CITATION REPORT List of articles citing

Single-molecule analysis of Pseudomonas fluorescens footpr

DOI: 10.1021/nn4060489 ACS Nano, 2014, 8, 1690-8.

Source: https://exaly.com/paper-pdf/58996951/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
31	Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. <i>MBio</i> , 2014 , 5, e01363-14	7.8	109
30	Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. <i>Journal of Bacteriology</i> , 2014 , 196, 2775-88	3.5	61
29	The binding force of the staphylococcal adhesin SdrG is remarkably strong. <i>Molecular Microbiology</i> , 2014 , 93, 356-68	4.1	85
28	Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. <i>Microbiology Spectrum</i> , 2015 , 3,	8.9	141
27	Mapping HA-tagged protein at the surface of living cells by atomic force microscopy. <i>Journal of Molecular Recognition</i> , 2015 , 28, 1-9	2.6	14
26	Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. 2015, 163-199		10
25	Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. <i>Nanotechnology</i> , 2015 , 26, 062001	3.4	19
24	Sticky microbes: forces in microbial cell adhesion. <i>Trends in Microbiology</i> , 2015 , 23, 376-82	12.4	118
23	Understanding forces in biofilms. <i>Nanomedicine</i> , 2015 , 10, 1219-21	5.6	5
22	Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans. <i>Minerals</i> (Basel, Switzerland), 2016 , 6, 71	2.4	17
21	Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. <i>Molecular Microbiology</i> , 2016 , 99, 611-21	4.1	17
20	Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy. <i>Journal of Immunological Methods</i> , 2016 , 436, 41-9	2.5	7
19	Determination of the nano-scaled contact area of staphylococcal cells. <i>Nanoscale</i> , 2017 , 9, 10084-10093	3 7.7	19
18	Phenotypic Heterogeneity in Attachment of Marine Bacteria toward Antifouling Copolymers Unraveled by AFM. <i>Frontiers in Microbiology</i> , 2017 , 8, 1399	5.7	14
17	Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. <i>MBio</i> , 2018 , 9,	7.8	16
16	Single Molecule Force Spectroscopy Reveals Two-Domain Binding Mode of Pilus-1 Tip Protein RrgA of Streptococcus pneumoniae to Fibronectin. <i>ACS Nano</i> , 2018 , 12, 549-558	16.7	24
15	Bacterial Adhesion to Ultrafiltration Membranes: Role of Hydrophilicity, Natural Organic Matter, and Cell-Surface Macromolecules. <i>Environmental Science & Environmental Scien</i>	10.3	34

CITATION REPORT

14	Hydrophobicity and GO Sheet Spatial Orientation. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 14-19	11	27
13	Probing Bacterial Adhesion at the Single-Molecule and Single-Cell Levels by AFM-Based Force Spectroscopy. <i>Methods in Molecular Biology</i> , 2018 , 1814, 403-414	1.4	3
12	Imaging the Microprocesses in Biofilm Matrices. <i>Trends in Biotechnology</i> , 2019 , 37, 214-226	15.1	23
11	Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. <i>Cell Surface</i> , 2019 , 5, 100031	4.8	7
10	Biologic Treatment of Corrosion. 2019 , 101-144		1
9	Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. <i>Frontiers in Pharmacology</i> , 2020 , 11, 517165	5.6	3
8	From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. <i>Annual Review of Microbiology</i> , 2020 , 74, 607-631	17.5	16
7	The microbial adhesive arsenal deciphered by atomic force microscopy. <i>Nanoscale</i> , 2020 , 12, 23885-2389	9 ,6 7	2
6	MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. <i>Journal of Bacteriology</i> , 2020 , 202,	3.5	9
5	Computational prediction of secreted proteins in gram-negative bacteria. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 1806-1828	6.8	6
4	MapA, a second large RTX adhesin, contributes to biofilm formation by Pseudomonas fluorescens.		3
3	Layered structure and complex mechanochemistry of a strong bacterial adhesive.		
2	DataSheet_1.pdf. 2020 ,		
1	Pseudomonas putida Biofilm Depends on the vWFa-Domain of LapA in Peptides-Containing Growth Medium. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 5898	6.3	1