Earth-abundant cocatalysts for semiconductor-based p

Chemical Society Reviews 43, 7787-7812 DOI: 10.1039/c3cs60425j

Citation Report

#	Article	IF	CITATIONS
1	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
2	Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.	3.5	446
3	Optical, Electrical and Photocatalytic Properties of the Ternary SemiconductorsZnxCd1-xS,CuxCd1-xSandCuxZn1-xS. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	5
4	A Facile and Waste-Free Strategy to Fabricate Pt-C/TiO ₂ Microspheres: Enhanced Photocatalytic Performance for Hydrogen Evolution. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	6
5	Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst. Angewandte Chemie - International Edition, 2014, 53, 11538-11542.	7.2	170
6	Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst. Angewandte Chemie, 2014, 126, 11722-11726.	1.6	38
7	Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation. Applied Surface Science, 2014, 319, 344-349.	3.1	169
8	Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy and Environmental Science, 2014, 7, 3934-3951.	15.6	470
9	Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide band-gap (BiO) ₂ CO ₃ hierarchical structure. RSC Advances, 2014, 4, 56307-56312.	1.7	47
10	Facile fabrication and photoelectrochemical properties of a one axis-oriented NiO thin film with a (111) dominant facet. Journal of Materials Chemistry A, 2014, 2, 19867-19872.	5.2	21
11	Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. Journal of Materials Chemistry A, 2014, 2, 9875.	5.2	106
12	Asymmetry and electronic directionality: a means of improving the red/near-IR-light-responsive photoactivity of phthalocyanine-sensitized carbon nitride. Catalysis Science and Technology, 2014, 4, 3251.	2.1	32
13	Recent advances in TiO ₂ -based photocatalysis. Journal of Materials Chemistry A, 2014, 2, 12642.	5.2	418
14	Decoration of size-tunable CuO nanodots on TiO ₂ nanocrystals for noble metal-free photocatalytic H ₂ production. Nanoscale, 2014, 6, 12002-12008.	2.8	68
15	Cl ^{â^'} making overall water splitting possible on TiO ₂ -based photocatalysts. Catalysis Science and Technology, 2014, 4, 2913.	2.1	42
16	Sulfur copolymer nanowires with enhanced visible-light photoresponse. Chemical Communications, 2014, 50, 11208-11210.	2.2	32
17	Efficient visible light-driven H ₂ production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale, 2014, 6, 13470-13475.	2.8	41
18	Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane. Applied Surface Science, 2014, 319, 37-43.	3.1	33

#	Article	IF	CITATIONS
19	Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochimica Acta, 2014, 144, 64-70.	2.6	46
20	Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties. Nanoscale, 2014, 6, 10839-10849.	2.8	33
21	Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale, 2014, 6, 14984-14990.	2.8	109
22	Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties. RSC Advances, 2014, 4, 29249.	1.7	88
23	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
24	Artificial photosynthesis over graphene–semiconductor composites. Are we getting better?. Chemical Society Reviews, 2014, 43, 8240-8254.	18.7	534
25	Photocatalytic Metal–Organic Framework from CdS Quantum Dot Incubated Luminescent Metallohydrogel. Journal of the American Chemical Society, 2014, 136, 14845-14851.	6.6	287
26	Two-dimensional layered composite photocatalysts. Chemical Communications, 2014, 50, 10768.	2.2	551
27	Noble-metal-free BODIPY–cobaloxime photocatalysts for visible-light-driven hydrogen production. Physical Chemistry Chemical Physics, 2014, 16, 23884-23894.	1.3	50
28	Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 10963-10971.	1.5	259
29	g-C ₃ N ₄ -Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 2014, 5, 2101-2107.	2.1	1,107
30	Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO ₂ nanocomposites synthesized using an electrochemically active biofilm. RSC Advances, 2014, 4, 26013-26021.	1.7	103
31	Effect of transition metal ion doping on photocatalytic properties of In–Ti oxides. Journal of Materials Research, 2015, 30, 3259-3266.	1.2	2
32	Surface Activation of Faceted Photocatalyst: When Metal Cocatalyst Determines the Nature of the Facets. Advanced Science, 2015, 2, 1500153.	5.6	25
33	Au plasmonics in a WS2-Au-CuInS2 photocatalyst for significantly enhanced hydrogen generation. Applied Physics Letters, 2015, 107, .	1.5	29
34	Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO _x nanoparticles for efficient visible-light-driven hydrogen generation. APL Materials, 2015, 3, 104403.	2.2	59
37	Singleâ€Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 10718-10732.	7.2	123
38	Pure phase orthorhombic MgTi ₂ O ₅ photocatalyst for H ₂ production. RSC Advances, 2015, 5, 106151-106155.	1.7	22

#	Article	IF	CITATIONS
39	Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 2015, 27, 5309-5327.	11.1	492
40	Multichannelâ€Improved Chargeâ€Carrier Dynamics in Wellâ€Designed Heteroâ€nanostructural Plasmonic Photocatalysts toward Highly Efficient Solarâ€ŧoâ€Fuels Conversion. Advanced Materials, 2015, 27, 5906-5914.	11.1	239
41	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	11.1	123
42	An Efficient p–n Heterojunction Photocatalyst Constructed from a Coordination Polymer Nanoplate and a Partically Reduced Graphene Oxide for Visible‣ight Hydrogen Production. Chemistry - A European Journal, 2015, 21, 14638-14647.	1.7	24
43	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	11.1	567
44	Enhancing the Efficiency of Water Oxidation by Boronâ€Doped BiVO ₄ under Visible Light: Hole Trapping by BO ₄ Tetrahedra. ChemPlusChem, 2015, 80, 1113-1118.	1.3	15
46	Nobleâ€Metalâ€Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production. ChemSusChem, 2015, 8, 4113-4127.	3.6	148
47	Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 2015, 25, 6885-6892.	7.8	898
49	Optimization of Hydrogenâ€Evolving Photochemical Molecular Devices. Angewandte Chemie - International Edition, 2015, 54, 6627-6631.	7.2	96
50	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction. Chemistry - A European Journal, 2015, 21, 15360-15368.	1.7	139
51	Structure Modification Function of g ₃ N ₄ for Al ₂ O ₃ in the In Situ Hydrothermal Process for Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2015, 21, 10149-10159.	1.7	74
53	Light: A Very Peculiar Reactant and Product. Angewandte Chemie - International Edition, 2015, 54, 11320-11337.	7.2	106
54	Influence of Anodic Oxidation Parameters of TiO2Nanotube Arrays on Morphology and Photocatalytic Performance. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	5
55	Highlighting Photocatalytic H2-Production from Natural Seawater and the Utilization of Quasi-Photosynthetic Absorption as Two Ultimate Solutions for CO2Mitigation. International Journal of Photoenergy, 2015, 2015, 1-11.	1.4	4
56	Efficient Degradation of Methylene Blue over Two-Dimensional Au/TiO ₂ Nanosheet Films with Overlapped Light Harvesting Nanostructures. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	9
57	Structural band-gap tuning in g-C ₃ N ₄ . Physical Chemistry Chemical Physics, 2015, 17, 957-962.	1.3	107
58	Exceptional enhancement of H2 production in alkaline environment over plasmonic Au/TiO2 photocatalyst under visible light. APL Materials, 2015, 3, .	2.2	16
59	Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules, 2015, 20, 6739-6793.	1.7	61

#	Article	IF	CITATIONS
60	Surface-Structure Sensitivity of CeO ₂ Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis, 2015, 5, 4385-4393.	5.5	158
61	Use of a Wedge Scheme to Describe Intermolecular Proton-Coupled Electron Transfer through the H-bond Complex Formed Between a Phenylenediamine-Based Urea and 1,8-Naphthyridine. Journal of Physical Chemistry C, 2015, 119, 12865-12874.	1.5	9
62	Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Solar Energy Materials and Solar Cells, 2015, 141, 162-170.	3.0	126
63	Cobalt Phosphide Nanowires: Efficient Nanostructures for Fluorescence Sensing of Biomolecules and Photocatalytic Evolution of Dihydrogen from Water under Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5493-5497.	7.2	216
64	Rationally Designed n–n Heterojunction with Highly Efficient Solar Hydrogen Evolution. ChemSusChem, 2015, 8, 1218-1225.	3.6	87
65	Insights into mesoporous metal phosphonate hybrid materials for catalysis. Catalysis Science and Technology, 2015, 5, 4258-4279.	2.1	68
66	Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtO @M-TiO2 nanocomposites. Ceramics International, 2015, 41, 9131-9139.	2.3	39
67	Crystal Surfaces and Fate of Photogenerated Defects in Shape-Controlled Anatase Nanocrystals: Drawing Useful Relations to Improve the H ₂ Yield in Methanol Photosteam Reforming. Journal of Physical Chemistry C, 2015, 119, 12385-12393.	1.5	50
68	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
69	A laminated spherical composite assembled by alternating polyaniline and titania nanosheets with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2015, 652, 358-363.	2.8	17
70	Origin of Hybrid 1T- and 2H-WS ₂ Ultrathin Layers by Pulsed Laser Deposition. Journal of Physical Chemistry C, 2015, 119, 27496-27504.	1.5	50
71	Aqueous Synthesis of Tunable Highly Photoluminescent CdTe Quantum Dots Using Rongalite and Bioimaging Application. Chinese Journal of Analytical Chemistry, 2015, 43, e101-e107.	0.9	8
72	lonic liquid-assisted fabrication of copper hydroxyphosphate nanocrystals with exposed {100} facets for enhanced photocatalytic activity. Nanotechnology, 2015, 26, 031001.	1.3	7
73	Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2. Materials Chemistry and Physics, 2015, 153, 117-126.	2.0	9
74	Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coordination Chemistry Reviews, 2015, 287, 1-14.	9.5	140
75	Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a Molecular Nickel Complex. Chemistry - A European Journal, 2015, 21, 4571-4575.	1.7	59
76	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	5.2	291
77	A novel triphenylamine functionalized bithiazole–metal complex with C ₆₀ for photocatalytic hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 6258-6264.	5.2	40

#	Article	IF	CITATIONS
78	Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. Journal of Materials Chemistry A, 2015, 3, 7179-7186.	5.2	96
79	One-pot synthesis of heterostructured Bi ₂ S ₃ /BiOBr microspheres with highly efficient visible light photocatalytic performance. RSC Advances, 2015, 5, 16239-16249.	1.7	119
80	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy and Environmental Science, 2015, 8, 1329-1338.	15.6	136
81	Engineering a high energy surface of anatase TiO ₂ crystals towards enhanced performance for energy conversion and environmental applications. RSC Advances, 2015, 5, 20396-20409.	1.7	79
82	Layered Co(OH) ₂ Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. ACS Catalysis, 2015, 5, 941-947.	5.5	335
83	Brand new P-doped g-C ₃ N ₄ : enhanced photocatalytic activity for H ₂ evolution and Rhodamine B degradation under visible light. Journal of Materials Chemistry A, 2015, 3, 3862-3867.	5.2	497
84	Hierarchical CdS nanostructure by Lawesson's reagent and its enhanced photocatalytic hydrogen production. RSC Advances, 2015, 5, 13715-13721.	1.7	22
85	Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 2015, 27, 2150-2176.	11.1	3,046
86	The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H ₂ photogeneration from water. Nanoscale, 2015, 7, 5767-5775.	2.8	75
87	A versatile salicylic acid precursor method for preparing titanate microspheres. Science China Materials, 2015, 58, 106-113.	3.5	6
88	Ga4B2O9: An Efficient Borate Photocatalyst for Overall Water Splitting without Cocatalyst. Inorganic Chemistry, 2015, 54, 2945-2949.	1.9	27
89	Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem, 2015, 8, 1350-1358.	3.6	178
90	Efficient charge separation on 3D architectures of TiO ₂ mesocrystals packed with a chemically exfoliated MoS ₂ shell in synergetic hydrogen evolution. Chemical Communications, 2015, 51, 7187-7190.	2.2	76
92	Self-assembly of a mesoporous ZnS/mediating interface/CdS heterostructure with enhanced visible-light hydrogen-production activity and excellent stability. Chemical Science, 2015, 6, 5263-5268.	3.7	65
93	An effective quaternary nano-sized Er ³⁺ :Y ₃ Al ₅ O ₁₂ /Pt–PdS/ZnS visible-light photocatalyst for H ₂ production. RSC Advances, 2015, 5, 54769-54776.	1.7	14
94	Enhanced photocatalytic H ₂ evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C ₃ N ₄ heterojunctions. Journal of Materials Chemistry A, 2015, 3, 18244-18255.	5.2	306
95	Establishing Efficient Cobalt-Based Catalytic Sites for Oxygen Evolution on a Ta ₃ N ₅ Photocatalyst. Chemistry of Materials, 2015, 27, 5685-5694.	3.2	51
96	Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catalysis, 2015, 5, 5145-5153.	5.5	164

#	Article	IF	CITATIONS
97	Novel Au/TiO2 photocatalysts for hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors. Journal of Catalysis, 2015, 330, 238-254.	3.1	85
98	Tuning the Morphology of g-C ₃ N ₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15285-15293.	4.0	256
99	Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 2015, 351, 779-793.	3.1	213
100	One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochimica Acta, 2015, 174, 1216-1224.	2.6	135
101	Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni ₂ P/CdS catalyst under visible-light irradiation. Chemical Communications, 2015, 51, 13217-13220.	2.2	94
102	Mesoporous Phosphorus-Doped g-C ₃ N ₄ Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2015, 7, 16850-16856.	4.0	635
103	Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. Journal of Materials Chemistry A, 2015, 3, 18345-18359.	5.2	200
104	Recent progress in g-C ₃ N ₄ based low cost photocatalytic system: activity enhancement and emerging applications. Catalysis Science and Technology, 2015, 5, 5048-5061.	2.1	206
105	Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Applied Surface Science, 2015, 358, 377-384.	3.1	200
106	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	18.7	603
107	Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co ₃ O ₄ /BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2015, 137, 8356-8359.	6.6	767
108	Copper(<scp>i</scp>) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 12556-12559.	2.2	47
109	Converting 2D inorganic–organic ZnSe–DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances. Nanoscale, 2015, 7, 9752-9759.	2.8	27
110	A nanotubular framework with customized conductivity and porosity for efficient oxidation and reduction of water. Journal of Materials Chemistry A, 2015, 3, 11040-11047.	5.2	9
111	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	10.2	694
112	Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: progress and challenges. Catalysis Science and Technology, 2015, 5, 3084-3096.	2.1	40
113	Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 2015, 44, 2893-2939.	18.7	955
114	Heterostructure of Si and CoSe ₂ : A Promising Photocathode Based on a Nonâ€noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 6211-6216.	7.2	134

ARTICLE IF CITATIONS # Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the 115 3.1 3 photosynthetic water oxidation. Applied Surface Science, 2015, 347, 368-377. Hybrid Zâ€Scheme Using Photosystem I and BiVO₄ for Hydrogen Production. Advanced Fúnctional Materials, 2015, 25, 2369-2377. What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst 117 Ag₃PO₄/g-C₃N₄, band–band transfer or a direct 1.3 155 Z-scheme?. Physical Chemistry Chemical Physics, 2015, 17, 11577-11585. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 4,776 5148-5180. An efficient cocatalyst of defect-decorated MoS₂ ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. Journal of Materials 119 5.2 128 Chemistry A, 2015, 3, 12631-12635. Pd–Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. Journal of Materials Chemistry A, 2015, 3, 9390-9394. 5.2 A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy and Environmental Science, 2015, 8, 121 15.6 90 1443-1449. Synthesis of a g-C₃N₄-sensitized and NaNbO₃-substrated II-type 1.3 heterojunction with enhanced photocatalytic degradation activity. CrystEngComm, 2015, 17, 4575-4583. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. Journal of Materials Chemistry A, 2015, 3, 12810-12819. 124 5.2 124 Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Advances in Colloid and 242 Interface Science, 2015, 221, 41-59. Chemically controlled growth of porous CeO2 nanotubes for Cr(VI) photoreduction. Applied 126 10.8 62 Catalysis É: Environmental, 2015, 174-175, 435-444. The synergistic mechanism of graphene and MoS₂ for hydrogen generation: insights from density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 11375-11381. 1.3 Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution 128 3.1 76 reaction. Applied Surface Science, 2015, 341, 149-156. Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 2015, 342, 154-167. 129 3.1 363 One-dimension-based spatially ordered architectures for solar energy conversion. Chemical Society 130 18.7 367 Reviews, 2015, 44, 5053-5075. Visible light induced photocatalysis on CdS quantum dots decorated TiO 2 nanotube arrays. Applied Catalysis A: General, 2015, 498, 159-166. 2.2 141 Gold nanoparticles-sensitized wide and narrow band gap TiO₂ for visible light 132 1.4 90 applications: a comparative study. New Journal of Chemistry, 2015, 39, 4708-4715. Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction. Journal of Power Sources, 2015, 300, 301-308.

#	Article	IF	CITATIONS
134	Synergetic effect of copper species as cocatalyst on LaFeO3 for enhanced visible-light photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 13918-13925.	3.8	37
135	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O ₂ . ACS Applied Materials & Interfaces, 2015, 7, 22727-22740.	4.0	68
136	Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review. RSC Advances, 2015, 5, 83707-83724.	1.7	84
137	Natural biological template for ZnO nanoparticle growth and photocatalytic dye degradation under visible light. RSC Advances, 2015, 5, 84406-84409.	1.7	13
138	Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Applied Surface Science, 2015, 358, 196-203.	3.1	327
139	Insight into the Effect of Highly Dispersed MoS ₂ versus Layer-Structured MoS ₂ on the Photocorrosion and Photoactivity of CdS in Graphene–CdS–MoS ₂ Composites. Journal of Physical Chemistry C, 2015, 119, 27234-27246.	1.5	254
140	Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H ₂ production. Energy and Environmental Science, 2015, 8, 3708-3717.	15.6	1,146
141	Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nature Communications, 2015, 6, 8647.	5.8	172
142	Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity. Applied Surface Science, 2015, 359, 455-468.	3.1	66
143	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
144	Hierarchical carbon quantum dots/hydrogenated-Î ³ -TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy, 2015, 18, 143-153.	8.2	104
145	Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Applied Surface Science, 2015, 358, 304-312.	3.1	134
146	A Versatile Strategy for Shish-Kebab-like Multi-heterostructured Chalcogenides and Enhanced Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2015, 137, 11004-11010.	6.6	95
147	Hierarchical ultrathin-branched CdS nanowire arrays with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 19507-19516.	5.2	44
148	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48. Applied Surface Science, 2015, 356, 308-316.	3.1	38
149	Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting. ACS Catalysis, 2015, 5, 5530-5539.	5.5	40
150	Synthesis of highly permeable Fe2O3/ZnO hollow spheres for printable photocatalysis. RSC Advances, 2015, 5, 88277-88286.	1.7	28
151	A novel strategy for tailoring copper oxide cluster with Pt-like activity for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 15454-15459.	3.8	11

#	Article	IF	CITATIONS
152	Surface and Interface Engineering in Photocatalysis. ChemNanoMat, 2015, 1, 223-239.	1.5	135
153	Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Science Bulletin, 2015, 60, 1395-1402.	4.3	29
154	Photocatalytic overall water splitting over an open-framework gallium borate loaded with various cocatalysts. Catalysis Communications, 2015, 71, 17-20.	1.6	22
155	Hierarchical FeTiO ₃ –TiO ₂ hollow spheres for efficient simulated sunlight-driven water oxidation. Nanoscale, 2015, 7, 15924-15934.	2.8	50
156	Co-MOF as a sacrificial template: manifesting a new Co ₃ O ₄ /TiO ₂ system with a p–n heterojunction for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 20288-20296.	5.2	110
157	Synthesis of Co doped BiVO 4 with enhanced visible-light photocatalytic activities. Journal of Alloys and Compounds, 2015, 651, 744-748.	2.8	76
158	CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H ₂ evolution from neutral water. Journal of Materials Chemistry A, 2015, 3, 18852-18859.	5.2	72
159	MoS ₂ quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 21772-21778.	5.2	127
160	Earth-abundant NiS co-catalyst modified metal-free mpg-C ₃ N ₄ /CNT nanocomposites for highly efficient visible-light photocatalytic H ₂ evolution. Dalton Transactions, 2015, 44, 18260-18269.	1.6	123
161	In Situ Photoconductivity Kinetic Study of Nano-TiO ₂ during the Photocatalytic Oxidation of Formic Acid: Effects of New Recombination and Current Doubling. Journal of Physical Chemistry C, 2015, 119, 21711-21722.	1.5	19
162	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
163	Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Applied Surface Science, 2015, 358, 204-212.	3.1	203
164	Construction of CulnS ₂ /Ag sensitized ZnO nanowire arrays for efficient hydrogen generation. RSC Advances, 2015, 5, 81723-81727.	1.7	16
165	Photocatalytic water oxidation by layered Co/h-BCN hybrids. Science China Materials, 2015, 58, 867-876.	3.5	67
166	All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production. Applied Surface Science, 2015, 357, 214-220.	3.1	7
167	Ionothermal synthesis of black Ti ³⁺ -doped single-crystal TiO ₂ as an active photocatalyst for pollutant degradation and H ₂ generation. Journal of Materials Chemistry A, 2015, 3, 3748-3756.	5.2	141
168	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	5.2	1,609
169	Hydrogen photogeneration catalyzed by a cobalt complex of a pentadentate aminopyridine-based ligand. New Journal of Chemistry, 2015, 39, 1734-1741.	1.4	16

#	Article	IF	CITATIONS
170	Zn _x Cd _{1â^'x} S/bacterial cellulose bionanocomposite foams with hierarchical architecture and enhanced visible-light photocatalytic hydrogen production activity. Journal of Materials Chemistry A, 2015, 3, 1709-1716.	5.2	36
171	Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. Journal of Colloid and Interface Science, 2015, 449, 115-121.	5.0	136
172	Ionic liquid self-combustion synthesis of BiOBr/Bi ₂₄ O ₃₁ Br ₁₀ heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale, 2015, 7, 1116-1126.	2.8	173
173	Heterojunction engineering of graphitic carbon nitride (g-C ₃ N ₄) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Transactions, 2015, 44, 1249-1257.	1.6	307
174	Controllable synthesis of porous TiO ₂ with a hierarchical nanostructure for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 3710-3718.	5.2	33
175	NiCoP Nanoparticles as Efficient Electrocatalyst for Oxygen Evolution Reaction in an Alkaline Solution. International Journal of Electrochemical Science, 2016, , 9917-9927.	0.5	10
176	Tantalate-based Perovskite for Solar Energy Applications. , 0, , .		1
177	Constructing a MoS2 QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity. Molecules, 2016, 21, 213.	1.7	32
178	Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 2016, 21, 900.	1.7	447
179	Amorphous Ti(<scp>iv</scp>)-modified Bi ₂ WO ₆ with enhanced photocatalytic performance. RSC Advances, 2016, 6, 65902-65910.	1.7	22
180	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	10.2	268
181	Nitrogenâ€Doped Graphene for Photocatalytic Hydrogen Generation. Chemistry - an Asian Journal, 2016, 11, 1125-1137.	1.7	63
182	Ionicâ€Liquidâ€Functionalized Copper Oxide Nanorods for Photocatalytic Splitting of Water. ChemPlusChem, 2016, 81, 489-495.	1.3	18
183	A dual-cocatalyst-loaded Au/BiOI/MnO _x system for enhanced photocatalytic greenhouse gas conversion into solar fuels. Environmental Science: Nano, 2016, 3, 902-909.	2.2	61
184	Incorporation of Pd into Pt Co atalysts toward Enhanced Photocatalytic Water Splitting. Particle and Particle Systems Characterization, 2016, 33, 506-511.	1.2	26
185	Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H ₂ Generation. Advanced Functional Materials, 2016, 26, 4527-4534.	7.8	60
186	Singleâ€Atom Pt as Co atalyst for Enhanced Photocatalytic H ₂ Evolution. Advanced Materials, 2016, 28, 2427-2431.	11.1	1,156
187	Co ₃ O ₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visibleâ€Light Photocatalytic Reduction of CO ₂ . Advanced Materials, 2016, 28, 6485-6490	11.1	395

#	Article	IF	CITATIONS
188	Transition Metal Disulfides as Nobleâ€Metalâ€Alternative Coâ€Catalysts for Solar Hydrogen Production. Advanced Energy Materials, 2016, 6, 1502555.	10.2	279
189	Efficiency Enhancement of Carbon Nitride Photoelectrochemical Cells via Tailored Monomers Design. Advanced Energy Materials, 2016, 6, 1600263.	10.2	116
190	Synergistic Cocatalytic Effect of Carbon Nanodots and Co ₃ O ₄ Nanoclusters for the Photoelectrochemical Water Oxidation on Hematite. Angewandte Chemie, 2016, 128, 5945-5949.	1.6	42
191	Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chemistry, 2016, 18, 5357-5366.	4.6	52
192	Photocatalytic Reduction of CO ₂ over Heterostructure Semiconductors into Valueâ€Added Chemicals. Chemical Record, 2016, 16, 1918-1933.	2.9	58
193	Fabrication of photostable ternary CdS/MoS 2 /MWCNTs hybrid photocatalysts with enhanced H 2 generation activity. Applied Catalysis A: General, 2016, 525, 9-22.	2.2	44
194	CdS Nanowires Decorated with Ultrathin MoS ₂ Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem, 2016, 9, 624-630.	3.6	223
195	CoPt <i>_x</i> -loaded Zn _{0.5} Cd _{0.5} S nanocomposites for enhanced visible light photocatalytic H ₂ production. International Journal of Energy Research, 2016, 40, 1280-1286.	2.2	32
196	CdS Nanoparticleâ€Đecorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253
197	Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 2016, 116, 14587-14619.	23.0	731
198	Brookite TiO2 quasi nanocubes decorated with Cu nanoclusters for enhanced photocatalytic hydrogen production activity. Materials Today Chemistry, 2016, 1-2, 23-31.	1.7	14
199	Heterogene molekulare Systeme für eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	1.6	46
200	Growth of SnO <inf>2</inf> nanosheets on mesoporous SiC nanofibers for enhanced photocatalytic H <inf>2</inf> evolution. , 2016, , .		0
201	Hydrogen generation from pure water using Al–Sn powders consolidated through high-pressure torsion. Journal of Materials Research, 2016, 31, 775-782.	1.2	21
202	Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Science China Materials, 2016, 59, 1003-1016.	3.5	32
203	A robust and efficient visible light driven photocatalyst for hydrogen evolution based on ruthenium dye N3 covalently immobilized on reduced graphene oxide. RSC Advances, 2016, 6, 34699-34707.	1.7	7
204	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	23.0	2,051
205	Efficient visible-light photocatalytic H ₂ evolution over metal-free g-C ₃ N ₄ co-modified with robust acetylene black and Ni(OH) ₂ as dual co-catalysts. RSC Advances, 2016, 6, 31497-31506.	1.7	94

# 206	ARTICLE Facile hydrothermal synthesis and improved photocatalytic activities of Zn ²⁺ doped Bi ₂ MoO ₆ nanosheets. RSC Advances, 2016, 6, 32349-32357.	IF 1.7	CITATIONS
207	A novel approach to synthesize the amorphous carbon-coated WO 3 with defects and excellent photocatalytic properties. Materials and Design, 2016, 106, 22-29.	3.3	13
208	Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 2016, 340, 1-9.	3.1	181
209	Enhanced photocatalytic H 2 -production activity of anatase TiO 2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Applied Catalysis B: Environmental, 2016, 198, 286-294.	10.8	375
210	Enhanced Kinetics of Hole Transfer and Electrocatalysis during Photocatalytic Oxygen Evolution by Cocatalyst Tuning. ACS Catalysis, 2016, 6, 4117-4126.	5.5	48
211	Photocatalytic Degradation of Indigo Carmine Dye Using Hydrothermally Synthesized Anatase TiO ₂ Nanotubes under Ultraviolet Light Emitting Diode Irradiation. Materials Science Forum, 2016, 855, 45-57.	0.3	4
212	Two-dimensional assembly structure of graphene and TiO 2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance. Chemical Physics Letters, 2016, 653, 190-195.	1.2	5
213	Nanomaterials for Hydrogen Generation from Solar Water Splitting. Nanoscience and Technology, 2016, , 445-470.	1.5	2
214	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505
215	A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters, 2016, 1, 121-135.	8.8	163
216	Generation of Hydrogen by Visible Lightâ€Induced Water Splitting with the Use of Semiconductors and Dyes. Small, 2016, 12, 16-23.	5.2	44
217	Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. Chemistry - an Asian Journal, 2016, 11, 22-42.	1.7	74
218	Effective Charge Carrier Utilization in Photocatalytic Conversions. Accounts of Chemical Research, 2016, 49, 911-921.	7.6	266
219	Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. Journal of Hazardous Materials, 2016, 314, 67-77.	6.5	113
220	Highly Active Subnanometer Au Particles Supported on TiO ₂ for Photocatalytic Hydrogen Evolution from a Well-Defined Organogold Precursor, [Au ₅ (mesityl) ₅]. Inorganic Chemistry, 2016, 55, 4026-4033.	1.9	14
221	Promoting visible light-driven hydrogen evolution over CdS nanorods using earth-abundant CoP as a cocatalyst. RSC Advances, 2016, 6, 33120-33125.	1.7	56
222	Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS ₂ nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water. Catalysis Science and Technology, 2016, 6, 6197-6206.	2.1	131
223	Facile in situ synthesis of plasmonic nanoparticles-decorated g-C ₃ N ₄ /TiO ₂ heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H ₂ evolution. Nanoscale, 2016, 8 11043	2.8	204

ARTICLE IF CITATIONS Recycling of hyper-accumulator: Synthesis of ZnO nanoparticles and photocatalytic degradation for 224 2.8 45 dichlorophenol. Journal of Alloys and Compounds, 2016, 680, 500-505. Spiers Memorial Lecture : Heterogeneous catalysis: understanding the fundamentals for catalyst 1.6 design. Faraday Discussions, 2016, 188, 9-20. Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology 226 252 5.6 C: Photochemistry Reviews, 2016, 27, 72-99. Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in 4.0 Photoelectrochemical Water Splitting. ACS Applied Materials & amp; Interfaces, 2016, 8, 12149-12157. The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis. Organic and 228 1.525 Biomolecular Chemistry, 2016, 14, 9088-9092. Heterogeneous Molecular Systems for Photocatalytic CO₂ Reduction with Water 229 Oxidation. Angewandte Chémie - International Edition, 2016, 55, 14924-14950. Self-assembling solid-state hydrogen source for drylands photocatalytic hydrogen production. 230 5.2 12 Journal of Materials Chemistry A, 2016, 4, 15920-15928. Photocatalytic Properties of g-C₆N₆/g-C₃N₄ 1.5 78 Heterostructure: A Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 24023-24029. Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO₂ 232 nanosheets for simultaneous H₂ evolution and 1,1-diethoxyethane production. Journal of 5.2 90 Materials Chemistry A, 2016, 4, 18366-18377. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production. ChemSusChem, 2016, 9, 3.6 3084-3092. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic 234 172 5.2 Hydrogen Evolution. Small, 2016, 12, 6735-6744. Plasmon-assisted Chemical Reactions. World Scientific Series in Nanoscience and Nanotechnology, 0.1 Mechanism study on the photocatalytic efficiency enhancement of MoS₂ modified 236 1.7 36 Zn–AgIn₅S₈ quantum dots. RSC Advances, 2016, 6, 99023-99033. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and 5.8 promising applications in energy conversion and conservation. Nano Research, 2016, 9, 3598-3621. Metalâ€"organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional 238 5.8 215 electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243. Efficient photocatalytic hydrogen production over eosin Y-sensitized MoS₂. RSC Advances, 2016, 6, 75618-75625. A new visible-light driving nanocomposite photocatalyst Er³⁺:Y₃Al₅O₁₂/MoS₂–NaTaO₃–PdS 240 10 for photocatalytic degradation of a refractory pollutant with potentially simultaneous hydrogen evolution. RSC Advances, 2016, 6, 80595-80603. Synthesis of hierarchical Mn 2 O 3 microspheres for photocatalytic hydrogen production. Materials 241 Research Bulletin, 2016, 84, 99-104.

