A two-fold increase of carbon cycle sensitivity to tropic

Nature 506, 212-215 DOI: 10.1038/nature12915

Citation Report

#	Article	IF	CITATIONS
1	A Framework to Explore Regional Feedbacks under Changing Climate and Land-use Conditions. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	0
2	Convergent cross-mapping and pairwise asymmetric inference. Physical Review E, 2014, 90, 062903.	0.8	42
3	Continued increase in atmospheric CO ₂ seasonal amplitude in the 21st century projected by the CMIP5 Earth system models. Earth System Dynamics, 2014, 5, 423-439.	2.7	26
4	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
5	Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 2014, 20, 3229-3237.	4.2	239
6	Drought and fire change sink to source. Nature, 2014, 506, 41-42.	13.7	16
7	Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO ₂ . Global Biogeochemical Cycles, 2014, 28, 1295-1310.	1.9	33
8	Regional analysis of drought and heat impacts on forests: current and future science directions. Global Change Biology, 2014, 20, 3595-3599.	4.2	36
9	Tropical North Atlantic oceanâ€atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	1.5	13
10	Precision determination of electron scattering angle by differential nuclear recoil energy method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 802, 26-30.	0.7	0
11	Atmospheric observations inform CO ₂ flux responses to enviroclimatic drivers. Global Biogeochemical Cycles, 2015, 29, 555-566.	1.9	21
12	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
13	Recent changes in the global and regional carbon cycle: analysis of first-order diagnostics. Biogeosciences, 2015, 12, 835-844.	1.3	8
14	The dominant role of semi-arid ecosystems in the trend and variability of the land CO ₂ sink. Science, 2015, 348, 895-899.	6.0	1,002
15	Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 2015, 348, 899-903.	6.0	176
16	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	3.3	92
17	Effect of increasing CO ₂ on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 436-441.	3.3	487
18	A non-linear causal network of marketing channel system structure. Journal of Retailing and Consumer Services, 2015, 23, 49-57.	5.3	6

#	Article	IF	CITATIONS
19	Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling. Advances in Agronomy, 2015, 131, 111-172.	2.4	34
20	Urgent need for warming experiments in tropical forests. Global Change Biology, 2015, 21, 2111-2121.	4.2	168
21	The Impact of Climate Change on Mangrove Forests. Current Climate Change Reports, 2015, 1, 30-39.	2.8	307
22	The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed <i>Eucalyptus</i> species. Global Change Biology, 2015, 21, 459-472.	4.2	118
23	Seven years of observational atmospheric CO2 at a maritime site in northernmost Japan and its implications. Science of the Total Environment, 2015, 524-525, 331-337.	3.9	7
24	Parity violating asymmetry with nuclear medium effects in deep inelastic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mover accent="true"><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">ä†e scattering. Nuclear Physics A,</mml:mo </mml:mrow></mml:mover </mml:math 	0.6	9
25	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
26	A comprehensive examination of global atmospheric CO2 teleconnections using wavelet-based multi-resolution analysis. Environmental Earth Sciences, 2015, 74, 7239-7253.	1.3	5
27	Increasing human dominance of tropical forests. Science, 2015, 349, 827-832.	6.0	551
28	Climateâ€resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (<scp>CAM</scp>) as a mitigation strategy. Plant, Cell and Environment, 2015, 38, 1833-1849.	2.8	59
29	Interannual variability of the atmospheric CO ₂ growth rate: roles of precipitation and temperature. Biogeosciences, 2016, 13, 2339-2352.	1.3	49
30	Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences, 2016, 13, 1597-1607.	1.3	12
31	The terrestrial carbon budget of South and Southeast Asia. Environmental Research Letters, 2016, 11, 105006.	2.2	39
32	Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 903-918.	1.3	17
33	Constraining future terrestrial carbon cycle projections using observationâ€based water and carbon flux estimates. Global Change Biology, 2016, 22, 2198-2215.	4.2	46
34	Quark–hadron duality constraints on γZ box corrections to parity-violating elastic scattering. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 753, 221-226.	1.5	17
35	Exploratory Causal Analysis with Time Series Data. Synthesis Lectures on Data Mining and Knowledge Discovery, 2016, 8, 1-147.	0.5	6
36	Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling, 2016, 326, 124-133.	1.2	115

