Bacillus spores as building blocks for stimuli-responsive

Nature Nanotechnology 9, 137-141 DOI: 10.1038/nnano.2013.290

Citation Report

#	Article	IF	CITATIONS
1	bioPrint. , 2014, , .		3
2	Nanoscale Chemical Imaging of <i>Bacillus subtilis</i> Spores by Combining Tip-Enhanced Raman Scattering and Advanced Statistical Tools. ACS Nano, 2014, 8, 12300-12309.	7.3	55
3	Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microbial Cell Factories, 2014, 13, 115.	1.9	22
4	Evaporative microclimate driven hygrometers and hygromotors. Europhysics Letters, 2014, 107, 64002.	0.7	14
5	Spore Surface Display. Microbiology Spectrum, 2014, 2, .	1.2	44
7	Light―and Humidityâ€Induced Motion of an Acidochromic Film. Angewandte Chemie - International Edition, 2015, 54, 8642-8647.	7.2	92
8	Moisture-responsive films consisting of luminescent polyoxometalates and agarose. Journal of Materials Chemistry C, 2015, 3, 6322-6328.	2.7	26
9	pH-Switchable electroactive composite films of carboxylated multi-walled carbon nanotubes and Prussian blue. RSC Advances, 2015, 5, 103184-103188.	1.7	2
10	bioPrint: A Liquid Deposition Printing System for Natural Actuators. 3D Printing and Additive Manufacturing, 2015, 2, 168-179.	1.4	28
11	Single cell profiling of surface carbohydrates on <i>Bacillus cereus</i> . Journal of the Royal Society Interface, 2015, 12, 20141109.	1.5	17
12	bioLogic. , 2015, , .		162
13	Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nature Communications, 2015, 6, 7346.	5.8	189
14	Photogated humidity-driven motility. Nature Communications, 2015, 6, 7429.	5.8	175
15	Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot. Scientific Reports, 2015, 5, 9138.	1.6	27
16	Morphological and mechanical imaging of <i>Bacillus cereus</i> spore formation at the nanoscale. Journal of Microscopy, 2015, 258, 49-58.	0.8	10
17	Spore Surface Display. , 0, , 349-366.		4
18	Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.	6.5	32
19	Directed Motility of Hygroresponsive Biomimetic Actuators. Advanced Functional Materials, 2016, 26, 1040-1053.	7.8	104

		REPORT	
#	Article	IF	CITATIONS
20	Surviving Between Hosts: Sporulation and Transmission. Microbiology Spectrum, 2016, 4, .	1.2	52
21	Internal Hydration Properties of Single Bacterial Endospores Probed by Electrostatic Force Microscopy. ACS Nano, 2016, 10, 11327-11336.	7.3	20
22	The Spore Coat. Microbiology Spectrum, 2016, 4, .	1.2	90
23	Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles. Scientific Reports, 2016, 6, 23016.	1.6	66
24	Evaluation of force generation mechanisms in natural, passive hydraulic actuators. Scientific Reports, 2016, 6, 18105.	1.6	53
25	Rational Micro/Nanostructuring for Thin-Film Evaporation. Journal of Physical Chemistry C, 2016, 120, 8742-8750.	1.5	54
26	xPrint. , 2016, , .		55
27	Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics. Soft Matter, 2016, 12, 8718-8725.	1.2	7
28	Hydroactuated Configuration Alteration of Fibrous Dandelion Pappi: Toward Selfâ€Controllable Transport Behavior. Advanced Functional Materials, 2016, 26, 7378-7385.	7.8	25
29	Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencilâ€onâ€Paper Method. Advanced Functional Materials, 2016, 26, 7244-7253.	7.8	145
30	An autonomous actuator driven by fluctuations in ambient humidity. Nature Materials, 2016, 15, 1084-1089.	13.3	331
31	Shape-Shifting Droplet Networks. Physical Review Letters, 2016, 116, 108301.	2.9	6
32	Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials, 2016, 28, 7910-7914.	11.1	254
33	Mechanics of dielectric elastomers: materials, structures, and devices. Journal of Zhejiang University: Science A, 2016, 17, 1-21.	1.3	24
34	Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores. Journal of Bacteriology, 2016, 198, 168-177.	1.0	35
35	Osmotic pressure-triggered cavitation in microcapsules. Lab on A Chip, 2016, 16, 251-255.	3.1	29
36	Synergistic action of thermoresponsive and hygroresponsive elements elicits rapid and directional response of a bilayer actuator. Chemical Communications, 2016, 52, 5920-5923.	2.2	42
37	Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12, 317-321.	15.6	747