#	Article	IF	CITATIONS
242	Facile one-pot solvothermal preparation of Mo-doped Bi ₂ WO ₆ biscuit-like microstructures for visible-light-driven photocatalytic water oxidation. Journal of Materials Chemistry A, 2016, 4, 13242-13250.	5.2	88
243	Enhanced photocatalytic H ₂ production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. Journal of Materials Chemistry A, 2016, 4, 13289-13295.	5.2	116
244	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5.6	60
245	MnPSe ₃ Monolayer: A Promising 2D Visible‣ight Photohydrolytic Catalyst with High Carrier Mobility. Advanced Science, 2016, 3, 1600062.	5.6	291
246	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO ₂ N Particles. Small, 2016, 12, 5468-5476.	5.2	42
247			

#	Article	IF	Citations
261	One-step construction of {001} facet-exposed BiOCl hybridized with Al ₂ O ₃ for enhanced molecular oxygen activation. Catalysis Science and Technology, 2016, 6, 7985-7995.	2.1	45
262	Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New Journal of Chemistry, 2016, 40, 9170-9175.	1.4	65
263	One-Pot Hydrothermal Synthesis of Visible-Light-Responsive MoS2/g-CNO Heterostructures for Organic-Pollutant Degradation. European Journal of Inorganic Chemistry, 2016, 2016, 3912-3920.	1.0	20
264	Selfâ€Assembly of Singleâ€Layer CoAlâ€Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645.	11.1	355
265	Progress on Electrocatalysts of Hydrogen Evolution Reaction Based on Carbon Fiber Materials. Chinese Journal of Analytical Chemistry, 2016, 44, 1447-1457.	0.9	33
266	Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nature Energy, 2016, 1, .	19.8	313
267	Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting. Scientific Reports, 2016, 6, 27241.	1.6	27
268	Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer. Scientific Reports, 2016, 6, 19221.	1.6	277
269	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Scientific Reports, 2016, 6, 29851.	1.6	33
270	Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Scientific Reports, 2016, 6, 22268.	1.6	92
271	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
272	One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst. Scientific Reports, 2016, 6, 22727.	1.6	35
273	Nanometals for Solarâ€toâ€Chemical Energy Conversion: From Semiconductorâ€Based Photocatalysis to Plasmonâ€Mediated Photocatalysis and Photoâ€Thermocatalysis. Advanced Materials, 2016, 28, 6781-6803.	11.1	471
274	The Future of Using Earthâ€Abundant Elements in Counter Electrodes for Dye ensitized Solar Cells. Advanced Materials, 2016, 28, 3802-3813.	11.1	98
275	Stable Aqueous Photoelectrochemical CO ₂ Reduction by a Cu ₂ O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angewandte Chemie, 2016, 128, 8986-8991.	1.6	48
276	Synergistic Cocatalytic Effect of Carbon Nanodots and Co ₃ O ₄ Nanoclusters for the Photoelectrochemical Water Oxidation on Hematite. Angewandte Chemie - International Edition, 2016, 55, 5851-5855.	7.2	187
277	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	1.7	67
278	Surface and interface design in cocatalysts for photocatalytic water splitting and CO ₂ reduction. RSC Advances, 2016, 6, 57446-57463.	1.7	178

#	Article	IF	CITATIONS
279	Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel, 2016, 181, 670-679.	3.4	45
280	A facile fabrication of plasmonic g-C 3 N 4 /Ag 2 WO 4 /Ag ternary heterojunction visible-light photocatalyst. Materials Chemistry and Physics, 2016, 177, 529-537.	2.0	75
281	MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 11446-11452.	5.2	569
282	A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale, 2016, 8, 14438-14447.	2.8	77
283	Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Research, 2016, 9, 2284-2293.	5.8	80
284	Biotemplated synthesis of Au loaded Sn-doped TiO ₂ hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. Journal of Materials Research, 2016, 31, 1383-1392.	1.2	19
285	Plasmonic photocatalyst Au/g-C ₃ N ₄ /NiFe ₂ O ₄ nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution. RSC Advances, 2016, 6, 54964-54975.	1.7	145
286	Mesoporous assembled structures of Cu ₂ O and TiO ₂ nanoparticles for highly efficient photocatalytic hydrogen generation from water. RSC Advances, 2016, 6, 54848-54855.	1.7	42
287	Accepting Excited High-Energy-Level Electrons and Catalyzing H ₂ Evolution of Dual-Functional Ag-TiO ₂ Modifier for Promoting Visible-Light Photocatalytic Activities of Nanosized Oxides. Journal of Physical Chemistry C, 2016, 120, 11831-11836.	1.5	27
288	Photoluminescence properties of La 2x Ga 2y In 2z O 3 solid solutions used as photocatalysts for water splitting and promising panchromatic emitters. Journal of Luminescence, 2016, 177, 314-324.	1.5	5
289	Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy and Environmental Science, 2016, 9, 3151-3160.	15.6	322
290	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm, 2016, 18, 6770-6778.	1.3	32
291	Trilayer CdS/carbon nanofiber (CNF) mat/Pt-TiO2 composite structures for solar hydrogen production: Effects of CNF mat thickness. Applied Catalysis B: Environmental, 2016, 196, 216-222.	10.8	32
292	Hybrid Dot–Disk Au-CuInS ₂ Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water. Chemistry of Materials, 2016, 28, 4358-4366.	3.2	62
293	Deprotonation of g-C ₃ N ₄ with Na ions for efficient nonsacrificial water splitting under visible light. Journal of Materials Chemistry A, 2016, 4, 10806-10809.	5.2	64
294	Activatedâ€Carbonâ€Templated Crystalline Tantalates for Photocatalytic Water Splitting. ChemNanoMat, 2016, 2, 273-280.	1.5	6
295	Composition-Dependent Catalytic Activities of Noble-Metal-Free NiS/Ni ₃ S ₄ for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 14581-14589.	1.5	94
296	Stable Aqueous Photoelectrochemical CO ₂ Reduction by a Cu ₂ O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angewandte Chemie - International Edition, 2016, 55, 8840-8845.	7.2	161

#	Article	IF	CITATIONS
297	Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541.	18.7	2,664
298	A review of one-dimensional TiO ₂ nanostructured materials for environmental and energy applications. Journal of Materials Chemistry A, 2016, 4, 6772-6801.	5.2	793
299	Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Research, 2016, 9, 886-898.	5.8	85
300	Cobalt oxide nanoparticles on TiO ₂ nanorod/FTO as a photoanode with enhanced visible light sensitization. RSC Advances, 2016, 6, 9789-9795.	1.7	30
301	In situ synthesis of porous ZnO-embedded Zn _{1â^'x} Cd _x S/CdS heterostructures for enhanced photocatalytic activity. CrystEngComm, 2016, 18, 1446-1452.	1.3	9
302	Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. International Reviews in Physical Chemistry, 2016, 35, 1-36.	0.9	288
303	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy and Environmental Science, 2016, 9, 709-728.	15.6	529
304	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2445-2452.	5.2	121
305	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	5.2	368
306	Synergetic effect of MoS 2 and g-C 3 N 4 as cocatalysts for enhanced photocatalytic H 2 production activity of TiO 2. Materials Research Bulletin, 2016, 76, 79-84.	2.7	50
307	Solvation effect promoted formation of p–n junction between WO3 and FeOOH: A high performance photoanode for water oxidation. Journal of Catalysis, 2016, 333, 200-206.	3.1	86
308	Towards the hydrogen production by photocatalysis. Applied Catalysis A: General, 2016, 518, 48-59.	2.2	143
309	CO ₂ photo-reduction: insights into CO ₂ activation and reaction on surfaces of photocatalysts. Energy and Environmental Science, 2016, 9, 2177-2196.	15.6	1,488
310	Effective water splitting using CuO x /TiO 2 composite films: Role of Cu species and content in hydrogen generation. Applied Surface Science, 2016, 369, 201-206.	3.1	65
311	Oxygen vacancies as active sites for H ₂ S dissociation on the rutile TiO ₂ (110) surface: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 6706-6712.	1.3	42
312	Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Applied Catalysis B: Environmental, 2016, 188, 351-359.	10.8	219
313	Preparation of heterostructured Ag@AgCl/La ₂ Ti ₂ O ₇ plasmonic photocatalysts with high visible light photocatalytic performance for the degradation of organic pollutants. RSC Advances, 2016, 6, 19223-19232.	1.7	10
314	Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012012.	0.3	9

#	Article	IF	CITATIONS
315	Facile construction of CuFe ₂ O ₄ /g-C ₃ N ₄ photocatalyst for enhanced visible-light hydrogen evolution. RSC Advances, 2016, 6, 18990-18995.	1.7	80
316	A novel Ag deposited nanocoordination polymer derived porous SnO ₂ /NiO heteronanostructure for the enhanced photocatalytic reduction of Cr(<scp>vi</scp>) under visible light. New Journal of Chemistry, 2016, 40, 3385-3394.	1.4	40
317	Ambient controlled synthesis of advanced core–shell plasmonic Ag@ZnO photocatalysts. CrystEngComm, 2016, 18, 1713-1722.	1.3	45
318	Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 591-615.	3.0	151
319	A stable and efficient photocatalytic hydrogen evolution system based on covalently linked silicon-phthalocyanine-graphene with surfactant. International Journal of Hydrogen Energy, 2016, 41, 11537-11546.	3.8	27
320	One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution. Carbon, 2016, 101, 62-70.	5.4	73
321	Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordination Chemistry Reviews, 2016, 315, 1-66.	9.5	334
322	Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles. Inorganic Chemistry Communication, 2016, 67, 29-31.	1.8	51
323	Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8, 6904-6920.	2.8	680
324	Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45, 2603-2636.	18.7	1,517
325	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	6.6	335
326	New Co(OH) ₂ /CdS nanowires for efficient visible light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 5282-5287.	5.2	114
327	N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 2016, 99, 111-117.	5.4	343
328	Solar–Chemical Energy Conversion by Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , 249-282.	0.4	1
329	Facile preparation of yolk–shell structured Si/SiC@C@TiO ₂ nanocomposites as highly efficient photocatalysts for degrading organic dye in wastewater. RSC Advances, 2016, 6, 4063-4069.	1.7	17
330	Water Splitting By Photocatalytic Reduction. Green Chemistry and Sustainable Technology, 2016, , 175-210.	0.4	2
331	Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , .	0.4	51
332	CdS quantum dots and tungsten carbide supported on anatase–rutile composite TiO ₂ for highly efficient visible-light-driven photocatalytic H ₂ evolution from water. Catalysis Science and Technology, 2016, 6, 2206-2213.	2.1	62

#	Article	IF	CITATIONS
333	Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1771-1782.	15.6	632
334	Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS2 into Ag3PO4 microcrystals. Journal of Materials Science: Materials in Electronics, 2016, 27, 386-392.	1.1	21
335	Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO 2 nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Applied Catalysis B: Environmental, 2016, 182, 414-423.	10.8	117
336	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304
337	Sulfur mediated graphitic carbon nitride/S-Se-graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting. Carbon, 2016, 96, 929-936.	5.4	78
338	Effects of La-doping on charge separation behavior of ZnO:GaN for its enhanced photocatalytic performance. Catalysis Science and Technology, 2016, 6, 1033-1041.	2.1	13
339	Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis. Chemical Science, 2016, 7, 463-468.	3.7	40
340	Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 2016, 307, 267-291.	9.5	289
341	New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Applied Catalysis B: Environmental, 2016, 181, 220-227.	10.8	476
342	Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today, 2017, 281, 181-188.	2.2	91
343	In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag 2 WO 4 /Ag/Bi 2 MoO 6 composite for enhanced and stable visible light photocatalyst. Applied Surface Science, 2017, 391, 507-515.	3.1	123
344	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	3.1	2,318
345	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	5.5	66
346	Fabricating the Robust g-C ₃ N ₄ Nanosheets/Carbons/NiS Multiple Heterojunctions for Enhanced Photocatalytic H ₂ Generation: An Insight into the Trifunctional Roles of Nanocarbons. ACS Sustainable Chemistry and Engineering, 2017, 5, 2224-2236.	3.2	214
347	A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chemical Society Reviews, 2017, 46, 1483-1509.	18.7	77
348	Ionic liquid-induced strategy for porous perovskite-like PbBiO2Br photocatalysts with enhanced photocatalytic activity and mechanism insight. Applied Catalysis B: Environmental, 2017, 206, 127-135.	10.8	101
349	Graphitic C 3 N 4 modified by Ni 2 P cocatalyst: An efficient, robust and low cost photocatalyst for visible-light-driven H 2 evolution from water. Chemical Engineering Journal, 2017, 315, 296-303.	6.6	184
350	A simple strategy to refine Cu 2 O photocatalytic capacity for refractory pollutants removal: Roles of oxygen reduction and Fe(II) chemistry. Journal of Hazardous Materials, 2017, 330, 9-17.	6.5	21

#	Article	IF	CITATIONS
351	Cobalt Phosphide Modified Titanium Oxide Nanophotocatalysts with Significantly Enhanced Photocatalytic Hydrogen Evolution from Water Splitting. Small, 2017, 13, 1603301.	5.2	132
352	A facile and green synthesis of colloidal Cu ₂ ZnSnS ₄ nanocrystals and their application in highly efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 4695-4709.	5.2	53
353	Rationally Designed/Constructed CoO _{<i>x</i>} /WO ₃ Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 1841-1845.	5.5	141
354	Incorporation of graphene nanodots and oxygen defects triggers robust coupling between solar energy and reactive oxygen. Journal of Materials Chemistry A, 2017, 5, 5426-5435.	5.2	11
355	Recent Progress in Energyâ€Ðriven Water Splitting. Advanced Science, 2017, 4, 1600337.	5.6	643
356	3D urchin-like black TiO _{2â^x} /carbon nanotube heterostructures as efficient visible-light-driven photocatalysts. RSC Advances, 2017, 7, 453-460.	1.7	35
357	Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 6627-6636.	3.8	95
358	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	1.8	396
359	Heterostructured WS ₂ â€MoS ₂ Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solarâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 1563-1570.	3.6	150
360	In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Applied Catalysis B: Environmental, 2017, 206, 510-519.	10.8	81
361	A hydrothermally grown CdS nanograin-sensitized 1D Zr:α-Fe ₂ O ₃ /FTO photoanode for efficient solar-light-driven photoelectrochemical performance. Dalton Transactions, 2017, 46, 2377-2386.	1.6	13
362	Advent of 2D Rhenium Disulfide (ReS ₂): Fundamentals to Applications. Advanced Functional Materials, 2017, 27, 1606129.	7.8	296
363	Black Phosphorus Revisited: A Missing Metalâ€Free Elemental Photocatalyst for Visible Light Hydrogen Evolution. Advanced Materials, 2017, 29, 1605776.	11.1	405
364	WO ₃ /g-C ₃ N ₄ composites: one-pot preparation and enhanced photocatalytic H ₂ production under visible-light irradiation. Nanotechnology, 2017, 28, 164002.	1.3	78
365	High-index facet engineering of PtCu cocatalysts for superior photocatalytic reduction of CO ₂ to CH ₄ . Journal of Materials Chemistry A, 2017, 5, 6686-6694.	5.2	93
366	Photon-Driven Nitrogen Fixation: Current Progress, Thermodynamic Considerations, and Future Outlook. ACS Catalysis, 2017, 7, 2624-2643.	5.5	445
367	Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Chemical Communications, 2017, 53, 3473-3476.	2.2	37
368	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126

		CITATION R	EPORT	
#	Article		IF	CITATIONS
369	Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials, 2017, 29, 160)5349.	11.1	129
370	Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplate Enhanced Photocatalysis. Inorganic Chemistry, 2017, 56, 2328-2336.	es for NIR-Light	1.9	24
371	Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the high photocatalytic H ₂ production over g-C ₃ N ₄ nar visible light. Catalysis Science and Technology, 2017, 7, 1193-1202.		2.1	114
372	Structural motifs of water on metal oxide surfaces. Chemical Society Reviews, 2017, 4	6, 1785-1806.	18.7	170
373	Proton-Promoted Electron Transfer in Photocatalysis: Key Step for Photocatalytic Hydr Evolution on Metal/Titania Composites. ACS Catalysis, 2017, 7, 2744-2752.	ogen	5.5	65
374	Structural, electronic and optical properties of Bi ₂ O ₃ polym first-principles calculations for photocatalytic water splitting. Materials Research Expre 034002.	orphs by ss, 2017, 4,	0.8	17
375	Janus Co/CoP Nanoparticles as Efficient Mott–Schottky Electrocatalysts for Overall V in Wide pH Range. Advanced Energy Materials, 2017, 7, 1602355.	Water Splitting	10.2	482
376	Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. Journ Nanoparticle Research, 2017, 19, 1.	al of	0.8	16
377	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6	109.	23.0	670
378	Liquid-phase exfoliation of black phosphorus and its applications. FlatChem, 2017, 2, 1	.5-37.	2.8	129
379	Smart Adsorbents Functionalized with Thermoresponsive Polymers for Selective Adsor Energy-Saving Regeneration. Industrial & Engineering Chemistry Research, 2017,	ption and 56, 4341-4349.	1.8	19
380	Hetero-structural NiTiO 3 /TiO 2 nanotubes for efficient photocatalytic hydrogen gene Renewable Energy, 2017, 111, 410-415.	ration.	4.3	38
381	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.		4.6	955
382	Enhanced photocatalytic oxygen evolution over Mo-doped Ca ₂ NiWO <su perovskite photocatalyst under visible light irradiation. RSC Advances, 2017, 7, 5821-5</su 		1.7	13
384	A review of solar and visible light active oxo-bridged materials for energy and environm Science and Technology, 2017, 7, 2153-2164.	ent. Catalysis	2.1	52
385	Explore the properties and photocatalytic performance of iron-doped g-C 3 N 4 nanosł with Ni 2 P. Molecular Catalysis, 2017, 437, 80-88.	neets decorated	1.0	22
386	Synthesis of Ni ₉ S ₈ /MoS ₂ heterocatalyst for En Evolution Reaction. Langmuir, 2017, 33, 5148-5153.	hanced Hydrogen	1.6	39
387	Computational mining of photocatalysts for water splitting hydrogen production: two InSe-family monolayers. Catalysis Science and Technology, 2017, 7, 2744-2752.	-dimensional	2.1	123

#	Article	IF	Citations
388	Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2017, 503, 198-204.	5.0	97
389	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /g ₃ N ₄ Zâ€&cheme Catalysts. Advanced Energy Materials, 2017, 7, 1700025.	10.2	664
390	Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In 0.33 Ga 0.67 N nanorods. Nano Energy, 2017, 37, 158-167.	8.2	49
391	Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni ²⁺ and Its Combination with Photoelectrode. ACS Omega, 2017, 2, 432-442.	1.6	13
392	Role of C <i>_x</i> N <i>_y</i> â€Triazine in Photocatalysis for Efficient Hydrogen Generation and Organic Pollutant Degradation Under Solar Light Irradiation. Solar Rrl, 2017, 1, 1700012.	3.1	16
393	Inhibition of photocorrosion of CdS via assembling with thin film TiO 2 and removing formed oxygen by artificial gill for visible light overall water splitting. Applied Catalysis B: Environmental, 2017, 212, 129-139.	10.8	168
394	Visible-light driven photocatalytic oxygen evolution reaction from new poly(phenylene) Tj ETQq0 0 0 rgBT /Overloo	ck 10 Tf 5 2.0	0 502 Td (c 16
395	A novel architecture of dandelion-like Mo ₂ C/TiO ₂ heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. Journal of Materials Chemistry A, 2017, 5, 10591-10598.	5.2	113
396	A catalytic approach to synthesis of PLP analogs and other environmental protocols in a single handed CaO/TiO 2 green nanoparticle. Applied Catalysis B: Environmental, 2017, 210, 276-289.	10.8	14
397	Metal nanoparticles induced photocatalysis. National Science Review, 2017, 4, 761-780.	4.6	161
398	Nano-engineering of p–n CuFeO ₂ -ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation. Nanotechnology, 2017, 28, 325401.	1.3	26
399	Enhancing the reactivity of nickel(<scp>ii</scp>) in hydrogen evolution reactions (HERs) by β-hydrogenation of porphyrinoid ligands. Chemical Science, 2017, 8, 5953-5961.	3.7	64
400	Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation. Applied Catalysis B: Environmental, 2017, 216, 11-19.	10.8	111
401	Simple solid-state synthesis and improved performance of Ni(OH)2-TiO2 nanocomposites for photocatalytic H2 production. Ceramics International, 2017, 43, 11109-11115.	2.3	20
402	Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 217, 551-559.	10.8	126
403	Core–shell structured AgBr incorporated g-C ₃ N ₄ nanocomposites with enhanced photocatalytic activity and stability. Materials Technology, 2017, 32, 675-685.	1.5	11
404	Effectively extending visible light absorption with a broad spectrum sensitizer for improving the H 2 evolution of in-situ Cu/g-C 3 N 4 nanocomponents. International Journal of Hydrogen Energy, 2017, 42, 14511-14521.	3.8	45
405	Single‧ite Active Cobaltâ€Based Photocatalyst with a Long Carrier Lifetime for Spontaneous Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 9312-9317.	7.2	393

ARTICLE

IF CITATIONS

Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine) Tj ETQq0 0 0 rg $\frac{81}{3.7}$ Overlock 10 Tf 50

407	Preparation of Bifunctional CuWO ₄ â€Based Heterostructure Nanocomposites for Nobleâ€Metalâ€Free Photocatalysts. ChemistrySelect, 2017, 2, 4484-4498.	0.7	13
408	A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy and Environment, 2017, 2, 204-217.	4.7	153
409	A photocatalyst of sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy, 2017, 38, 544-552.	8.2	90
410	Single‣ite Active Cobaltâ€Based Photocatalyst with a Long Carrier Lifetime for Spontaneous Overall Water Splitting. Angewandte Chemie, 2017, 129, 9440-9445.	1.6	95
411	Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting. ACS Nano, 2017, 11, 6782-6794.	7.3	57
412	Fullâ€Spectrum Solarâ€Lightâ€Activated Photocatalysts for Light–Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700473.	10.2	213
413	Ni-Co layered double hydroxides cocatalyst for sustainable oxygen photosynthesis. Applied Catalysis B: Environmental, 2017, 210, 454-461.	10.8	65
414	Constructing Multifunctional Metallic Ni Interface Layers in the g-C ₃ N ₄ Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H ₂ Generation. ACS Applied Materials & Interfaces, 2017, 9, 14031-14042.	4.0	319
415	Coordination chemistry in the design of heterogeneous photocatalysts. Chemical Society Reviews, 2017, 46, 2799-2823.	18.7	449
416	Photocatalytic H 2 evolution with a Cu 2 WS 4 catalyst on a metal free D-Ï€-A organic dye-sensitized TiO 2. Applied Catalysis B: Environmental, 2017, 210, 320-327.	10.8	54
417	Topotactic Epitaxy of SrTiO ₃ Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting. Angewandte Chemie, 2017, 129, 5383-5387.	1.6	14
418	Topotactic Epitaxy of SrTiO ₃ Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 5299-5303.	7.2	92
419	A TiO ₂ /FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution. ACS Nano, 2017, 11, 4051-4059.	7.3	106
420	A highly stable non-noble metal Ni ₂ P co-catalyst for increased H ₂ generation by g-C ₃ N ₄ under visible light irradiation. Journal of Materials Chemistry A, 2017, 5, 8493-8498.	5.2	190
421	Simple post-modification of MoS 2 using 4-mercaptobenzoic acid for enhanced photocatalytic hydrogen production performance. Materials Letters, 2017, 198, 27-30.	1.3	6
422	Nanostructured Semiconductors for Bifunctional Photocatalytic and Photoelectrochemical Energy Conversion. Semiconductors and Semimetals, 2017, 97, 315-347.	0.4	6
423	Construction of novel S/CdS type II heterojunction for photocatalytic H 2 production under visible light: The intrinsic positive role of elementary α-S. Chemical Engineering Journal, 2017, 321, 484-494.	6.6	47

#	Article	IF	CITATIONS
424	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	3.1	332
425	Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 4611-4626.	1.8	103
426	The role of dissolution in the synthesis of high-activity organic nanocatalysts in a wet chemical reaction. Journal of Materials Chemistry A, 2017, 5, 8029-8036.	5.2	6
427	Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction. ACS Catalysis, 2017, 7, 3277-3283.	5.5	35
429	Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH) cocatalysts. Chinese Journal of Catalysis, 2017, 38, 240-252.	6.9	237
430	Hydrazine-assisted formation of ultrathin MoS ₂ nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 6981-6991.	5.2	120
431	Inorganic Photochemical Synthesis. , 2017, , 143-165.		3
432	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
433	Hierarchical porous Bi 24 O 31 Br 10 microarchitectures assembled by ultrathin nanosheets with strong adsorption and excellent photocatalytic performances. Materials and Design, 2017, 123, 128-136.	3.3	32
434	Facile synthesis and enhanced photocatalytic H 2 -evolution performance of NiS 2 -modified g-C 3 N 4 photocatalysts. Chinese Journal of Catalysis, 2017, 38, 296-304.	6.9	153
435	Hydrogen production in a neutral aqueous solution with a water-soluble copper complex. International Journal of Hydrogen Energy, 2017, 42, 4202-4207.	3.8	22
436	Synthesis of cobalt-doped ZnO/rGO nanoparticles with visible-light photocatalytic activity through a cobalt-induced electrochemical method. Journal of Energy Chemistry, 2017, 26, 549-555.	7.1	26
437	Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.	4.6	148
438	Photocatalytic H 2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catalysis Today, 2017, 284, 229-235.	2.2	17
439	Oneâ€Dimensional Earthâ€Abundant Nanomaterials for Waterâ€Splitting Electrocatalysts. Advanced Science, 2017, 4, 1600380.	5.6	253
440	Markedly enhanced visible-light photocatalytic H ₂ generation over g-C ₃ N ₄ nanosheets decorated by robust nickel phosphide (Ni ₁₂ P ₅) cocatalysts. Dalton Transactions, 2017, 46, 1794-1802.	1.6	111
441	Synergetic effect of Ni(OH)2 cocatalyst and CNT for high hydrogen generation on CdS quantum dot sensitized TiO2 photocatalyst. Applied Catalysis B: Environmental, 2017, 204, 577-583.	10.8	86
442	Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. Journal of Materials Chemistry A, 2017, 5, 773-781.	5.2	68

#	Article	IF	CITATIONS
443	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	5.8	1,496
444	Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO ₂ to fuels. Journal of Materials Chemistry A, 2017, 5, 2619-2628.	5.2	68
445	Bi 2 O 3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO 2. Applied Surface Science, 2017, 400, 530-536.	3.1	125
446	Porous TiO 2 Nanotubes with Spatially Separated Platinum and CoO x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 834-838.	1.6	16
447	Pt-Enhanced Mesoporous Ti ³⁺ /TiO ₂ with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 16959-16966.	4.0	147
448	Strategies for designing metal oxide nanostructures. Science China Materials, 2017, 60, 1-24.	3.5	148
449	Porous TiO ₂ Nanotubes with Spatially Separated Platinum and CoO _x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 816-820.	7.2	293
450	Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	4.6	261
451	Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO 2 photocatalyst. Journal of Catalysis, 2017, 355, 73-86.	3.1	195
452	Quantitative analysis of the PtO structure during photocatalytic water splitting by operando XAFS. Journal of Materials Chemistry A, 2017, 5, 20631-20634.	5.2	30
453	Metallic Ni ₃ P/Ni Co atalyst To Enhance Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 16734-16737.	1.7	16
454	Characterization of Rh:SrTiO3 photoelectrodes surface-modified with a cobalt clathrochelate and their application to the hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 255-265.	2.6	19
455	Active Cocatalysts for Photocatalytic Hydrogen Evolution Derived from Nickel or Cobalt Amine Complexes. Angewandte Chemie - International Edition, 2017, 56, 14804-14806.	7.2	28
456	Bio-templated fabrication of metal-free boron carbonitride tubes for visible light photocatalysis. Chemical Communications, 2017, 53, 11988-11991.	2.2	46
457	Recent Progress in Semiconductorâ€Based Nanocomposite Photocatalysts for Solarâ€ŧoâ€Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700529.	10.2	189
458	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	4.5	96
459	New Titanium Dioxide-Based Heterojunction Nanohybrid for Highly Selective Photoelectrochemical–Electrochemical Dual-Mode Sensors. ACS Applied Materials & Interfaces, 2017, 9, 37166-37183.	4.0	62
460	Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 24116-24125.	5.2	191

	CITATION	Report	
#	Article	IF	CITATIONS
461	Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes. Chemical Physics Letters, 2017, 689, 142-147.	1.2	28
462	Ionic liquid-assisted synthesis of Br-modified g-C 3 N 4 semiconductors with high surface area and highly porous structure for photoredox water splitting. Journal of Power Sources, 2017, 370, 106-113.	4.0	65
463	Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D–2D Bi ₂ WO ₆ –TiO ₂ Cascade with Enhanced Photocatalytic Performance. Small, 2017, 13, 1702253.	5.2	117
464	Photocatalytic water splitting for hydrogen production. Current Opinion in Electrochemistry, 2017, 5, 56-62.	2.5	107
465	Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 54-82.	5.6	101
466	Ultrathin Microporous SiO ₂ Membranes Photodeposited on Hydrogen Evolving Catalysts Enabling Overall Water Splitting. ACS Catalysis, 2017, 7, 7931-7940.	5.5	40
467	Recent advances in cobalt phosphide based materials for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 22913-22932.	5.2	121
468	Designing Co-Pi Modified One-Dimensional <i>n</i> 〓 <i>p</i> TiO ₂ /ZnCo ₂ O ₄ Nanoheterostructure Photoanode with Reduced Electron–Hole Pair Recombination and Excellent Photoconversion Efficiency (>3%). Journal of Physical Chemistry C. 2017, 121, 25705-25717.	1.5	47
469	The flexible SiC nanowire paper electrode as highly efficient photocathodes for photoelectrocatalytic water splitting. Journal of Electroanalytical Chemistry, 2017, 806, 61-67.	1.9	15
470	Recent Advances in Nanostructured Vanadium Oxides and Composites for Energy Conversion. Advanced Energy Materials, 2017, 7, 1700885.	10.2	196
471	In-situ synthesis of novel plate-like Co(OH)2 co-catalyst decorated TiO2 nanosheets with efficient photocatalytic H2 evolution activity. International Journal of Hydrogen Energy, 2017, 42, 22877-22886.	3.8	42
472	Conductive FeSe nanorods: A novel and efficientco-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light. Journal of Environmental Chemical Engineering, 2017, 5, 4206-4211.	3.3	10
473	Enhancing Photoelectrochemical Water Oxidation Efficiency of BiVO ₄ Photoanodes by a Hybrid Structure of Layered Double Hydroxide and Graphene. Industrial & Engineering Chemistry Research, 2017, 56, 10711-10719.	1.8	67
474	Spatial separation of the hydrogen evolution center from semiconductors using a freestanding silica-sphere-supported Pt composite. Physical Chemistry Chemical Physics, 2017, 19, 24249-24254.	1.3	5
475	Metallic bionanocatalysts: potential applications as green catalysts and energy materials. Microbial Biotechnology, 2017, 10, 1171-1180.	2.0	20
476	Metal-Free Photocatalyst for H ₂ Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. Journal of the American Chemical Society, 2017, 139, 13234-13242.	6.6	907
477	Noble-metal-free nickel phosphide modified CdS/C ₃ N ₄ nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Dalton Transactions, 2017, 46, 13793-13801.	1.6	122
478	Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy, 2017, 41, 49-65.	8.2	248

ARTICLE IF CITATIONS PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution 479 7.1 26 properties. Journal of Energy Chemistry, 2017, 26, 1210-1216. Photoactuation Healing of αâ€FeOOH@g ₃N₄ Catalyst for Efficient and Stable 480 5.2 Activation of Persulfate. Small, 2017, 13, 1702225. Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO₂ 481 10.2 28 Electrodes. Advanced Energy Materials, 2017, 7, 1700886. Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical 482 1.1 water splitting. Applied Physics A: Materials Science and Processing, 2017, 123, 1. Controlled Synthesis of TiO₂Nanostructures: Exceptional Hydrogen Production in Alcohol-Water Mixtures over Cu(OH)₂-Ni(OH)₂/TiO₂Nanorods. 483 0.7 8 ChemistrySelect, 2017, 2, 7497-7507. Designing transition metal and nitrogen-codoped SrTiO₃(001) perovskite surfaces as efficient photocatalysts for water splitting. Sustainable Energy and Fuels, 2017, 1, 1968-1980. 484 2.5 Phosphorene Coâ€catalyst Advancing Highly Efficient Visibleâ€Light Photocatalytic Hydrogen Production. 485 1.6 36 Angewandte Chemie, 2017, 129, 10509-10513. NH2-MIL-125(Ti)/graphitic carbon nitride heterostructure decorated with NiPd co-catalysts for 486 10.8 efficient photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 219, 101-108. Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS 487 8.2 96 quantum dots for efficient visible-light-driven hydrogen evolution. Nano Energy, 2017, 39, 513-523. Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. Journal of 1.2 Chemical Physics, 2017, 147, 030901. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent 489 3.1 95 photocatalytic activity. Applied Surface Science, 2017, 426, 206-216. Phosphorene Coâ€catalyst Advancing Highly Efficient Visibleâ€Light Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 10373-10377. First-principle investigation of TcSe2 monolayer as an efficient visible light photocatalyst for water 491 1.3 14 splitting hydrogen production. Research on Ćhemical Intermediates, 2017, 43, 5271-5282. Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water 5.8 94 oxidation. Nano Research, 2017, 10, 3920-3928. Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen 493 3.1 130 evolution and reduction reaction. Journal of Catalysis, 2017, 352, 579-585. Preparation of Carbonâ€Rich <i>g</i>â€C₃N₄ Nanosheets with Enhanced Visible 494 5.2 Light Utilization for Efficient Photocatalytic Hydrogen Production. Small, 2017, 13, 1701552. Exploring optoelectronic properties and mechanisms of layered ferroelectric K4Nb6O17 495 1.6 19 nanocrystalline films and nanolaminas. Scientific Reports, 2017, 7, 1883. BiOCl-montmorillonite as a photocatalyst for highly efficient removal of Rhodamine B and Orange G: Importance of the acidity and dissolved oxygen. Applied Clay Science, 2017, 147, 28-35.