#	Article	IF	CITATIONS
37	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
38	A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports, 2016, 2, 242-259.	2.8	284
39	Recent advances in CO ₂ uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology, 2016, 46, 1297-1323.	6.6	58
40	Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. Ecological Studies, 2016, , 331-366.	0.4	3
41	Environmental Issues in Central Africa. Annual Review of Environment and Resources, 2016, 41, 1-33.	5.6	56
42	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	3.3	39
43	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
44	The QCD running coupling. Progress in Particle and Nuclear Physics, 2016, 90, 1-74.	5.6	200
45	A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 822, 82-96.	0.7	4
46	Approaches and terminology for causal analysis in land systems science. Journal of Land Use Science, 2016, 11, 501-522.	1.0	150
47	Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity. Metrologia, 2016, 53, R40-R59.	0.6	21
48	Long term trend and interannual variability of land carbon uptake—the attribution and processes. Environmental Research Letters, 2017, 12, 014018.	2.2	34
49	Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.	13.7	480
50	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	1.4	98
51	The response of vegetation growth to shifts in trend of temperature in China. Journal of Chinese Geography, 2017, 27, 801-816.	1.5	36
52	The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophysical Research Letters, 2017, 44, 3209-3218.	1.5	58
53	Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble. Global Change Biology, 2017, 23, 5032-5044.	4.2	20
54	Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. Agricultural and Forest Meteorology, 2017, 243, 9-18.	1.9	64

#	Article	IF	CITATIONS
55	Moistureâ€induced greening of the South Asia over the past three decades. Global Change Biology, 2017, 23, 4995-5005.	4.2	55
56	Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 2017, 356, 1180-1184.	6.0	266
57	Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO 2 on the Tibetan Plateau during the last century. Global and Planetary Change, 2017, 154, 23-32.	1.6	26
58	Narrowing the Range of Future Climate Projections Using Historical Observations of Atmospheric CO ₂ . Journal of Climate, 2017, 30, 3039-3053.	1.2	20
59	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
60	Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecology and Biogeography, 2017, 26, 1225-1237.	2.7	68
61	Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 2017, 358, .	6.0	307
62	Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities. Global Biogeochemical Cycles, 2017, 31, 1344-1366.	1.9	11
63	Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks. Environmental Research Letters, 2017, 12, 014009.	2.2	12
64	Topological Causality in Dynamical Systems. Physical Review Letters, 2017, 119, 098301.	2.9	33
65	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
66	Droughtâ€induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 2017, 98, 2538-2546.	1.5	52
67	Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 2017, 12, 064007.	2.2	39
68	Photosynthetic capacity of senescent leaves for a subtropical broadleaf deciduous tree species Liquidambar formosana Hance. Scientific Reports, 2017, 7, 6323.	1.6	9
69	Clipping has stronger effects on plant production than does warming in three alpine meadow sites on the Northern Tibetan Plateau. Scientific Reports, 2017, 7, 16330.	1.6	14
70	Intensification of terrestrial carbon cycle related to El Niño–Southern Oscillation under greenhouse warming. Nature Communications, 2017, 8, 1674.	5.8	33
71	Global and Brazilian Carbon Response to El Niño Modoki 2011–2010. Earth and Space Science, 2017, 4, 637-660.	1.1	49
72	Multi vegetation model evaluation of the Green Sahara climate regime. Geophysical Research Letters, 2017, 44, 6804-6813.	1.5	39