#	Article	IF	CITATIONS
38	Nanostructure ZnFe2O4 with Bacillus subtilis for Detection of LPG at Low Temperature. Journal of Electronic Materials, 2017, 46, 2334-2339.	1.0	28
39	Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth. Advanced Materials, 2017, 29, 1605103.	11.1	51
40	Cell Generator: A Self‧ustaining Biohybrid System Based on Energy Harvesting from Engineered Cardiac Microtissues. Advanced Functional Materials, 2017, 27, 1606169.	7.8	10
41	Humidity―and Photoâ€Induced Mechanical Actuation of Crossâ€Linked Liquid Crystal Polymers. Advanced Materials, 2017, 29, 1604792.	11.1	212
42	Potential for natural evaporation as a reliable renewable energy resource. Nature Communications, 2017, 8, 617.	5.8	141
43	Humidity-responsive actuators from integrating liquid crystal networks in an orienting scaffold. Soft Matter, 2017, 13, 8070-8075.	1.2	35
44	Functional aqueous droplet networks. Molecular BioSystems, 2017, 13, 1658-1691.	2.9	56
45	Humidity- and Sunlight-Driven Motion of a Chemically Bonded Polymer Bilayer with Programmable Surface Patterns. ACS Applied Materials & Interfaces, 2017, 9, 41599-41606.	4.0	42
46	Cell Imaging by Spontaneous and Amplified Raman Spectroscopies. Journal of Spectroscopy, 2017, 2017, 1-9.	0.6	6
47	TiO ₂ -pattern-modulated actuation of an agarose@CNT/agarose bilayer induced by light and humidity. Journal of Materials Chemistry A, 2018, 6, 8238-8243.	5.2	27
48	Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Advanced Materials, 2018, 30, e1704847.	11.1	300
49	Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Science Robotics, 2018, 3, .	9.9	307
50	Autonomous Motility of Polymer Films. Advanced Materials, 2018, 30, 1705616.	11.1	25
51	Cold Vapor Generation beyond the Input Solar Energy Limit. Advanced Science, 2018, 5, 1800222.	5.6	228
52	Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface. Journal of Biophotonics, 2018, 11, e201700398.	1.1	2
53	A Dual‣timuliâ€Responsive Sodiumâ€Bromine Battery with Ultrahigh Energy Density. Advanced Materials, 2018, 30, e1800028.	11.1	56
54	Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring. Nature Communications, 2018, 9, 1717.	5.8	42
55	Force Spectroscopy and Beyond: Innovations and Opportunities. Biophysical Journal, 2018, 115, 2279-2285.	0.2	16