#	Article	IF	CITATIONS
497	SiO 2 loading combined with high temperature calcination of kesterite Cu 2 ZnSnS 4 nanocrystals towards enhanced photocatalytic H 2 evolution. International Journal of Hydrogen Energy, 2017, 42, 20703-20710.	3.8	12
498	Atomic‣evel Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€&ite Photocatalyst. Angewandte Chemie, 2017, 129, 12359-12364.	1.6	36
499	Atomic‣evel Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Single‣ite Photocatalyst. Angewandte Chemie - International Edition, 2017, 56, 12191-12196.	7.2	269
500	Novel 3D Semiconducting Openâ€Frameworks based on Cuprous Bromides with Visible Light Driven Photocatalytic Properties. Chemistry - A European Journal, 2017, 23, 14547-14553.	1.7	54
501	Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 8079-8088.	3.2	44
502	Unconventionally Layered CoTe ₂ and NiTe ₂ as Electrocatalysts for Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 11719-11726.	1.7	76
503	Facile fabrication of silicon nanowires as photocathode for visible-light induced photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42, 22671-22676.	3.8	28
504	Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 2017, 7, 1700841.	10.2	484
505	Noble-Metal-Free Iron Phosphide Cocatalyst Loaded Graphitic Carbon Nitride as an Efficient and Robust Photocatalyst for Hydrogen Evolution under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8053-8060.	3.2	100
506	Cu ₂ ZnSnS ₄ –CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2017, 7, 3980-3984.	2.1	15
507	Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO ₂ for Highly Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2017, 9, 29687-29698.	4.0	51
508	Enhanced photoelectrochemical performance of anatase TiO ₂ for water splitting via surface codoping. RSC Advances, 2017, 7, 39877-39884.	1.7	25
509	Facile synthesis of mesoporous carbon nitride and titanium dioxide nanocomposites with enhanced visible light photocatalytic activity. New Journal of Chemistry, 2017, 41, 10542-10549.	1.4	16
510	Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution. Small, 2017, 13, 1701607.	5.2	47
511	Strongly interactive 0D/2D hetero-structure of a Zn _x Cd _{1â^'x} S nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H ₂ production. Chemical Communications, 2017, 53, 9882-9885.	2.2	68
512	Dual Effect in Fluorineâ€Doped Hematite Nanocrystals for Efficient Water Oxidation. ChemSusChem, 2017, 10, 4465-4471.	3.6	51
513	Modulating the properties of monolayer C ₂ N: A promising metal-free photocatalyst for water splitting. Chinese Physics B, 2017, 26, 087301.	0.7	12
514	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176

#	Article	IF	Citations
 515	Aktive Cokatalysatoren mit molekularen Nickel―und Cobaltkomplexen für die photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2017, 129, 14998-15000.	1.6	6
	Computational design of enhanced photocatalytic activity of two-dimensional cadmium iodide. RSC		
516	Advances, 2017, 7, 53653-53657.	1.7	12
517	Photocatalytic hydrogen evolution performance of NiS cocatalyst modified LaFeO ₃ /g-C ₃ N ₄ heterojunctions. New Journal of Chemistry, 2017, 41, 14602-14609.	1.4	36
518	Interfacial charge transfer in semiconductor-molecular photocatalyst systems for proton reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 165-179.	5.6	35
519	Boosting molecular oxygen activation of SrTiO ₃ by engineering exposed facets for highly efficient photocatalytic oxidation. Journal of Materials Chemistry A, 2017, 5, 23822-23830.	5.2	47
520	Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. ChemSusChem, 2017, 10, 4277-4305.	3.6	75
521	Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2017, 219, 10-17.	10.8	113
522	Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2017, 352, 491-497.	3.1	92
523	Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2017, 218, 743-750.	10.8	109
524	Opportunities and Challenges in the Synthesis, Characterization, and Catalytic Properties of Controlled Nanostructures. Studies in Surface Science and Catalysis, 2017, 177, 1-56.	1.5	1
525	Growth of bismuth oxyhalide nanoplates on self-standing TiO2 nanowire film exhibiting enhanced photoelectrochemical performances. Electrochimica Acta, 2017, 247, 646-656.	2.6	9
526	Mn doped MoS 2 /reduced graphene oxide hybrid for enhanced hydrogen evolution. Applied Surface Science, 2017, 425, 470-477.	3.1	103
527	Preparation of new visible-light driven nanocomposite photocatalysts, X/NaTaO3/Er3+:YAlO3 (X = Ag,) Tj ETQq0 2017, 54, 398-407.	0 0 rgBT /(2.9	Overlock 101 14
528	In situ photodeposition of MoS _x on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 15287-15293.	5.2	93
529	Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 9402-9405.	2.2	76
530	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chemical Science, 2017, 8, 5261-5274.	3.7	299
531	A Spatially Separated Organic–Inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting. ACS Catalysis, 2017, 7, 5308-5315.	5.5	33
532	Metal-complex chromophores for solar hydrogen generation. Chemical Society Reviews, 2017, 46, 603-631.	18.7	342

# 533	ARTICLE Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Applied Catalysis B: Environmental, 2017, 203, 563-571.	IF 10.8	Citations 94
534	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176
535	Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catalysis Communications, 2017, 89, 96-99.	1.6	57
536	Co ₃ O ₄ –C ₃ N ₄ p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environmental Science: Nano, 2017, 4, 212-221.	2.2	127
537	Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy and Environmental Science, 2017, 10, 402-434.	15.6	820
538	Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: Role of Pt and product distribution. Applied Surface Science, 2017, 391, 251-258.	3.1	42
539	Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. ChemNanoMat, 2017, 3, 22-26.	1.5	27
540	Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Applied Catalysis B: Environmental, 2017, 201, 159-168.	10.8	298
541	Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers. ChemSusChem, 2017, 10, 87-90.	3.6	278
542	Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance: The cocatalytic effect of Ag and Ag3PO4. Applied Catalysis B: Environmental, 2017, 202, 84-94.	10.8	196
543	Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals. Applied Surface Science, 2017, 393, 159-167.	3.1	59
544	Dually Ordered Porous TiO ₂ â€rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.	11.1	66
545	An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP _{â¹/40.33} S _{â¹/41.67}) and twin nanocrystal Zn _{0.5} Cd _{0.5} S solid solution with both homo- and hetero-junctions. Energy and Environmental Science, 2017, 10, 225-235.	15.6	169
546	One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2017, 202, 298-304.	10.8	334
547	Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392, 658-686.	3.1	989
548	Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO4:Bi3+. Applied Surface Science, 2017, 392, 649-657.	3.1	34
549	Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs. Chinese Journal of Catalysis, 2017, 38, 1999-2008.	6.9	54
550	Enhancing photocatalytic H2 evolution from water on CuO-Co3O4/TiO2: The key roles of Co3O4 loading amounts. International Journal of Hydrogen Energy, 2017, 42, 30559-30568.	3.8	22

#	Article	IF	CITATIONS
551	Laser induced photocatalytic activity enhancement of TiO_2 thin films. Optics Express, 2017, 25, A1132.	1.7	5
552	Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics, 2017, 5, 40.	1.2	68
553	First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study. Inorganics, 2017, 5, 37.	1.2	22
554	Pt-Co Alloys-Loaded Cubic SiC Electrode with Improved Photoelectrocatalysis Property. Materials, 2017, 10, 955.	1.3	8
555	The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation. Frontiers in Chemistry, 2017, 5, 84.	1.8	52
556	High photocatalytic activity of Fe ₂ O ₃ /TiO ₂ nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. Beilstein Journal of Nanotechnology, 2017, 8, 915-926.	1.5	47
557	Effective Charge Carrier Utilization in Visible-Light-Driven CO 2 Conversion. Semiconductors and Semimetals, 2017, 97, 429-467.	0.4	4
558	Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO ₃ Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catalysis, 2018, 8, 2782-2788.	5.5	180
559	Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2018, 521, 1-10.	5.0	48
560	Extended visible to near-infrared harvesting of earth-abundant FeS ₂ –TiO ₂ heterostructures for highly active photocatalytic hydrogen evolution. Green Chemistry, 2018, 20, 1640-1647.	4.6	75
561	Silicaâ€Protectionâ€Assisted Encapsulation of Cu ₂ O Nanocubes into a Metal–Organic Framework (ZIFâ€8) To Provide a Composite Catalyst. Angewandte Chemie - International Edition, 2018, 57, 6834-6837.	7.2	144
562	One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts. Nano Futures, 2018, 2, 015003.	1.0	10
563	Improving the Photo-Oxidative Performance of Bi ₂ MoO ₆ by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials & Interfaces, 2018, 10, 9342-9352.	4.0	44
564	Cobalt phosphide nanowires as efficient co-catalyst for photocatalytic hydrogen evolution over Zn0.5Cd0.5S. Applied Catalysis B: Environmental, 2018, 230, 210-219.	10.8	142
565	Highly Crystalline Carbon Nitride Nanosheets for Ultrahigh Photocatalytic Hydrogen Evolution. ChemPhotoChem, 2018, 2, 490-497.	1.5	15
566	Point Defect Effects on Photoelectronic Properties of the Potential Metal-Free C ₂ N Photocatalysts: Insight from First-Principles Computations. Journal of Physical Chemistry C, 2018, 122, 5291-5302.	1.5	47
567	Loading Amorphous NiMoO _{4–<i>x</i>} S _{<i>x</i>} Nanosheet Cocatalyst to Improve Performance of <i>p</i> -Silicon Wafer Photocathode. ACS Applied Energy Materials, 2018, 1, 1286-1293.	2.5	9
568	Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catalysis Science and Technology, 2018, 8, 1696-1703.	2.1	58

#	Article	IF	CITATIONS
569	Enhanced photocatalytic performance of Mg2+ doped Bi2WO6 under simulated visible light irradiation. Ionics, 2018, 24, 2893-2903.	1.2	9
570	Nanostructured semiconducting materials for efficient hydrogen generation. Environmental Chemistry Letters, 2018, 16, 765-796.	8.3	97
571	Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 234, 109-116.	10.8	117
572	Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Applied Catalysis B: Environmental, 2018, 234, 50-55.	10.8	61
573	Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst. Journal of Colloid and Interface Science, 2018, 525, 107-114.	5.0	35
574	Mo–Bi–Cd Ternary Metal Chalcogenides: Highly Efficient Photocatalyst for CO ₂ Reduction to Formic Acid Under Visible Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 5754-5759.	3.2	58
575	Novel Ag@AgCl@AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes. Catalysis Today, 2018, 314, 10-19.	2.2	32
576	Photoelectrochemical performance and biosensor application for glutathione (GSH) of W-doped BiVO4 thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 10109-10116.	1.1	5
577	g ₃ N ₄ Loading Black Phosphorus Quantum Dot for Efficient and Stable Photocatalytic H ₂ Generation under Visible Light. Advanced Functional Materials, 2018, 28, 1800668.	7.8	257
578	In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 8674-8682.	3.8	57
579	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chemical Communications, 2018, 54, 4858-4861.	2.2	14
580	Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production. Science Bulletin, 2018, 63, 601-608.	4.3	65
581	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	5.6	163
582	The synergetic effect of graphene and MoS2 on AgInZnS for visible-light driven photocatalytic H2 evolution. Materials Chemistry and Physics, 2018, 212, 506-512.	2.0	9
583	Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews, 2018, 89, 228-248.	8.2	141
584	2D/2D Heterojunction of Ultrathin MXene/Bi ₂ WO ₆ Nanosheets for Improved Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2018, 28, 1800136.	7.8	1,157
585	Mesoporous titanium dioxide photoanodes decorated with gold nanoparticles for boosting the photoelectrochemical alkali water oxidation. Materials Chemistry and Physics, 2018, 213, 56-66.	2.0	16
586	Application of Siliconâ€Initiated Water Splitting for the Reduction of Organic Substrates. ChemPlusChem, 2018, 83, 375-382.	1.3	20

#	Article	IF	Citations
587	Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2557-2563.	1.0	14
588	Highly efficient BiVO ₄ single-crystal photocatalyst with selective Ag ₂ O-Ag modification: orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Transactions, 2018, 47, 6370-6377.	1.6	56
589	Optimizing the performance of photocatalytic H ₂ generation for ZnNb ₂ O ₆ synthesized by a two-step hydrothermal method. RSC Advances, 2018, 8, 13857-13864.	1.7	11
590	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China Materials, 2018, 61, 771-805.	3.5	172
591	Photonic crystal-assisted visible light activated TiO2 photocatalysis. Applied Catalysis B: Environmental, 2018, 230, 269-303.	10.8	173
592	Rational design of donor-ï€-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 228, 1-9.	10.8	215
593	Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chemical Engineering Journal, 2018, 339, 393-410.	6.6	241
594	High-dimensional wave packet dynamics from first principles: Photodissociation of water on TiO2-rutile (110). Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 3-11.	2.0	5
595	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
596	Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH) ₂ Decorated TiO ₂ Nanotubes under Solar Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 3754-3764.	3.2	67
597	MoS2-MoO3-x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons. Applied Catalysis B: Environmental, 2018, 228, 39-46.	10.8	55
598	Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 229, 41-51.	10.8	529
599	Photodeposition of amorphous MoS x cocatalyst on TiO 2 nanosheets with {001} facets exposed for highly efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3223-3234.	3.8	33
600	Z-schematic water splitting by the synergistic effect of a type-II heterostructure and a highly efficient oxygen evolution catalyst. Applied Surface Science, 2018, 441, 61-68.	3.1	18
601	Xâ€Shaped αâ€FeOOH with Enhanced Charge Separation for Visibleâ€Lightâ€Driven Photocatalytic Overall Water Splitting. ChemSusChem, 2018, 11, 1365-1373.	3.6	45
602	Cocatalyst designing: a binary noble-metal-free cocatalyst system consisting of ZnIn ₂ S ₄ and In(OH) ₃ for efficient visible-light photocatalytic water splitting. RSC Advances, 2018, 8, 4979-4986.	1.7	40
603	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	5.5	773
604	A sulfur vacancy rich CdS based composite photocatalyst with g-C ₃ N ₄ as a matrix derived from a Cdâ \in S cluster assembled supramolecular network for H ₂ production and VOC removal. Dalton Transactions. 2018. 47, 4219-4227	1.6	48

#	Article	IF	CITATIONS
605	A Novel CoO _{1.6} C _{0.7} Nanocomposite with Enhanced Photocatalytic Activity and Stability for Hydrogen Evolution Achieved by Carbon Dots. ChemistrySelect, 2018, 3, 904-910.	0.7	10
606	Superstructure Ta ₂ O ₅ mesocrystals derived from (NH ₄) ₂ Ta ₂ O ₃ F ₆ mesocrystals with efficient photocatalytic activity. Dalton Transactions, 2018, 47, 1948-1957.	1.6	21
607	Cobalt Sulfide Nanotubes (Co ₉ S ₈) Decorated with Amorphous MoS _{<i>x</i>} as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Nano Materials, 2018, 1, 1083-1093.	2.4	31
608	Bifunctional Cu ₃ P Decorated g-C ₃ N ₄ Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4026-4036.	3.2	243
609	Rapid electrochemical conversion of smooth Cu surfaces to urchin-like Cu nanowire arrays via flower-like Cu2Se nanosheets as an advanced nonenzymatic glucose sensor. Sensors and Actuators B: Chemical, 2018, 262, 801-809.	4.0	15
610	Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Applied Catalysis B: Environmental, 2018, 229, 8-14.	10.8	72
611	Using Pd as a Cocatalyst on GaN–ZnO Solid Solution for Visible-Light-Driven Overall Water Splitting. Catalysis Letters, 2018, 148, 933-939.	1.4	26
612	Enhanced charge transfer and separation of hierarchical hydrogenated TiO ₂ nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H ₂ production activity. Nanoscale, 2018, 10, 4041-4050.	2.8	39
613	Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Science China Materials, 2018, 61, 851-860.	3.5	39
614	A Strategy to Boost H ₂ Generation Ability of Metal–Organic Frameworks: Insideâ€Outside Decoration for the Separation of Electrons and Holes. ChemSusChem, 2018, 11, 666-671.	3.6	30
615	Unique Features of the Photocatalytic Reduction of H ₂ O and CO ₂ by New Catalysts Based on the Analogues of CdS, Cd ₄ P ₂ X ₃ (X = Cl, Br, I). ACS Applied Materials & Interfaces, 2018, 10, 2526-2536.	4.0	20
616	Photocatalytic hydrogen evolution over the isostructural titanates: Ba3Li2Ti8O20 and Na2Ti6O13 modified with metal oxide nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 2148-2159.	3.8	12
617	Tuning the band gap and the nitrogen content in carbon nitride materials by high temperature treatment at high pressure. Carbon, 2018, 130, 170-177.	5.4	29
618	Sub-nanometer Co ₃ O ₄ clusters anchored on TiO ₂ (B) nano-sheets: Pt replaceable Co-catalysts for H ₂ evolution. Nanoscale, 2018, 10, 2596-2602.	2.8	50
619	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	5.2	94
620	Construction of ultrafine Ag3PO4 nanoparticle and La2Ti2O7 nanosheet 0D/2D heterojunctions with improved photocatalytic performance. Journal of Alloys and Compounds, 2018, 740, 901-909.	2.8	19
621	Cocatalysts in Semiconductorâ€based Photocatalytic CO ₂ Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 2018, 30, 1704649.	11.1	1,034
622	Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV. ACS Energy Letters, 2018, 3, 307-314.	8.8	73

#	Article	IF	CITATIONS
623	Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H2 evolution over CdS nanospheres. Journal of Colloid and Interface Science, 2018, 514, 634-641.	5.0	37
624	Synthesis of graphene-based photocatalysts for water splitting by laser-induced doping with ionic liquids. Carbon, 2018, 130, 48-58.	5.4	26
625	UV/solar light induced photocatalytic degradation of phenols and dyes by Fe(PS-BBP)Cl3. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 477-487.	2.0	23
626	NiSx Quantum Dots Accelerate Electron Transfer in Cd _{0.8} Zn _{0.2} S Photocatalytic System via an rGO Nanosheet "Bridge―toward Visible-Light-Driven Hydrogen Evolution. ACS Catalysis, 2018, 8, 1532-1545.	5.5	137
627	Current Mechanistic Understanding of Surface Reactions over Water-Splitting Photocatalysts. CheM, 2018, 4, 223-245.	5.8	87
628	Highly efficient hydrogen evolution catalysis based on MoS 2 /CdS/TiO 2 porous composites. International Journal of Hydrogen Energy, 2018, 43, 9307-9315.	3.8	38
629	Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: Analysis the true catalyst. Journal of Catalysis, 2018, 363, 109-116.	3.1	67
630	Multiple Coresâ€Shell Structured Cu@SiO ₂ Ultrathin Leafâ€Shaped Nanocomposite: Facile Fabrication and Excellent Selective Catalytic Hydrogenation Performance. ChemistrySelect, 2018, 3, 4643-4652.	0.7	1
631	The mechanism of photocatalytic CO2 reduction by graphene-supported Cu2O probed by sacrificial electron donors. Photochemical and Photobiological Sciences, 2018, 17, 829-834.	1.6	19
632	Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.	1.9	42
633	Anchoring Ni ₂ P on the UiOâ€66â€NH ₂ /gâ€C ₃ N ₄ â€derived Câ€doped ZrO ₂ /gâ€C ₃ N ₄ Heterostructure: Highly Efficient Photocatalysts for H ₂ Production from Water Splitting. ChemCatChem, 2018, 10, 3327-3335.	1.8	49
634	Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 236, 233-239.	10.8	67
635	Hybridizing MoS2 and C60 via a van der Waals heterostructure toward synergistically enhanced visible light photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 2018, 43, 8698-8706.	3.8	27
636	Metalâ€Free 2D/2D Phosphorene/g ₃ N ₄ Van der Waals Heterojunction for Highly Enhanced Visible‣ight Photocatalytic H ₂ Production. Advanced Materials, 2018, 30, e1800128.	11.1	707
637	Co-catalyst-free ZnS-SnS2 porous nanosheets for clean and recyclable photocatalytic H2 generation. Journal of Alloys and Compounds, 2018, 753, 60-67.	2.8	36
638	Syntheses, structures and efficient visible light-driven photocatalytic properties of layered cuprous halides based on two types of building units. Dalton Transactions, 2018, 47, 6965-6972.	1.6	32
639	Silicaâ€Protectionâ€Assisted Encapsulation of Cu ₂ O Nanocubes into a Metal–Organic Framework (ZIFâ€8) To Provide a Composite Catalyst. Angewandte Chemie, 2018, 130, 6950-6953.	1.6	36
640	Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. Journal of Materials Chemistry A, 2018, 6, 6922-6930.	5.2	41

#	Article	IF	CITATIONS
641	Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2018, 39, 453-462.	6.9	18
642	Visible light-driven oxygen evolution using a binuclear Ru-bda catalyst. Chinese Journal of Catalysis, 2018, 39, 446-452.	6.9	10
643	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	10.8	63
644	Stabilized fabrication of anatase-TiO ₂ /FeS ₂ (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Advances, 2018, 8, 11935-11945.	1.7	47
645	<i>In situ</i> synthesis and photocatalytic mechanism of a cyano bridged Cu(<scp>i</scp>) polymer. Inorganic Chemistry Frontiers, 2018, 5, 1282-1287.	3.0	17
646	Decomplexation of Cu(II)-EDTA over oxygen-doped g-C3N4: An available resource towards environmental sustainability. Chemical Engineering Journal, 2018, 345, 138-146.	6.6	35
647	P-doped ZnxCd1â^'xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2018, 233, 70-79.	10.8	203
648	Synthesis of titania wrapped cadmium sulfide nanorods for photocatalytic hydrogen generation. Materials Research Bulletin, 2018, 103, 122-132.	2.7	43
649	A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production. International Journal of Hydrogen Energy, 2018, 43, 7007-7019.	3.8	47
650	Facile fabrication and photocatalytic performance of WO3 nanoplates in situ decorated with Ag/β-Ag2WO4 nanoparticles. Journal of Environmental Chemical Engineering, 2018, 6, 1969-1978.	3.3	23
651	Assembled fabrication of α-Fe 2 O 3 /BiOCl heterojunctions with enhanced photocatalytic performance. Applied Surface Science, 2018, 430, 585-594.	3.1	67
652	In situ photodeposition of amorphous CoS x on the TiO 2 towards hydrogen evolution. Applied Surface Science, 2018, 430, 448-456.	3.1	70
653	Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 335, 282-289.	6.6	161
654	Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 78-86.	2.0	18
655	Co(OH) ₂ hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research, 2018, 33, 568-580.	1.2	22
656	Enhanced visible-light-driven photocatalysis from WS ₂ quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catalysis Science and Technology, 2018, 8, 201-209.	2.1	95
657	Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future. Applied Surface Science, 2018, 434, 643-668.	3.1	42
658	Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2. Applied Catalysis B: Environmental, 2018, 221, 645-651.	10.8	171

#	Article	IF	CITATIONS
659	Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon, 2018, 126, 247-256.	5.4	204
660	Fe2P nanoparticles as highly efficient freestanding co-catalyst for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 5337-5345.	3.8	42
661	Bonding CdS-Sn 2 S 3 eutectic clusters on graphene nanosheets with unusually photoreaction-driven structural reconfiguration effect for excellent H 2 evolution and Cr(VI) reduction. Applied Catalysis B: Environmental, 2018, 222, 157-166.	10.8	74
662	Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Applied Catalysis B: Environmental, 2018, 220, 561-569.	10.8	160
663	Photocatalytic Water Splitting by Suspended Semiconductor Particles. , 2018, , 107-140.		7
664	Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dual purpose electrodes for lithium-ion batteries and oxygen evolution reaction. International Journal of Energy Research, 2018, 42, 853-862.	2.2	30
665	Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2018, 221, 302-311.	10.8	427
666	Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C P bonds for excellent photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2018, 221, 27-35.	10.8	236
667	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.	3.1	386
668	Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Research, 2018, 11, 1389-1398.	5.8	43
669	Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Research, 2018, 11, 1379-1388.	5.8	41
670	Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids, 2018, 112, 80-87.	1.9	66
671	Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. Journal of Hazardous Materials, 2018, 342, 715-723.	6.5	190
672	Artificial Photosynthesis: Learning from Nature. ChemPhotoChem, 2018, 2, 148-160.	1.5	51
673	<i>In situ</i> synthesis of novel Cu ₂ CO ₃ (OH) ₂ decorated 2D TiO ₂ nanosheets with efficient photocatalytic H ₂ evolution activity. Dalton Transactions, 2018, 47, 348-356.	1.6	25
674	Enhanced photoelectrochemical properties of ZnO nanowire arrays annealed in air. Journal of Materials Science: Materials in Electronics, 2018, 29, 4058-4064.	1.1	7
675	Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visible‣ight Photocatalysis. Angewandte Chemie, 2018, 130, 1115-1119.	1.6	41
676	Constructing a novel strategy for controllable synthesis of corrosion resistant Ti ³⁺ self-doped titanium–silicon materials with efficient hydrogen evolution activity from simulated seawater. Nanoscale, 2018, 10, 2275-2284.	2.8	39

		CITATION REPORT		
#	Article		IF	CITATIONS
677	Monolithic aerogel photocatalysts: a review. Journal of Materials Chemistry A, 2018, 6	, 754-775.	5.2	152
678	Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface a enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization Surface Science, 2018, 436, 424-432.	rea and h. Applied	3.1	28
679	An in situ mediator-free route to fabricate Cu2O/g-C3N4 type-II heterojunctions for en visible-light photocatalytic H2 generation. Applied Surface Science, 2018, 434, 1224-1	hanced 231.	3.1	96
680	Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framev Steering Charge Flow for Enhanced Visibleâ€Light Photocatalysis. Angewandte Chemi Edition, 2018, 57, 1103-1107.	vork Composites: e - International	7.2	429
681	In situ construction of fibrous AgNPs/g-C3N4 aerogel toward light-driven COx-free me dehydrogenation at room temperature. Chemical Engineering Journal, 2018, 334, 240		6.6	45
682	CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity for hydrogen evolution under visible light irradiation. Applied Surface Science, 2018, 4	/ and stability 35, 1296-1306.	3.1	37
683	Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction (NH ₃) under ambient conditions. Energy and Environmental Science, 201	to ammonia 18, 11, 45-56.	15.6	1,217
684	Cobalt manganese spinel as an effective cocatalyst for photocatalytic water oxidation Catalysis B: Environmental, 2018, 224, 886-894.	. Applied	10.8	78
685	Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated s efficient visible-light-driven water splitting. Applied Catalysis B: Environmental, 2018, 2		10.8	69
686	Morphology ontrolled Electrodeposition of Copper Nanospheres onto FTO for Enha Photocatalytic Hydrogen Production. Chinese Journal of Chemistry, 2018, 36, 31-36.	inced	2.6	8
687	Semiconductor-Based Photocatalytic Systems for the Solar-Light-Driven Water Splittir Hydrogen Evolution. Lecture Notes in Quantum Chemistry II, 2018, , 39-125.	ıg and	0.3	1
688	Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superic hydrogenation of 4-nitrophenol. Journal of Colloid and Interface Science, 2018, 512, 8	or activity in 44-852.	5.0	58
689	One-pot construction of 1D/2D Zn1-Cd S/D-ZnS(en)0.5 composites with perfect heter their superior visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Envi 2018, 220, 324-336.		10.8	64
690	Enhanced photocatalytic H 2 production of Mn 0.5 Cd 0.5 S solid solution through loa metal sulfides XS (X = Mo, Cu, Pd) cocatalysts. Applied Surface Science, 2018, 430, 51		3.1	58
691	Photochemical Water Splitting on Titania Surfaces: Atomistic Insight From First Princip 535-544.	ples. , 2018, ,		0
692	Pt Nanocluster Co-Catalysts for Photocatalytic Water Splitting. Journal of Carbon Rese 64.	earch, 2018, 4,	1.4	4
693	Encapsulating [Mo ₃ S ₁₃] ^{2â^'} clusters in cation frameworks: enhancing stability and recyclability by converting a homogeneous photoc heterogeneous photocatalyst. Chemical Communications, 2018, 54, 13563-13566.		2.2	172
694	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.		5.2	37

#	Article	IF	CITATIONS
695	Direct Z-scheme Cs ₂ O–Bi ₂ O ₃ –ZnO heterostructures for photocatalytic overall water splitting. Journal of Materials Chemistry A, 2018, 6, 21379-21388.	5.2	96
696	Oxygen vacancy modulation of two-dimensional γ-Ga ₂ O ₃ nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 21509-21517.	2.8	31
697	Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. Journal of Materials Chemistry A, 2018, 6, 22768-22777.	5.2	90
698	Integration of Lanthanide–Transitionâ€Metal Clusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 17038-17042.	1.6	7
699	Theoretical Design of an InSe/GaTe vdW Heterobilayer: A Potential Visible-Light Photocatalyst for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 27803-27810.	1.5	55
700	Ordered Mesoporous TiO ₂ Gyroids: Effects of Pore Architecture and Nbâ€Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials, 2018, 8, 1802566.	10.2	46
701	Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping. ACS Omega, 2018, 3, 15009-15017.	1.6	46
704	Ultrasmall MoO _x Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. Advanced Materials, 2019, 31, e1804883.	11.1	222
705	Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nature Communications, 2018, 9, 5309.	5.8	287
706	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 131, 1436-1440.	1.6	42
707	Monolayer Attachment of Metallic MoS ₂ on Restacked Titania Nanosheets for Efficient Photocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6912-6918.	2.5	15
708	Improved H ₂ Evolution in Quaternary SCIGS Chalcopyrite Semiconductors. Journal of Physical Chemistry C, 2018, 122, 24512-24519.	1.5	7
709	Controlled Decoration of Divalent Nickel onto CdS/CdSe Core/Shell Quantum Dots to Boost Visibleâ€Lightâ€Induced Hydrogen Generation in Water. ChemPlusChem, 2018, 83, 1088-1096.	1.3	3
710	Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	204
711	Tethered sensitizer–catalyst noble-metal-free molecular devices for solar-driven hydrogen generation. Dalton Transactions, 2018, 47, 15633-15645.	1.6	17
712	Non-noble metals applied to solar water splitting. Energy and Environmental Science, 2018, 11, 3128-3156.	15.6	134
713	Visible-Light-Driven Efficient Hydrogen Production from CdS NanoRods Anchored with Co-catalysts Based on Transition Metal Alloy Nanosheets of NiPd, NiZn, and NiPdZn. ACS Applied Energy Materials, 0, , .	2.5	5
714	The Effect of Metal Components in the Quaternary Electrocatalysts on the Morphology and Catalytic Performance of Transition Metal Phosphides. Electroanalysis, 2018, 30, 2584-2588.	1.5	4

#	Article	IF	CITATIONS
715	Bioinspired cobalt cubanes with tunable redox potentials for photocatalytic water oxidation and CO ₂ reduction. Beilstein Journal of Organic Chemistry, 2018, 14, 2331-2339.	1.3	4
716	Constructing a novel TiO ₂ /γ-graphyne heterojunction for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20947-20955.	5.2	56
717	Low-Cost Oriented Hierarchical Growth of BiVO ₄ /rGO/NiFe Nanoarrays Photoanode for Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 14695-14703.	3.2	38
718	Organic Dyes based on Tetraarylâ€1,4â€dihydropyrroloâ€{3,2â€ <i>b</i>]pyrroles for Photovoltaic and Photocatalysis Applications with the Suppressed Electron Recombination. Chemistry - A European Journal, 2018, 24, 18032-18042.	1.7	28
719	Drastic Improvement of 1D-CdS Solar-Driven Photocatalytic Hydrogen Evolution Rate by Integrating with NiFe Layered Double Hydroxide Nanosheets Synthesized by Liquid-Phase Pulsed-Laser Ablation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16734-16743.	3.2	45
720	A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. Micromachines, 2018, 9, 537.	1.4	44
721	Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MILâ€125â€NH ₂ under Visible Light Irradiation. Advanced Functional Materials, 2018, 28, 1806368.	7.8	110
722	Integration of Lanthanide–Transitionâ€Metal Clusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 16796-16800.	7.2	109
723	Interfacial and Dimensional Effects of Pd Co-Catalyst for Efficient Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2018, 122, 25165-25173.	1.5	26
724	Visible―and NIRâ€Light Responsive Blackâ€Phosphorusâ€Based Nanostructures in Solar Fuel Production and Environmental Remediation. Advanced Materials, 2018, 30, e1804770.	11.1	61
725	Transition Metal Phosphide As Cocatalysts for Semiconductor-Based Photocatalytic Hydrogen Evolution Reaction. Lecture Notes in Quantum Chemistry II, 2018, , 375-402.	0.3	2
726	Fabrication of ZnO/Red Phosphorus Heterostructure for Effective Photocatalytic H2 Evolution from Water Splitting. Nanomaterials, 2018, 8, 835.	1.9	26
727	Material Design for Photocatalytic Water Splitting from a Theoretical Perspective. Advanced Materials, 2018, 30, e1802106.	11.1	258
728	Biocoordination Polymer Cross-Linking Structure to a 3D Star Topology Inorganic Photocatalyst Nanocrystal with Improved Hydrogen Evolution Performance. Inorganic Chemistry, 2018, 57, 13067-13070.	1.9	3
729	Localized NiS ₂ Quantum Dots on g ₃ N ₄ Nanosheets for Efficient Photocatalytic Hydrogen Production from Water. ChemCatChem, 2018, 10, 5441-5448.	1.8	46
730	Self-powered H2 production with bifunctional hydrazine as sole consumable. Nature Communications, 2018, 9, 4365.	5.8	178
731	Two-dimensional titanium oxide nanosheets rich in titanium vacancies as an efficient cocatalyst for photocatalytic water oxidation. Journal of Catalysis, 2018, 367, 296-305.	3.1	24
732	Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy, 2018, 43, 18925-18945.	3.8	83

