A Targeting Modality for Destruction of RNA Polymeras Activity

Cancer Cell 25, 77-90 DOI: 10.1016/j.ccr.2013.12.009

Citation Report

#	Article	IF	CITATIONS
1	Small Molecule BMH-Compounds That Inhibit RNA Polymerase I and Cause Nucleolar Stress. Molecular Cancer Therapeutics, 2014, 13, 2537-2546.	1.9	68
3	Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis, 2014, 35, 2822-2830.	1.3	25
4	Connecting the nucleolus to the cell cycle and human disease. FASEB Journal, 2014, 28, 3290-3296.	0.2	80
5	Design, Synthesis, and Structure–Activity Relationships of Pyridoquinazolinecarboxamides as RNA Polymerase I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 4950-4961.	2.9	24
6	Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell and Bioscience, 2014, 4, 43.	2.1	47
7	The basal transcription machinery as a target for cancer therapy. Cancer Cell International, 2014, 14, 18.	1.8	56
8	Wild type p53 reactivation: From lab bench to clinic. FEBS Letters, 2014, 588, 2628-2638.	1.3	62
9	p53 and ribosome biogenesis stress: The essentials. FEBS Letters, 2014, 588, 2571-2579.	1.3	181
11	Transient rRNA synthesis inhibition with CX-5461 is sufficient to elicit growth arrest and cell death in acute lymphoblastic leukemia cells. Oncotarget, 2015, 6, 34846-34858.	0.8	23
12	Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Molecular and Cellular Oncology, 2015, 2, e983755.	0.3	34
13	Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pigment Cell and Melanoma Research, 2015, 28, 501-519.	1.5	3
14	High levels of TopBP1 induce ATR-dependent shut-down of rRNA transcription and nucleolar segregation. Nucleic Acids Research, 2015, 43, 4975-4989.	6.5	40
15	Pharmacological reactivation of p53 as a strategy to treat cancer. Journal of Internal Medicine, 2015, 277, 248-259.	2.7	71
16	Determinants of mammalian nucleolar architecture. Chromosoma, 2015, 124, 323-331.	1.0	80
17	p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene, 2015, 34, 5513-5523.	2.6	71
18	Ribosomal RNA Methylation and Cancer. , 2015, , 115-139.		4
19	New insights into nucleolar structure and function. F1000prime Reports, 2015, 7, 48.	5.9	65
20	A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites. Journal of Biological Chemistry, 2015, 290, 20601-20612.	1.6	22

#	Article	IF	CITATIONS
21	Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics, 2015, 7, 363-378.	1.0	25
22	Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Molecular and Cellular Biology, 2015, 35, 2321-2331.	1.1	13
23	Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene, 2015, 556, 27-34.	1.0	79
25	Functional divergence of eukaryotic RNA polymerases: Unique properties of RNA polymerase I suit its cellular role. Gene, 2015, 556, 19-26.	1.0	33
26	The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 821-829.	0.9	105
27	Regulation of Ribosomal Gene Expression in Cancer. Journal of Cellular Physiology, 2015, 230, 1181-1188.	2.0	43
28	Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax. Genetics and Molecular Research, 2016, 15, .	0.3	20
29	The cell proliferation antigen Ki-67 organises heterochromatin. ELife, 2016, 5, e13722.	2.8	237
30	Gold Nanoparticles Impinge on Nucleoli and the Stress Response in MCF7 Breast Cancer Cells. Nanobiomedicine, 2016, 3, 3.	4.4	43
31	Direct Characterization of Transcription Elongation by RNA Polymerase I. PLoS ONE, 2016, 11, e0159527.	1.1	9
32	Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription. Oncotarget, 2016, 7, 48887-48904.	0.8	8
33	Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nature Communications, 2016, 7, 11390.	5.8	156
34	Boc ₃ Arg-Linked Ligands Induce Degradation by Localizing Target Proteins to the 20S Proteasome. ACS Chemical Biology, 2016, 11, 3328-3337.	1.6	53
35	TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 189-196.	3.3	13
36	Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Molecular Cancer Therapeutics, 2016, 15, 2399-2412.	1.9	111
37	Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 2016, 48, 1313-1324.	1.4	150
38	The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Seminars in Cancer Biology, 2016, 37-38, 36-50.	4.3	149