#	Article	IF	CITATIONS
73	Grassland restoration reduces water yield in the headstream region of Yangtze River. Scientific Reports, 2017, 7, 2162.	1.6	39
74	Relationships between climate, topography, water use and productivity in two key Mediterranean forest types with different water-use strategies. Agricultural and Forest Meteorology, 2017, 232, 319-330.	1.9	49
75	Global Change and Terrestrial Ecosystems. Springer Geography, 2017, , 205-232.	0.3	0
76	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€model intercomparison. Global Change Biology, 2017, 23, 191-208.	4.2	106
77	Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015. Atmospheric Chemistry and Physics, 2017, 17, 13903-13919.	1.9	21
78	Temporal Variability of Soil Respiration in Experimental Tree Plantations in Lowland Costa Rica. Forests, 2017, 8, 40.	0.9	14
79	A new estimation of China's net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agricultural and Forest Meteorology, 2018, 253-254, 84-93.	1.9	58
80	Drought timing influences the legacy of tree growth recovery. Global Change Biology, 2018, 24, 3546-3559.	4.2	165
81	Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology, 2018, 256-257, 150-158.	1.9	69
82	Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 256-257, 22-31.	1.9	93
83	Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24, 184-196.	4.2	177
84	Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biology, 2018, 24, 1651-1662.	4.2	76
85	Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China. Science of the Total Environment, 2018, 616-617, 824-840.	3.9	51
86	Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 249, 11-21.	1.9	117
87	Cautious Optimism and Incremental Goals Toward Stabilizing Atmospheric CO 2. Earth's Future, 2018, 6, 1632-1637.	2.4	6
88	Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170302.	1.8	37
89	Integrating proximal broad-band vegetation indices and carbon fluxes to model gross primary productivity in a tropical dry forest. Environmental Research Letters, 2018, 13, 065017.	2.2	11
90	The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170409.	1.8	28

		CITATION REPORT		
#	Article		IF	CITATIONS
91	The Terrestrial Carbon Sink. Annual Review of Environment and Resources, 2018, 43, 2	:19-243.	5.6	200
92	Response of Tropical Terrestrial Gross Primary Production to the Super El Niño Event of Geophysical Research G: Biogeosciences, 2018, 123, 3193-3203.	in 2015. Journal	1.3	24
93	History of El Niño impacts on the global carbon cycle 1957–2017: a quantification CO ₂ data. Philosophical Transactions of the Royal Society B: Biological S 373, 20170303.	from atmospheric ciences, 2018,	1.8	42
94	How does the terrestrial carbon exchange respond to inter-annual climatic variations? quantification based on atmospheric CO ₂ Biogeosciences, 2018, 15, 2481-2498.		1.3	68
95	The impact of spatiotemporal variability in atmospheric CO _{2&am concentration on global terrestrial carbon fluxes. Biogeosciences, 2018, 15, 5635-565}		1.3	9
96	Greening and Browning of the Hexi Corridor in Northwest China: Spatial Patterns and I Climatic Variability and Anthropogenic Drivers. Remote Sensing, 2018, 10, 1270.	Responses to	1.8	61
97	Precipitation thresholds regulate net carbon exchange at the continental scale. Nature Communications, 2018, 9, 3596.		5.8	39
98	Contrasting interannual atmospheric CO ₂ their terrestrial mechanisms for two types of El Niños. Atmospheric Chemistry and Ph 10333-10345.	variabilities and ysics, 2018, 18,	1.9	17
99	Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water st 2018, 560, 628-631.	orage. Nature,	13.7	295
100	Detecting the Causal Effect of Soil Moisture on Precipitation Using Convergent Cross Scientific Reports, 2018, 8, 12171.	Mapping.	1.6	50
102	Current issues in tropical phenology: a synthesis. Biotropica, 2018, 50, 477-482.		0.8	61
103	Divergent response of seasonally dry tropical vegetation to climatic variations in dry ar seasons. Global Change Biology, 2018, 24, 4709-4717.	nd wet	4.2	20
104	Aboveground carbon sequestration in dry temperate forests varies with climate not fir Global Change Biology, 2018, 24, 4280-4292.	e regime.	4.2	25
105	Contrasting terrestrial carbon cycle responses to the 1997/98 and 2015/16 extreme E Earth System Dynamics, 2018, 9, 1-14.	Niño events.	2.7	31
106	Developing a Carbon Isotope Chronology for a Coastal Subtropical Tree Species with V Subannual Tree-Ring Growth. Journal of Coastal Research, 2018, 344, 828-842.	'ariable	0.1	3
107	Shifts in the dynamics of productivity signal ecosystem state transitions at the biomeâ Letters, 2018, 21, 1457-1466.	€scale. Ecology	3.0	57
108	Evaluation of CMIP5 Earth System Models for the Spatial Patterns of Biomass and Soil Turnover Times and Their Linkage with Climate. Journal of Climate, 2018, 31, 5947-596	Carbon 50.	1.2	36
109	Sensitivity of Leaf Area to Interannual Climate Variation as a Diagnostic of Ecosystem I CMIP5 Carbon Cycle Models. Journal of Climate, 2018, 31, 8607-8625.	Function in	1.2	8