#	Article	IF	CITATIONS
733	MoS ₂ /CQDs obtained by photoreduction for assembly of a ternary MoS ₂ /CQDs/ZnIn ₂ S ₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 19735-19742.	5.2	77
734	A Zn _{0.5} Cd _{0.5} S Photocatalyst Modified by 2D Black Phosphorus for Efficient Hydrogen Evolution from Water. ChemCatChem, 2018, 10, 4395-4405.	1.8	34
735	Direct Z-Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 5419-5424.	2.1	114
736	Theoretical Studies on the Electronic and Optical Properties of Honeycomb BC ₃ monolayer: A Promising Candidate for Metal-free Photocatalysts. ACS Omega, 2018, 3, 10517-10525.	1.6	50
737	Valence Band Engineering via Pt ^{II} Single-Atom Confinement Realizing Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 21108-21114.	1.5	51
738	Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of Catalysis, 2018, 367, 27-42.	3.1	97
739	Molybdenumâ€Based Coâ€catalysts in Photocatalytic Hydrogen Production: Categories, Structures, and Roles. ChemSusChem, 2018, 11, 3871-3881.	3.6	34
740	One-Pot C–H Formylation Enabled by Relay Catalysis of Manganese(I) and Iron(III). ACS Catalysis, 2018, 8, 10036-10042.	5.5	35
741	Au–TiO ₂ -Loaded Cubic g-C ₃ N ₄ Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications. ACS Applied Materials & Interfaces, 2018, 10, 34087-34097.	4.0	132
742	Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with "one stone―as Z-scheme photocatalysts for highly efficient hydrogen production. Journal of Materials Chemistry A, 2018, 6, 19631-19642.	5.2	106
743	Visible Lightâ \in Driven Hydrogen Production by Carbon based Polymeric Materials. , 2018, , .		1
744	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
745	Low-Cost Ni ₃ B/Ni(OH) ₂ as an Ecofriendly Hybrid Cocatalyst for Remarkably Boosting Photocatalytic H ₂ Production over g-C ₃ N ₄ Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 13140-13150.	3.2	131
746	Temperature dependence of photoinduced hydrogen production and simultaneous separation in TiO2 nanotubes/palladium bilayer membrane. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 04H101.	0.6	3
747	Sustainable synthesis of CeO 2 /CdS-diethylenetriamine composites for enhanced photocatalytic hydrogen evolution under visible light. Journal of Alloys and Compounds, 2018, 758, 162-170.	2.8	54
748	Continuous flow synthesis of Ag3PO4 nanoparticles with greater photostability and photocatalytic dye degradation efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 382-389.	2.0	24
749	N-Annulated perylene-based organic dyes sensitized graphitic carbon nitride to form an amide bond for efficient photocatalytic hydrogen production under visible-light irradiation. Applied Catalysis B: Environmental, 2018, 237, 32-42.	10.8	42
750	Fabrication of Porous Cu-Doped BiVO ₄ Nanotubes as Efficient Oxygen-Evolving Photocatalysts. ACS Applied Nano Materials, 2018, 1, 2589-2599.	2.4	63

#	Article	IF	CITATIONS
751	Solar light active plasmonic Au@TiO ₂ nanocomposite with superior photocatalytic performance for H ₂ production and pollutant degradation. New Journal of Chemistry, 2018, 42, 10958-10968.	1.4	67
752	Efficiently visible-light-induced photoactivity of MoS 2 nanoflowers/chromic oxide/protonated titanate nanoflakes edge-on ternary heterostructures for production of hydrogen. Journal of Alloys and Compounds, 2018, 761, 31-40.	2.8	10
753	Facile synthesis of ternary CdIn2S4/In(OH)3/Zn2GeO4 nanocomposite with enhanced visible-light photocatalytic H2 evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 298-305.	2.0	14
754	Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction. Applied Catalysis B: Environmental, 2018, 237, 288-294.	10.8	70
755	Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight. ACS Applied Materials & amp; Interfaces, 2018, 10, 21035-21055.	4.0	266
756	MOFs as an electron-transfer-bridge between a dye photosensitizer and a low cost Ni ₂ P co-catalyst for increased photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2018, 2, 2502-2506.	2.5	19
757	Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 11606-11630.	5.2	379
758	One-pot synthesis of Cu-modified HNb ₃ O ₈ nanobelts with enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 10769-10775.	5.2	7
759	Self-Assembled Mesoporous Carbon Nitride with Tunable Texture for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8291-8299.	3.2	48
760	High-performance NiO/g-C ₃ N ₄ composites for visible-light-driven photocatalytic overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1646-1652.	3.0	92
761	Simultaneously improving solar water oxidation kinetics and passivating surface states of hematite by loading an amorphous Ni doped cobalt phosphate layer. International Journal of Hydrogen Energy, 2018, 43, 14172-14182.	3.8	6
762	A co-catalyst free, eco-friendly, novel visible light absorbing iron based complex oxide nanocomposites for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 14417-14426.	3.8	8
763	Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nature Energy, 2018, 3, 655-663.	19.8	275
764	Efficient spatial charge separation and transfer in ultrathin g-C ₃ N ₄ nanosheets modified with Cu ₂ MoS ₄ as a noble metal-free co-catalyst for superior visible light-driven photocatalytic water splitting. Catalysis Science and Technology, 2018, 8, 3883-3893.	2.1	42
765	New Iron obalt Oxide Catalysts Promoting BiVO ₄ Films for Photoelectrochemical Water Splitting. Advanced Functional Materials, 2018, 28, 1802685.	7.8	248
766	Phosphorus Dualâ€Đoped MoO ₂ Nanosheet/Multiwalled Carbon Nanotube Hybrid as Efficient Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2018, 5, 2660-2665.	1.7	26
767	Electron Transfer Controls the Photochemical Splitting of Water Mediated by a Titanocene Transition Metal Complex. Journal of Physical Chemistry C, 2018, 122, 18412-18421.	1,5	6
768	Visible Light-Responsive Photocatalysts—From TiO2 to Carbon Nitrides and Boron Carbon Nitride. Advances in Inorganic Chemistry, 2018, 72, 49-92.	0.4	9

#	Article	IF	CITATIONS
769	Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 238, 161-167.	10.8	49
770	Electrospinning preparation of Sn4+-doped BiFeO3 nanofibers as efficient visible-light-driven photocatalyst for O2 evolution. Journal of Alloys and Compounds, 2018, 766, 274-283.	2.8	37
771	Significantly improve photoelectrochemical performance of Ti:Fe2O3 with CdSe modification and surface oxidation. International Journal of Hydrogen Energy, 2018, 43, 14130-14139.	3.8	6
772	Nanovesicular MOF with Omniphilic Porosity: Bimodal Functionality for White-Light Emission and Photocatalysis by Dye Encapsulation. ACS Applied Materials & Interfaces, 2018, 10, 23140-23146.	4.0	22
773	Revealing the Size Effect of Platinum Cocatalyst for Photocatalytic Hydrogen Evolution on TiO ₂ Support: A DFT Study. ACS Catalysis, 2018, 8, 7270-7278.	5.5	146
774	Cerium-doped <i>Ĵ²</i> -Ni(OH) ₂ hexagon nanosheets: an effective photocatalyst for the degradation of the emerging water pollutant, naproxen. Nanotechnology, 2018, 29, 375603.	1.3	11
775	Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts. Advanced Functional Materials, 2018, 28, 1801769.	7.8	54
776	Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chemical Society Reviews, 2018, 47, 8238-8262.	18.7	343
777	Superior solar-to-hydrogen energy conversion efficiency by visible light-driven hydrogen production <i>via</i> highly reduced Ti ²⁺ /Ti ³⁺ states in a blue titanium dioxide photocatalyst. Catalysis Science and Technology, 2018, 8, 4657-4664.	2.1	30
778	Flake-like InVO ₄ modified TiO ₂ nanofibers with longer carrier lifetimes for visible-light photocatalysts. RSC Advances, 2018, 8, 27073-27079.	1.7	13
779	Construction of hierarchical TiO2 nanorod array/graphene/ZnO nanocomposites for high-performance photocatalysis. Journal of Materials Science, 2018, 53, 15376-15389.	1.7	22
780	Photocatalysts for hydrogen generation and organic contaminants degradation. , 2018, , 215-236.		7
781	One step fabrication of novel Ag-CdS@EP floating photocatalyst for efficient degradation of organic pollutants under visible light illumination. Dalton Transactions, 2018, 47, 12253-12263.	1.6	15
782	Catalysts Based on Earthâ€Abundant Metals for Visible Lightâ€Driven Water Oxidation Reaction. Chemical Record, 2018, 18, 1531-1547.	2.9	16
783	Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chemical Society Reviews, 2018, 47, 6410-6444.	18.7	178
784	Template-free synthesis of bubble-like phosphorus-doped carbon nitride with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2018, 769, 503-511.	2.8	32
785	Plasmon-Enhanced Layered Double Hydroxide Composite BiVO ₄ Photoanodes: Layering-Dependent Modulation of the Water-Oxidation Reaction. ACS Applied Energy Materials, 2018, 1, 3577-3586.	2.5	52
786	Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 86-93.	2.0	74

#	Article	IF	CITATIONS
787	Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection. Talanta, 2018, 190, 103-109.	2.9	29
788	Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy, 2018, 52, 105-116.	8.2	179
789	A Mn ₁₃ -cluster based coordination polymer as a co-catalyst of CdS for enhanced visible-light driven H ₂ evolution. Dalton Transactions, 2018, 47, 10857-10860.	1.6	7
790	Cobalt-based cubane molecular co-catalysts for photocatalytic water oxidation by polymeric carbon nitrides. Applied Catalysis B: Environmental, 2018, 238, 664-671.	10.8	38
791	Perovskite Oxide LaNiO ₃ Nanoparticles for Boosting H ₂ Evolution over Commercial CdS with Visible Light. Chemistry - A European Journal, 2018, 24, 18512-18517.	1.7	69
792	AuPd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting. Journal of Applied Electrochemistry, 2018, 48, 995-1007.	1.5	26
793	Electrocatalysis Beyond the Computational Hydrogen Electrode. , 2018, , 1-33.		10
794	Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nature Communications, 2018, 9, 2752.	5.8	178
795	Construction of Hierarchically Structured CuO@CoP Anode for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11303-11312.	3.2	42
796	Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect. Applied Surface Science, 2018, 458, 369-381.	3.1	53
797	Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization, 2018, 27, 107-114.	3.3	37
798	Lattice Engineering on Metal Cocatalysts for Enhanced Photocatalytic Reduction of CO ₂ into CH ₄ . ChemSusChem, 2018, 11, 3524-3533.	3.6	54
799	Ferroelectrics for photocatalysis. , 2018, , 307-324.		7
800	Coordination Polymer Derived NiS@g-C ₃ N ₄ Composite Photocatalyst for Sulfur Vacancy and Photothermal Effect Synergistic Enhanced H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 11869-11876.	3.2	78
801	Synthesis of nitrogen and sulfur co-doped reduced graphene oxide as efficient metal-free cocatalyst for the photo-activity enhancement of CdS. Applied Catalysis B: Environmental, 2018, 236, 212-221.	10.8	68
802	A Nobleâ€Metalâ€Free CdS/Ni ₃ S ₂ @C Nanocomposite for Efficient Visibleâ€Lightâ€Driven Photocatalysis. Small Methods, 2018, 2, 1800029.	4.6	25
803	Noble metal-free 0D–1D NiS _x /CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light. Dalton Transactions, 2018, 47, 12671-12683.	1.6	53
804	Facile synthesis of ZnCo-ZIFs-derived ZnxCo3â^xO4 hollow polyhedron for efficient oxygen evolution reduction. Journal of Colloid and Interface Science, 2018, 532, 650-656.	5.0	33

#	Article	IF	CITATIONS
805	Highly efficient photocatalytic H2 evolution using the Ni2P-Zn0.5Cd0.5S photocatalyst under visible light irradiation. Journal of Alloys and Compounds, 2018, 769, 889-897.	2.8	73
806	Achieving photocatalytic hydrogen production from alkaline solution upon a designed mesoporous TiO ₂ –Ni hybrid employing commonly used paper as a sacrificial electron donor. Inorganic Chemistry Frontiers, 2018, 5, 2709-2717.	3.0	27
807	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	1.7	85
808	Nanoconfined Nickel@Carbon Core–Shell Cocatalyst Promoting Highly Efficient Visible‣ight Photocatalytic H ₂ Production. Small, 2018, 14, e1801705.	5.2	56
809	Atomic Scale Materials for Emerging Robust Catalysis. Small Methods, 2018, 2, 1800181.	4.6	10
810	Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-Rich surfaces for overall water splitting. Journal of Power Sources, 2018, 400, 190-197.	4.0	86
811	Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting. ACS Catalysis, 2018, 8, 9154-9164.	5.5	68
812	Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production. Chemical Engineering Journal, 2018, 350, 335-343.	6.6	96
813	Dyad Sensitizer of Chlorophyll with Indoline Dye for Panchromatic Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 2813-2820.	2.5	51
814	Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation. Chinese Journal of Catalysis, 2018, 39, 1219-1227.	6.9	51
815	Recent advances in visible light-driven water oxidation and reduction in suspension systems. Materials Today, 2018, 21, 897-924.	8.3	157
816	Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers. International Journal of Hydrogen Energy, 2018, 43, 13276-13283.	3.8	51
817	Construction of Indium and Cerium Codoped Ordered Mesoporous TiO ₂ Aerogel Composite Material and Its High Photocatalytic Activity. Global Challenges, 2018, 2, 1700118.	1.8	5
818	Au nanoparticle-doped Co ₃ O ₄ –CoFe ₂ O ₄ @SiO ₂ as a catalyst for visible-light-driven water oxidation. New Journal of Chemistry, 2018, 42, 14757-14765.	1.4	13
819	Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. Journal of Molecular Structure, 2018, 1173, 1-6.	1.8	51
820	Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018, 237, 689-698.	10.8	130
821	2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018, 61, 765-786.	4.2	123
822	Application of metal oxide-based photocatalysis. , 2018, , 211-340.		13

			_
#	Article	IF	CITATIONS
823	Improvement of the photocatalytic hydrogen production activity of g-C3N4 by doping selenides as cocatalysts. Materials Science in Semiconductor Processing, 2018, 85, 76-82.	1.9	11
824	Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO ₄ through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy Letters, 2018, 3, 1648-1654.	8.8	116
825	Graphdiyne Nanowall for Enhanced Photoelectrochemical Performance of Si Heterojunction Photoanode. ACS Applied Materials & amp; Interfaces, 2019, 11, 2745-2749.	4.0	28
826	Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation. Renewable Energy, 2019, 131, 180-186.	4.3	45
827	Synergistic impact of cocatalysts and hole scavenger for promoted photocatalytic H2 evolution in mesoporous TiO2NiS hybrid. Journal of Energy Chemistry, 2019, 32, 45-56.	7.1	61
828	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
829	A review of recent advances in two-dimensional natural clay vermiculite-based nanomaterials. Materials Research Express, 2019, 6, 102002.	0.8	31
830	Earth-Abundant MoS ₂ and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir, 2019, 35, 11056-11065.	1.6	77
831	Metal Decoration of TiO2 Nanotubes for Photocatalytic and Water Splitting Applications. Engineering Materials, 2019, , 67-88.	0.3	0
832	Sulfidization of Platinum Nickel Bimetal-Decorated g-C ₃ N ₄ for Photocatalytic Hydrogen Production: Photogenerated Charge Behavior Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 15137-15145.	3.2	45
833	Effect of La-doped scheelite-type SrWO4 for photocatalytic H2 production. Ionics, 2019, 25, 5083-5089.	1.2	7
834	Solar-driven chemistry: towards new catalytic solutions for a sustainable world. Rendiconti Lincei, 2019, 30, 443-452.	1.0	25
835	Electronic Integration and Thin Film Aspects of Au–Pd/rGO/TiO ₂ for Improved Solar Hydrogen Generation. ACS Applied Materials & Interfaces, 2019, 11, 32869-32878.	4.0	63
836	The Facet Structure and Photochemical Reactivity of Arbitrarily Oriented Strontium Titanate Surfaces. Advanced Materials Interfaces, 2019, 6, 1900731.	1.9	8
837	Boosting hydrogen evolution activity of vanadyl pyrophosphate nanosheets for electrocatalytic overall water splitting. Chemical Communications, 2019, 55, 10511-10514.	2.2	22
838	Integrating Pt@Ni(OH) nanowire and Pt nanoparticle on C N4with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting. Applied Catalysis B: Environmental, 2019, 259, 118028.	10.8	30
839	Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS ₂ : a promising candidate for noble-metal-free photocatalysts. Journal of Materials Chemistry A, 2019, 7, 20193-20200.	5.2	133
840	Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 259, 118029.	10.8	124

#	Article	IF	CITATIONS
842	Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Convergence, 2019, 6, 15.	6.3	62
843	Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visibleâ€Light Photocatalysis. Advanced Materials, 2019, 31, e1807540.	11.1	166
844	(TiO ₂ (B) Nanosheet)/(Metallic Phase MoS ₂) Hybrid Nanostructures: An Efficient Catalyst for Photocatalytic Hydrogen Evolution. Solar Rrl, 2019, 3, 1900323.	3.1	18
845	Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. Journal of Physics and Chemistry of Solids, 2019, 135, 109100.	1.9	42
846	Ethanol-Quenching Introduced Oxygen Vacancies in Strontium Titanate Surface and the Enhanced Photocatalytic Activity. Nanomaterials, 2019, 9, 883.	1.9	5
847	Promising photocatalysts with high carrier mobility for water splitting in monolayer Ge2P4S2 and Ge2As4S2. International Journal of Hydrogen Energy, 2019, 44, 21536-21545.	3.8	16
848	NiSe ₂ as Coâ€Catalyst with CdS: Nanocomposites for Highâ€Performance Photodriven Hydrogen Evolution under Visibleâ€Light Irradiation. ChemPlusChem, 2019, 84, 999-1010.	1.3	12
849	A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications. Applied Catalysis B: Environmental, 2019, 258, 117957.	10.8	126
850	Integration of Plasmonic Metal and Cocatalyst: An Efficient Strategy for Boosting the Visible and Broad‧pectrum Photocatalytic H 2 Evolution. Advanced Materials Interfaces, 2019, 6, 1900775.	1.9	18
851	Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light. Applied Catalysis B: Environmental, 2019, 258, 117948.	10.8	78
852	Molecular Routes to Two-Dimensional Metal Dichalcogenides MX ₂ (M = Mo, W; X = S, Se). Inorganic Chemistry, 2019, 58, 9922-9934.	1.9	21
853	Boosted photocatalytic decomposition of nocuous organic gases over tricomposites of N-doped carbon quantum dots, ZnFe2O4, and BiOBr with different junctions. Journal of Hazardous Materials, 2019, 380, 120866.	6.5	32
854	Noble metal free CdS@CuS-NixP hybrid with modulated charge transfer for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 257, 117934.	10.8	99
855	Modulation of HCHO, H2O and H adsorption on AgPd cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion toxic formaldehyde into hydrogen driven by visible light. Journal of Catalysis, 2019, 375, 493-506.	3.1	12
856	Incorporating <i>p</i> â€Phenylene as an Electronâ€Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation. ChemSusChem, 2019, 12, 4285-4292.	3.6	22
857	Graphdiyne-engineered heterostructures for efficient overall water-splitting. Nano Energy, 2019, 64, 103928.	8.2	43
858	An earth-abundant, amorphous cobalt-iron-borate (Co-Fe-Bi) prepared on Ni foam as highly efficient and durable electrocatalysts for oxygen evolution. Applied Surface Science, 2019, 495, 143462.	3.1	12
859	Facile synthesis of g-C3N4/ LaMO3 (M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting. Materials Science in Semiconductor Processing, 2019, 103, 104643.	1.9	21

#	Article	IF	CITATIONS
860	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
861	Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 13805-13814.	3.2	66
862	Influence of surface modification of mercapto compounds on photocatalytic hydrogen production performance of amorphous MoS ₃ . Materials Research Express, 2019, 6, 105031.	0.8	0
863	NIR light driven catalytic hydrogen generation over semiconductor photocatalyst coupling up-conversion component. Applied Catalysis B: Environmental, 2019, 257, 117908.	10.8	33
864	Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction. Journal of Catalysis, 2019, 375, 399-409.	3.1	108
865	Effects of Nb Doping on the Photocatalytic Performance of Rutile TiO ₂ Single Crystals. Journal of the Electrochemical Society, 2019, 166, H468-H472.	1.3	11
866	CVD technique assisted, advanced synthesis of WO ₃ -G composites for enhanced photocatalytic H ₂ generation under visible light illumination. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 762-769.	1.0	2
867	Surface charge-induced activation of Ni-loaded CdS for efficient and robust photocatalytic dehydrogenation of methanol. Applied Catalysis B: Environmental, 2019, 257, 117869.	10.8	41
868	Boosting Oxygen Evolution Kinetics by Mn–N–C Motifs with Tunable Spin State for Highly Efficient Solarâ€Ðriven Water Splitting. Advanced Energy Materials, 2019, 9, 1901505.	10.2	121
869	Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy. Applied Catalysis B: Environmental, 2019, 257, 117897.	10.8	50
870	Recent Advances in Cuâ€Based Cocatalysts toward Solarâ€ŧoâ€Hydrogen Evolution: Categories and Roles. Solar Rrl, 2019, 3, 1900256.	3.1	41
871	Which phase of iron oxyhydroxides (FeOOH) is more competent in overall water splitting as a photocatalyst, goethite, akaganeite or lepidocrocite? A DFT-based investigation. Computational Materials Science, 2019, 169, 109110.	1.4	28
872	Linker Engineering of Iron-Based MOFs for Efficient Visible-Light-Driven Water Oxidation Reaction. Journal of Physical Chemistry C, 2019, 123, 27501-27508.	1.5	24
873	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
874	Enhanced photoelectrochemical water oxidation activity of BiVO4 by coating of Co-phenolic networks as hole-transfer and co-catalyst. Journal of Catalysis, 2019, 377, 684-691.	3.1	43
875	Green and in-situ synthesis of noble-metal-free Ni2P/CdS nanoheterostructure for enhanced photocatalytic H2 generation activity. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 110-117.	2.7	16
876	Photocatalytic overall water splitting by spatially-separated Rh and RhOx cocatalysts on polymeric carbon nitride nanosheets. Journal of Catalysis, 2019, 379, 129-137.	3.1	34
877	Photoinduced Fabrication of Cu/TiO ₂ Core–Shell Heterostructures Derived from Cu-MOF for Solar Hydrogen Generation: The Size of the Cu Nanoparticle Matters. Journal of Physical Chemistry C, 2019, 123, 26073-26081.	1.5	26

ARTICLE IF CITATIONS Room Temperature Reduction of Carbon Dioxide to Carbon Monoxide Initiated by Localized Surface 878 0.2 1 Plasmon Resonance of Aluminum. Microscopy and Microanalysis, 2019, 25, 2024-2025. Two-dimensional carbon nitride-based composites for photocatalytic hydrogen evolution. 879 3.8 International Journal of Hydrogen Energy, 2019, 44, 30935-30948. Interlayer Photoelectron Transfer Boosted by Bridged Ru^{IV} Atoms in GaS Nanosheets for 880 4.0 8 Efficient Water Splitting. ACS Applied Materials & amp; Interfaces, 2019, 11, 45561-45567. Merging Singleâ€Atomâ€Dispersed Iron and Graphitic Carbon Nitride to a Joint Electronic System for Highâ€Efficiency Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1905166. Nitrogen-Doped Carbon Nanosheets Decorated With Mn2O3 Nanoparticles for Excellent Oxygen 882 1.8 8 Reduction Reaction. Frontiers in Chemistry, 2019, 7, 741. Highly Dispersed and Smallâ€Sized Nickel(II) Hydroxide Coâ€Catalyst Prepared by Photodeposition for Hydrogen Production. Chemistry - an Asian Journal, 2019, 14, 4193-4200. 883 1.7 Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni₂P for Highly 884 Sustained Photocatalytic H₂ Production from Seawater. ACS Applied Materials & amp; 4.0 71 Interfaces, 2019, 11, 41313-41320. Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929. 11.7 216 Photoelectrochemical CO₂ Reduction to Formate with the Sacrificial Reagent Free System 886 20 1.8 of Semiconductor Photocatalysts and Formate Dehydrogenase. ChemCatChem, 2019, 11, 6227-6235. Triplet–Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Chemistry - A 1.7 European Journal, 2019, 25, 16270-16276. Mesoporous amorphous Al₂O₃/crystalline WO₃ heterophase 888 hybrids for electrocatalysis and gas sensing applications. Journal of Materials Chemistry A, 2019, 7, 5.2 34 21874-21883. Rh nanospheres anchored TaON@Ta2O5 nanophotocatalyst for efficient hydrogen evolution from photocatalytic water splitting under visible light irradiation. International Journal of Hydrogen 3.8 Energy, 2019, 44, 24218-24227. Hollow In₂O₃@ZnFe₂O₄ heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environmental Science: Nano, 890 2.2 50 2019, 6, 3123-3132. Highly improved photocatalytic degradation of rhodamine B over Bi₂Ga_{4â''x}Fe_xO₉ solid solutions under visible light irradiation. RSC Advances, 2019, 9, 26894-26901. 1.7 Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced 892 3.8 66 photoredox water splitting. International Journal of Hydrogen Energy, 2019, 44, 25671-25679. Ultrathin WO₃ Nanosheets Converted from Metallic WS₂ Sheets by Spontaneous Formation and Deposition of PdO Nanoclusters for Visible Light-Driven C–C Coupling 29 Reactions. ACS Applied Material's & amp; Interfaces, 2019, 11, 36960-36969. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water 894 6.2 67 splitting and organic synthesis. Nano Today, 2019, 28, 100763. The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the 895 surface of SrTiO3 and photoactivity of Ptâ€"SrTiO3 composite in the H2 generation reaction. 3.8 International Journal of Hydrogen Énergy, 2019, 44, 26308-26321.

#	Article	IF	CITATIONS
896	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS ₂ . Nano Letters, 2019, 19, 8118-8124.	4.5	33
897	B ₄ C ₃ Monolayer with Impressive Electronic, Optical, and Mechanical Properties: A Potential Metal-Free Photocatalyst for CO ₂ Reduction under Visible Light. Journal of Physical Chemistry C, 2019, 123, 25091-25101.	1.5	19
898	Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution. Applied Surface Science, 2019, 498, 143836.	3.1	83
899	Vertical 1T/2H-WS2 nanoflakes grown on 2D-C3N4: Multiple charge transfer channels designed for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 556, 224-231.	5.0	29
900	Eosin Y-sensitized partially oxidized Ti ₃ C ₂ MXene for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2019, 9, 310-315.	2.1	83
901	One-pot hydrothermal synthesis of MoS ₂ -modified Mn _{0.5} Cd _{0.5} S solid solution for boosting H ₂ production activity under visible light. Catalysis Science and Technology, 2019, 9, 762-771.	2.1	33
902	Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 65-77.	1.7	25
903	Effect of trap states on photocatalytic properties of boron-doped anatase TiO ₂ microspheres studied by time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 4349-4358.	1.3	19
904	Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2019, 246, 330-336.	10.8	133
905	Assembly of Ultraâ€Thin NiO Layer Over Zn _{1â^'<i>x</i>} Cd _{<i>x</i>} S for Stable Visibleâ€Light Photocatalytic Overall Water Splitting. ChemSusChem, 2019, 12, 1410-1420.	3.6	53
906	A novel electrochemical method for simultaneous measurement of real-time potentials and photocurrent of various photoelectrochemical systems. Journal of Power Sources, 2019, 415, 99-104.	4.0	10
907	Porous Mnâ€Doped FeP/Co ₃ (PO ₄) ₂ Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. ChemSusChem, 2019, 12, 1334-1341.	3.6	78
908	Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 3609-3618.	1.4	41
909	Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 2019, 36, 25-36.	7.1	202
910	Effects of Carbon Nanotube and Carbon Sphere Templates in TiO ₂ Composites for Photocatalytic Hydrogen Production. Industrial & Engineering Chemistry Research, 2019, 58, 2770-2783.	1.8	30
911	Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chemical Science, 2019, 10, 2585-2591.	3.7	50
912	Progress in the Utilization Efficiency Improvement of Hot Carriers in Plasmon-Mediated Heterostructure Photocatalysis. Applied Sciences (Switzerland), 2019, 9, 2093.	1.3	10
913	A New Strategy for Solarâ€ŧoâ€Hydrogen Energy Conversion: Photothermalâ€Promoted Electrocatalytic Water Splitting. ChemElectroChem, 2019, 6, 2762-2765.	1.7	15

#	Article	IF	CITATIONS
914	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	10.8	137
915	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 11903-11909.	7.2	329
916	MOF-derived Co3O4 thin film decorated BiVO4 for enhancement of photoelectrochemical water splitting. Applied Surface Science, 2019, 491, 497-504.	3.1	77
917	Noble metal-free NiSe2 nanosheets decorated MIL-53(Fe) microrods with highly efficient visible-light driven photocatalytic H2 generation. International Journal of Hydrogen Energy, 2019, 44, 16400-16410.	3.8	26
918	Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nature Materials, 2019, 18, 827-832.	13.3	422
919	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 12029-12035.	1.6	17
920	The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. Frontiers of Physics, 2019, 14, 1.	2.4	10
921	Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceramics International, 2019, 45, 19447-19455.	2.3	9
922	Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst. Applied Catalysis B: Environmental, 2019, 257, 117875.	10.8	19
923	An on-demand solar hydrogen-evolution system for unassisted high-efficiency pure-water splitting. Journal of Materials Chemistry A, 2019, 7, 17315-17323.	5.2	17
924	Nanoconfined Growth of Carbon-Encapsulated Cobalts as Cocatalysts for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 14023-14030.	3.2	23
925	Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale, 2019, 11, 18968-18994.	2.8	168
926	Distorted 1T-ReS ₂ Nanosheets Anchored on Porous TiO ₂ Nanofibers for Highly Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2019, 11, 23144-23151.	4.0	57
927	A bio-inspired strategy for enhanced hydrogen evolution: carbonate ions as hole vehicles to promote carrier separation. Nanoscale, 2019, 11, 11451-11456.	2.8	10
928	Photocatalytic hydrogen evolution activity of Co/CoO hybrid structures: a first-principles study on the Co layer thickness effect. Journal of Materials Chemistry A, 2019, 7, 16176-16189.	5.2	10
929	Monitoring Transport Behavior of Charge Carriers in a Single CdS@CuS Nanowire via In Situ Single-Particle Photoluminescence Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4017-4024.	2.1	37
930	Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Applied Surface Science, 2019, 488, 284-292.	3.1	46
931	In situ metal–organic framework-derived c-doped Ni3S4/Ni2P hybrid co-catalysts for photocatalytic H2 production over g-C3N4 via dye sensitization. International Journal of Hydrogen Energy, 2019, 44, 16336-16347.	3.8	36

#	Article	IF	CITATIONS
932	Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. Journal of Hazardous Materials, 2019, 377, 330-340.	6.5	48
933	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
934	Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. Applied Catalysis B: Environmental, 2019, 256, 117794.	10.8	80
935	Dual Cocatalysts in TiO ₂ Photocatalysis. Advanced Materials, 2019, 31, e1807660.	11.1	796
936	Construction of Spatial Charge Separation Facets on BaTaO ₂ N Crystals by Flux Growth Approach for Visible-Light-Driven H ₂ Production. ACS Applied Materials & Interfaces, 2019, 11, 22264-22271.	4.0	51
937	Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2019, 552, 728-734.	5.0	39
938	Hydrothermal growth, electronic structure, optical and photocatalytic properties of LiBiO2 nanosheets. Journal of Luminescence, 2019, 214, 116523.	1.5	7
939	Band Gap Narrowing of Zinc Orthogermanate by Dimensional and Defect Modification. Journal of Physical Chemistry C, 2019, 123, 14573-14581.	1.5	6
940	Silver Phosphate/Graphene Oxide Aerogel Microspheres with Radially Oriented Microchannels for Highly Efficient and Continuous Removal of Pollutants from Wastewaters. ACS Sustainable Chemistry and Engineering, 2019, 7, 11228-11240.	3.2	23
941	Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 256, 117819.	10.8	112
942	Superior visible light photocatalysis and low-operating temperature VOCs sensor using cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid. Applied Materials Today, 2019, 16, 193-203.	2.3	50
943	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
944	Spatially separated CdS hollow spheres with interfacial charge transfer and cocatalyst for enhancing photocatalytic hydrogen evolution. Molecular Catalysis, 2019, 474, 110418.	1.0	9
945	A difunctional photocatalytic H2 evolution composite co-catalyst tailored by integration with earth-abundant material and ultralow amount of noble metal. Applied Catalysis B: Environmental, 2019, 256, 117865.	10.8	49
946	Remarkable Visible-Light Photocatalytic Activity Enhancement over Au/p-type TiO ₂ Promoted by Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 24154-24163.	4.0	53
947	A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem, 2019, 11, 3688-3715.	1.8	27
948	3D Self-Supported Porous NiO@NiMoO ₄ Core–Shell Nanosheets for Highly Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 6758-6764.	1.9	31
949	Quaternary Core–Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 19077-19086.	4.0	35