	CITATION R	CITATION REPORT	
# 56	ARTICLE Emerging hydrovoltaic technology. Nature Nanotechnology, 2018, 13, 1109-1119.	lF 15.6	CITATIONS
57	Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies. Solar Energy, 2018, 174, 837-847.	2.9	54
58	Blue energy harvesting on nanostructured carbon materials. Journal of Materials Chemistry A, 2018, 6, 18357-18377.	5.2	63
59	Microbial Spores: Concepts and Industrial Applications. , 2018, , 279-289.		5
60	Responsive cellulose-hydrogel composite ink for 4D printing. Materials and Design, 2018, 160, 108-118.	3.3	162
61	Morphokinematics of the Hygroactuation of Feather Grass Awns. Advanced Biology, 2018, 2, 1800007.	3.0	6
62	Protein Self-Assemblies That Can Generate, Hold, and Discharge Electric Potential in Response to Changes in Relative Humidity. Journal of the American Chemical Society, 2018, 140, 7144-7151.	6.6	36
63	Chameleon-Inspired Structural-Color Actuators. Matter, 2019, 1, 626-638.	5.0	197
64	Actuating smart. Nature Nanotechnology, 2019, 14, 1003-1004.	15.6	8
65	Humidity-Driven Soft Actuator Built up Layer-by-Layer and Theoretical Insight into Its Mechanism of Energy Conversion. Journal of Physical Chemistry Letters, 2019, 10, 5542-5551.	2.1	30
66	Continuous Production of a Shelf‣table Living Material as a Biosensor Platform. Advanced Materials Technologies, 2019, 4, 1900266.	3.0	10
67	Sporeâ€Based Waterâ€Resistant Waterâ€Responsive Actuators with High Power Density. Advanced Materials Technologies, 2019, 4, 1800596.	3.0	20
68	Controllable kinematics of soft polymer actuators induced by interfacial patterning. Journal of Materials Chemistry C, 2019, 7, 5410-5417.	2.7	14
69	Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO ₃ materials for simultaneously scavenging light and vibration energies. Energy and Environmental Science, 2019, 12, 1231-1240.	15.6	74
70	Organic Moleculeâ€Driven Polymeric Actuators. Macromolecular Rapid Communications, 2019, 40, e1800896.	2.0	17
71	A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy, 2019, 59, 754-761.	8.2	116
72	Ultrafast yet Controllable Dual-Responsive All-Carbon Actuators for Implementing Unusual Mechanical Movements. ACS Applied Materials & Interfaces, 2019, 11, 10218-10225.	4.0	47
73	Graphene oxide/polymer actuator driven by acetone vapor enabling an ultra-large bending angle and fast response. Smart Materials and Structures, 2019, 28, 105043.	1.8	5

#	Article	IF	CITATIONS
74	Ultrastructural analysis of spores from diverseBacillalesspecies isolated from Brazilian soil. Environmental Microbiology Reports, 2019, 11, 155-164.	1.0	11
75	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2019, 2, 26-35.	13.1	322
76	A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors. Macromolecular Materials and Engineering, 2019, 304, 1800501.	1.7	7
77	Inorganic Stimuliâ€Responsive Nanomembranes for Smallâ€ S cale Actuators and Robots. Advanced Intelligent Systems, 2020, 2, 1900092.	3.3	7
78	Capillarity in Soft Porous Solids. Annual Review of Fluid Mechanics, 2020, 52, 263-284.	10.8	27
79	Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 2020, 16, 126-133.	3.9	133
80	Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza and Other Respiratory Viruses, 2020, 14, 92-101.	1.5	43
81	Ferroelectric Polarization Enhancement of Proximity Sensing Performance in Oxide Semiconductor Field-Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 3443-3453.	2.0	6
82	Hierarchical fibrous structures for muscleâ€inspired softâ€actuators: A review. Applied Materials Today, 2020, 20, 100772.	2.3	30
83	Humanâ€Skinâ€Inspired Adaptive Smart Textiles Capable of Amplified Latent Heat Transfer for Thermal Comfort. Advanced Intelligent Systems, 2020, 2, 2000163.	3.3	13
84	Tough biomimetic films for harnessing natural evaporation for various self-powered devices. Journal of Materials Chemistry A, 2020, 8, 19269-19277.	5.2	24
85	Fiber-Shaped Fluidic Nanogenerator with High Power Density for Self-Powered Integrated Electronics. Cell Reports Physical Science, 2020, 1, 100175.	2.8	9
86	Water-responsive materials for sustainable energy applications. Journal of Materials Chemistry A, 2020, 8, 15227-15244.	5.2	57
87	Energy Stored in Nanoscale Water Capillary Bridges between Patchy Surfaces. Langmuir, 2020, 36, 7246-7251.	1.6	5
88	A Solvent Molecule Driven Pure PEDOT:PSS Actuator. Macromolecular Materials and Engineering, 2020, 305, 2000327.	1.7	17
89	A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 2020, 194, 108911.	3.3	146
90	Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Applied and Environmental Microbiology, 2020, 86, .	1.4	41
91	Self-Excited Motions of Volatile Drops on Swellable Sheets. Physical Review Letters, 2020, 124, 258002.	2.9	52