#	Article	IF	CITATIONS
110	Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth― Science, 2018, 360, .	6.0	19
111	Divergent temporal trends of net biomass change in western Canadian boreal forests. Journal of Ecology, 2019, 107, 69-78.	1.9	17
112	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	3.4	304
113	Rolling window regression of l´ ¹³ C and l´ ¹⁸ O values in carbonate sediments: Implications for source and diagenesis. Depositional Record, 2019, 5, 613-630.	0.8	16
114	Vegetation Pattern and Terrestrial Carbon Variation in Past Warm and Cold Climates. Geophysical Research Letters, 2019, 46, 8133-8143.	1.5	13
115	Climate drivers of malaria at its southern fringe in the Americas. PLoS ONE, 2019, 14, e0219249.	1.1	9
116	El Niño‣outhern Oscillationâ€Induced Variability of Terrestrial Gross Primary Production During the Satellite Era. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2419-2431.	1.3	23
117	Analysis of Car Sharing Users' Behavior: Case Study of CCCLub in Hangzhou, China. , 2019, , .		0
118	Increasing interannual variability of global vegetation greenness. Environmental Research Letters, 2019, 14, 124005.	2.2	47
119	Predicting the Bioclimatic Habitat Suitability of Ginkgo biloba L. in China with Field-Test Validations. Forests, 2019, 10, 705.	0.9	26
120	Downscaling and Projection of Spatiotemporal Changes in Temperature of Bangladesh. Earth Systems and Environment, 2019, 3, 381-398.	3.0	30
121	Enhanced North American carbon uptake associated with El Niño. Science Advances, 2019, 5, eaaw0076.	4.7	45
122	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62, 1551-1563.	2.3	134
123	Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Global Change Biology, 2019, 25, 3381-3394.	4.2	62
124	Widespread Decline in Vegetation Photosynthesis in Southeast Asia Due to the Prolonged Drought During the 2015/2016 El Niño. Remote Sensing, 2019, 11, 910.	1.8	23
125	Changes in productivity and carbon storage of grasslands in China under future global warming scenarios of 1.5°C and 2°C. Journal of Plant Ecology, 2019, 12, 804-814.	1.2	18
126	Climate drivers of the terrestrial carbon cycle variability in Europe. Environmental Research Letters, 2019, 14, 063001.	2.2	16
127	ENSO and NAO affect longâ€ŧerm leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods. Global Change Biology, 2019, 25, 3070-3090.	4.2	22