#	Article	IF	CITATIONS
950	Ultrathin Ni(<scp>ii</scp>)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H ₂ -production. Chemical Communications, 2019, 55, 6499-6502.	2.2	14
951	Atomically Dispersed Single Co Sites in Zeolitic Imidazole Frameworks Promoting Highâ€Efficiency Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2019, 25, 9670-9677.	1.7	10
952	Photocatalytic, gas-sensing and double layer capacitance properties of nanoscale SnO2 obtained from template free solution phase synthesis. Journal of Materials Science: Materials in Electronics, 2019, 30, 9245-9258.	1.1	1
953	In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 254, 594-600.	10.8	50
954	Quantum Dots Based Photocatalytic Hydrogen Evolution. Israel Journal of Chemistry, 2019, 59, 762-773.	1.0	27
955	Vanadium carbide: an efficient, robust, and versatile cocatalyst for photocatalytic hydrogen evolution under visible light. Chemical Communications, 2019, 55, 6870-6873.	2.2	38
956	Synthesis of Ni2P/Zn3In2S6 hierarchical heterostructure for improving photocatalytic H2 evolution. Catalysis Communications, 2019, 128, 105705.	1.6	11
957	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	3.6	27
958	Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245.	3.1	37
959	Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Frontiers in Chemistry, 2019, 7, 334.	1.8	14
960	Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency. Coatings, 2019, 9, 309.	1.2	13
961	Influence of Ca-doped NaNbO3 and its heterojunction with g-C3N4 on the photoredox performance. Solar Energy, 2019, 185, 469-479.	2.9	44
962	2D BiVO4/g-C3N4 Z-scheme photocatalyst for enhanced overall water splitting. Journal of Materials Science, 2019, 54, 10836-10845.	1.7	36
963	Single-crystalline melem (C ₆ N ₁₀ H ₆) nanorods: a novel stable molecular crystal photocatalyst with modulated charge potentials and dynamics. Journal of Materials Chemistry A, 2019, 7, 13234-13241.	5.2	22
964	The Enhancement of H2 Evolution over Sr1â^'1.5xTbxWO4 Solid Solution under Ultraviolet Light Irradiation. Materials, 2019, 12, 1487.	1.3	4
965	Improved visible-light photoactivities of porous LaFeO ₃ by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science and Technology, 2019, 9, 3149-3157.	2.1	40
966	Synthesis of flower-like CuS/UiO-66 composites with enhanced visible-light photocatalytic performance. Inorganic Chemistry Communication, 2019, 104, 223-228.	1.8	18
967	Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18, 620-626.	13.3	501

#	Article	IF	CITATIONS
968	Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities. Advanced Materials Interfaces, 2019, 6, 1900091.	1.9	76
969	Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production. Tungsten, 2019, 1, 19-45.	2.0	27
970	Amorphous MoS ₂ decorated on uniform Cd _{0.8} Zn _{0.2} S microspheres with dramatically improved photocatalytic hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 7846-7854.	1.4	9
971	Formation of CuO on TiO2 Surface Using its Photocatalytic Activity. Catalysts, 2019, 9, 383.	1.6	8
972	Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693-721.	5.4	618
973	Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Applied Catalysis B: Environmental, 2019, 254, 443-451.	10.8	72
974	Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communication, 2019, 104, 171-177.	1.8	47
975	Optical Properties and Photocatalytic Applications of Two-Dimensional Janus Group-III Monochalcogenides. Journal of Physical Chemistry C, 2019, 123, 11388-11396.	1.5	132
976	Subnano‣ized Pt–Au Alloyed Clusters as Enhanced Cocatalyst for Photocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2019, 14, 2112-2115.	1.7	13
977	Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis, 2019, 9, 4247-4270.	5.5	209
978	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
979	Structural Features and HER activity of Cadmium Phosphohalides. Angewandte Chemie - International Edition, 2019, 58, 6926-6931.	7.2	8
980	Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Materials, 2019, 6, 032002.	2.0	69
981	A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting. Applied Catalysis B: Environmental, 2019, 250, 200-212.	10.8	74
982	The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 306-316.	2.3	62
983	Preparation and characterization of active and cost-effective nickel/platinum electrocatalysts for hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2019, 44, 8079-8088.	3.8	13
984	Single-Atom Catalysts for Photocatalytic Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6430-6443.	3.2	121
985	Nanostructures inducing distinctive photocatalytic and photoelectrochemical performance <i>via</i> the introduction of rGO into Cd _x Zn _{1â^'x} S. Nanoscale, 2019, 11, 5571-5579.	2.8	10

		CITATION REPORT		
#	Article		IF	CITATIONS
986	Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 4	0, 240-288.	6.9	239
987	Few-layered 1T-MoS ₂ -modified ZnCoS solid-solution hollow dodecahedra for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8472-8484.		5.2	56
990	Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-fre photocatalyst for hydrogen evolution under visible light. Chinese Journal of Catalysis, 201 335-342.	е Э, 40,	6.9	92
991	Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chemical Engineering Journal, 2019, 3	370, 944-951.	6.6	54
992	CdSe Quantum Dots Doped WS 2 Nanoflowers for Enhanced Solar Hydrogen Production. Status Solidi (A) Applications and Materials Science, 2019, 216, 1800853.	Physica	0.8	14
993	A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Internati Journal of Hydrogen Energy, 2019, 44, 10453-10472.	onal	3.8	194
994	Nanolayered Ti ₃ C ₂ and SrTiO ₃ Composites for Pho Reduction and Removal of Uranium(VI). ACS Applied Nano Materials, 2019, 2, 2283-2294		2.4	119
995	Size- and density-controlled photodeposition of metallic platinum nanoparticles on titaniu for photocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 14519-14525.	m dioxide	5.2	20
996	Unraveling the Mechanism of Photocatalytic Water Splitting in α-Ga ₂ O <sub Loaded with a Nickel Oxide Cocatalyst: A First-Principles Investigation. Journal of Physical 0 C, 2019, 123, 8990-9000.</sub 	>3 Chemistry	1.5	10
997	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. C Reviews, 2019, 119, 5192-5247.	hemical	23.0	551
998	Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO _{ reduction over g-C₃N₄. Journal of Materials Chemistry A, 2019,}	2 7, 9726-9735.	5.2	112
999	Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. Materials Chemistry A, 2019, 7, 9222-9229.	Journal of	5.2	100
1000	Transition metal dichalcogenide-based composites for hydrogen production. Functional C and Structures, 2019, 1, 012001.	omposites	1.6	12
1001	Facile Surface Engineering of Ag–In–Zn–S Quantum Dot Photocatalysts by Mixed-L with Improved Charge Carrier Lifetime. Catalysis Letters, 2019, 149, 1800-1812.	igand Passivation	1.4	21
1002	Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticle Atoms, and Molecular Complexes. Small, 2019, 15, e1900772.	2s, Single	5.2	84
1003	Cascade charge transfer mediated by <i>in situ</i> interface modulation toward solar hyd production. Journal of Materials Chemistry A, 2019, 7, 8938-8951.	rogen	5.2	57
1004	Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019,		10.8	90
1005	Boosting charge transfer and hydrogen evolution performance of CdS nanocrystals hybrid MoS2 nanosheets under visible light irradiation. Applied Surface Science, 2019, 484, 692-		3.1	37

#	Article	IF	CITATIONS
1006	Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catalysis, 2019, 9, 4642-4687.	5.5	432
1007	Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals, 2019, 38, 437-445.	3.6	26
1008	A two-dimensional metal–organic framework accelerating visible-light-driven H ₂ production. Nanoscale, 2019, 11, 8304-8309.	2.8	26
1009	Rationally Designed Functional Ni ₂ P Nanoparticles as Co–Catalyst Modified CdS@gâ€C ₃ N ₄ Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ChemistrySelect, 2019, 4, 3602-3610.	0.7	4
1010	Facile Synthesis of Ce–Doped SnO ₂ Nanoparticles: A Promising Photocatalyst for Hydrogen Evolution and Dyes Degradation. ChemistrySelect, 2019, 4, 3722-3729.	0.7	28
1011	Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8. Chemical Engineering Journal, 2019, 371, 796-803.	6.6	111
1012	Guiding charge transfer kinetics into cocatalyst for efficient solar water splitting. Electrochimica Acta, 2019, 307, 43-50.	2.6	8
1013	Visible light driven photocatalytic H2 generation property of trigonal ZnIn2S4 prepared by high temperature solid state reaction. Materials Letters, 2019, 248, 52-54.	1.3	13
1014	Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. Journal of Materials Chemistry A, 2019, 7, 11170-11176.	5.2	22
1015	Oneâ€Step Synthesis of MoS 2 Nanosheet Arrays on 3D Carbon Fiber Felts as a Highly Efficient Catalyst for the Hydrogen Evolution Reaction. Energy Technology, 2019, 7, 1900052.	1.8	8
1016	Structural Features and HER activity of Cadmium Phosphohalides. Angewandte Chemie, 2019, 131, 7000-7005.	1.6	2
1017	Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 249, 98-105.	10.8	98
1018	<i>In situ</i> topotactic formation of 2D/2D direct Z-scheme Cu ₂ S/Zn _{0.67} Cd _{0.33} S in-plane intergrowth nanosheet heterojunctions for enhanced photocatalytic hydrogen production. Dalton Transactions, 2019, 48, 3327-3337.	1.6	32
1019	Isoelectric point-controlled preferential photodeposition of platinum on Cu2O-TiO2 composite surfaces. Chinese Chemical Letters, 2019, 30, 985-988.	4.8	19
1020	Cooperative desorption of H2O and CO from photo-excited cobalt oxide clusters: The evidence of photo-catalytic coupling. Chemical Physics Letters, 2019, 719, 72-77.	1.2	1
1021	Prussian blue analog-derived 2D ultrathin CoFe ₂ O ₄ nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. Journal of Materials Chemistry A, 2019, 7, 7328-7332.	5.2	75
1022	Modulating charge transfer dynamics for g-C ₃ N ₄ through a dimension and interface engineered transition metal phosphide co-catalyst for efficient visible-light photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 6939-6945.	5.2	64
1023	Application of silver phosphate-based photocatalysts: Barriers and solutions. Chemical Engineering Journal, 2019, 366, 339-357.	6.6	96

# 1024	ARTICLE Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	IF 23.0	Citations 1,591
1025	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
1026	Generation of Hydrogen by Water Splitting. , 2019, , 376-398.		1
1027	Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Research, 2019, 12, 3109-3115.	5.8	44
1028	Hydrogenated ZnIn ₂ S ₄ microspheres: boosting photocatalytic hydrogen evolution by sulfur vacancy engineering and mechanism insight. Physical Chemistry Chemical Physics, 2019, 21, 25484-25494.	1.3	59
1029	Sandwich structured WO ₃ nanoplatelets for highly efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 26077-26088.	5.2	76
1030	Computational Simulation of Trapped Charge Carriers in TiO ₂ and Their Impacts on Photocatalytic Water Splitting. ACS Symposium Series, 2019, , 67-100.	0.5	1
1031	Regulation of electron-hole recombination kinetics on uniform metal-semiconductor nanostructures for photocatalytic hydrogen evolution. APL Materials, 2019, 7, 100702.	2.2	11
1032	An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiation. Chemical Communications, 2019, 55, 13160-13163.	2.2	16
1033	A biomimetic self-assembled cobaloxime@CdS/rGO hybrid for boosting photocatalytic H ₂ production. Chemical Communications, 2019, 55, 14490-14493.	2.2	21
1034	Efficient upconverting carbon nitride nanotubes for near-infrared-driven photocatalytic hydrogen production. Nanoscale, 2019, 11, 20274-20283.	2.8	26
1035	Design of noble metal free hierarchical VS ₂ onto WO ₃ nanoflakes as an effective heterojunction strategy for enhanced photoelectrochemical water oxidation. Sustainable Energy and Fuels, 2019, 3, 3481-3488.	2.5	4
1036	Photocatalytic degradation of organic pollutants using magnetic Pd-doped BiFeO3 composites under visible light irradiation. AIP Conference Proceedings, 2019, , .	0.3	2
1037	Micrometer‒Scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 32019-32029.	3.8	28
1038	Understanding supported noble metal catalysts using first-principles calculations. Journal of Chemical Physics, 2019, 151, 180902.	1.2	14
1039	Photocatalysis and UV-blocking properties of cotton fabric functionalized with BiPO4 nanorods. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988881.	0.5	1
1040	Fabrication of Ni nanoclusters-modified brookite TiO2 quasi nanocubes and its photocatalytic hydrogen evolution performance. Chinese Journal of Chemical Physics, 2019, 32, 625-634.	0.6	11
1041	Beyond CoO _x : a versatile amorphous cobalt species as an efficient cocatalyst for visible-light-driven photocatalytic water oxidation. Chemical Communications, 2019, 55, 14050-14053.	2.2	38

#	Article	IF	CITATIONS
1042	Roles of various Ni species on TiO2 in enhancing photocatalytic H2 evolution. Frontiers in Energy, 2019, 13, 684-690.	1.2	14
1043	One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Applied Surface Science, 2019, 464, 534-543.	3.1	68
1044	One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Applied Catalysis B: Environmental, 2019, 241, 130-140.	10.8	140
1045	Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen. Chemical Engineering Journal, 2019, 356, 580-591.	6.6	61
1046	g-C3N4 nanosheets functionalized silicon nanowires hybrid photocathode for efficient visible light induced photoelectrochemical water reduction. Journal of Power Sources, 2019, 413, 293-301.	4.0	20
1047	Effect of Single-Atom Cocatalysts on the Activity of Faceted TiO ₂ Photocatalysts. Langmuir, 2019, 35, 391-397.	1.6	54
1048	Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Research, 2019, 12, 2031-2054.	5.8	95
1049	Enhancement of photocatalytic performance of TaON by combining it with noble-metal-free MoS2 cocatalysts. Journal of Materials Science, 2019, 54, 5321-5330.	1.7	16
1050	Integration of metallic TaS ₂ Co atalyst on carbon nitride photoharvester for enhanced photocatalytic performance. Canadian Journal of Chemical Engineering, 2019, 97, 1821-1827.	0.9	1
1051	Water reduction into hydrogen using Rh-doped SrTiO3 photoelectrodes surface-modified by minute amounts of Pt: Insights from heterogeneous kinetic analysis. Electrochimica Acta, 2019, 297, 696-704.	2.6	10
1052	A novel photocatalyst, Y2SiO5:Pr3+,Li/Pt-NaNbxTa1â^'xO3, for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Journal of Molecular Liquids, 2019, 277, 1-9.	2.3	6
1053	Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 263-270.	2.3	35
1054	A review on bismuth-based composite oxides for photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 895-912.	3.8	96
1055	Highâ€Performance Photoelectrochemical Water Oxidation with Phosphorusâ€Doped and Metal Phosphide Cocatalystâ€Modified gâ€C ₃ N ₄ Formation Through Gas Treatment. ChemSusChem, 2019, 12, 898-907.	3.6	29
1056	Visible Light Driven Hydrogen Evolution by Molecular Nickel Catalysts with Time-Resolved Spectroscopic and DFT Insights. Inorganic Chemistry, 2019, 58, 1469-1480.	1.9	16
1057	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Advanced Materials, 2019, 31, e1804872.	11.1	55
1058	Low-dimensional materials for alkaline oxygen evolution electrocatalysis. Materials Today Chemistry, 2019, 11, 119-132.	1.7	17
1059	Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance. Journal of Alloys and Compounds, 2019, 782, 780-788.	2.8	53

#	Article	IF	CITATIONS
1060	Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chemical Engineering Journal, 2019, 360, 221-230.	6.6	89
1061	Novel MnS/(InxCu1-x)2S3 composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction. Applied Catalysis B: Environmental, 2019, 243, 790-800.	10.8	36
1062	Rational Design and Construction of Cocatalysts for Semiconductorâ€Based Photoâ€Electrochemical Oxygen Evolution: A Comprehensive Review. Advanced Science, 2019, 6, 1801505.	5.6	120
1063	Pt/TiO2 nanotube photocatalyst – Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. Journal of Colloid and Interface Science, 2019, 538, 83-98.	5.0	51
1064	Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 2019, 471, 43-87.	3.1	170
1065	Unique 1D Cd _{1â^'} <i>_x</i> Zn <i>_x</i> S@Oâ€MoS ₂ /NiO <i>_x Nanohybrids: Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution via Integrated Structural Regulation. Small. 2019. 15. e1804115.</i>	<¦іչ 5.2	64
1066	In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal–organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 72-81.	10.8	130
1067	Carbonized MoS ₂ : Super-Active Co-Catalyst for Highly Efficient Water Splitting on CdS. ACS Sustainable Chemistry and Engineering, 2019, 7, 4220-4229.	3.2	68
1068	Multiple photocatalytic applications of non-precious Cu-loaded g-C3N4/hydrogenated black TiO2 nanofiber heterostructure. Applied Surface Science, 2019, 473, 761-769.	3.1	26
1069	Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. Journal of Solid State Chemistry, 2019, 270, 531-538.	1.4	41
1070	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 3880-3888.	4.0	73
1071	Regulating Chargeâ€Transfer in Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 3867-3874.	1.7	51
1072	Progress of binary cooperative complementary interfacial nanomaterials. Nano Today, 2019, 24, 48-80.	6.2	14
1073	One-Step Solvothermal Formation of Pt Nanoparticles Decorated Pt ²⁺ -Doped α-Fe ₂ O ₃ Nanoplates with Enhanced Photocatalytic O ₂ Evolution. ACS Catalysis, 2019, 9, 1211-1219.	5.5	167
1074	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental, 2019, 243, 330-336.	10.8	105
1075	Exfoliated NiFe Layered Double Hydroxide Cocatalyst for Enhanced Photoelectrochemical Water Oxidation with Hematite Photoanode. ChemCatChem, 2019, 11, 443-448.	1.8	22
1076	Integrating CoOx cocatalyst on hexagonal α-Fe2O3 for effective photocatalytic oxygen evolution. Applied Surface Science, 2019, 469, 933-940.	3.1	48
1077	Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity. Applied Surface Science, 2019, 467-468, 1033-1039.	3.1	70

#	Article	IF	CITATIONS
1078	Interface engineering: Surface hydrophilic regulation of LaFeO3 towards enhanced visible light photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 536, 105-111.	5.0	24
1079	Flexible Perowskit‧olarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27
1080	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
1081	The Development of Cocatalysts for Photoelectrochemical CO ₂ Reduction. Advanced Materials, 2019, 31, e1804710.	11.1	202
1082	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426.	7.2	212
1083	Tripyridineâ€Derivativeâ€Derived Semiconducting Iodoâ€Argentate/Cuprate Hybrids with Excellent Visibleâ€Lightâ€Induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 269-277.	1.7	22
1084	Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 2019, 244, 1021-1064.	10.8	676
1085	Constructing 1D CdS nanorod composites with high photocatalytic hydrogen production by introducing the Ni-based cocatalysts. Catalysis Communications, 2019, 120, 51-54.	1.6	39
1086	Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Applied Catalysis B: Environmental, 2019, 242, 422-430.	10.8	120
1087	A New Defectâ€Rich CoGa Layered Double Hydroxide as Efficient and Stable Oxygen Evolution Electrocatalyst. Small Methods, 2019, 3, 1800286.	4.6	41
1088	Simultaneously enhanced photon absorption and charge transport on a distorted graphitic carbon nitride toward visible light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 242, 40-50.	10.8	74
1089	Improved visible-light photoactivity of Pt/g-C3N4 nanosheets for solar fuel production via pretreated boric acid modification. Research on Chemical Intermediates, 2019, 45, 249-259.	1.3	16
1090	Enhanced photocatalytic hydrogen production over conjugated polymer/black TiO2 hybrid: The impact of constructing active defect states. Applied Surface Science, 2019, 465, 288-296.	3.1	26
1091	Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Applied Catalysis B: Environmental, 2019, 242, 178-185.	10.8	174
1092	Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system. Applied Catalysis B: Environmental, 2019, 242, 202-208.	10.8	99
1093	Data mining in photocatalytic water splitting over perovskites literature for higher hydrogen production. Applied Catalysis B: Environmental, 2019, 242, 267-283.	10.8	47
1094	Corroles as triplet photosensitizers. Coordination Chemistry Reviews, 2019, 379, 121-132.	9.5	81
1095	Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 2618-2625.	4.0	73

#	Article	IF	CITATIONS
1096	2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 150-190.	5.6	89
1097	Theoretical investigation of loading Ni clusters on the α-Ga2O3 surfaces for photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2019, 30, 8-18.	7.1	4
1098	Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance. Catalysis Today, 2020, 355, 932-936.	2.2	33
1099	Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution - A review. International Journal of Hydrogen Energy, 2020, 45, 7716-7740.	3.8	101
1100	Revealing high hydrogen evolution activity in zinc porphyrin sensitized hierarchical porous TiO2 photocatalysts. International Journal of Hydrogen Energy, 2020, 45, 7508-7516.	3.8	36
1101	CuO@NiO core-shell nanoparticles decorated anatase TiO2 nanospheres for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 7517-7529.	3.8	59
1102	Hybrid Photoelectrochemical Water Splitting Systems: From Interface Design to System Assembly. Advanced Energy Materials, 2020, 10, 1900399.	10.2	152
1103	Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology, 2020, 31, 11-28.	2.0	64
1104	A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 263, 118180.	10.8	126
1105	Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 7584-7615.	3.8	44
1106	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	10.8	40
1107	A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy, 2020, 45, 18144-18159.	3.8	83
1108	Degradation of rhodamine B under visible-light with nanotubular Ag@AgCl@AgI photocatalysts. Catalysis Today, 2020, 358, 155-163.	2.2	7
1109	Hollow Micro- and Nanomaterials: Synthesis and Applications. , 2020, , 1-38.		14
1110	The blockade of PDâ€1/PDâ€L1 pathway promotes the apoptosis of CD19 + CD25 + Bregs and suppresses the secretion of ILâ€10 in patients with allergic rhinitis. Scandinavian Journal of Immunology, 2020, 91, e12836.	1.3	14
1111	Design of Nanoparticle Systems by Controllable Assembly and Temporal/Spatial Regulation. Advanced Functional Materials, 2020, 30, 1903351.	7.8	11
1112	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	1.6	59
1113	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	7.2	344

ARTICLE IF CITATIONS Facile one-step "polymerization-exfoliation―route to crystalline graphitic carbon nitride nanosheets 1114 3.1 18 for increased photocatalytic hydrogen evolution. Applied Surface Science, 2020, 501, 144259. Hydrogen evolution reaction of metal di-chalcogenides: ZrS2, ZrSe2 and Janus ZrSSe. International 3.8 Journal of Hydrogen Energy, 2020, 45, 23920-23927. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design 1116 23.0 1.605 Strategies. Chemical Reviews, 2020, 120, 919-985. Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 382, 122810. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic 1118 6.6 57 H2 and O2 production. Chemical Engineering Journal, 2020, 384, 123354. Metal Borideâ€Based Catalysts for Electrochemical Waterâ€Splitting: A Review. Advanced Functional 7.8 268 Materials, 2020, 30, 1906481. Enhanced Effect of Ni3Se4 Modified CdS Nanorod for Efficient Hydrogen Production. Catalysis 1120 1.4 4 Letters, 2020, 150, 849-860. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen 1121 5.7 90 energy and environmental remediation. Catalysis Reviews - Science and Engineering, 2020, 62, 346-405. In situ depositing an ultrathin CoOxHy layer on hematite in alkaline media for photoelectrochemical 1122 10.8 18 water oxidation. Applied Catalysis B: Énvíronmental, 2020, 263, 118334. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 265, 10.8 132 118616. Tailoring charge transport in BaBiO3/NaTaO3 heterojunction interface for enhanced photocatalytic and photoelectrochemical H2 generation. Journal of Photochemistry and Photobiology A: Chemistry, 1124 2.0 11 2020, 391, 112363. CoP/Nâ€Doped Carbon Nanowire Derived from Coâ€Based Coordination Polymer as Efficient 1.8 Electrocatalyst toward Oxygen Evolution Reaction. Energy Technology, 2020, 8, 1901419. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic Î2-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Applied Catalysis B: 1126 10.8 199 Environmental, 2020, 266, 118619. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2020, 265, 118620. 10.8 Sonoprecipitation fabrication of enhanced electron transfer Cu(OH)2/g-C3N4 nanophotocatalyst with promoted H2-Production activity under visible light irradiation. Renewable Energy, 2020, 150, 1128 20 4.3 91-100. Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174. Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 1130 15.6 452 13, 24-52. A novel bicomponent Co₃S₄/Co@C cocatalyst on CdS, accelerating charge 4.6 separation for highly efficient photocatalytic hydrogen evolution. Green Chemistry, 2020, 22, 238-247.

#	Article	IF	CITATIONS
1132	Ternary noble-metal-free heterostructured NiS–CuS–C3N4 with near-infrared response for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 4084-4094.	3.8	30
1133	Facile one-pot synthesis of mesoporous g-C ₃ N ₄ nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H ₂ evolution performance. Catalysis Science and Technology, 2020, 10, 549-559.	2.1	39
1134	<i>In situ</i> decorated Ni ₂ P nanocrystal co-catalysts on g-C ₃ N ₄ for efficient and stable photocatalytic hydrogen evolution <i>via</i> a facile co-heating method. Journal of Materials Chemistry A, 2020, 8, 2995-3004.	5.2	68
1135	Positively charged Pt-based cocatalysts: an orientation for achieving efficient photocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 17-26.	5.2	71
1136	Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Applied Catalysis B: Environmental, 2020, 264, 118541.	10.8	79
1137	Reduced mesoporous TiO2 with Cu2S heterojunction and enhanced hydrogen production without noble metal cocatalyst. Applied Surface Science, 2020, 507, 144772.	3.1	41
1138	Highly efficient and stable Cu2O–TiO2 intermediate photocatalytic water splitting. Ceramics International, 2020, 46, 9455-9463.	2.3	24
1139	Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42, 100339.	5.6	54
1140	Atomically Dispersed Co–P ₃ on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.	11.1	105
1141	Recent Advances in Firstâ€Row Transition Metal Clusters for Photocatalytic Water Splitting. ChemPhotoChem, 2020, 4, 157-167.	1.5	20
1142	A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 385, 123878.	6.6	71
1143	Colloidal Semiconductor Quantum Dot–Based Multicomponent Artificial System for Hydrogen Photogeneration. , 2020, , 347-377.		Ο
1144	Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Applied Surface Science, 2020, 505, 144654.	3.1	45
1145	A novel hierarchical Bi2MoO6/Mn0.2Cd0.8S Heterostructured Nanocomposite for Efficient Visible-light hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 2884-2895.	3.8	47
1146	Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy and Environmental Science, 2020, 13, 162-173.	15.6	29
1147	Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale, 2020, 12, 1213-1223.	2.8	265
1148	Design of Fe-MOF-bpdc deposited with cobalt oxide (CoOx) nanoparticles for enhanced visible-light-promoted water oxidation reaction. Research on Chemical Intermediates, 2020, 46, 2003-2015.	1.3	4
1149	Theoretical Investigation of Monolayer RhTeCl Semiconductors as Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2020, 124, 639-646.	1.5	18

#	Article	IF	CITATIONS
1150	Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of MgAl layered double hydroxide. Applied Surface Science, 2020, 506, 144999.	3.1	47
1151	Pompon Dahliaâ€like Cu ₂ O/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4â€Chlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	1.8	34
1152	Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 69, 104409.	8.2	185
1153	Construction of Defective Zinc–Cadmium–Sulfur Nanorods for Visibleâ€Lightâ€Driven Hydrogen Evolution Without the Use of Sacrificial Agents or Cocatalysts. ChemSusChem, 2020, 13, 756-762.	3.6	11
1154	In situ thermal-assisted loading of monodispersed Pt nanoclusters on CdS nanoflowers for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2020, 506, 144933.	3.1	31
1155	Zn0.5Cd0.5S/MIL-125-NH2(Ti) nanocomposites: Highly efficient and stable photocatalyst for hydrogen production under visible light. Inorganic Chemistry Communication, 2020, 112, 107714.	1.8	14
1156	Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visible‣ight Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 3287-3293.	7.2	80
1157	Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visibleâ€Light Photocatalysts. Angewandte Chemie, 2020, 132, 3313-3319.	1.6	16
1158	Si-Based Water Oxidation Photoanodes Conjugated with Earth-Abundant Transition Metal-Based Catalysts. , 2020, 2, 107-126.		35
1159	Highly mesoporous carbon nitride photocatalysts for efficient and stable overall water splitting. Applied Surface Science, 2020, 509, 144706.	3.1	15
1160	Surface Plasmonicâ€Assisted Photocatalysis and Optoelectronic Devices with Noble Metal Nanocrystals: Design, Synthesis, and Applications. Advanced Functional Materials, 2020, 30, 1906744.	7.8	186
1161	The visible-light photocatalytic activity for enhancing RhB degradation and hydrogen evolution from SrTiO3 nanoparticles decorated red phosphorus nanorods as photocatalysts. Journal Physics D: Applied Physics, 2020, 53, 085501.	1.3	5
1162	Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure. International Journal of Hydrogen Energy, 2020, 45, 123-134.	3.8	35
1163	Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Science Bulletin, 2020, 65, 720-725.	4.3	67
1164	Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8, 2286-2322.	5.2	251
1165	Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. Communications Materials, 2020, 1, 66.	2.9	28
1166	Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nature Catalysis, 2020, 3, 932-940.	16.1	211
1167	Novel noble-metal free S/Ni12P5/Cd0.5Zn0.5S composite with enhanced H2 evolution activity under visible light. International Journal of Hydrogen Energy, 2020, 45, 33623-33633.	3.8	7

#	Article	IF	CITATIONS
1168	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
1169	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. Journal of Materials Chemistry A, 2020, 8, 23202-23230.	5.2	81
1170	Ultrathin Mesoporous Carbon Nitride Nanosheets Prepared Through a Oneâ€₽ot Approach towards Enhanced Photocatalytic Activity. Energy Technology, 2020, 8, 2000719.	1.8	8
1171	Unlocking photoredox selective organic transformation over metal-free 2D transition metal chalcogenides-MXene heterostructures. Journal of Catalysis, 2020, 391, 485-496.	3.1	30
1172	<i>In situ</i> photo-derived MnOOH collaborating with Mn ₂ Co ₂ C@C dual co-catalysts boost photocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17120-17127.	5.2	24
1173	Efficient and Stable Solar Hydrogen Generation of Hydrophilic Rhenium-Disulfide-Based Photocatalysts <i>via</i> Chemically Controlled Charge Transfer Paths. ACS Nano, 2020, 14, 1715-1726.	7.3	50
1174	Single-Metal Atoms Supported on MBenes for Robust Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 9261-9267.	4.0	70
1175	In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 580, 669-680.	5.0	139
1176	Mo incorporated Ni nanosheet as high-efficiency co-catalyst for enhancing the photocatalytic hydrogen production of g-C3N4. International Journal of Hydrogen Energy, 2020, 45, 18912-18921.	3.8	25
1177	N-doped porous carbon-stabilized Pt in hollow nano-TiO2 with enhanced photocatalytic activity. International Journal of Hydrogen Energy, 2020, 45, 24779-24791.	3.8	16
1178	Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A, 2020, 8, 14863-14894.	5.2	115
1179	A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. Materials, 2020, 13, 5057.	1.3	28
1180	Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. Journal of Materials Chemistry A, 2020, 8, 25626-25648.	5.2	66
1181	Hybrid Density Functional Theory Study of Native Defects and Nonmetal (C, N, S, and P) Doping in a Bi ₂ WO ₆ Photocatalyst. ACS Omega, 2020, 5, 29081-29091.	1.6	33
1182	Intrinsic defects in yttrium iron garnet: A first-principles study. Journal of Applied Physics, 2020, 128, .	1.1	16
1183	The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC Chemistry, 2020, 14, 65.	1.6	34
1184	Atomic carbon chain-linked polymeric carbon nitride: Roles of the carbon chain in enhancing the photocatalytic hydrogen evolution performance. Applied Catalysis A: General, 2020, 606, 117833.	2.2	26
1185	Well-defined FeP/CdS heterostructure construction with the assistance of amine for the efficient H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 2020, 45, 32039-32049.	3.8	15

ARTICLE IF CITATIONS Photoelectrochemical Catalysis of Fluorineâ€Doped Amorphous TiO₂ Nanotube Array for 1186 0.7 4 Water Splitting. ChemistrySelect, 2020, 5, 8831-8838. Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel 1187 8.3 production. Materials Today, 2020, 40, 160-172. Plasmonâ€induced photothermal effect of subâ€10â€nm Cu nanoparticles enables boosted fullâ€spectrum 1188 1.8 23 solar <scp>H₂</scp> production. AICHE Journal, 2020, 66, e17008. Application of Biomassâ€Derived Nitrogenâ€Doped Carbon Aerogels in Electrocatalysis and Supercapacitors. ChemElectroChem, 2020, 7, 3695-3712. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Journal of the 1190 129 6.6 American Chemical Society, 2020, 142, 14007-14022. Perovskite Microcrystals with Intercalated Monolayer MoS2 Nanosheets as Advanced Photocatalyst for Solar-Powered Hydrogen Generation. Matter, 2020, 3, 935-949. 5.0 The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. 1192 11.1 168 Advanced Materials, 2020, 32, e2001763. Tailoring the CdS surface structure for photocatalytic applications. Journal of Environmental 3.3 Chemical Engineering, 2020, 8, 104313. Recent developments and perspectives in CdS-based photocatalysts for water splitting. Journal of 1194 5.2 203 Materials Chemistry A, 2020, 8, 20752-20780. Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic 2.8 hydrogen generation. Journal of Alloys and Compounds, 2020, 849, 156634. Effective charge separation through the sulfur vacancy interfacial in n-CdO/p-CdS bulk heterojunction particle and its solar-induced hydrogen production. Journal of Industrial and 1196 2.9 25 Engineering Chemistry, 2020, 91, 149-166. Qualitative Approaches Towards Useful Photocatalytic Materials. Frontiers in Chemistry, 2020, 8, 817. 1.8 Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and 1198 4.0 27 Photocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2020, 12, 40204-40212. Effects of Ca/Ti ratio on morphology control and photocatalytic activity of CaTiO3/Ca(OH)2 composite photocatalyst. Materials Letters, 2020, 276, 128229. 1.3 Preparation and photocatalytic performance of nano-metal Pd-loaded α-Ag3VO4. Journal of Materials 1200 1.1 1 Science: Materials in Electronics, 2020, 31, 20139-20151. Semiconductor nanocrystals for small molecule activation <i>via </i> Chemical Society Reviews, 2020, 49, 9028-9056. Hydrogen production via microwave-induced water splitting at low temperature. Nature Energy, 2020, 1202 19.8 89 5, 910-919. Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient 1203 1.4 photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 19083-19090.