#	Article	IF	CITATIONS
40	Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. European Journal of Human Genetics, 2017, 25, 315-323.	1.4	23
41	Novel Assay to Detect RNA Polymerase I Activity <i>In Vivo</i> . Molecular Cancer Research, 2017, 15, 577-584.	1.5	9
42	CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nature Communications, 2017, 8, 14432.	5.8	379
43	The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma. Oncogene, 2017, 36, 3852-3867.	2.6	32
44	Pharmacological inhibition of spinal cord injury-stimulated ribosomal biogenesis does not affect locomotor outcome. Neuroscience Letters, 2017, 642, 153-157.	1.0	4
45	Molecular dynamics simulations of early steps in RNA â€mediated conversion of prions. Protein Science, 2017, 26, 1524-1534.	3.1	11
46	SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell, 2017, 169, 664-678.e16.	13.5	205
47	RNA Polymerase I Inhibition with CXâ€5461 as a Novel Therapeutic Strategy to Target <i>MYC</i> in Multiple Myeloma. British Journal of Haematology, 2017, 177, 80-94.	1.2	51
48	Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129, 2882-2895.	0.6	74
49	Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 96-106.	2.3	32
50	PWP1 Mediates Nutrient-Dependent Growth Control through Nucleolar Regulation of Ribosomal Gene Expression. Developmental Cell, 2017, 43, 240-252.e5.	3.1	24
51	New roles for Dicer in the nucleolus and its relevance to cancer. Cell Cycle, 2017, 16, 1643-1653.	1.3	16
52	Inhibition of post-transcriptional steps in ribosome biogenesis confers cytoprotection against chemotherapeutic agents in a p53-dependent manner. Scientific Reports, 2017, 7, 9041.	1.6	15
53	Targeting RNA-Polymerase I in Both Chemosensitive and Chemoresistant Populations in Epithelial Ovarian Cancer. Clinical Cancer Research, 2017, 23, 6529-6540.	3.2	41
54	BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells. Oncology Reports, 2017, 38, 859-865.	1.2	17
55	Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. International Journal of Molecular Sciences, 2017, 18, 2171.	1.8	83
56	The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer. International Journal of Molecular Sciences, 2017, 18, 210.	1.8	20
57	Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients. PLoS ONE, 2017, 12, e0170160.	1.1	25

#	Article	IF	CITATIONS
58	Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005432.	1.3	34
59	New Roles for the Nucleolus in Health and Disease. BioEssays, 2018, 40, e1700233.	1.2	53
60	Mutations Alter RNA-Mediated Conversion of Human Prions. ACS Omega, 2018, 3, 3936-3944.	1.6	6
61	Small-Molecule Targeting of RNA Polymerase I Activates a Conserved Transcription Elongation Checkpoint. Cell Reports, 2018, 23, 404-414.	2.9	54
62	Loss of the deubiquitinase USP36 destabilizes the RNA helicase DHX33 and causes preimplantation lethality in mice. Journal of Biological Chemistry, 2018, 293, 2183-2194.	1.6	30
63	c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 615-629.	1.1	29
64	Regulation of RNA Polymerase I Transcription in Development, Disease, and Aging. Annual Review of Biochemistry, 2018, 87, 51-73.	5.0	82
65	Dynamic regulation of nucleolar architecture. Current Opinion in Cell Biology, 2018, 52, 105-111.	2.6	89
66	Ribosome biogenesis in cancer: new players and therapeutic avenues. Nature Reviews Cancer, 2018, 18, 51-63.	12.8	524
67	Ribosome biogenesis and cancer: basic and translational challenges. Current Opinion in Genetics and Development, 2018, 48, 22-29.	1.5	57
68	Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle, 2018, 17, 92-101.	1.3	30
69	Control of Ribosomal RNA Transcription by Nutrients. , 2018, , .		4
70	Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. Rna, 2018, 24, 1803-1812.	1.6	18
71	Use of the iNo score to discriminate normal from altered nucleolar morphology, with applications in basic cell biology and potential in human disease diagnostics. Nature Protocols, 2018, 13, 2387-2406.	5.5	29
72	Processing and roles of snoRNA-ended long noncoding RNAs. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 596-606.	2.3	48
73	Crosstalk between NF-κB and Nucleoli in the Regulation of Cellular Homeostasis. Cells, 2018, 7, 157.	1.8	27
74	Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. Journal of Hematology and Oncology, 2018, 11, 75.	6.9	18
75	Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Science Translational Medicine, 2018, 10, .	5.8	55