#	Article	IF	CITATIONS
92	Protein-Based Flexible Moisture-Induced Energy-Harvesting Devices As Self-Biased Electronic Sensors. ACS Applied Electronic Materials, 2020, 2, 780-789.	2.0	59
93	Capillary transfer of soft films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5210-5216.	3.3	27
94	βâ€Sheet Nanocrystals Dictate Water Responsiveness of <i>Bombyx Mori</i> Silk. Macromolecular Rapid Communications, 2020, 41, e1900612.	2.0	15
95	Plantâ€Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers. Advanced Materials Interfaces, 2020, 7, 1901310.	1.9	50
96	Autonomously Responsive Membranes for Chemical Warfare Protection. Advanced Functional Materials, 2020, 30, 2000258.	7.8	32
97	Design of functionally cooperating systems and application towards self-propulsive mini-generators. Materials Chemistry Frontiers, 2021, 5, 129-150.	3.2	14
98	Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nature Materials, 2021, 20, 403-409.	13.3	44
99	Tuning water-responsiveness with Bombyx mori silk–silica nanoparticle composites. Soft Matter, 2021, 17, 7817-7821.	1.2	1
100	Stimuli-responsive engineered living materials. Soft Matter, 2021, 17, 785-809.	1.2	64
101	Humidity- and Water-Responsive Torsional and Contractile Lotus Fiber Yarn Artificial Muscles. ACS Applied Materials & Interfaces, 2021, 13, 6642-6649.	4.0	47
102	Genetically Intact Bioengineered Spores of <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2021, 10, 778-785.	1.9	2
103	Spore-adsorption: Mechanism and applications of a non-recombinant display system. Biotechnology Advances, 2021, 47, 107693.	6.0	8
104	Bioinspired Soft Microactuators. Advanced Materials, 2021, 33, e2008558.	11.1	22
105	Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications. Sustainability, 2021, 13, 4030.	1.6	7
106	4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. Small, 2021, 17, e2100910.	5.2	82
107	Azobenzeneâ€Based Photomechanical Biomaterials. Advanced NanoBiomed Research, 2021, 1, 2100020.	1.7	12
108	Soft Untethered Robots and Grippers Based on Humidity-Gated Magnetic-Responsive Film Actuators. ACS Applied Polymer Materials, 2021, 3, 4726-4734.	2.0	10
109	One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette. ACS Applied Materials & amp; Interfaces, 2021, 13, 43396-43403.	4.0	8

#	Article	IF	Citations
110	Sequence-specific response of collagen-mimetic peptides to osmotic pressure. MRS Bulletin, 2021, 46, 889-901.	1.7	4
111	Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synthetic and Systems Biotechnology, 2021, 6, 180-191.	1.8	33
112	Moisture induced electricity for self-powered microrobots. Nano Energy, 2021, 90, 106499.	8.2	23
113	Generating Electricity from Natural Evaporation Using PVDF Thin Films Incorporating Nanocomposite Materials. Energies, 2021, 14, 585.	1.6	2
114	A Multiple‣timulusâ€Responsive Biomimetic Assembly Based on a Polyisocyanopeptide and Conjugated Polymer. Chemistry - an Asian Journal, 2017, 12, 2962-2966.	1.7	6
115	Surviving Between Hosts: Sporulation and Transmission. , 0, , 567-591.		5
116	The Spore Coat. , 0, , 179-200.		13
117	Spore: Potential of Invaluable Bacterial Wrap. , 2016, 2, .		2
118	Digital printing of shape-morphing natural materials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
119	l.ã,¦ã,§ã,¢ãf©ãf−ルãf‡ãfã,ã,1å⁵ãʿã,¨ãfãf«ã,®ãf¼ãfãf1¼ãf™ã,1ãf†ã,£ãf³ã,°æŠ€è¡". Electrochemistry, 2	01 6, &4, 1	.57±163.
121	Low-grade energy harvesting from dispersed exhaust steam for power generation using a soft biomimetic actuator. Nano Energy, 2022, 91, 106677.	8.2	13
122	Engineering living and regenerative fungal–bacterial biocomposite structures. Nature Materials, 2022, 21, 471-478.	13.3	47
123	Biomimetic 3D living materials powered by microorganisms. Trends in Biotechnology, 2022, 40, 843-857.	4.9	27
124	Characterization and modeling the hygroscopic behavior of cellulose acetate membranes. Cellulose, 2022, 29, 2175-2186.	2.4	6
126	Taxonomy for engineered living materials. Cell Reports Physical Science, 2022, 3, 100807.	2.8	16
127	Engineered Living Hydrogels. Advanced Materials, 2022, 34, e2201326.	11.1	75
128	High Energy and Power Density Peptidoglycan Muscles through Superâ€Viscous Nanoconfined Water. Advanced Science, 2022, 9, e2104697.	5.6	14
130	A review of humidity-driven actuator: toward high response speed and practical applications. Journal of Materials Science, 2022, 57, 12202-12235.	1.7	18

