediction and Experimental Optimization Assisted by Machine Learning for Organic Photovoltaics. Advanced Intelligent Systems, 2022, 4, .	3.3	13

#	Article	IF	CITATIONS
716	Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	22
717	Evidence of hybridization states at the donor/acceptor interface: case of m-MTDATA/PPT. Journal of Physics Condensed Matter, 2022, 34, 214008.	0.7	1
718	Supramolecular p/nâ€heterojunction of C ₆₀ â€functionalized bis(merocyanine) quadruple stack: A model system for charge carrier separation and recombination in organic solar cells. Natural Sciences, 2022, 2, .	1.0	0
719	Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Accounts of Chemical Research, 2022, 55, 869-877.	7.6	46
720	The Role of Entropy Gains in the Exciton Separation in Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2100903.	2.0	4
721	Slow hole transfer kinetics lead to high blend photoluminescence of unfused Aâ€Dâ€A′â€Dâ€A type acceptors with unfavorable HOMO offset. Solar Rrl, 0, , .	3.1	0
722	Low-power supralinear photocurrent generation <i>via</i> excited state fusion in single-component nanostructured organic photodetectors. Journal of Materials Chemistry C, 2022, 10, 7575-7585.	2.7	4
723	Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, , .	4.0	7
724	CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers. RSC Nanoscience and Nanotechnology, 0, , 69-108.	0.2	0
725	CHAPTER 7. Charge Generation and Recombination in Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 226-267.	0.2	Ο
727	Research on organic solar cells based on perylene diimide for achieving high power conversion efficiency. , 2022, , .		0
728	Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nature Communications, 2022, 13, .	5.8	66
729	Toward high-performance organic photovoltaics: the new cooperation of sequential solution-processing and promising non-fullerene acceptors. Materials Horizons, 0, , .	6.4	29
730	Delocalization suppresses nonradiative charge recombination in polymer solar cells. Polymer Journal, 2022, 54, 1345-1353.	1.3	6
731	New Wide Bandgap Conjugated Dâ€A Copolymers Based on BDT or NDT Donor Unit and Anthra[1,2â€b:4,3,bʹ:6,7â€cʺ]trithiopheneâ€8â€12â€dione Acceptor for Fullereneâ€Free Polymer Solar Cells. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
732	A New Frontier in Exciton Transport: Transient Delocalization. Journal of Physical Chemistry Letters, 2022, 13, 6820-6830.	2.1	22
733	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323
734	Accurate Calculation of Excited-State Absorption for Small-to-Medium-Sized Conjugated Oligomers: Multiconfigurational Treatment vs Quadratic Response TD-DFT. Journal of Chemical Theory and Computation, 2022, 18, 5449-5458.	2.3	1

#	Article	IF	CITATIONS
735	Efficient Charge Dissociation of Triplet Excitons in Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2022, 5, 10815-10824.	2.5	8
736	Controlling the Spin Exchange Energy through Charge Transfer for Triplet State Management in Organic Semiconductors. Chemistry of Materials, 2022, 34, 7095-7105.	3.2	1
737	Even a little delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics. Science Advances, 2022, 8, .	4.7	16
738	Sub-10-fs observation of bound exciton formation in organic optoelectronic devices. Nature Communications, 2022, 13, .	5.8	6
739	Managing Challenges in Organic Photovoltaics: Properties and Roles of Donor/Acceptor Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	15
740	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
741	Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chemical Society Reviews, 2022, 51, 6909-6935.	18.7	31
742	Terahertz Shockwave Spectroscopy: Probing Free Electrons in a Narrow-Band Semiconductor. , 2022, ,		0
743	Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. Journal of Chemical Physics, 2022, 157, 084103.	1.2	2
745	Direct Observation of Increased Free Carrier Generation Owing to Reduced Exciton Binding Energies in Polymerized Small-Molecule Acceptors. Journal of Physical Chemistry Letters, 2022, 13, 8816-8824.	2.1	13
746	Color-tunable and high-quantum-yield afterglow of carbon dots by covalent fixation. Journal of Luminescence, 2022, 252, 119399.	1.5	5
747	Quasiâ€Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunctions. Advanced Materials, 2022, 34, .	11.1	20
748	Organic Photovoltaic Devices. , 2022, , 131-176.		0
749	Dependency of Current Generated Upon Thermal Treatment Duration in Non-fullerene Organic Solar Cells. , 2022, , .		0
750	Charge generation in organic solar cells: Journey toward 20% power conversion efficiency. Aggregate, 2022, 3, .	5.2	15
751	Quantitative analysis of free-electron dynamics in InSb by terahertz shockwave spectroscopy. Physical Review B, 2022, 106, .	1.1	0
752	Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews, 2022, 3, .	2.6	10
753	Fundamentals of Trajectory-Based Methods for Nonadiabatic Dynamics. , 2024, , 235-272.		3

#	Article	IF	CITATIONS
754	Excited-state and charge-carrier dynamics in binary conjugated polymer dots towards efficient photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2023, 25, 2935-2945.	1.3	5
755	Triplets with a Twist: Ultrafast Intersystem Crossing in a Series of Electron Acceptor Materials Driven by Conformational Disorder. Journal of the American Chemical Society, 2023, 145, 732-744.	6.6	3
756	Enhanced Photodynamic of Carriers and Suppressed Charge Recombination Enable Approaching 18% Efficiency in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 54885-54894.	4.0	2
757	Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary <i>vs.</i> ternary acceptor blends. Energy and Environmental Science, 2023, 16, 1234-1250.	15.6	6
758	Bay-Functionalized Perylene Diimide Derivative Cathode Interfacial Layer for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 8367-8376.	4.0	10
759	Regioisomeric Benzidineâ€Fullerenes: Tuning of the Diverse Holeâ€Distribution to Influence Charge Separation Patterns. Angewandte Chemie, 2023, 135, .	1.6	1
760	Light Harvesting Enhanced by Quantum Ratchet States. , 2023, 2, .		1
761	Regioisomeric Benzidineâ€Fullerenes: Tuning of the Diverse Holeâ€Distribution to Influence Charge Separation Patterns. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
762	Nanoscale and Real-Time Nuclear–Electronic Dynamics Simulation Study of Charge Transfer at the Donor–Acceptor Interface in Organic Photovoltaics. Journal of Physical Chemistry Letters, 2023, 14, 2292-2300.	2.1	1
763	Optical and electronic properties enhancement via chalcogenides: promising materials for DSSC applications. Journal of Molecular Modeling, 2023, 29, .	0.8	6
764	Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs. Communications Physics, 2023, 6, .	2.0	2
770	Increasing Pump–Probe Signal toward Asymptotic Limits. Journal of Physical Chemistry B, 2023, 127, 4694-4707.	1.2	1
790	Chemical pressure-induced Pt ^{III} –I Mott–Hubbard nanowire, [Pt(en) ₂ I](Asp-C _{<i>n</i>}) ₂ ·H ₂ O (13 ≤i>n), detected <i>via</i> polarized infrared spectroscopy. Chemical Communications, 2023, 59, 14118-14121.	2.2	0