		CITATION REPORT	
# 76	ARTICLE Targeting RNA polymerase I transcription machinery in cancer cells by a novel monofunctional platinum-based agent. European Journal of Medicinal Chemistry, 2018, 155, 434-444.	IF 2.6	Citations 3
77	Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell lin Vitro Cellular and Developmental Biology - Animal, 2018, 54, 528-536.	e. In 0.7	14
78	40 Years of Research Put p53 in Translation. Cancers, 2018, 10, 152.	1.7	43
79	Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. Journal of Neurochemistry, 2019, 148, 325-347.	2.1	71
80	A cell-based screening system for RNA polymerase I inhibitors. MedChemComm, 2019, 10, 1765	-1774. 3.5	4
81	Theory and Applications of the Node-based Meshless Method and the Time-Reversal Method. , 20	019,,.	0
82	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblaste Nature Cell Biology, 2019, 21, 1003-1014.	oma. 4.6	107
83	Insights into the Relationship between Nucleolar Stress and the NF-Î $^\circ$ B Pathway. Trends in Genet 2019, 35, 768-780.	ics, 2.9	28
84	Inhibition of p53 inhibitors: progress, challenges and perspectives. Journal of Molecular Cell Biolo 2019, 11, 586-599.	ogy, 1.5	107
85	Coordinated Control of rRNA Processing by RNA Polymerase I. Trends in Genetics, 2019, 35, 724	-733. 2.9	35
86	Effective targeting of RNA polymerase I in treatmentâ€resistant prostate cancer. Prostate, 2019 1837-1851.	, 79, <u>1.2</u>	21
87	Targeting RNA Polymerase I with Hernandonine Inhibits Ribosomal RNA Synthesis and Tumor Cel Growth. Molecular Cancer Research, 2019, 17, 2294-2305.	1.5	9
88	Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. Oncolmmunology, 2019, 8, e1656502.	2.1	45
89	Therapeutic Approaches Targeting Nucleolus in Cancer. Cells, 2019, 8, 1090.	1.8	60
90	Discovery of novel inhibitors of ribosome biogenesis by innovative high throughput screening strategies. Biochemical Journal, 2019, 476, 2209-2219.	1.7	23
91	The Ribosome Biogenesis—Cancer Connection. Cells, 2019, 8, 55.	1.8	150
92	Ectopically expressed pNO40 suppresses ribosomal RNA synthesis by inhibiting UBF-dependent transcription activation. Biochemical and Biophysical Research Communications, 2019, 516, 38	-387. 1.0	6
93	Emerging modes-of-action in drug discovery. MedChemComm, 2019, 10, 1550-1568.	3.5	22