#	Article	IF	CITATIONS
1204	Waterâ€ £ plitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. Small, 2020, 16, e2004551.	5.2	26
1205	Fabricating NixCo1â^'xO@C cocatalysts sensitized by CdS through electrostatic interaction for efficient photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2020, 45, 28437-28446.	3.8	10
1206	Ag ₂ S-Modified ZnIn ₂ S ₄ Nanosheets for Photocatalytic H ₂ Generation. ACS Applied Nano Materials, 2020, 3, 11017-11024.	2.4	38
1207	Nanoporous Ta ₃ N ₅ <i>via</i> electrochemical anodization followed by nitridation for solar water oxidation. Dalton Transactions, 2020, 49, 15023-15033.	1.6	4
1208	Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. Advanced Energy Materials, 2020, 10, 2001935.	10.2	92
1209	Triphenylamine and terpyridine–zinc(<scp>ii</scp>) complex based donor–acceptor soft hybrid as a visible light-driven hydrogen evolution photocatalyst. Journal of Materials Chemistry A, 2020, 8, 21968-21972.	5.2	25
1210	Interface Engineering of Partially Phosphidated Co@Co–P@NPCNTs for Highly Enhanced Electrochemical Overall Water Splitting. Small, 2020, 16, e2002124.	5.2	71
1211	Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 19196-19245.	5.2	194
1212	Sr ₂ CoTaO ₆ Double Perovskite Oxide as a Novel Visible-Light-Absorbing Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14190-14197.	3.2	37
1213	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
1214	Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors, 2020, 41, 091709.	2.0	8
1215	Subphthalocyanine-sensitized TiO ₂ photocatalyst for photoelectrochemical and photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 12550-12554.	1.6	15
1216	Manipulating metal-oxygen local atomic structures in single-junctional p-Si/WO3 photocathodes for efficient solar hydrogen generation. Nano Research, 2021, 14, 2285.	5.8	14
1217	Facile synthesis of Co ₂ (OH) ₃ Cl/cobalt carbide/reduced graphene oxide composites for enhanced dye-sensitized photocatalytic H ₂ evolution. Sustainable Energy and Fuels, 2020, 4, 6181-6187.	2.5	22
1218	Noble metal-free 0D–1D NiCoP/Mn _{0.3} Cd _{0.7} S nanocomposites for highly efficient photocatalytic H ₂ evolution under visible-light irradiation. Nanotechnology, 2020, 31, 305701.	1.3	56
1219	Graphitic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H ₂ production performance. RSC Advances, 2020, 10, 18632-18638.	1.7	18
1220	One-pot synthesis of (anatase/bronze-type)-TiO2/carbon dot polymorphic structures and their photocatalytic activity for H2 generation. Applied Surface Science, 2020, 526, 146650.	3.1	11
1221	Hydrogen generation from toxic formaldehyde catalyzed by low-cost Pd–Sn alloys driven by visible light. Journal of Materials Chemistry A, 2020, 8, 9616-9628.	5.2	13

#	Article	IF	Citations
1222	Carrier Transfer and Capture Kinetics of the TiO2/Ag2V4O11 Photocatalyst. Nanomaterials, 2020, 10, 828.	1.9	9
1223	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
1224	Photodeposition of RuO _{<i>x</i>} Nanostructures on TiO ₂ Films with a Controllable Morphology. ACS Omega, 2020, 5, 10671-10679.	1.6	5
1225	Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A, 2020, 8, 10625-10669.	5.2	162
1226	Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Research, 2020, 13, 1668-1676.	5.8	20
1227	In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity. Chemical Engineering Journal, 2020, 396, 125258.	6.6	173
1228	Recent Advances in Conjugated Polymers for Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2020, 32, e1907296.	11.1	279
1229	Plasmon-Induced Water Splitting—through Flexible Hybrid 2D Architecture up to Hydrogen from Seawater under NIR Light. ACS Applied Materials & Interfaces, 2020, 12, 28110-28119.	4.0	41
1000	Basic principles in energy conversion and storage. , 2020, , 1-14.		0
1230	basic principles in energy conversion and scorage. , 2020, , 1-14.		2
1230	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114.	10.8	2
	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen	10.8 2.3	
1231	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated		116
1231 1232	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908. Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the	2.3	116 20
1231 1232 1233	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908. Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613. Nickel-decorated g-C ₃ N ₄ hollow spheres as an efficient photocatalyst for	2.3 3.6	116 20 9
1231 1232 1233 1234	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908. Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613. Nickel-decorated g-C ₃ N ₄ hollow spheres as an efficient photocatalyst for hydrogen evolution and oxidation of amines to imines. New Journal of Chemistry, 2020, 44, 11710-11719. Boron-doped rutile TiO2/ anatase TiO2/ ZrTiO4 ternary heterojunction photocatalyst with optimized	2.3 3.6 1.4	116 20 9 13
1231 1232 1233 1234 1235	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908. Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613. Nickel-decorated g-C ₃ N ₄ hollow spheres as an efficient photocatalyst for hydrogen evolution and oxidation of amines to imines. New Journal of Chemistry, 2020, 44, 11710-11719. Boron-doped rutile TiO2/ anatase TiO2/ ZrTiO4 ternary heterojunction photocatalyst with optimized phase interface and band structure. Ceramics International, 2020, 46, 20943-20953.	2.3 3.6 1.4 2.3	 116 20 9 13 22
1231 1232 1233 1234 1235 1236	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114. Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908. Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613. Nickel-decorated g-C ₃ N ₄ hollow spheres as an efficient photocatalyst for hydrogen evolution and oxidation of amines to imines. New Journal of Chemistry, 2020, 44, 11710-11719. Boron-doped rutile TiO2/ anatase TiO2/ ZrTiO4 ternary heterojunction photocatalyst with optimized phase interface and band structure. Ceramics International, 2020, 46, 20943-20953. Triple layered Ga ₂ O ₃ /Cu ₂ O/Au photoanodes with enhanced photocatalyty and stability prepared using iron nickel oxide catalysts. Journal of Materials Chemistry A, 2020, 8, 10966-10972.	2.3 3.6 1.4 2.3 5.2	 116 20 9 13 22 5

#	Article	IF	CITATIONS
1240	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
1241	Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chemical Engineering Journal, 2020, 399, 125794.	6.6	33
1242	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. Nano Energy, 2020, 76, 105077.	8.2	24
1243	Recent Progress in Singleâ€Atom Catalysts for Photocatalytic Water Splitting. Solar Rrl, 2020, 4, 2000283.	3.1	59
1244	Cobalt (II)-based openâ€framework systems constructed on g-C3N4 for extraordinary enhancing photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 277, 119207.	10.8	37
1245	Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2, 1377-1413.	5.0	254
1246	Recent advances in niobium-based semiconductors for solar hydrogen production. Coordination Chemistry Reviews, 2020, 419, 213399.	9.5	57
1247	Use of synergistic effects of the co-catalyst, p-n heterojunction, and porous structure for improvement of visible-light photocatalytic H2 evolution in porous Ni2O3/Mn0.2Cd0.8S/Cu3P@Cu2S. Journal of Alloys and Compounds, 2020, 845, 155569.	2.8	93
1248	Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today Advances, 2020, 7, 100083.	2.5	29
1249	Inert basal plane activation of two-dimensional Znln ₂ S ₄ <i>via</i> Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 13376-13384.	5.2	79
1250	lonic liquidâ€assisted synthesis of defectâ€rich BiOI with controllable structure and high surface area for excellent visibleâ€light photocatalytic activity. Applied Organometallic Chemistry, 2020, 34, e5816.	1.7	2
1252	Ru Species Supported on MOFâ€Derived Nâ€Doped TiO ₂ /C Hybrids as Efficient Electrocatalytic/Photocatalytic Hydrogen Evolution Reaction Catalysts. Advanced Functional Materials, 2020, 30, 2003007.	7.8	126
1253	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
1254	Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 2020, 13, 2313-2322.	5.8	148
1255	Bi2O2Se as a novel co-catalyst for photocatalytic hydrogen evolution reaction. Chemical Engineering Journal, 2020, 400, 125931.	6.6	45
1256	Can Half-a-Monolayer of Pt Simulate Activity Like That of Bulk Pt? Solar Hydrogen Activity Demonstration with Quasi-artificial Leaf Device. ACS Applied Materials & Interfaces, 2020, 12, 30420-30430.	4.0	15
1257	Mesoporous TiO2 mixed crystals for photocatalytic pure water splitting. Science China Materials, 2020, 63, 758-768.	3.5	11
1258	Effects of a Ni cocatalyst on the photocatalytic hydrogen evolution reaction of anatase TiO ₂ by first-principles calculations. New Journal of Chemistry, 2020, 44, 5428-5437.	1.4	8

#	Article	IF	CITATIONS
1259	Reversible photoactivation in coordination polymer-derived CdS/Co–N species composites for enhanced photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 2559-2568.	2.5	2
1260	Photocatalysts for Hydrogen Evolution Coupled with Production of Valueâ€Added Chemicals. Small Methods, 2020, 4, 2000063.	4.6	124
1261	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020, 4, 2000050.	3.1	29
1262	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
1263	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	5.2	140
1264	Thinâ€Layered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
1265	Porous g-C3N4/WO3 photocatalyst prepared by simple calcination for efficient hydrogen generation under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124653.	2.3	49
1266	Design and application of various visible light responsive metal oxide photocatalysts. , 2020, , 65-99.		1
1267	Functional Blocking Layer of Twisted Tungsten Oxide Nanorod Grown by Electrochemical Anodization for Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2020, 167, 066501.	1.3	7
1268	Plasmonic Cocatalyst with Electric and Thermal Stimuli Boots Solar Hydrogen Evolution. Solar Rrl, 2020, 4, 2000094.	3.1	11
1269	Flashâ€photoreduction method to enhance hydrogen photogeneration on Pd@TiO 2. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2432.	0.8	0
1270	Hollow Structured Metal Sulfides for Photocatalytic Hydrogen Generation. ChemNanoMat, 2020, 6, 850-869.	1.5	25
1271	Ultraâ€low Loading of Au Clusters on Nickel Nitride Efficiently Boosts Photocatalytic Hydrogen Production with Titanium Dioxide. ChemCatChem, 2020, 12, 2752-2759.	1.8	9
1272	Photoelectrochemical reduction of CO2 over Ru/Mn/Co trimetallic catalysts supported anatase TiO2 under visible light irradiation. Journal of Sol-Gel Science and Technology, 2020, 94, 279-287.	1.1	7
1273	Few-layer WS2 decorating ZnIn2S4 with markedly promoted charge separation and photocatalytic H2 evolution activity. Applied Surface Science, 2020, 514, 145965.	3.1	63
1274	Designed synthesis of unique ZnS@CdS@Cd0.5Zn0.5S-MoS2 hollow nanospheres for efficient visible-light-driven H2 evolution. CrystEngComm, 2020, 22, 2743-2755.	1.3	8
1275	Recent Developments of Advanced Ti3+-Self-Doped TiO2 for Efficient Visible-Light-Driven Photocatalysis. Catalysts, 2020, 10, 679.	1.6	28
1276	Fabrication of Ag3PO4/Ag/MoO3-x Z-scheme system with excellent photocatalytic degradation performance under visible light irradiation. Materials Chemistry and Physics, 2020, 253, 123325.	2.0	16

#	Article	IF	CITATIONS
1277	Photocatalytic H2 production from ethanol aqueous solution using TiO2 with tungsten carbide nanoparticles as co-catalyst. International Journal of Hydrogen Energy, 2020, 45, 20558-20567.	3.8	16
1278	Catalytic reduction of 4-nitrophenol on the surface of copper/copper oxide nanoparticles: a kinetics study. Applied Nanoscience (Switzerland), 2020, 10, 3827-3837.	1.6	12
1279	Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight. Chemical Engineering Journal, 2020, 401, 126135.	6.6	134
1280	Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?. Applied Catalysis B: Environmental, 2020, 278, 119316.	10.8	73
1281	Ni(acac)2/Mo-MOF-derived difunctional MoNi@MoO2cocatalyst to enhance the photocatalytic H2evolution activity of g-C3N4. Applied Catalysis B: Environmental, 2020, 268, 118739.	10.8	36
1282	Ti ₂ O ₃ /TiO ₂ heterophase junctions with enhanced charge separation and spatially separated active sites for photocatalytic CO ₂ reduction. Physical Chemistry Chemical Physics, 2020, 22, 4526-4532.	1.3	44
1283	Switching Light for Site-Directed Spatial Loading of Cocatalysts onto Heterojunction Photocatalysts with Boosted Redox Catalysis. ACS Catalysis, 2020, 10, 3194-3202.	5.5	93
1284	Accelerating charge transfer for highly efficient visible-light-driven photocatalytic H2 production: In-situ constructing Schottky junction via anchoring Ni-P alloy onto defect-rich ZnS. Applied Catalysis B: Environmental, 2020, 269, 118806.	10.8	62
1285	Controllable photodeposition of nickel phosphide cocatalysts on cadmium sulfide nanosheets for enhanced photocatalytic hydrogen evolution performance. New Journal of Chemistry, 2020, 44, 4332-4339.	1.4	16
1286	Chlorosomeâ€Like Molecular Aggregation of Chlorophyll Derivative on Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets for Efficient Noble Metalâ€Free Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 1902080.	1.9	49
1287	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Co atalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 7230-7234.	7.2	221
1288	Cable-like carbon nanotubes decorated metal-organic framework derived ultrathin CoSe2/CNTs nanosheets for electrocatalytic overall water splitting. Chinese Chemical Letters, 2020, 31, 2641-2644.	4.8	29
1289	Bridge engineering in photocatalysis and photoelectrocatalysis. Nanoscale, 2020, 12, 5764-5791.	2.8	77
1290	Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]â^' Nanosheets during Heating and Their Photocatalytic Properties. Catalysts, 2020, 10, 13.	1.6	9
1291	Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability. Carbon, 2020, 162, 256-266.	5.4	74
1292	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 7297-7301.	1.6	55
1293	Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 390, 124496.	6.6	174
1294	Porous Singleâ€Crystalâ€Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials, 2020, 30, 1908984.	7.8	47

#	Article	IF	CITATIONS
1295	Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coordination Chemistry Reviews, 2020, 409, 213220.	9.5	169
1296	Partially Self-Transformed Transition-Metal Chalcogenide Interim Layer: Motivating Charge Transport Cascade for Solar Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 2562-2574.	1.9	24
1297	Fabrication of a novel Ni ₃ N/Ni ₄ N heterojunction as a non-noble metal co-catalyst to boost the H ₂ evolution efficiency of Zn _{0.5} Cd _{0.5} S. New Journal of Chemistry, 2020, 44, 3471-3477.	1.4	12
1298	CoSe2 modified Se-decorated CdS nanowire Schottky heterojunctions for highly efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 389, 124431.	6.6	57
1299	Light intensity-induced photocurrent switching effect. Nature Communications, 2020, 11, 854.	5.8	25
1300	Synthesis of 3D mesoporous g-C3N4 for efficient overall water splitting under a Z-scheme photocatalytic system. Applied Surface Science, 2020, 512, 145782.	3.1	48
1301	Low Overpotential and Stable Electrocatalytic Oxygen Evolution Reaction Utilizing Doped Perovskite Oxide, La0.7Sr0.3MnO3, Modified by Cobalt Phosphate. ACS Applied Energy Materials, 2020, 3, 1279-1285.	2.5	29
1302	The synergetic effect of N, S-codoped carbon and CoO _x nanodots derived from ZIF-67 as a highly efficient cocatalyst over CdS nanorods. Sustainable Energy and Fuels, 2020, 4, 1954-1962.	2.5	12
1303	The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41, 642-671.	6.9	151
1304	Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 45, 176-186.	5.6	20
1305	Amorphous MoOX-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy, 2020, 70, 104529.	8.2	142
1306	Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Physica B: Condensed Matter, 2020, 583, 412029.	1.3	16
1307	Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting. Catalysis Letters, 2020, 150, 1878-1889.	1.4	13
1308	UV/Vis Light Induced Degradation of Oxytetracycline Hydrochloride Mediated by Co-TiO2 Nanoparticles. Molecules, 2020, 25, 249.	1.7	26
1309	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 6894-6898.	1.6	49
1310	NiSâ€Decorated ZnO/ZnS Nanorod Heterostructures for Enhanced Photocatalytic Hydrogen Production: Insight into the Role of NiS. Solar Rrl, 2020, 4, 1900568.	3.1	35
1311	Synthesis of Zn(In Ga1)2O4 solid-solutions with tunable band-gaps for enhanced photocatalytic hydrogen evolution under solar-light irradiation. International Journal of Hydrogen Energy, 2020, 45, 6621-6628.	3.8	12
1312	Photochemical pollutant degradation on facet junction-engineered TiO2 promoted by organic arsenical: Governing roles of arsenic-terminated surface chemistry and bulk-free radical speciation. Journal of Hazardous Materials, 2020, 390, 122159.	6.5	10

#	Article	IF	Citations
1313	Covalent-organic framework based Z-scheme heterostructured noble-metal-free photocatalysts for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 4334-4340.	5.2	85
1314	Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 6827-6831.	7.2	142
1315	One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Applied Catalysis B: Environmental, 2020, 266, 118617.	10.8	115
1316	Enhanced Visible-Light Driven Photocatalytic Performances Over LaFeO3/NiO Modified Porous g-C3N4 Nanosheets. Nano, 2020, 15, 2050010.	0.5	3
1317	Colour centre controlled formation of stable sub-nanometer transition metal clusters on TiO2 nanosheet for high efficient H2 production. Applied Surface Science, 2020, 511, 145577.	3.1	19
1318	A new phosphidation route for the synthesis of NiP and their cocatalytic performances for photocatalytic hydrogen evolution over g-C3N4. Journal of Energy Chemistry, 2020, 48, 241-249.	7.1	51
1319	Strategies for Semiconductor/Electrocatalyst Coupling toward Solarâ€Driven Water Splitting. Advanced Science, 2020, 7, 1902102.	5.6	110
1320	Trioctylphosphine (TOP)-free synthesis of TiSe2 plates for enhanced photocatalytic degradation performance of Rhodamine B dyes. Solid State Sciences, 2020, 103, 106189.	1.5	10
1321	Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Applied Catalysis B: Environmental, 2020, 273, 119066.	10.8	73
1322	Boosting near-infrared-driven photocatalytic H2 evolution using protoporphyrin-sensitized g-C3N4. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112517.	2.0	18
1323	Electrons and Hydroxyl Radicals Synergistically Boost the Catalytic Hydrogen Evolution from Ammonia Borane over Single Nickel Phosphides under Visible Light Irradiation. ChemistryOpen, 2020, 9, 366-373.	0.9	5
1324	Principle and surface science of photocatalysis. Interface Science and Technology, 2020, 31, 1-38.	1.6	24
1325	Hierarchical porous photocatalysts. Interface Science and Technology, 2020, , 63-102.	1.6	4
1326	In situ decoration of g-C3N4 quantum dots on 1D branched TiO2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity. Applied Surface Science, 2020, 519, 146208.	3.1	44
1327	A CdS@NiS reinforced concrete structure derived from nickel foam for efficient visible-light H2 production. Chemical Engineering Journal, 2020, 393, 124774.	6.6	32
1328	Enhancement in the charge transport and photocorrosion stability of CuO photocathode: The synergistic effect of spatially separated dual-cocatalysts and p-n heterojunction. Chemical Engineering Journal, 2020, 394, 124907.	6.6	58
1329	Engineering Cu/TiO ₂ @N-Doped C Interfaces Derived from an Atom-Precise Heterometallic Cu ^{II} ₄ Ti ^{IV} ₅ Cluster for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 5456-5462.	1.9	25
1330	Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12, 9327-9351.	2.8	88

#	Article	IF	CITATIONS
1331	Spatially Separated Bifunctional Cocatalysts Decorated on Hollow-Structured TiO ₂ for Enhanced Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2020, 12, 23356-23362.	4.0	28
1332	Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals. Applied Catalysis B: Environmental, 2020, 272, 119035.	10.8	38
1333	Brownmilleriteâ€Type Crystalline Ca 2 FeCoO 5 Ultrasmall Particles with Singleâ€Nanometer Dimensions as an Active Cocatalyst for Oxygen Photoevolution Reaction. Particle and Particle Systems Characterization, 2020, 37, 2000053.	1.2	5
1334	Nitridation of CoWO ₄ /CdS Nanocomposite Formed Metal Nitrides Assisting Efficiently Photocatalytic Hydrogen Evolution. ACS Omega, 2020, 5, 9969-9976.	1.6	9
1335	Surface and interface modification strategies of CdS-based photocatalysts. Interface Science and Technology, 2020, , 313-348.	1.6	17
1336	NiSe/Cd _{0.5} Zn _{0.5} S Composite Nanoparticles for Use in p–n Heterojunction-Based Photocatalysts for Solar Energy Harvesting. ACS Applied Nano Materials, 2020, 3, 3665-3674.	2.4	75
1337	Photocatalytic CO ₂ Reduction to C2+ Products. ACS Catalysis, 2020, 10, 5734-5749.	5.5	458
1338	Facile synthesis of a covalently connected rGO–COF hybrid material by <i>in situ</i> reaction for enhanced visible-light induced photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 8949-8956.	5.2	79
1339	Accelerated charge transfer of Cd _{0.5} Zn _{0.5} S@ZnS core–shell nano-spheres <i>via</i> decoration of Ni ₂ P and g-C ₃ N ₄ toward efficient visible-light-driven H ₂ production. Dalton Transactions, 2020, 49, 6259-6269.	1.6	11
1340	Progress and challenges in photocatalytic ammonia synthesis. Materials Advances, 2021, 2, 564-581.	2.6	32
1341	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
1342	Production of copper nanoparticles exhibiting various morphologies via pulsed laser ablation in different solvents and their catalytic activity for reduction of toxic nitroaromatic compounds. Journal of Hazardous Materials, 2021, 409, 124412.	6.5	50
1343	Visible-light overall water splitting on g-C3N4 decorated by subnanometer oxide clusters. Materials Today Physics, 2021, 16, 100312.	2.9	20
1344	Promoting photocatalytic hydrogen evolution by introducing hot islands: SnSe nanoparticles on ZnIn2S4 monolayer. Chemical Engineering Journal, 2021, 404, 126477.	6.6	44
1345	Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 405, 126547.	6.6	139
1346	Efficient visible light initiated hydrothiolations of alkenes/alkynes over Ir2S3/ZnIn2S4: Role of Ir2S3. Chinese Journal of Catalysis, 2021, 42, 409-416.	6.9	14
1347	Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chemical Engineering Journal, 2021, 403, 126328.	6.6	94
1348	Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. Chemical Engineering Journal, 2021, 406, 126838.	6.6	34

# 1349	ARTICLE Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 280, 119456.	IF 10.8	Citations 91
1350	Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation. Computational Materials Science, 2021, 186, 110013.	1.4	8
1351	Direct observation of dynamic interfacial bonding and charge transfer in metal-free photocatalysts for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283, 119633.	10.8	35
1352	Bottom-up fabrication of ultrathin CoFe layered double hydroxide nanosheets on oxidized carbon nanotube as a water oxidation electrocatalyst. Journal of Alloys and Compounds, 2021, 857, 157570.	2.8	8
1353	Thiopheneâ€Bridged Donor–Acceptor sp ² â€Carbonâ€Linked 2D Conjugated Polymers as Photocathodes for Water Reduction. Advanced Materials, 2021, 33, e2006274.	11.1	100
1354	Anatase titania activated by Cu(II) or Zn(II) nanoparticles for the photooxidation of methanol assisted by Rhodamine-B. Materials Chemistry and Physics, 2021, 257, 123714.	2.0	5
1355	Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem, 2021, 3, 100047.	10.1	103
1356	A NIRâ€Responsive Phytic Acid Nickel Biomimetic Complex Anchored on Carbon Nitride for Highly Efficient Solar Hydrogen Production. Angewandte Chemie, 2021, 133, 5305-5309.	1.6	4
1357	The effect of different morphology of fluoride-mediated TiO2 based on Ostwald ripening on photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125702.	2.3	13
1358	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
1359	Band-gap engineering of tungsten oxide nanoplates by cobalt ferrite co-catalyst for solar water oxidation. Optical Materials, 2021, 111, 110610.	1.7	17
1360	In situ photodeposition of metalloid Ni2P co-catalyst on Mn0.5Cd0.5S for enhanced photocatalytic H2 evolution with visible light. International Journal of Hydrogen Energy, 2021, 46, 5197-5206.	3.8	58
1361	C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. Journal of Materials Chemistry A, 2021, 9, 111-153.	5.2	320
1362	A NIRâ€Responsive Phytic Acid Nickel Biomimetic Complex Anchored on Carbon Nitride for Highly Efficient Solar Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 5245-5249.	7.2	43
1363	Efficient visible light driven 2,4,6-triaminopyrimidine modified graphitic carbon nitride for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 3789-3797.	3.8	7
1364	Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 853, 157284.	2.8	26
1365	Band Structure–Controlled Zn _{1â^'<i>x</i>} Cd _{<i>x</i>} S Solid Solution for Photocatalytic Hydrogen Production Improvement via Appropriately Enhancing Oxidation Capacity. Solar Rrl, 2021, 5, 2000685.	3.1	11
1366	Harvesting urbach tail energy of ultrathin amorphous nickel oxide for solar-driven overall water splitting up to 680 nm. Applied Catalysis B: Environmental, 2021, 285, 119798.	10.8	30

#	Article	IF	CITATIONS
1367	Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods. Applied Catalysis B: Environmental, 2021, 285, 119801.	10.8	72
1368	The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chemical Engineering Journal, 2021, 417, 127914.	6.6	62
1369	A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy, 2021, 81, 105651.	8.2	43
1370	Stacking design in photocatalysis: synergizing cocatalyst roles and anti-corrosion functions of metallic MoS2 and graphene for remarkable hydrogen evolution over CdS. Journal of Materials Chemistry A, 2021, 9, 1552-1562.	5.2	36
1371	Site-exposed Ti ₃ C ₂ MXene anchored in N-defect g-C ₃ N ₄ heterostructure nanosheets for efficient photocatalytic N ₂ fixation. Catalysis Science and Technology, 2021, 11, 1027-1038.	2.1	34
1372	An inexpensive CuO nanoparticles as cocatalyst significantly enhanced the photo-oxidation performance of Bi2Ga2.8Al1.2O9 photocatalyst under visible-light. Materials Letters, 2021, 283, 128796.	1.3	8
1373	Confinement Aided Simultanous Water Cleaning and Energy Harvesting Using Atomically Thin Wurtzite (Wurtzene). Advanced Sustainable Systems, 2021, 5, 2000189.	2.7	4
1374	Encapsulating band gap engineered CoSnO3 mixed metal oxide nanocomposite in rGO matrix: A novel catalyst towards LED light induced photoelectrocatalytic water oxidation at neutral pH. Journal of Electroanalytical Chemistry, 2021, 880, 114830.	1.9	9
1375	Highly conductive C12A7:eâ^' electride nanoparticles as an electron donor type promoter to P25 for enhancing photocatalytic hydrogen evolution. Journal of Physics and Chemistry of Solids, 2021, 149, 109810.	1.9	6
1376	Recent advances of monoelemental 2D materials for photocatalytic applications. Journal of Hazardous Materials, 2021, 405, 124179.	6.5	78
1377	Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2021, 58, 408-414.	7.1	93
1378	Atomic―and Molecular‣evel Functionalizations of Polymeric Carbon Nitride for Solar Fuel Production. Solar Rrl, 2021, 5, 2000440.	3.1	15
1379	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	4.6	125
1380	Advances in 2D/2D Zâ€Scheme Heterojunctions for Photocatalytic Applications. Solar Rrl, 2021, 5, 2000397.	3.1	82
1381	Recent progresses in photocatalytic hydrogen production: design and construction of Niâ€based cocatalysts. International Journal of Energy Research, 2021, 45, 1480-1495.	2.2	54
1382	Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Applied Catalysis B: Environmental, 2021, 282, 119550.	10.8	170
1383	Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production. , 2021, , 217-247.		0
1384	Hot injection-induced synthesis of ZnCdS–rGO/MoS ₂ heterostructures for efficient hydrogen production and CO ₂ photoreduction. Chemical Communications, 2021, 57,	2.2	24

#	Article	IF	CITATIONS
1385	Fuelling the Hydrogen Economy with 3D Graphene-based Macroscopic Assemblies. Chemistry in the Environment, 2021, , 237-256.	0.2	0
1386	Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. Langmuir, 2021, 37, 1267-1278.	1.6	69
1387	Anchoring Zn _{0.5} Cd _{0.5} S solid solution onto 2D porous Co–CoO nanosheets for highly improved photocatalytic H ₂ generation. Materials Chemistry Frontiers, 2021, 5, 7208-7215.	3.2	9
1388	State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.	2.8	87
1389	Synthesis of Advanced Inorganic Materials Through Molecular Precursors. Indian Institute of Metals Series, 2021, , 467-501.	0.2	3
1390	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	18.7	140
1391	Applications of MXene (Ti ₃ C ₂ T _x) in photocatalysis: a review. Materials Advances, 2021, 2, 1570-1594.	2.6	101
1392	NiCo ₂ O ₄ nanosheets as a novel oxygen-evolution-reaction cocatalyst <i>in situ</i> bonded on the g-C ₃ N ₄ photocatalyst for excellent overall water splitting. Journal of Materials Chemistry A, 2021, 9, 12299-12306.	5.2	92
1393	Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review. Nanoscale, 2021, 13, 13593-13603.	2.8	133
1394	Photocatalytic applications of ternary quantum dots. , 2021, , 225-235.		0
1395	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	15.6	105
1396	Imidazole substituted Zinc(<scp>ii</scp>) phthalocyanines for co-catalyst-free photoelectrochemical and photocatalytic hydrogen evolution: influence of the anchoring group. Chemical Communications, 2021, 57, 9196-9199.	2.2	15
1397	Construction of heterojunctions between ReS ₂ and twin crystal Zn _x Cd _{1â^'x} S for boosting solar hydrogen evolution. New Journal of Chemistry, 2021, 45, 5137-5145.	1.4	13
1398	Synergistic zinc doping and defect engineering toward MoS ₂ nanosheet arrays for highly efficient electrocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 5770-5775.	1.6	11
1399	Function-oriented design of robust metal cocatalyst for photocatalytic hydrogen evolution on metal/titania composites. Nature Communications, 2021, 12, 158.	5.8	61
1400	Graphitic Carbon Nitride Nanostructures as Potent Catalysts for Water Splitting: Theoretical Insights. RSC Nanoscience and Nanotechnology, 2021, , 127-173.	0.2	2
1401	Insights into the development of Cu-based photocathodes for carbon dioxide (CO ₂) conversion. Green Chemistry, 2021, 23, 3207-3240.	4.6	26
1402	An amorphous NiS _x film as a robust cocatalyst for boosting photocatalytic hydrogen generation over ultrafine ZnCdS nanoparticles. Materials Advances, 2021, 2, 3881-3891.	2.6	14

ARTICLE IF CITATIONS MOF-derived hexagonal In₂O₃ microrods decorated with g-C₃N₄ ultrathin nanosheets for efficient photocatalytic hydrogen 1403 2.7 55 production. Journal of Materials Chemistry C, 2021, 9, 5343-5348. An all-inorganic quasi-homogenous polyoxometalate/[Mo₃S₁₃]^{2â^'} system for efficient and stable photocatalytic H₂ evolution. Chemical Communications, 1404 2.2 2021, 57, 1121-1124. MoC/MAPbI₃ hybrid composites for efficient photocatalytic hydrogen evolution. Dalton 1405 10 1.6 Transactions, 2021, 50, 10860-10866. 1406 properties in solar hydrogen evolution. RSC Advances, 2021, 11, 26908-26914. Ni-MOF-74 derived nickel phosphide and In₂O₃ form S-scheme heterojunction 1407 1.4 20 for efficient hydrogen evolution. New Journal of Chemistry, 2021, 45, 16155-16167. Localized electron density modulation in conjugated polymer nanosheets for boosting photocatalytic H₂ evolution. Journal of Materials Chemistry A, 2021, 9, 19625-19630. 1408 5.2 Fluence-dependent dynamics of localized excited species in monolayer versus bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi 1409 8 mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>. Physical Review B, 2021, 103, Mechanism of surface and interface engineering under diverse dimensional combinations: the 1410 construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and 2.1 Technology, 2021, 11, 5028-5049. 1411 Recent advances in 2D MXene-based heterostructured photocatalytic materials., 2021, , 329-362. 4 Photocatalytic Hydrogen Evolution Based on Cobalt–Organic Framework with High Water Vapor 1412 Adsorption. Inorganic Chemistry, 2021, 60, 1922-1929. Applications and Fundamentals of Photocatalysis with Solar Energy., 2021, , 27-66. 1413 1 Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic 1414 4.0 H₂ Evolution of Indium Sulfide. ACS Applied Materials & amp; Interfaces, 2021, 13, 7238-7247. Copper molybdate nanoparticles for electrochemical water splitting application. International 1415 3.8 15 Journal of Hydrogen Energy, 2021, 46, 7701-7711. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507. 1416 13.1 224 Synergistic enhancement of photocatalytic H2 production by Ni decorated 2D bubble-like carbon 1417 3.8 7 nitride. International Journal of Hydrogen Energy, 2021, 46, 23311-23321. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. Journal of Energy Chemistry, 2021, 53, 1419 99 139-146. Chlorophyllâ€Based Organic Heterojunction on Ti₃C₂T<sub><i>x</i> 1420 MXene Nanosheets for Efficient Hydrogen Production. Chemistry - A European Journal, 2021, 27, 1.7 25 5277-5282. Photocatalytic Hydrogen Production by Stable CsPbBr₃@PANI Nanoparticles in Aqueous 1421 1.8 Solution. ChemCatChem, 2021, 13, 1711-1716.