#	Article	IF	CITATIONS
131	Ferroelectric BaTiO ₃ Based Multiâ€Effects Coupled Materials and Devices. Advanced Electronic Materials, 2022, 8, .	2.6	10
132	Development and challenges of smart actuators based on water-responsive materials. Soft Matter, 2022, 18, 5725-5741.	1.2	13
133	Biohybrid materials: Structure design and biomedical applications. Materials Today Bio, 2022, 16, 100352.	2.6	5
134	Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Current Opinion in Chemical Biology, 2022, 70, 102188.	2.8	7
135	Thermodynamics of Hygroresponsive Soft Engines: Cycle Analysis and Work Ratio. Physical Review Applied, 2022, 18, .	1.5	3
136	Water-Content-Dependent Morphologies and Mechanical Properties of <i>Bacillus subtilis</i> Spores' Cortex Peptidoglycan. ACS Biomaterials Science and Engineering, 2022, 8, 5094-5100.	2.6	2
137	Engineering Covalent Organic Frameworks with Polyethylene Glycol as Self‣ustained Humidityâ€Responsive Actuators. Angewandte Chemie, 2023, 135, .	1.6	2
138	The Next Frontier of 3D Bioprinting: Bioactive Materials Functionalized by Bacteria. Small, 2023, 19, .	5.2	9
139	Engineering Covalent Organic Frameworks with Polyethylene Glycol as Self‣ustained Humidityâ€Responsive Actuators. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
140	Harvesting Energy from Atmospheric Water: Grand Challenges in Continuous Electricity Generation. Advanced Materials, 0, , .	11.1	18
141	Autonomous self-burying seed carriers for aerial seeding. Nature, 2023, 614, 463-470.	13.7	30
142	Advances in harvesting water and energy from ubiquitous atmospheric moisture. Journal of Materials Chemistry A, 2023, 11, 12456-12481.	5.2	13
143	Enhanced water-responsive actuation of porous <i>Bombyx mori</i> silk. Soft Matter, 2023, 19, 2047-2052.	1.2	0
144	Systematic Investigation on the Mechanisms for Water Responsive Actuation Using Commercial Sewing Threads. Journal of Natural Fibers, 2023, 20, .	1.7	0
145	Natural fiber biocomposites via 4D printing technologies: a review of possibilities for agricultural bio-mulching and related sustainable applications. Progress in Additive Manufacturing, 2024, 9, 37-67.	2.5	3
153	Energy harvesting technology based on moisture-responsive actuators. Journal of Materials Chemistry A, 0, , .	5.2	1
156	Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow. Nano Research, 2024, 17, 570-586.	5.8	0
159	Moisture-induced deformation of 3D printed hygro-responsive bi-material actuators. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
161	Sustainable moisture energy. Nature Reviews Materials, 0, , .	23.3	0
162	Paper-Based Moist-Electric Generators for Scalable, Disposable, and Green Power Generation. , 2024, , .		0