#	Article	IF	CITATIONS
94	Integration of the Deacetylase SIRT1 in the Response to Nucleolar Stress: Metabolic Implications for Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 106.	1.4	9
95	Protective Effect Against Cancer of Antibodies to the LargeÂSubunits of Both <scp>RNA</scp> Polymerases I and <scp>III</scp> in Scleroderma. Arthritis and Rheumatology, 2019, 71, 1571-1579.	2.9	34
96	Small molecule activators of the p53 response. Journal of Molecular Cell Biology, 2019, 11, 245-254.	1.5	34
97	Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Communications Biology, 2019, 2, 39.	2.0	33
98	The Functions of Non-coding RNAs in rRNA Regulation. Frontiers in Genetics, 2019, 10, 290.	1.1	33
99	Liposomal prodigiosin and plasmid encoding serial GCA nucleotides reduce inflammation in microglial and astrocyte cells by ATM/ATR signaling. Journal of Neuroimmunology, 2019, 326, 75-78.	1.1	6
100	Keeping ribosomal DNA intact: a repeating challenge. Chromosome Research, 2019, 27, 57-72.	1.0	62
101	Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochemical Pharmacology, 2019, 159, 74-81.	2.0	109
102	Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 25-34.	0.9	10
103	The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death and Differentiation, 2020, 27, 773-789.	5.0	35
104	The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 437-457.	2.3	38
105	The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer, 2020, 2, zcaa032.	1.6	42
106	rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Frontiers in Cell and Developmental Biology, 2020, 8, 568.	1.8	15
107	Canonical non-homologous end-joining promotes genome mutagenesis and translocations induced by transcription-associated DNA topoisomerase 2 activity. Nucleic Acids Research, 2020, 48, 9147-9160.	6.5	6
108	Ribosome Biogenesis Alterations in Colorectal Cancer. Cells, 2020, 9, 2361.	1.8	28
109	Sempervirine inhibits RNA polymerase I transcription independently from p53 in tumor cells. Cell Death Discovery, 2020, 6, 111.	2.0	10
110	Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Research, 2020, 48, 9449-9461.	6.5	44
111	Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nature Communications, 2020, 11, 4287	5.8	33