#	Article	IF	CITATIONS
128	Growth controls over flowering phenology response to climate change in three temperate steppes along a precipitation gradient. Agricultural and Forest Meteorology, 2019, 274, 51-60.	1.9	21
129	Climate change and educational attainment in the global tropics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8840-8845.	3.3	54
130	The variation of vegetation productivity and its relationship to temperature and precipitation based on the GLASS-LAI of different African ecosystems from 1982 to 2013. International Journal of Biometeorology, 2019, 63, 847-860.	1.3	14
131	Linkage between tropical terrestrial carbon cycle and precipitation: The two anomalous years of 1979 and 1996. Atmospheric Science Letters, 2019, 20, e876.	0.8	1
132	Increased Global Land Carbon Sink Due to Aerosolâ€Induced Cooling. Global Biogeochemical Cycles, 2019, 33, 439-457.	1.9	27
133	Grazing-induced increases in soil moisture maintain higher productivity during droughts in alpine meadows on the Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 269-270, 249-256.	1.9	49
134	Testing the Standard Model at the Precision Frontier with the Qweak Experiment. Nuclear Physics News, 2019, 29, 15-20.	0.1	0
135	Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. National Science Review, 2019, 6, 786-795.	4.6	29
136	Strong but Intermittent Spatial Covariations in Tropical Land Temperature. Geophysical Research Letters, 2019, 46, 356-364.	1.5	9
137	Mapping global forest biomass and its changes over the first decade of the 21st century. Science China Earth Sciences, 2019, 62, 585-594.	2.3	6
138	Interannual variability of terrestrial net ecosystem productivity over China: regional contributions and climate attribution. Environmental Research Letters, 2019, 14, 014003.	2.2	50
139	Soil Moisture Variability Intensifies and Prolongs Eastern Amazon Temperature and Carbon Cycle Response to El Niño–Southern Oscillation. Journal of Climate, 2019, 32, 1273-1292.	1.2	20
140	Ectomycorrhizal fungi respiration quantification and drivers in three differently-aged larch plantations. Agricultural and Forest Meteorology, 2019, 265, 245-251.	1.9	10
141	Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador. Agroforestry Systems, 2020, 94, 1235-1245.	0.9	15
142	Critical Zone Science in the Anthropocene: Opportunities for biogeographic and ecological theory and praxis to drive earth science integration. Progress in Physical Geography, 2020, 44, 50-69.	1.4	20
143	Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems. Global Change Biology, 2020, 26, 901-918.	4.2	49
144	Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26, 300-318.	4.2	214
145	Climate change and carbon sink: a bibliometric analysis. Environmental Science and Pollution Research, 2020, 27, 8740-8758.	2.7	51

#	Article	IF	CITATIONS
146	Estimation of Global Grassland Net Ecosystem Carbon Exchange Using a Model Tree Ensemble Approach. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005034.	1.3	16
147	Precipitation variability drives the reduction of total soil respiration and heterotrophic respiration in response to nitrogen addition in a temperate forest plantation. Biology and Fertility of Soils, 2020, 56, 273-279.	2.3	17
148	Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry, 2020, 151, 291-311.	1.7	16
149	Climateâ€Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products. Global Biogeochemical Cycles, 2020, 34, e2020GB006613.	1.9	36
150	Future greening of the Earth may not be as large as previously predicted. Agricultural and Forest Meteorology, 2020, 292-293, 108111.	1.9	24
151	Soil carbon loss by experimental warming in a tropical forest. Nature, 2020, 584, 234-237.	13.7	132
152	Global Patterns and Climate Controls of Terrestrial Ecosystem Light Use Efficiency. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005908.	1.3	7
153	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	6.0	317
154	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	4.2	14
155	Contribution of land use to the interannual variability of the land carbon cycle. Nature Communications, 2020, 11, 3170.	5.8	57
156	Optimum temperature for photosynthesis: from leaf- to ecosystem-scale. Science Bulletin, 2020, 65, 601-604.	4.3	23
157	Towards Sustainable Urban Planning for Puyo (Ecuador): Amazon Forest Landscape as Potential Green Infrastructure. Sustainability, 2020, 12, 4768.	1.6	13
158	Sensitivity of terrestrial carbon cycle to changes in precipitation regimes. Ecological Indicators, 2020, 113, 106223.	2.6	21
159	The Impact of the 20–50-Day Atmospheric Intraseasonal Oscillation on the Gross Primary Productivity between the Yangtze and Yellow Rivers. Journal of Climate, 2020, 33, 2967-2984.	1.2	5
160	Synoptic Meteorology Explains Temperate Forest Carbon Uptake. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005476.	1.3	4
161	Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9216-9222.	3.3	69
162	Forest biomass stocks and dynamics across the subtropical Andes. Biotropica, 2021, 53, 170-178.	0.8	9
163	Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of the Total Environment, 2021, 755, 142569	3.9	125