#	Article	IF	CITATIONS
1422	Synthesis of Plasmonic Z-Scheme g-C3N4/W18O49 Nanocone Arrays with Enhanced Charge Separation. Journal of Physical Chemistry C, 2021, 125, 4205-4210.	1.5	6
1423	Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nature Communications, 2021, 12, 1005.	5.8	124
1424	Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. Energy & Fuels, 2021, 35, 4670-4686.	2.5	34
1425	Boosting the Catalytic Performance by Confining Rich Carbon Atoms over Graphite Carbon Nitride Structure. Catalysis Letters, 2021, 151, 3721-3732.	1.4	0
1426	Cocatalyst Engineering in Piezocatalysis: A Promising Strategy for Boosting Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 15305-15314.	4.0	68
1427	P-Type Cobalt Phosphide Composites (CoP–Co ₂ P) Decorated on Titanium Oxide for Enhanced Noble-Metal-Free Photocatalytic H ₂ Evolution Activity. Langmuir, 2021, 37, 3321-3330.	1.6	24
1428	InGaN-based nanowires development for energy harvesting and conversion applications. Journal of Applied Physics, 2021, 129, .	1.1	9
1430	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Materia	4.0	73
1431	Hierarchical OD NiSe ₂ /2D ZnIn ₂ S ₄ Nanosheetâ€Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2100052.	1.9	34
1432	Photoinduced Electrocatalysis on 3D Flexible OsO <i>_x</i> Quantum Dots. Advanced Energy Materials, 2021, 11, 2100234.	10.2	50
1433	Polyampholytic Graft Copolymers as Matrix for TiO ₂ /Eosin Y/[Mo ₃ S ₁₃] ^{2â^'} Hybrid Materials and Lightâ€Driven Catalysis. Chemistry - A European Journal, 2021, 27, 16924-16929.	1.7	9
1434	Nonlayered Tin Thiohypodiphosphate Nanosheets: Controllable Growth and Solar-Light-Driven Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 13392-13399.	4.0	15
1435	Highâ€Throughput Oneâ€Photon Excitation Pathway in 0D/3D Heterojunctions for Visibleâ€Light Driven Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2100816.	7.8	92
1436	Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105157.	3.3	31
1437	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
1438	Atomic Cobalt Vacancyâ€Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2101797.	7.8	26
1439	CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2021, 296, 121967.	1.4	25
1440	Recent developments in the photocatalytic applications of covalent organic frameworks: A review. Journal of Cleaner Production, 2021, 291, 125822.	4.6	124

ARTICLE IF CITATIONS Faster electron injection and higher interface reactivity in g-C3N4/Fe2O3 nanohybrid for efficient 1441 34 3.7 photo-Fenton-like activity toward antibiotics degradation. Environmental Research, 2021, 195, 110842. Recent Advances in Transition Metal Nitrideâ€Based Materials for Photocatalytic Applications. Advanced 1442 Functional Materials, 2021, 31, 2100553. SnS2/TiO2 Nanocomposites for Hydrogen Production and Photodegradation under Extended Solar 1443 1.6 24 Irradiation. Catalysts, 2021, 11, 589. Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into 1444 5.8 high value-added multicarbon compound. CheM, 2021, 7, 1033-1049. Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chemical Engineering 1445 6.6 52 Journal, 2021, 409, 128250. Recent progress in doping-induced structural and electronic modification in Cu–SnCo interconnected network enhanced efficient performance evidence for the hydrogen evolution 1.3 reaction: current state and prospects. Journal of Porous Materials, 2021, 28, 1335-1344. Effects of RhCrOx Cocatalyst Loaded on Different Metal Doped LaFeO3 Perovskites with 1447 1.6 5 Photocatalytic Hydrogen Performance under Visible Light Irradiation. Catalysts, 2021, 11, 612. ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production. 1448 1.0 Molecular Catalysis, 2021, 507, 111551. Composite of Cobaltâ€C₃N₄ on TiO₂ Nanorod Arrays as Coâ€catalyst 1449 0.7 9 for Enhanced Photoelectrochemical Water Splitting. ChemistrySelect, 2021, 6, 4319-4329. Cubane Ru4(CO)8 cluster containing 4 pyridine-methanol ligands as a highly efficient 1450 photoelectrocatalyst for oxygen evolution reaction from water. Journal of Organometallic 0.8 Chemistry, 2021, 940, 121769. Significant enhancement of photocatalytic H2 production simultaneous with dye degradation over 1451 3.9 30 Ni2P modified In2O3 nanocomposites. Separation and Purification Technology, 2021, 263, 118366. Photocatalytic Hydrogen Evolution Coupled with Production of Highly Valueâ€Added Organic Chemicals by a Composite Photocatalyst Cdln_{2´}S'₄@MILâ€53â€6O₃Ni_{1/2}. Chemistry - an Asian Journal, ^{1.7} 2021, 16, 1499-1506. Atomicâ€Precision Tailoring of Auâ€"Ag Coreâ€"Shell Composite Nanoparticles for Direct Electrochemicalâ€Plasmonic Hydrogen Evolution in Water Splitting. Advanced Functional Materials, 1453 7.8 21 2021, 31, 2102517. Controllable Synthesis of Metallic Ni3P–Ni Spheres on Graphitic Carbon Nitride Nanosheets to Promote Photocatalytic Hydrogen Generation. Topics in Catalysis, 2021, 64, 521-531. 1454 1.3 Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A 1455 22 5.6 review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100402. Photocatalytic conversion of CO to fuels with water by B-doped graphene/g-C3N4 heterostructure. 1456 Science Bulletin, 2021, 66, 1186-1193. A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286, 1457 10.8 43 119923. 0D Î²-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved 1458 6.6 photocatalytic H2 production. Chemical Engineering Journal, 2021, 414, 129157.

#	Article	IF	CITATIONS
1459	Core–Shell Photoanodes for Photoelectrochemical Water Oxidation. Advanced Functional Materials, 2021, 31, 2104269.	7.8	71
1460	Photocatalytic overall water splitting by graphitic carbon nitride. InformaÄnÃ-Materiály, 2021, 3, 931-961.	8.5	74
1461	CO2 assisted synthesis of silk fibroin driven robust N-doped carbon aerogels coupled with nickel–cobalt particles as highly active electrocatalysts for HER. International Journal of Hydrogen Energy, 2021, 46, 21525-21533.	3.8	20
1462	Cobalt-Based Metal–Organic Cages for Visible-Light-Driven Water Oxidation. Inorganic Chemistry, 2021, 60, 10380-10386.	1.9	12
1463	Water at charged interfaces. Nature Reviews Chemistry, 2021, 5, 466-485.	13.8	186
1464	Two-Dimensional Layered Co(OH) ₂ /g-C ₃ N ₄ /Ni(OH) ₂ Ternary Nanocomposites for Enhanced Visible-Light Photocatalytic H ₂ -Production Activity. ACS Applied Energy Materials, 2021, 4, 6340-6347.	2.5	27
1465	Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 286, 119924.	10.8	49
1466	Spherical nanoflower-like bimetallic (Mo,Ni)(S,O)3- sulfo-oxide catalysts for efficient hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2021, 287, 119992.	10.8	42
1467	Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 16372-16376.	7.2	163
1468	Nanostructure Engineering and Modulation of (Oxy)Nitrides for Application in Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2021, 33, e2004697.	11.1	55
1469	Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angewandte Chemie, 2021, 133, 16508-16512.	1.6	20
1470	Recent Progress of Electrocatalysts and Photocatalysts Bearing First Row Transition Metal for Hydrogen Evolution Reaction (HER). , 0, , .		0
1471	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	7.3	30
1472	Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. European Journal of Inorganic Chemistry, 2021, 2021, 3421-3431.	1.0	29
1473	Sea-urchin-like ReS2 nanosheets with charge edge-collection effect as a novel cocatalyst for high-efficiency photocatalytic H2 evolution. Chinese Chemical Letters, 2022, 33, 943-947.	4.8	14
1474	Facile synthesis of heterojunctions by hydrothermal decoration of CdS on electrospun BiVO4 nanofibers with boosted photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 20891-20902.	1.1	1
1475	Dual-phase metal nitrides as highly efficient co-catalysts for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 416, 129116.	6.6	28
1476	High Thermoelectric Performance of Sb ₂ Si ₂ Te ₆ Monolayers. Journal of Physical Chemistry C, 2021, 125, 16413-16419.	1.5	20

#	Article	IF	CITATIONS
1477	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh 0 â€Rh 3+ Sites. Angewandte Chemie, 2021, 133, 22943.	1.6	2
1478	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
1479	Two-dimensional Hf2CO2/GaN van der Waals heterostructure for overall water splitting: a density functional theory study. Journal of Materials Science: Materials in Electronics, 2021, 32, 19368-19379.	1.1	4
1480	Synthetic BiOBr/Bi2S3/CdS Crystalline Material and Its Degradation of Dye under Visible Light. Crystals, 2021, 11, 899.	1.0	5
1481	Synthesis and application of perovskite-based photocatalysts in environmental remediation: A review. Journal of Molecular Liquids, 2021, 334, 116029.	2.3	52
1482	In situ growth of vertically aligned ultrathin MoS2 on porous g-C3N4 for efficient photocatalytic hydrogen production. Applied Surface Science, 2021, 554, 149617.	3.1	27
1483	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh ⁰ â€Rh ³⁺ Sites. Angewandte Chemie - International Edition, 2021, 60, 22761-22768.	7.2	19
1484	Emerging Cocatalysts on g ₃ N ₄ for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101070.	5.2	223
1485	Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catalysis Today, 2022, 384-386, 45-69.	2.2	9
1486	Independent Cr2O3 functions as efficient cocatalyst on the crystal facets engineered TiO2 for photocatalytic CO2 reduction. Applied Surface Science, 2021, 554, 149634.	3.1	18
1487	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	11.1	170
1488	Hydrogel photocatalysts for efficient energy conversion and environmental treatment. Frontiers in Energy, 2021, 15, 577-595.	1.2	14
1489	Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Metals, 2022, 41, 396-405.	3.6	41
1490	Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1â^'xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1â^'xWXS2 cocatalyst. Nano Research, 2022, 15, 985-995.	5.8	15
1491	Boron-rich boron nitride nanomaterials as efficient metal-free catalysts for converting CO2 into valuable fuel. Applied Surface Science, 2021, 555, 149652.	3.1	20
1492	Boosting Visible-Light-Driven Photocatalytic Hydrogen Production through Sensitizing TiO ₂ via Novel Nanoclusters. ACS Applied Materials & Interfaces, 2021, 13, 40562-40570.	4.0	19
1493	Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 290, 120058.	10.8	108
1494	Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted?. Chemical Engineering Journal, 2021, 417, 128847.	6.6	108

#	Article	IF	CITATIONS
1495	Improvement of Photoelectrocatalytic Activity and Stability of WO ₃ for Oxygen Photoevolution Reaction by Loading of Brownmilleriteâ€Type Ca ₂ FeCoO ₅ as a Cocatalyst. Energy Technology, 2021, 9, 2100197.	1.8	4
1496	S doped Ta2O5 decorated CdS nanosphere via interfacial diffusion for enhanced and stable photocatalytic hydrogen production. Chemical Engineering Journal, 2022, 436, 131673.	6.6	13
1497	Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions. Energy & Fuels, 2021, 35, 18957-18981.	2.5	9
1498	Controlling the performance of a silver co-catalyst by a palladium core in TiO2-photocatalyzed alkyne semihydrogenation and H2 production. Applied Catalysis A: General, 2021, 624, 118331.	2.2	4
1499	A facile synthesis method of TiO2@SiO2 porous core shell structure for photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2021, 300, 122250.	1.4	8
1500	Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chemical Reviews, 2021, 121, 13051-13085.	23.0	426
1501	Novel B-N-Co surface bonding states constructed on hollow tubular boron doped g-C3N4/CoP for enhanced photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2021, 595, 69-77.	5.0	26
1502	Engineering heterogeneous nickel-iron oxide/iron phosphate on P, N co-doped carbon fibers for efficient oxygen evolution reaction in neutral and alkaline solutions. Surfaces and Interfaces, 2021, 25, 101193.	1.5	6
1503	Constructing Cu/BN@PANI ternary heterostructure for efficient photocatalytic hydrogen generation: A combined experimental and DFT studies. International Journal of Hydrogen Energy, 2021, 46, 27394-27408.	3.8	22
1504	Novel S-scheme WO3/RP composite with outstanding overall water splitting activity for H2 and O2 evolution under visible light. Applied Surface Science, 2021, 558, 149882.	3.1	41
1505	Computational Study of Novel Semiconducting Sc2CT2 (T = F, Cl, Br) MXenes for Visible-Light Photocatalytic Water Splitting. Materials, 2021, 14, 4739.	1.3	15
1506	MoS ₂ and Ti ₃ C ₂ Ensembles into TiO ₂ for Efficient Photocatalytic Hydrogen Evolution: Dualâ€Bonding Interactions and Capacitive Effect Trigger the Intrinsic Activities. Energy Technology, 2022, 10, 2100188.	1.8	3
1507	Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chemistry - an Asian Journal, 2021, 16, 2932-2938.	1.7	6
1508	Layered transition metal selenophosphites for visible light photoelectrochemical production of hydrogen. Electrochemistry Communications, 2021, 129, 107077.	2.3	7
1509	Preparation and photocatalytic antibacterial mechanism of porous metastable β-Bi2O3 nanosheets. Ceramics International, 2021, 47, 34092-34105.	2.3	17
1510	Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Applied Catalysis B: Environmental, 2021, 291, 120055.	10.8	47
1511	Photoinduced Generation of Metastable Sulfur Vacancies Enhancing the Intrinsic Hydrogen Evolution Behavior of Semiconductors. Solar Rrl, 2021, 5, 2100580.	3.1	8
1512	Layered graphitic carbon nitride: nano-heterostructures, photo/electro-chemical performance and trends. Journal of Nanostructure in Chemistry, 2022, 12, 669-691.	5.3	34

#	Article	IF	CITATIONS
1513	Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Applied Materials Today, 2021, 24, 101074.	2.3	23
1514	Visibleâ€Lightâ€Driven Catalytic Deracemization of Secondary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 22833-22838.	7.2	24
1515	In situ growth of a-few-layered MoS2 on CdS nanorod for high efficient photocatalytic H2 production. Frontiers in Energy, 2021, 15, 752.	1.2	3
1516	Tetragonal Silicene and Germanene Quantum Dots: Candidates for Enhanced Nonlinear Optical and Photocatalytic Activity. Journal of Physical Chemistry C, 2021, 125, 21718-21728.	1.5	10
1517	Bandgap engineering of KTaO3 for water-splitting by different doping strategies. International Journal of Hydrogen Energy, 2021, 46, 38663-38677.	3.8	10
1518	Ultrarapid synthesis Ni-Cu bifunctional electrocatalyst by self-etching electrodeposition for high-performance water splitting reaction. Applied Surface Science, 2021, 561, 150030.	3.1	23
1519	A novel noble-metal-free binary and ternary In2S3 photocatalyst with WC and "W-Mo auxiliary pairs― for highly-efficient visible-light hydrogen evolution. Journal of Alloys and Compounds, 2021, 875, 160058.	2.8	37
1520	An overview of photocatalytic water splitting on semiconductor oxides for hydrogen production. International Journal of Environmental Analytical Chemistry, 0, , 1-11.	1.8	2
1521	Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coordination Chemistry Reviews, 2021, 443, 213967.	9.5	67
1522	Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light. Applied Surface Science, 2022, 572, 151348.	3.1	17
1523	Cu-clusters nodes of 2D metal-organic frameworks as a cost-effective noble-metal-free cocatalyst with high atom-utilization efficiency for efficient photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33, 3049-3052.	4.8	14
1524	MXenes and their derivatives as nitrogen reduction reaction catalysts: recent progress and perspectives. Materials Today Energy, 2021, 22, 100864.	2.5	24
1525	Enhanced Photocatalytic Activity in Strain Engineered Janus WSSe Monolayers. Journal of Electronic Materials, 2021, 50, 7230-7239.	1.0	7
1526	Metal-free tellurene cocatalyst with tunable bandgap for enhanced photocatalytic hydrogen production. Materials Today Energy, 2021, 21, 100720.	2.5	18
1527	Towards Highly Efficient Chalcopyrite Photocathodes for Water Splitting: The Use of Cocatalysts beyond Pt. ChemSusChem, 2021, 14, 4671-4679.	3.6	7
1528	Photocatalyst with Chloroplastâ€like Structure for Enhancing Hydrogen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 1229-1237.	7.3	15
1529	Firstâ€Principles Molecular Dynamics Study of the Threshold Displacement Energy in LiFe ₅ O ₈ . Crystal Research and Technology, 2021, 56, 2100076.	0.6	1
1530	Semiâ€ S ynthetic Chlorophyllâ€Carotenoid Dyad for Dyeâ€Sensitized Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2101303.	1.9	17

#	Article	IF	Citations
1531	Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts, 2021, 11, 1168.	1.6	7
1532	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	2.8	111
1533	Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 2022, 105, 303-312.	2.9	42
1534	In-situ construction of sequential heterostructured CoS/CdS/CuS for building "electron-welcome zone―to enhance solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2022, 300, 120763.	10.8	38
1535	Improving the Photocatalytic Hydrogen Generation Using Nonaggregated Zinc Phthalocyanines. ACS Applied Energy Materials, 2021, 4, 10222-10233.	2.5	9
1536	A Case Study on a Soluble Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production: The Film versus the Bulk Material. ACS Applied Materials & Interfaces, 2021, 13, 42753-42762.	4.0	14
1537	Visibleâ€Lightâ€Driven Catalytic Deracemization of Secondary Alcohols. Angewandte Chemie, 2021, 133, 23015.	1.6	5
1538	Assessing the photocatalytic oxygen evolution reaction of BiFeO3 loaded with IrO2 nanoparticles as cocatalyst. Solar Energy Materials and Solar Cells, 2021, 232, 111349.	3.0	13
1539	Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Solar Energy, 2021, 227, 426-437.	2.9	31
1540	A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation. Applied Surface Science, 2021, 564, 150432.	3.1	20
1541	Heterogeneous Co@CoO composited P, N co-doped carbon nanofibers on carbon cloth as pH-tolerant electrocatalyst for efficient oxygen evolution. Journal of Alloys and Compounds, 2021, 877, 160279.	2.8	16
1542	Effect of ferroelectric polarization field on different carrier migration in photoanode. Materials Science in Semiconductor Processing, 2021, 133, 105958.	1.9	1
1543	Aggregate-forming semi-synthetic chlorophyll derivatives / Ti3C2T MXene hybrids for photocatalytic hydrogen evolution. Dyes and Pigments, 2021, 194, 109583.	2.0	21
1544	Type-II vdW heterojunction SeGa2Te/SeIn2Se as a high-efficiency visible-light-driven water-splitting photocatalyst. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 413, 127594.	0.9	9
1545	Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chemical Engineering Journal, 2021, 421, 129944.	6.6	50
1546	Direct evidence of Z-scheme effect and charge transfer mechanism in titanium oxide and cadmium sulfide heterostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127086.	2.3	3
1547	Black phosphorus-TiF3 photocatalyst for hydrogen production with an excellent capacity. Journal of Alloys and Compounds, 2021, 883, 160775.	2.8	11
1548	Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. Journal of Energy Chemistry, 2021, 62, 1-10.	7.1	70

#	Article	IF	CITATIONS
1549	State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coordination Chemistry Reviews, 2021, 446, 214103.	9.5	42
1550	Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review. Fuel, 2021, 303, 121207.	3.4	114
1551	Synergistic hydrogen evolution activity of NiO/g-C3N4 photocatalysts under direct solar light irradiation. Materials Letters, 2021, 302, 130292.	1.3	16
1552	Recent progress in Tungsten disulphide based Photocatalyst for Hydrogen Production and Environmental Remediation. Chemical Engineering Journal, 2021, 424, 130393.	6.6	25
1553	Plasmonic enhancement of hydrogen production by water splitting with CdS nanowires protected by metallic TiN overlayers as highly efficient photocatalysts. Nano Energy, 2021, 89, 106407.	8.2	23
1554	C-doped ZnS-ZnO/Rh nanosheets as multijunctioned photocatalysts for effective H2 generation from pure water under solar simulating light. Applied Catalysis B: Environmental, 2021, 297, 120473.	10.8	45
1555	Cauliflower-like MnxCd1â^'xS modified with Ni2P for enhanced photocatalytic H2 evolution. Applied Surface Science, 2021, 567, 150465.	3.1	18
1556	Electrocatalytic hydrogen evolution by molecular Cu(II) catalysts. Polyhedron, 2021, 208, 115425.	1.0	7
1557	Highly efficient and stable g‑C3N4 decorated Ta3N5 nanotube on n-Si substrate for solar water oxidation. Applied Surface Science, 2021, 565, 150456.	3.1	8
1558	Anchoring dye onto 1D Nb2O5 in cooperation with TEMPO for the selective photocatalytic aerobic oxidation of amines. Chemical Engineering Journal, 2021, 426, 131418.	6.6	15
1559	Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS2 into a photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120542.	10.8	31
1560	Sustainable synthesis of low-cost nitrogen-doped-carbon coated Co3W3C@g-C3N4 composite photocatalyst for efficient hydrogen evolution. Chemical Engineering Journal, 2021, 426, 131208.	6.6	40
1561	A Yin-Yang hybrid co-catalyst (CoOx-Mo2N) for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 298, 120491.	10.8	22
1562	Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (MÂ=ÂW, Mo) co-catalysts. Journal of Materials Science and Technology, 2022, 101, 242-263.	5.6	14
1563	Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 2022, 429, 132587.	6.6	121
1564	Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel, 2022, 307, 121745.	3.4	68
1565	Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. Journal of Energy Chemistry, 2022, 66, 529-559.	7.1	70
1566	Unveiling the role of Mn-Cd-S solid solution and MnS in MnxCd1-xS photocatalysts and decorating with CoP nanoplates for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 428, 131069.	6.6	64

#	Article	IF	CITATIONS
1567	Bimetallic Ni–Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production. Environmental Research, 2022, 203, 111844.	3.7	19
1568	Binary and Ternary Vanadium Oxides: General Overview, Physical Properties, and Photochemical Processes for Environmental Applications. Processes, 2021, 9, 214.	1.3	28
1569	CdS decorated MnWO ₄ nanorod nanoheterostructures: a new 0D–1D hybrid system for enhanced photocatalytic hydrogen production under natural sunlight. Nanoscale Advances, 2021, 3, 508-516.	2.2	18
1570	SIn ₂ Te/TeIn ₂ Se: a type-II heterojunction as a water-splitting photocatalyst with high solar energy harvesting. Journal of Materials Chemistry C, 2021, 9, 7734-7744.	2.7	10
1571	Engineering highly active Cd _{1â^'x} Zn _x S nanopopcorns <i>via</i> zinc blende/wurtzite phase junctions for enhanced photocatalytic H ₂ evolution without a co-catalyst. Journal of Materials Chemistry A, 2021, 9, 7913-7923.	5.2	27
1572	Two dimensional Ni ₂ P/CdS photocatalyst for boosting hydrogen production under visible light irradiation. RSC Advances, 2021, 11, 12153-12161.	1.7	19
1573	Solarâ€Driven Hydrogen Generation Catalyzed by gâ€C ₃ N ₄ with Poly(platinaynes) as Efficient Electron Donor at Low Platinum Content. Advanced Science, 2021, 8, 2002465.	5.6	20
1574	Recent advances in g-C ₃ N ₄ -based photocatalysts incorporated by MXenes and their derivatives. Journal of Materials Chemistry A, 2021, 9, 13722-13745.	5.2	60
1575	Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy and Environmental Science, 2021, 14, 365-373.	15.6	159
1576	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	5.3	94
1577	BiOI Particles Confined into Metal–Organic Framework NU-1000 for Valid Photocatalytic Hydrogen Evolution under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 1352-1358.	1.9	33
1578	What does graphitic carbon nitride really look like?. Physical Chemistry Chemical Physics, 2021, 23, 2853-2859.	1.3	12
1579	Metal organic framework-based photocatalysts for hydrogen production. , 2021, , 275-295.		1
1580	Promoted Interfacial Charge Transport and Separation of Size-Uniform Zn, Ni-Doped CdS-1T/2H O-MoS ₂ Nanoassemblies for Efficient Visible-Light Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 1278-1289.	1.4	9
1581	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
1582	Metallic Bismuth Modified P25 for Photocatalytic Hydrogen Production. Material Sciences, 2021, 11, 527-535.	0.0	0
1584	Ultrathin 2D Photocatalysts: Electronic‣tructure Tailoring, Hybridization, and Applications. Advanced Materials, 2018, 30, 1704548.	11.1	409
1585	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	10.2	200

#	Article	IF	Citations
1586	Electrocatalysts for Photochemical Water-Splitting. , 2020, , 171-199.		4
1587	Electrocatalysis Beyond the Computational Hydrogen Electrode. , 2020, , 1505-1537.		14
1588	Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst. Science China Chemistry, 2020, 63, 1040-1045.	4.2	11
1589	Boosting Photocatalytic Oxygen Evolution: Purposely Constructing Direct Z-Scheme Photoanode by Modulating the Interface Electric Field. Chemical Research in Chinese Universities, 2020, 36, 1059-1067.	1.3	22
1590	3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Applied Catalysis B: Environmental, 2017, 217, 477-484.	10.8	212
1591	Plasmon-induced interfacial charge-transfer transition prompts enhanced CO2 photoreduction over Cu/Cu2O octahedrons. Chemical Engineering Journal, 2020, 397, 125390.	6.6	65
1592	A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy and Environment, 2022, 7, 176-204.	4.7	86
1593	Noble-metal-free Z-Scheme MoS2–CdS/WO3–MnO2 nanocomposites for photocatalytic overall water splitting under visible light. International Journal of Hydrogen Energy, 2020, 45, 17320-17328.	3.8	26
1594	Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu2O nanoparticles into the TMU-17-NH2 MOF. Journal of Hazardous Materials, 2020, 399, 122872.	6.5	51
1595	Mesoporous Titania-Silica nanocomposite as an effective material for the degradation of Bisphenol A under visible light. Journal of Saudi Chemical Society, 2020, 24, 651-662.	2.4	15
1596	Au/TiO2(P25)-gC3N4 composites with low gC3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation. Nano Energy, 2020, 75, 104888.	8.2	53
1597	Nonmetal-Doped C ₂ N Nanosheets for Removal of Methoxyphenols: A First-Principles Study. ACS Applied Nano Materials, 2021, 4, 478-486.	2.4	6
1598	Metal–Organic Frameworks Integrate Cu Photosensitizers and Secondary Building Unit-Supported Fe Catalysts for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 10302-10307.	6.6	79
1599	Nanoparticles and Nanocomposites Design in Photocatalysis. RSC Catalysis Series, 2019, , 236-279.	0.1	1
1600	Vertically conductive MoS ₂ pyramids with a high density of active edge sites for efficient hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 3017-3022.	2.7	16
1601	Preparation of (CaY)F ₂ :Tm ³⁺ ,Yb ³⁺ deposited porous TiO ₂ matrix with highly nearâ€infrared light photocatalytic activity. Micro and Nano Letters, 2021, 16, 83-89.	0.6	1
1602	Influence of Pt and P doping on the performance of g-C3N4 monolayer. Materials and Manufacturing Processes, 2020, 35, 625-634.	2.7	23
1603	Composition-Dependent Optical and Photoelectrochemical Behavior of Antimony Oxide Iodides. Journal of the Electrochemical Society, 2019, 166, H3202-H3207.	1.3	2

#	Article	IF	CITATIONS
1604	Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. , 2015, , .		80
1605	Recent Progress on Nano-heterostructure Photocatalysts for Solar Fuels Generation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 1121.	0.6	8
1606	Photoelectrochemical solar water splitting: From basic principles to advanced devices. , 2018, 2, BDJOC3.		53
1607	First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Wuli Xuebao/Acta Physica Sinica, 2018, 67, 067101.	0.2	5
1608	Two-dimensional polarized MoTe ₂ /GeS heterojunction with an intrinsic electric field for photocatalytic water-splitting. RSC Advances, 2021, 11, 34048-34058.	1.7	11
1609	Piezoâ€Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 2021, 33, e2106308.	11.1	154
1610	Optimal Length of Hybrid Metal–Semiconductor Nanorods for Photocatalytic Hydrogen Generation. ACS Catalysis, 2021, 11, 13303-13311.	5.5	14
1611	Sustainable and green synthesis of hydrogen tungsten bronze nanoparticles with nanocarbon via mechanically induced hydrogen spillover. Ceramics International, 2022, 48, 4115-4123.	2.3	1
1612	Steering Hole Transfer from the Light Absorber to Oxygen Evolution Sites for Photocatalytic Overall Water Splitting. Advanced Materials Interfaces, 0, , 2101158.	1.9	4
1613	Unique NiCo ₂ S ₄ @ZnS/CdS Yolk–Shell Heterojunction for Efficient Visible-Light-Driven Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 6437-6447.	1.4	5
1614	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	3.1	22
1615	Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 48753-48763.	4.0	10
1616	Fundamental Understanding of the Photocatalytic Mechanisms. Electrochemical Energy Storage and Conversion, 2017, , 223-290.	0.0	0
1617	A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Ecletica Quimica, 2019, 44, 11.	0.2	6
1618	Titanium Oxide-Based Nanomaterials with Photocatalytic Applications in Environmental Chemistry. Environmental Chemistry for A Sustainable World, 2020, , 215-263.	0.3	0
1619	Novel flowerâ€like Sn–Cu and cactusâ€like Sn–Ag nanocatalysts for photo catalytically removal of toxic pollutant. Applied Organometallic Chemistry, 2020, 34, e5652.	1.7	1
1620	Nickel iron oxide electrocatalysts for electrochemical OER activity. Applied Nanoscience (Switzerland), 2021, 11, 2669-2677.	1.6	2
1623	Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coordination Chemistry Reviews, 2022, 450, 214240.	9.5	93