#	Article	IF	CITATIONS
112	Hedgehog signaling enables repair of ribosomal DNA double-strand breaks. Nucleic Acids Research, 2020, 48, 10342-10352.	6.5	7
113	Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell, 2020, 26, 845-861.e12.	5.2	59
114	The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. Journal of Biological Chemistry, 2020, 295, 4617-4630.	1.6	12
115	Transcription and Translation Inhibitors in Cancer Treatment. Frontiers in Chemistry, 2020, 8, 276.	1.8	54
116	RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. Journal of Biological Chemistry, 2020, 295, 4782-4795.	1.6	21
117	Compensation between Wnt-driven tumorigenesis and cellular responses to ribosome biogenesis inhibition in the murine intestinal epithelium. Cell Death and Differentiation, 2020, 27, 2872-2887.	5.0	5
118	Advances at the interface of cancer and systemic sclerosis. Journal of Scleroderma and Related Disorders, 2021, 6, 50-57.	1.0	4
120	Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin. Journal of Biological Chemistry, 2021, 296, 100633.	1.6	33
121	Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Experimental and Molecular Medicine, 2021, 53, 42-51.	3.2	93
122	Nuclear upregulation of class I phosphoinositide 3-kinase p110Î ² correlates with high 47S rRNA levels in cancer cells. Journal of Cell Science, 2021, 134, .	1.2	7
123	Human nucleoli comprise multiple constrained territories, tethered to individual chromosomes. Genes and Development, 2021, 35, 483-488.	2.7	11
126	Quorum sensing regulates rRNA synthesis in Saccharomyces cerevisiae. Gene, 2021, 776, 145442.	1.0	2
127	The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation. Biophysical Journal, 2021, 120, 1883-1893.	0.2	17
128	Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Blood, 2021, 137, 3351-3364.	0.6	13
129	Transcriptional Stress Induces Chromatin Relocation of the Nucleotide Excision Repair Factor XPG. International Journal of Molecular Sciences, 2021, 22, 6589.	1.8	3
130	Targeting cancer via ribosome biogenesis: the cachexia perspective. Cellular and Molecular Life Sciences, 2021, 78, 5775-5787.	2.4	9
131	Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes, 2021, 12, 1156.	1.0	10
132	Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. Laboratory Investigation, 2021, 101, 1439-1448.	1.7	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
134	The NF-κB Nucleolar Stress Response Pathway. Biomedicines, 2021, 9, 1082.		1.4	5
135	Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. S Transduction and Targeted Therapy, 2021, 6, 323.	Signal	7.1	127
137	Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-m damage in cancer cells. Nucleic Acids Research, 2021, 49, 10275-10288.	ediated DNA	6.5	15
138	Quinacrine Induces Nucleolar Stress in Treatment-Refractory Ovarian Cancer Cell Lines. 2021, 13, 4645.	Cancers,	1.7	7
139	Natural products inducing nucleolar stress: implications in cancer therapy. Anti-Cancer I 33, e21-e27.	Drugs, 2022,	0.7	3
140	Hypoxia re-programs 2′-O-Me modifications on ribosomal RNA. IScience, 2021, 24, 1	02010.	1.9	16
143	RNA-Seq of the Nucleolus Reveals Abundant SNORD44-Derived Small RNAs. PLoS ONE,	2014, 9, e107519.	1.1	24
144	Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic EMBO Molecular Medicine, 2020, 12, e11622.	cell stress.	3.3	67
145	Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging, 2	019, 11, 2512-2540.	1.4	129
146	Long non-coding RNA ZFAS1 promotes colorectal cancer tumorigenesis and developme DDX21-POLR1B regulatory axis. Aging, 2020, 12, 22656-22687.	nt through	1.4	20
147	Ribosome biogenesis: Achilles heel of cancer?. Genes and Cancer, 2014, 5, 152-153.		0.6	23
148	The human box C/D snoRNAs U3 and U8 are required for pre-rRNA processing and tume Oncotarget, 2016, 7, 59519-59534.	rigenesis.	0.8	69
149	DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage respon 2014, 5, 4361-4369.	nse. Oncotarget,	0.8	73
150	Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herp Oncotarget, 2018, 9, 13822-13833.	besvirus.	0.8	8
151	KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 i including triple-negative breast cancer cells. Oncotarget, 2019, 10, 4743-4760.	in cells,	0.8	5
152	rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic lo cells in G2 phase and induces apoptosis. Oncotarget, 2015, 6, 18094-18104.	eukemia, arrests	0.8	76
153	Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-indepe death in transformed cells. Oncotarget, 2015, 6, 27519-27536.	endent apoptotic	0.8	28
154	Targeted cancer therapy with ribosome biogenesis inhibitors: a real possibility?. Oncota 38617-38627.	rget, 2015, 6,	0.8	56