#	Article	IF	CITATIONS
164	Effects of supplemental watering on loggerhead (Caretta caretta) nests and hatchlings. Journal of Experimental Marine Biology and Ecology, 2021, 534, 151476.	0.7	14
165	Evolution of NDVI secular trends and responses to climate change: A perspective from nonlinearity and nonstationarity characteristics. Remote Sensing of Environment, 2021, 254, 112247.	4.6	59
166	The decomposition rates of leaf litter and fine root and their temperature sensitivities are influenced differently by biotic factors. Plant and Soil, 2021, 461, 603-616.	1.8	13
167	Impacts of strengthened warming by urban heat island on carbon sequestration of urban ecosystems in a subtropical city of China. Urban Ecosystems, 2021, 24, 1165-1177.	1.1	18
168	Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298-299, 108307.	1.9	46
169	Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 2021, 592, 65-69.	13.7	241
170	Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt. Communications Earth & Environment, 2021, 2, .	2.6	7
171	Variations of carbon allocation and turnover time across tropical forests. Global Ecology and Biogeography, 2021, 30, 1271-1285.	2.7	12
172	Linking global terrestrial CO ₂ fluxes and environmental drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680.	1.9	10
173	Decadal variability in land carbon sink efficiency. Carbon Balance and Management, 2021, 16, 15.	1.4	6
174	Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.	2.2	8
175	Machine-learning-based prediction and key factor identification of the organic carbon in riverine floodplain soils with intensive agricultural practices. Journal of Soils and Sediments, 2021, 21, 2896-2907.	1.5	4
176	Adjusting xylem anatomy and growth to inter-annual climate variability in two Fabaceae species (Centrolobium microchaete, Cenostigma pluviosum) from Bolivian dry tropical forests. Dendrochronologia, 2021, 67, 125840.	1.0	3
177	Postdrought Recovery Time Across Global Terrestrial Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005699.	1.3	11
178	Bidirectional droughtâ€related canopy dynamics across pantropical forests: a satelliteâ€based statistical analysis. Remote Sensing in Ecology and Conservation, 2022, 8, 72-91.	2.2	6
179	Spatial pattern of greening and browning and its response to climate in Xinjiang. , 2021, , .		0
180	Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. National Science Review, 2022, 9, nwab150.	4.6	49
181	Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002555.	1.3	3

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
182	Coherent elastic neutrino-nucleus scattering with the νBDXâ^'DRIFT directional detector at next generation neutrino facilities. Physical Review D, 2021, 104, .	1.6	8
183	Sustainability potential for Ginkgo biloba L. plantations under climate change uncertainty: An ex-situ conservation perspective. Acta Ecologica Sinica, 2021, 42, 101-101.	0.9	1
184	Relative importance of climatic variables, soil properties and plant traits to spatial variability in net CO2 exchange across global forests and grasslands. Agricultural and Forest Meteorology, 2021, 307, 108506.	1.9	13
185	Towards Robust Calculation of Interannual CO2 Growth Signal from TCCON (Total Carbon Column) Tj ETQq1 1 (0.784314 1.8	rgBT /Overlo
186	Projections of changes in ecosystem productivity under 1.5°C and 2°C global warming. Global and Planetary Change, 2021, 205, 103588.	1.6	18
187	Distribution and determinants of organic carbon and available nutrients in tropical paddy soils revealed by high–resolution sampling. Agriculture, Ecosystems and Environment, 2021, 320, 107580.	2.5	11
188	Responses of Mangrove Ecosystems to Climate Change in the Anthropocene. , 2021, , 201-224.		2
189	Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agricultural and Forest Meteorology, 2020, 288-289, 108018.	1.9	35
190	Local Perception of Climate Change and Adaptation in Mangrove Areas of the Cameroon Coast. Journal of Water Resource and Protection, 2016, 08, 608-618.	0.3	6
194	Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems. Earth System Science Data, 2020, 12, 1037-1051.	3.7	43
195	SAR – OPTICAL REMOTE SENSING BASED FOREST COVER AND GREENNESS ESTI-MATION OVER INDIA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-5/W2, 49-56.	0.0	12
196	Insights from Time Series of Atmospheric Carbon Dioxide and Related Tracers. Annual Review of Environment and Resources, 2021, 46, 85-110.	5.6	15
197	Fieldâ€Based Estimation of Net Primary Productivity and Its Above―and Belowground Partitioning in Global Grasslands. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	11
198	Emergent constraints on tropical atmospheric aridity—carbon feedbacks and the future of carbon sequestration. Environmental Research Letters, 2021, 16, 114008.	2.2	15
199	Detection and attribution of positive net ecosystem productivity extremes in China's terrestrial ecosystems during 2000-2016. Ecological Indicators, 2021, 132, 108323.	2.6	7
200	Photosynthetic Microorganism-Based CO2 Mitigation System: Integrated Approaches for Global Sustainability. SpringerBriefs in Materials, 2014, , 83-123.	0.1	1
204	Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere. PLoS ONE, 2015, 10, e0132663.	1.1	1
206	Dynamic Global Vegetation Models. , 2019, , 843-863.		2

#	Article	IF	Citations
208	Climatic Changes Dominant Interannual Trend in Net Primary Productivity of Alpine Vulnerable Ecosystems. Journal of Resources and Ecology, 2019, 10, 379.	0.2	7
209	Soil indigenous nutrients increase the resilience of maize yield to climatic warming in China. Environmental Research Letters, 2020, 15, 094047.	2.2	13
210	Renal diseases in the tropics. , 2020, , 5049-5064.		0
213	Soil heterotrophic respiration in response to rising temperature and moisture along an altitudinal gradient in a subtropical forest ecosystem, Southwest China. Science of the Total Environment, 2022, 816, 151643.	3.9	2
214	Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, 2022, 28, 1583-1595.	4.2	20
215	Qinghai-Tibetan Plateau Greening and Human Well-Being Improving: The Role of Ecological Policies. Sustainability, 2022, 14, 1652.	1.6	10
216	Inferring causal relations from observational long-term carbon and water fluxes records. Scientific Reports, 2022, 12, 1610.	1.6	10
217	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
218	A Comparison of Land Surface Phenology in the Northern Hemisphere Derived from Satellite Remote Sensing and the Community Land Model. Journal of Hydrometeorology, 2022, 23, 859-873.	0.7	5
219	Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability. Nature Communications, 2022, 13, 1193.	5.8	18
220	Revisiting the cumulative effects of drought on global gross primary productivity based on new longâ€ŧerm series data (1982–2018). Global Change Biology, 2022, 28, 3620-3635.	4.2	44
221	Soil carbon and microbes in the warming tropics. Functional Ecology, 2022, 36, 1338-1354.	1.7	8
222	Increasing Causal Effects of El Niño–Southern Oscillation on the Future Carbon Cycle of Terrestrial Ecosystems. Geophysical Research Letters, 2021, 48, .	1.5	5
223	Quantifying Temperature and Precipitation Change Caused by Land Cover Change: A Case Study of India Using the WRF Model. Frontiers in Environmental Science, 2021, 9, .	1.5	23
224	Quantitative contribution of the Grain for Green Program to vegetation greening and its spatiotemporal variation across the Chinese Loess Plateau. Land Degradation and Development, 2022, 33, 1878-1891.	1.8	12
227	Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations. Hydrology and Earth System Sciences, 2022, 26, 2045-2071.	1.9	5
228	Response of terrestrial net primary production to climate change associated with the quadrupling CO ₂ forcing in CMIP6 models. Atmospheric Science Letters, 2022, 23, .	0.8	2
229	Continuity Scaling: A Rigorous Framework for Detecting and Quantifying Causality Accurately. Research, 2022, 2022, .	2.8	12