#	Article	IF	CITATIONS
155	Targeting the Ribosome Biogenesis Key Molecule Fibrillarin to Avoid Chemoresistance. Current Medicinal Chemistry, 2019, 26, 6020-6032.	1.2	28
156	POLR1B is upregulated and promotes cell proliferation in non‑small cell lung cancer. Oncology Letters, 2020, 19, 671-680.	0.8	11
157	RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis. Cell Death and Differentiation, 2021, , .	5.0	10
159	Cell cultures of human malignant tumors in development of new anticancer therapies. Nauchno-prakticheskii Zhurnal «Patogenez», 2018, , 13-23.	0.2	0
162	Chemotherapy agents reduce protein synthesis and ribosomal capacity in myotubes independent of oxidative stress. American Journal of Physiology - Cell Physiology, 2021, 321, C1000-C1009.	2.1	5
164	The small-molecule BMH-21 directly inhibits transcription elongation and DNA occupancy of RNA polymerase I inÂvivo and inÂvitro. Journal of Biological Chemistry, 2022, 298, 101450.	1.6	27
166	9-Aminoacridine Inhibits Ribosome Biogenesis by Targeting Both Transcription and Processing of Ribosomal RNA. International Journal of Molecular Sciences, 2022, 23, 1260.	1.8	6
167	Assessment of transcription inhibition as a characteristic of immunogenic cell death. Methods in Cell Biology, 2022, , .	0.5	1
168	Alteration of ribosome function upon 5-fluorouracil treatment favors cancer cell drug-tolerance. Nature Communications, 2022, 13, 173.	5.8	23
169	A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biology, 2022, 12, 210305.	1.5	18
170	Identification of an E3 Ligase Regulating the Catalytic Subunit of RNA Polymerase I. SSRN Electronic Journal, O, , .	0.4	0
171	Molecular Conflicts Disrupting Centromere Assembly Contribute to <i>Xenopus</i> Hybrid Inviability. SSRN Electronic Journal, 0, , .	0.4	0
173	Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Research, 2022, 82, 2344-2353.	0.4	64
174	Nucleolar-based <i>Dux</i> repression is essential for embryonic two-cell stage exit. Genes and Development, 2022, 36, 331-347.	2.7	22
175	Discovery and Evaluation of Novel Angular Fused Pyridoquinazolinonecarboxamides as RNA Polymerase I Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 608-614.	1.3	2
176	Targeting selenoprotein H in the nucleolusÂsuppresses tumors and metastases by Isovalerylspiramycin I. Journal of Experimental and Clinical Cancer Research, 2022, 41, 126.	3.5	12
180	Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers, 2022, 14, 2126.	1.7	31
181	Shedding Light on NF-κB Functions in Cellular Organelles. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	7

#	Article	IF	CITATIONS
182	Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer. BMC Cancer, 2022, 22, 526.	1.1	10
183	Persistent CAD activity in memory CD8 ⁺ T cells supports rRNA synthesis and ribosomal biogenesis required at rechallenge. Science Immunology, 2022, 7, .	5.6	7
184	Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Frontiers in Oncology, 2022, 12, .	1.3	2
185	Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development (Cambridge), 2022, 149, .	1.2	1
186	Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors. Nature Communications, 2022, 13, .	5.8	10
187	Ribosomes and Ribosomal Proteins Promote Plasticity and Stemness Induction in Glioma Cells via Reprogramming. Cells, 2022, 11, 2142.	1.8	5
188	Ribosomopathies and cancer: pharmacological implications. Expert Review of Clinical Pharmacology, 2022, 15, 729-746.	1.3	1
189	Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability. Current Biology, 2022, 32, 3939-3951.e6.	1.8	4
190	Extra-Ribosome Functions of Ribosomal Proteins. , 2022, , .		0
191	<scp>CMTM6</scp> attenuates cisplatinâ€induced cell death in <scp>OSCC</scp> by regulating <scp>AKT/câ€Myc</scp> â€driven ribosome biogenesis. FASEB Journal, 2022, 36, .	0.2	3
192	Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Molecular Medicine, 2022, 28, .	1.9	4
194	Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. IScience, 2022, 25, 105306.	1.9	6
195	RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21. Cancers, 2022, 14, 5544.	1.7	6
197	Identification of an E3 ligase that targets the catalytic subunit of RNA Polymerase I upon transcription stress. Journal of Biological Chemistry, 2022, 298, 102690.	1.6	4
198	Targeting DNA Junctions with Small Molecules for Therapeutic Applications in Oncology. , 2022, , 1-24.		0
199	Regulation of RNA Polymerase I Stability and Function. Cancers, 2022, 14, 5776.	1.7	7
200	Small molecule-mediated disruption of ribosome biogenesis synergizes with FGFR inhibitors to suppress glioma cell growth. Neuro-Oncology, 2023, 25, 1058-1072.	0.6	2
202	Simultaneous activation of Tor and suppression of ribosome biogenesis by TRIM-NHL proteins promotes terminal differentiation. Cell Reports, 2023, 42, 112181.	2.9	4

#	Article	IF	CITATIONS
204	UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biology, 2023, 62, 102705.	3.9	6
212	Targeting DNA Junctions with Small Molecules for Therapeutic Applications in Oncology. , 2023, , 1051-1074.		0