#	Article	IF	CITATIONS
230	Climate change enhances the positive contribution of human activities to vegetation restoration in China. Geocarto International, 2022, 37, 13479-13499.	1.7	10
231	Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Environmental Science and Pollution Research, 2022, 29, 75322-75337.	2.7	4
233	Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nature Communications, 2022, 13, .	5.8	18
234	Increased Global Vegetation Productivity Despite Rising Atmospheric Dryness Over the Last Two Decades. Earth's Future, 2022, 10, .	2.4	32
235	Seasonal and Inter-Annual Variations of Carbon Dioxide Fluxes and Their Determinants in an Alpine Meadow. Frontiers in Plant Science, 0, 13, .	1.7	1
236	Exploratory Causal Analysis with Time Series Data. Synthesis Lectures on Data Mining and Knowledge Discovery, 2016, , .	0.5	3
237	Projected changes of ecosystem productivity and their responses to extreme heat events in northern asia. Frontiers in Earth Science, 0, 10, .	0.8	3
238	Coupled Landâ€Sea Warming Dominates the Net Land Carbon Uptake Variability in the Greater Bay Area of South China. Earth's Future, 2022, 10, .	2.4	3
239	Nitrogen and water availability control plant carbon storage with warming. Science of the Total Environment, 2022, 851, 158243.	3.9	7
240	Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nature Communications, 2022, 13, .	5.8	18
241	Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nature Communications, 2022, 13, .	5.8	70
242	Consistency of seasonal variability in regional CO2 fluxes from GOSAT-IM, NASA-GEOS, and NOAA-CT. Journal of Earth System Science, 2022, 131, .	0.6	1
243	Divergent responses of cropland soil organic carbon to warming across the Sichuan Basin of China. Science of the Total Environment, 2022, 851, 158323.	3.9	1
244	Causes of decadal distributions of Indian summer monsoon rainfall during the last 1500 years. Journal of Quaternary Science, 0, , .	1.1	0
245	Soil seed bank distribution and restoration potential in the vegetation of Buska Mountain range, Hamar district, southwestern Ethiopia. Heliyon, 2022, 8, e11244.	1.4	4
246	Increasing sensitivity of terrestrial nitrous oxide emissions to precipitation variations. , 2022, 1, 025010.		1
247	Interannual global carbon cycle variations linked to atmospheric circulation variability. Earth System Dynamics, 2022, 13, 1505-1533.	2.7	2
248	Evaluation of Spatiotemporal Resilience and Resistance of Global Vegetation Responses to Climate Change. Remote Sensing, 2022, 14, 4332.	1.8	2

#	Article	IF	CITATIONS
249	Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth System Dynamics, 2022, 13, 1667-1675.	2.7	11
250	Crop yield and carbon sink potential with precipitation in maize and potato cropland ecosystems over the summertime monsoon transition zone of China. Soil Use and Management, 0, , .	2.6	0
251	Enhanced Impact of Vegetation on Evapotranspiration in the Northern Drought-Prone Belt of China. Remote Sensing, 2023, 15, 221.	1.8	2
252	Climate change enhanced the positive contribution of human activities to net ecosystem productivity from 1983 to 2018. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
253	Low frequency changes in CO2 concentration in East Asia related to Pacific decadal oscillation and Atlantic multi-decadal oscillation for mid-summer and early fall. Science of the Total Environment, 2023, 876, 162377.	3.9	2
254	Soil organic carbon accumulation along a chronosequence of vegetation colonization on debris flow fans in Southwest China. Catena, 2023, 223, 106936.	2.2	0
255	Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nature Communications, 2023, 14, .	5.8	2
256	Diagnosing destabilization risk in global land carbon sinks. Nature, 2023, 615, 848-853.	13.7	28
257	Global concurrent climate extremes exacerbated by anthropogenic climate change. Science Advances, 2023, 9, .	4.7	39