		CITATION REPORT		
#	Article		IF	Citations
1624	Advances in Photocatalytic Materials for Waste Water Treatment Applications. , 2022,	, 759-767.		0
1625	Impact of the number of surface-attached tungsten diselenide layers on cadmium sulfi the charge transfer and photocatalytic hydrogen evolution rate. Journal of Colloid and Science, 2022, 608, 903-911.		5.0	9
1626	Pomegranate-like ZnxCd1-xS@MoS2 nano-heterostructure as a stable and efficient ph H2 evolution. Materials Science in Semiconductor Processing, 2022, 138, 106287.	otocatalyst for	1.9	3
1627	Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reacti metal oxide/polymer interface. Scripta Materialia, 2022, 208, 114358.	on pathway on	2.6	0
1628	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2	2020, , 189-225.	0.5	0
1629	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021,	for 13, 1574-1583.	0.1	0
1630	Engineering interfacial band bending over bismuth vanadate/carbon nitride by work fur regulation for efficient solar-driven water splitting. Science Bulletin, 2022, 67, 389-397	nction 7.	4.3	73
1631	Engineering interfacial charge transfer channel for efficient photocatalytic H2 evolutio interplay of CoPx and Ca2+ dopant. Applied Catalysis B: Environmental, 2022, 303, 12		10.8	25
1632	Ultrahigh thermal and electric conductive graphite films prepared by g-C3N4 catalyzed of polyimide films. Chemical Engineering Journal, 2022, 430, 132530.	graphitization	6.6	24
1633	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanom during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Che 23, 100605.	aterials emistry, 2022,	1.7	13
1634	Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic reduction. Applied Surface Science, 2022, 578, 151848.	: CO2	3.1	14
1635	Enhanced Photocatalytic H ₂ -Production Activity of Graphitic Carbon Nitri Using a MnO _{<i>x</i>} Cocatalyst. Nano, 2021, 16, .	de Modified	0.5	0
1636	Regulating Graphitic Carbon Nitride/Cocatalyst by an Amorphous MoS ₂ C Multifunctional Intermediate Layer for Photocatalytic Hydrogen Evolution. ACS Applied Materials, 2021, 4, 13288-13296.		2.5	11
1637	Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Cataly 14751-14771.	ysis, 2021, 11,	5.5	59
1638	Hexagonal MBene (Hf ₂ BO ₂): A Promising Platform for the E Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 5613		4.0	20
1639	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Het Chemistry of Materials, 2021, 33, 9012-9092.	erojunctions.	3.2	88
1640	Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Materials, 2021, 14, 7117.	Photocatalysts.	1.3	4
1641	Green Hydrogen Production in an Optofluidic Planar Microreactor via Photocatalytic W Splitting under Visible/Simulated Sunlight Irradiation. Energy & Fuels, 2021, 35, 1		2.5	7

#	Article	IF	CITATIONS
1642	In situ construction of 0D CoWO4 modified 1D Mn0.47Cd0.53S for boosted visible-light photocatalytic H2 activity and photostability. Journal of Colloid and Interface Science, 2022, 610, 1057-1066.	5.0	20
1643	Optimal preparation of molybdenum phosphide cocatalyst for efficient dye-sensitized photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 3814-3823.	3.8	6
1644	Decoration of graphene oxide as a cocatalyst on Bi doped g-C3N4 photoanode for efficient solar water splitting. Journal of Electroanalytical Chemistry, 2022, 904, 115933.	1.9	23
1645	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
1646	Phosphorus and Sulfur Codoped Carbon Nitride Nanosheets with Enhanced Photocatalytic Antibacterial Activity and Promotion of Wound Healing. SSRN Electronic Journal, 0, , .	0.4	0
1647	Phase segregation <i>via</i> etching-induced cation migration in CoS _{<i>x</i>} –ZnS nanoarchitectures for solar hydrogen evolution. Catalysis Science and Technology, 2022, 12, 1408-1417.	2.1	4
1648	Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst. Research on Chemical Intermediates, 2022, 48, 1-12.	1.3	16
1649	A systematic design method for green buildings based on the combined system of flexible solar cells and reactors on buildings. Building and Environment, 2022, 209, 108657.	3.0	7
1650	Construction of S-scheme heterojunction consisting of Zn0.5Cd0.5S with sulfur vacancies and Ni Co1-(OH)2 for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 432, 134371.	6.6	34
1651	A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution. Applied Surface Science, 2022, 579, 152003.	3.1	27
1652	Crystal phase engineering boosted photo-electrochemical kinetics of CoSe2 for oxygen evolution catalysis. Journal of Colloid and Interface Science, 2022, 611, 22-28.	5.0	11
1653	Unravelling unsaturated edge S in amorphous NiSx for boosting photocatalytic H2 evolution of metastable phase CdS confined inside hydrophilic beads. Applied Catalysis B: Environmental, 2022, 305, 121055.	10.8	58
1654	Ultrafast synthesis of near-zero-cost S-doped Ni(OH) ₂ on C ₃ N ₅ under ambient conditions with enhanced photocatalytic activity. RSC Advances, 2021, 11, 36166-36173.	1.7	2
1655	In-Situ Partial Cation Exchange-Derived Znin ₂ S ₄ Nanoparticles Hybridized 1D MIL-68/In ₂ S ₃ Microtubes for Highly Efficient Visible-Light Induced Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
1656	Facet-Dependent Photocatalytic and Photoelectric Properties of CQDs/TiO ₂ Composites Under Visible Irradiation. SSRN Electronic Journal, 0, , .	0.4	0
1657	C ₃ N ₄ /Cu/ZnFe ₂ O ₄ Ternary Nanocomposites: Removal of Environmental Pollutants by the Synergy of Physical Adsorption and Photocatalysis. ChemistrySelect, 2022, 7, .	0.7	2
1658	The synergistic effect of CuBi ₂ O ₄ and Co-Pi: improving the PEC activity of BiVO ₄ -based composite materials. New Journal of Chemistry, 2022, 46, 2971-2979.	1.4	6
1660	Morphology-dependent visible light photocatalysis. , 2022, , 375-412.		3

ARTICLE IF CITATIONS Photocatalytic Degradation of Rhodamine B and Malachite Green by Cobalt Sulfide Nanoparticles. 0.1 1662 1 Asian Journal of Chemistry, 2022, 34, 331-341. Applications of Metal Oxide Layers on Particulate Photocatalysts for Water Splitting. RSC Energy and 0.2 Environment Series, 2022, , 265-297. Synthesis of photocatalytic hybrid nanostructures., 2022,,. 0 1665 Coupling of MAPbI₃ microcrystals with conductive polyaniline for efficient 2.5 visible-light-driven H₂ evolution. Sustainable Energy and Fuels, 2021, 6, 76-80. New insights in establishing the structure-property relations of novel plasmonic nanostructures for 1667 10.1 13 clean energy applications. EnergyChem, 2022, 4, 100070. Thermoelectric performance of ZrNX (X = Cl, Br and I) monolayers. Physical Chemistry Chemical Physics, 2021, 24, 560-567. 1668 1.3 ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. 1669 8.3 68 Environmental Chemistry Letters, 2022, 20, 1047-1081. Cu@CuCl-visible light co-catalysed chlorination of C(sp³)â€"H bonds with MCl_{<i>n</i>} solution and photocatalytic serial reactor-based synthesis of benzyl 1670 4.6 chloride. Green Chemistry, 2022, 24, 384-393. Oxygen-vacancy-mediated photocatalytic degradation of tetracycline under weak visible-light 1671 irradiation over hierarchical Bi₂MoO₆@Bi₂O₃ 2.1 10 coreâ€"shell fibers. Catalysis Science and Technology, 2022, 12, 1685-1696. Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology, 2022, 1.3 33, 142001. Efficient Photocatalytic H₂ Evolution by Hexaniobate Nanosheets Grafted with Copper 1673 2 1.5 Nanoclusters. ChemPhotoChem, 2022, 6, . Emerging frontiers of Z-scheme photocatalytic systems. Trends in Chemistry, 2022, 4, 111-127. 1674 4.4 100 Highly conductive NiSe2 nanoparticle as a co-catalyst over TiO2 for enhanced photocatalytic 1675 10.8 51 hydrogen production. Applied Catalysis B: Environmental, 2022, 307, 121159. Solar hydrogen generation using niobium-based photocatalysts: design strategies, progress, and challenges. Materials Today Energy, 2022, 24, 100936. 2.5 In-situ partial cation exchange-derived ZnIn2S4 nanoparticles hybridized 1D MIL-68/In2S3 microtubes 1677 for highly efficient visible-light induced photocatalytic H2 production. Separation and Purification 22 3.9 Technology, 2022, 287, 120585. Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing 1678 photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 434, 134673. S-Scheme/Type-1 heterostructure stimulated WO3/g-C3N4-WS2 ternary photocatalyst with improved 1679 charge transfer mechanism for full solar spectrum photocatalysis. Journal of Alloys and Compounds, 2.8 26 2022, 903, 163951. Chlorophyll derivative sensitized monolayer Ti3C2T MXene nanosheets for photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113792.

#	Article	IF	CITATIONS
1682	Bridging electrocatalyst and cocatalyst studies for solar hydrogen production <i>via</i> water splitting. Chemical Science, 2022, 13, 2824-2840.	3.7	15
1683	Chapter 4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting. Inorganic Materials Series, 2022, , 170-216.	0.5	0
1684	Bifunctional Cobaltâ€Doped ZnIn ₂ S ₄ Hierarchical Nanotubes Endow Nobleâ€Metal Cocatalystâ€Free Photocatalytic H ₂ Production Coupled with Benzyl Alcohol Oxidation. Solar Rrl, 2022, 6, .	3.1	11
1685	Pd loading, Mn+ (n=1, 2, 3) metal ions doped TiO2 nanosheets for enhanced photocatalytic H2 production and reaction mechanism. International Journal of Hydrogen Energy, 2022, 47, 10250-10260.	3.8	20
1686	Enhanced performance of FeOOH/ZnIn2S4/Au nanosheet arrays for visible light water splitting. Journal of Materials Science: Materials in Electronics, 2022, 33, 6070-6081.	1.1	3
1687	Ultrathin layered Zn-doped MoS2 nanosheets deposited onto CdS nanorods for spectacular photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 905, 164193.	2.8	17
1688	Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coordination Chemistry Reviews, 2022, 458, 214429.	9.5	52
1689	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
1690	An Ultraviolet Self-Initiated Polymerized Platform for Specific Recognition and Elimination of Caffeic Acid Based on the Molecular Imprinting Technology. SSRN Electronic Journal, 0, , .	0.4	0
1691	Ni _{<i>x</i>} P and Mn ₃ O ₄ dual co-catalysts separately deposited on a g-C ₃ N ₄ /red phosphorus hybrid photocatalyst for an efficient hydrogen evolution. New Journal of Chemistry, 2022, 46, 6267-6273.	1.4	2
1692	<i>In situ</i> growth of MOF-derived sulfur vacancy-rich CdS nanoparticles on 2D polymers for highly efficient photocatalytic hydrogen generation. Dalton Transactions, 2022, 51, 5841-5858.	1.6	17
1693	Lignin-metal oxide composite for photocatalysis and photovoltaics. , 2022, , 447-476.		2
1694	Recent advances in ZnIn ₂ S ₄ -based materials towards photocatalytic purification, solar fuel production and organic transformations. Journal of Materials Chemistry C, 2022, 10, 5400-5424.	2.7	41
1695	Synergistic Antibacterial Performance and Mechanism of Zno- Sno2 Nanoflower Catalyst Under Visible Light Irradiation and in the Dark. SSRN Electronic Journal, 0, , .	0.4	0
1696	2D material based heterostructures for solar light driven photocatalytic H ₂ production. Materials Advances, 2022, 3, 3389-3417.	2.6	20
1697	Mesoâ€Microporous Nanosheetâ€Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production. Advanced Functional Materials, 2022, 32, .	7.8	37
1698	Synergistic Effect of Ni ²⁺ and Fe ³⁺ of Bimetallic Oxyhydroxide NiFeOOH as OER Cocatalyst for Fe ₂ O ₃ Photoanode with Enhanced Photoelectrochemical Water Splitting. Energy & Fuels, 2022, 36, 2890-2900.	2.5	9
1699	Unique Properties of RhCrO _{<i>x</i>} Cocatalyst Regulating Reactive Oxygen Species Formation in Photocatalytic Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2022, 10, 4059-4064.	3.2	8

# 1700	ARTICLE Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nature Energy, 2022, 7, 340-351.	lF 19.8	Citations
1701	The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Materials Science, 2023, 5, 202-209.	3.9	11
1702	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	6.4	35
1703	A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 13044-13053.	3.8	11
1705	Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials Today Energy, 2022, 26, 100986.	2.5	6
1706	Boosting H2 yield from photoreforming of lignocellulose by thermo-alkaline hydrolysis with selective generation of a key intermediate product: Tartaric acid. Energy Conversion and Management, 2022, 257, 115444.	4.4	6
1707	Fabrication of Ni2P Cocatalyzed CdS Nanorods with a Well-Defined Heterointerface for Enhanced Photocatalytic H2 Evolution. Catalysts, 2022, 12, 417.	1.6	15
1708	A Photoelectrochemical Sensor Based on TiO ₂ Nanotube Arrays Decorated with Nickel-Cobalt Layered Double Hydroxides for the Effective and Sensitive Detection of Chromium(VI). ACS Applied Nano Materials, 2022, 5, 5535-5543.	2.4	13
1709	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	6.9	53
1710	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	6.9	64
1711	An ultraviolet self-initiated polymerized platform for specific recognition and elimination of caffeic acid based on the molecular imprinting technology. Sensors and Actuators B: Chemical, 2022, 361, 131659.	4.0	9
1712	Phosphorus and sulfur codoped carbon nitride nanosheets with enhanced photocatalytic antibacterial activity and promotion of wound healing. Applied Surface Science, 2022, 586, 152761.	3.1	15
1713	Layered bismuth-based photocatalysts. Coordination Chemistry Reviews, 2022, 463, 214515.	9.5	99
1714	Temperature-Driven Morphology Control on CdSe Nanofractals and Its Influence over the Augmented Rate of H ₂ Evolution: Charge Separation via the S-Scheme Mechanism with Incorporated Cu ₃ P. ACS Applied Energy Materials, 2021, 4, 13983-13996.	2.5	17
1715	Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production. Energies, 2021, 14, 8265.	1.6	4
1716	Artificial photosynthesis for highâ€valueâ€added chemicals: Old material, new opportunity. , 2022, 4, 21-44.		49
1717	Metallic Copperâ€Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. Small Methods, 2022, 6, e2101001.	4.6	18
1718	Immobilized Molecular Catalysts for CO ₂ Photoreduction. Advanced Sustainable Systems, 2022, 6, .	2.7	15

#	Article	IF	CITATIONS
1719	Engineering hollow Ni–Fe-based mesoporous spherical structure derived from MOF for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 17662-17672.	3.8	5
1720	ZnSe/Ta2O5 heterojunction with high carrier separation efficiency: Experimental and theoretical calculations. Applied Surface Science, 2022, 593, 153456.	3.1	2
1721	Boosting Efficiency in Lightâ€Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes**. ChemSusChem, 2022, 15, .	3.6	8
1722	Grapheneâ€Based Nanomaterials for Solarâ€Driven Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	4
1723	Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews, 2022, 122, 10484-10537.	23.0	268
1724	Porous organic polymers involving chloro-substituted peryleneimide for photocatalytic water oxidation under visible light irradiation. Chemical Engineering Journal, 2022, 443, 136463.	6.6	7
1727	Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193.	5.8	137
1728	Linker engineering in metal–organic frameworks for dark photocatalysis. Chemical Science, 2022, 13, 6696-6703.	3.7	30
1729	Two-Dimensional Cds/Sii2ÂHeterostructure with Low Carrier Recombination as a Promising Photocatalyst for Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
1730	Boosting photocatalytic CO ₂ reduction <i>via</i> Schottky junction with ZnCr layered double hydroxide nanoflakes aggregated on 2D Ti ₃ C ₂ T _{<i>x</i>} cocatalyst. Nanoscale, 2022, 14, 7538-7546.	2.8	20
1731	Transition Metal Dichalcogenides [MX2] in Photocatalytic Water Splitting. Catalysts, 2022, 12, 468.	1.6	12
1732	An overview of co atalysts on metal oxides for photocatalytic water splitting. International Journal of Energy Research, 2022, 46, 11596-11619.	2.2	13
1733	Capacitance Catalysis: Positive and Negative Effects of Capacitance of Mo ₂ C in Photocatalytic H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 5949-5957.	3.2	16
1734	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
1735	An efficient photocatalytic system under visible light: In-situ growth cocatalyst Ni2P on the surface of CdS. Journal of Environmental Chemical Engineering, 2022, 10, 107822.	3.3	16
1736	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202204108.	7.2	90
1737	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	1.6	2
1738	Activation effect of nickel phosphate co-catalysts on the photoelectrochemical water oxidation performance of TiO2 nanotubes. Journal of Saudi Chemical Society, 2022, 26, 101484.	2.4	8

#	Article	IF	CITATIONS
1739	Morphologically and hierarchically controlled Ag/Ag2MoO4 microspheres for photocatalytic hydrogen generation. Applied Surface Science, 2022, 597, 153554.	3.1	17
1740	Formation of a pâ€n heterojunction photocatalyst by the interfacing of graphitic carbon nitride and delafossite <scp>CuGaO₂</scp> . Journal of the Chinese Chemical Society, 2022, 69, 1042-1050.	0.8	2
1741	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	11
1742	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
1743	Enhanced interfacial effect between CdS and ReS2 on boosted hydrogen evolution performance via phase structure engineering. Journal of Solid State Chemistry, 2022, 312, 123238.	1.4	2
1744	Synergistic modulation on atomic-level 2D/2D Ti3C2/Svac-ZnIn2S4 heterojunction for photocatalytic H2 production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129229.	2.3	9
1745	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
1746	Ferroelectric nanostructured oxides for solar fuel generation. Materials Science and Technology, 2022, 38, 1332-1347.	0.8	1
1747	Hollow double-shell stacked CdS@ZnIn2S4 photocatalyst incorporating spatially separated dual cocatalysts for the enhanced photocatalytic hydrogen evolution and hydrogen peroxide production. Catalysis Today, 2022, 405-406, 227-234.	2.2	11
1748	Twoâ€Dimensional Materials and their Heteroâ€Superlattices for Photocatalytic Hydrogen Evolution Reaction. ChemNanoMat, 2022, 8, .	1.5	3
1749	Ultrathin 3D radial tandem-junction photocathode with a high onset potential of 1.15 V for solar hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1842-1850.	6.9	1
1750	CdS/Sil2: A promising two-dimensional materials for photocatalytic water splitting. Results in Physics, 2022, 38, 105636.	2.0	3
1751	Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chinese Journal of Catalysis, 2022, 43, 1774-1804.	6.9	45
1752	Synergy of nitrogen vacancies and Fe2P cocatalyst on graphitic carbon nitride for boosting photocatalytic CO2 conversion. Chemical Engineering Journal, 2022, 446, 137096.	6.6	19
1753	Mo-Activated VC as Effective Cocatalyst for an Enhanced Photocatalytic Hydrogen Evolution Activity of CDS. SSRN Electronic Journal, 0, , .	0.4	0
1754	Interfacial Engineering Boosting Charge Extraction for Efficient Photocatalytic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
1755	Boosting photocatalytic hydrogen evolution over 2D/0D graphene/H–In2O3 nanohybrids with regulated oxygen vacancies. Renewable Energy, 2022, 194, 868-874.	4.3	10
1756	Revealing different depth boron substitution on interfacial charge transfer in TiO2 for enhanced visible-light H2 production. Applied Catalysis B: Environmental, 2022, 315, 121570.	10.8	15

#	Article	IF	CITATIONS
1757	Beyond T-graphene: Two-dimensional tetragonal allotropes and their potential applications. Applied Physics Reviews, 2022, 9, .	5.5	23
1758	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	42
1759	Tunable Carrier Transfer of Polymeric Carbon Nitride with Charge-Conducting CoV2O6â^™2H2O for Photocatalytic O2 Evolution. Nanomaterials, 2022, 12, 1931.	1.9	5
1760	Valence Band Edge Engineering of Mixed Metal Oxides Photocatalysts Derived from Transition-Metal-Based Layered Double Hydroxide Towards Selective Oxidation of Cyclohexane Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
1762	Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution. Chemical Science, 2022, 13, 8074-8079.	3.7	9
1763	Recent development in solarâ€driven photocatalytic hydrogen production utilizing <scp> g ₃ N ₄ </scp> . International Journal of Energy Research, 2022, 46, 14587-14608.	2.2	5
1764	Borate particulate photocatalysts for photocatalytic applications: A review. International Journal of Hydrogen Energy, 2022, 47, 25608-25630.	3.8	68
1765	Two routes to hydrogen evolution for a Co-polypyridyl complex with two open sites. Electronic Structure, 0, , .	1.0	1
1766	Facet-dependent photocatalytic and photoelectric properties of CQDs/TiO2 composites under visible irradiation. Journal of Alloys and Compounds, 2022, 920, 165896.	2.8	8
1767	Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chemical Reviews, 2022, 122, 11778-11829.	23.0	39
1768	Catalytic radiosensitization: Insights from materials physicochemistry. Materials Today, 2022, 57, 262-278.	8.3	16
1769	Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting. Chinese Journal of Catalysis, 2022, 43, 2223-2230.	6.9	18
1770	A robust novel 0D/2D MoS3 QDs/C-doped atomically thin TiO2(B) nanosheet composite for highly efficient photocatalytic H2 evolution. Applied Surface Science, 2022, 599, 153972.	3.1	7
1771	Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chemical Society Reviews, 2022, 51, 5777-5794.	18.7	43
1772	Valence Band Edge Engineering of Mixed Metal Oxides Photocatalysts Derived from Transition-Metal-Based Layered Double Hydroxide Towards Selective Oxidation of Cyclohexane Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
1773	Promoted photocarrier separation by dipole engineering in two-dimensional perovskite/C ₂ N van der Waals heterostructures. Physical Chemistry Chemical Physics, 2022, 24, 17348-17360.	1.3	2
1774	Introductory chapter: Fundamentals of photocatalysis and electrocatalysis. , 2022, , 1-30.		0
1775	Electrodeposited Kochia Scoparia-Shaped Te Film: Controlled Synthesis and Enhanced Visible-Light Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1776	Synergistic effect of spatially isolated Ni ₂ P and NiO redox cocatalysts on g-C ₃ N ₄ for sustainably boosted CO ₂ photocatalytic reduction. Journal of Materials Chemistry A, 2022, 10, 15752-15765.	5.2	12
1777	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
1778	Efficient electron extraction by CoS ₂ loaded onto anatase TiO ₂ for improved photocatalytic hydrogen evolution. Journal of Physics Condensed Matter, 2022, 34, 344005.	0.7	2
1779	Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catalysis, 2022, 2, 2157-2228.	2.9	39
1780	Computational analysis of the enhancement of photoelectrolysis using transition metal dichalcogenide heterostructures. Journal of Physics Condensed Matter, 2022, 34, 375001.	0.7	3
1781	Polarization Electric Field in 2D Polar Monolayer Silicon Monochalcogenides SiX (X = S, Se) as Potential Photocatalysts for Water Splitting. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	1
1782	Insight into electronic structure and photocatalytic character of GaSe/MoS2 heterostructure by first-principles investigation. Solid State Communications, 2022, 353, 114880.	0.9	3
1783	Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 316, 121680.	10.8	37
1784	Efficient photocatalytic hydrogen production under visible-light irradiation on SrTiO3 without noble metal: dye-sensitization and earth-abundant cocatalyst modification. Materials Today Chemistry, 2022, 26, 101018.	1.7	3
1785	Interfacial engineering boosting charge extraction for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138015.	6.6	9
1786	Fabrication Approach Impact on Solar-to-Hydrogen Evolution of Protonic Titanate-Derived Nano-TiO ₂ . Industrial & Engineering Chemistry Research, 2022, 61, 11347-11356.	1.8	7
1787	Synergistic antibacterial properties of ZnO–SnO2 composite under both light and dark conditions. Ceramics International, 2022, 48, 32089-32103.	2.3	6
1788	Experimental and DFT Study of Transition Metal Doping in a Zn-BDC MOF to Improve Electrical and Visible Light Absorption Properties. Journal of Physical Chemistry C, 2022, 126, 12348-12360.	1.5	10
1789	Homojunction photocatalysts for water splitting. Nano Research, 2022, 15, 10171-10184.	5.8	34
1790	Construction of Threeâ€Dimensional Inâ€Znâ€Cdâ€S Composite Materials and Their Visibleâ€Light Catalytic Performance. ChemistrySelect, 2022, 7, .	0.7	2
1791	Electronic modulation of NiO by constructing an amorphous/crystalline heterophase to improve photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 18939-18949.	5.2	11
1792	Covalent triazine-based frameworks with cobalt-loading for visible light-driven photocatalytic water oxidation. Catalysis Science and Technology, 2022, 12, 5442-5452.	2.1	10
1793	Surface decorated Ni sites for superior photocatalytic hydrogen production. SusMat, 2022, 2, 466-475.	7.8	43

#	ARTICLE Improving the redox performance of photocatalytic materials by cascade-type charge transfer: a	IF	CITATIONS
1794	review. Environmental Chemistry Letters, 2022, 20, 2781-2795.	8.3	4
1795	Two-Dimensional Ternary Pentagonal BCN: A Promising Photocatalyst Semiconductor for Water Splitting with Strong Excitonic Effects. Physical Review Applied, 2022, 18, .	1.5	7
1796	Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 34430-34443.	3.8	33
1797	1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Science China Materials, 2023, 66, 139-149.	3.5	14
1798	Synthetic Micro/Nanomotors for Drug Delivery. Technologies, 2022, 10, 96.	3.0	3
1799	Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Research, 2022, 15, 10090-10109.	5.8	21
1800	Pointâ€toâ€face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g ₃ N ₄ towards photocatalytic energy applications. , 2022, 4, 665-730.		40
1801	Review on BiVO ₄ -Based Photoanodes for Photoelectrochemical Water Oxidation: The Main Influencing Factors. Energy & Fuels, 2022, 36, 9932-9949.	2.5	28
1802	Metal Mesh and Narrow Band Gap Mn0.5Cd0.5S Photocatalyst Cooperation for Efficient Hydrogen Production. Materials, 2022, 15, 5861.	1.3	4
1803	Polyaniline encapsulated Ti-MOF/CoS for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 33955-33965.	3.8	35
1804	Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications. Physics Reports, 2022, 983, 1-41.	10.3	69
1805	Electrodeposited kochia scoparia-shaped Te film: Controlled synthesis and enhanced visible-light photocatalytic performance. Inorganic Chemistry Communication, 2022, 144, 109856.	1.8	0
1806	Cu2O/CuS/ZnS Nanocomposite Boosts Blue LED-Light-Driven Photocatalytic Hydrogen Evolution. Catalysts, 2022, 12, 1035.	1.6	10
1807	Development of a Pd-Ag H2-selective membrane microchannel reactor for efficient solar hydrogen production with ammonia. Energy Conversion and Management, 2022, 270, 116181.	4.4	10
1808	Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation. Renewable Energy, 2022, 199, 132-139.	4.3	11
1809	Recent trends in MXenes hybrids as efficient 2D materials for photo- and electrocatalysis hydrogen production. Materials Today Chemistry, 2022, 26, 101108.	1.7	0
1810	Charge separation accelerated in the interface of AgBr/layered double hydroxides Z-scheme heterojunction by insertion of polyaniline: Mechanism and performance. Applied Surface Science, 2022, 605, 154764.	3.1	8
1812	Enhanced Photocatalytic Cr(Vi) Reduction and H2 Production of Cdse Quantum Dots Supported on Co-Encapsulated N-Doped Carbon. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1813	Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chemical Society Reviews, 2022, 51, 6909-6935.	18.7	31
1814	Two-dimensional black phosphorus-modified Cs ₂ AgBiBr ₆ with efficient charge separation for enhanced visible-light photocatalytic H ₂ evolution. Journal of Materials Chemistry C, 2022, 10, 15386-15393.	2.7	9
1815	Bi-MOFs with Two Different Morphologies Promoting Degradation of Organic Dye Under Simultaneous Photo-Irradiation and Ultrasound Vibration Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1816	Development of heterogeneous photocatalysts <i>via</i> the covalent grafting of metal complexes on various solid supports. Chemical Communications, 2022, 58, 11354-11377.	2.2	12
1817	Mo-activated VC as effective cocatalyst for an enhanced photocatalytic hydrogen evolution activity of CdS. Chemical Engineering Journal, 2023, 452, 139325.	6.6	30
1818	Ultrathin Niobate Nanosheet Assembly with Au NPs and CdS QDs as a Highly Efficient Photocatalyst. Chemistry - A European Journal, 0, , .	1.7	0
1819	Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS Omega, 2022, 7, 32908-32935.	1.6	24
1820	Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity. Catalysts, 2022, 12, 1077.	1.6	0
1821	A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting. Nature Communications, 2022, 13, .	5.8	30
1822	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
1823	Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 34323-34375.	3.8	13
1824	Boosting photocatalytic hydrogen evolution of g-C3N4 via enhancing its interfacial redox activity and charge separation with Mo-doped CoSx. International Journal of Hydrogen Energy, 2022, 47, 35723-35736.	3.8	8
1825	Recent Advances in Self‣upported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting. Small, 2022, 18, .	5.2	24
1826	Function of Defects in NH ₂ -MIL-125@PANI@Co ₃ O ₄ Photocatalyst for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 12324-12335.	2.5	14
1827	Recent advances in bulk-heterojunction solar cells: a review. EPJ Applied Physics, 2022, 97, 81.	0.3	8
1828	A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano, 2022, 16, 13370-13429.	7.3	142
1829	Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Advances in Colloid and Interface Science, 2022, 309, 102793.	7.0	8
1830	Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review. Journal of Alloys and Compounds, 2023, 931, 167469.	2.8	76

#	Article	IF	Citations
1831	Rational Design of Black Phosphorus-Based Direct Z-Scheme Photocatalysts for Overall Water Splitting: The Role of Defects. Journal of Physical Chemistry Letters, 2022, 13, 9363-9371.	2.1	17
1832	Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. Science and Technology of Advanced Materials, 2022, 23, 587-616.	2.8	4
1833	Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynthesis Research, 2022, 154, 329-352.	1.6	3
1834	Enhancement in photocatalytic H2 evolution utilizing the synergistic effect between dual cocatalysts and heterojunctions. International Journal of Hydrogen Energy, 2022, 47, 38185-38197.	3.8	5
1835	Bandgap engineering of covalent organic frameworks for boosting photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2022, 10, 24620-24627.	5.2	14
1836	Rational catalyst design for spatial separation of charge carriers in a multi-component photocatalyst for effective hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 25380-25405.	5.2	9
1837	Constructing Particulate p–n Heterojunction Mo:SrTiO ₃ /NiO@Ni(OH) ₂ for Enhanced H ₂ Evolution under Simulated Solar Light. ACS Applied Energy Materials, 2022, 5, 12727-12738.	2.5	2
1838	Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution. Nano Research, 0, , .	5.8	4
1839	Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nature Reviews Chemistry, 2022, 6, 823-838.	13.8	42
1840	Atomic precision tailoring of two-dimensional MoSi2N4 as electrocatalyst for hydrogen evolution reaction. Journal of Materials Science, 2022, 57, 18535-18548.	1.7	9
1841	PdS Quantum Dots as a Hole Attractor Encapsulated into the MOF@Cd _{0.5} Zn _{0.5} S Heterostructure for Boosting Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces, 2022, 14, 48770-48779.	4.0	23
1842	Ca1-xSrxGa2O4 (0.2â‰ ¤ â‰ 0 .7): A novel photocatalyst with special stability for H2 production. Optical Materials, 2022, 133, 113079.	1.7	1
1843	Photocatalytic applicability of HfN and tuning it with Mg and Sc alloys: A DFT and molecular dynamic survey. Physica B: Condensed Matter, 2023, 649, 414459.	1.3	7
1844	Rational design and fabrication of MoSx nanoclusters decorated Mn0.3Cd0.7S nanorods with promoted interfacial charge transfer toward robust photocatalytic H2 generation. Journal of Colloid and Interface Science, 2023, 630, 37-46.	5.0	11
1845	The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Separation and Purification Technology, 2023, 305, 122413.	3.9	20
1846	Durable Cu _{<i>x</i>} O/mesoporous TiO ₂ photocatalyst for stable and efficient hydrogen evolution. Nanoscale, 2022, 14, 17460-17465.	2.8	1
1847	Chlorine-mediated synthesis of self-exfoliated and wavy-structured graphitic carbon nitride nanosheets for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 3893-3900.	3.8	2
1848	Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. Catalysis Letters, 2023, 153, 2950-2958.	1.4	1

#	Article	IF	Citations
1849	Recent Advancements in Halide and Oxide Double Perovskites as HeterogeneousÂPhotocatalysts for Solar-Driven Photocatalytic Water Splitting and CO ₂ Reduction. , 2023, 01, .		1
1850	Phosphorus-Doped Single-Crystalline Quaternary Sulfide Nanobelts Enable Efficient Visible-Light Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 20620-20629.	6.6	39
1851	Oxygen evolution reaction enhancement of copper electrodes in alkaline medium using ultrafast femtosecond laser structuring. International Journal of Hydrogen Energy, 2024, 52, 2-13.	3.8	5
1852	Synergistic Effect of Redox Dual PdO _{<i>x</i>} /MnO _{<i>x</i>} Cocatalysts on the Enhanced H ₂ Production Potential of a SnSlî±-Fe ₂ O ₃ Heterojunction via Ethanol Photoreforming. ACS Omega, 0, , .	1.6	2
1853	Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment. Ultrasonics Sonochemistry, 2022, 91, 106223.	3.8	31
1854	Efficient distributed concentrating solar power system with ammonia-based chemical heat pump. Energy Conversion and Management, 2023, 276, 116575.	4.4	1
1855	High thermoelectric performance of a Sc ₂ Si ₂ Te ₆ monolayer at medium temperatures: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1856	Recent advances of cobalt-based nitride catalysts in solar energy conversion. Materials Chemistry Frontiers, 2023, 7, 607-627.	3.2	9
1857	Green synthesis of CdS/Ni _{<i>x</i>} S _{<i>y</i>} nanoparticles as a route towards sustainable and scalable photocatalysts. Green Chemistry, 0, , .	4.6	4
1858	Nickel molecular catalyst grafted graphene quantum dots on porous NiO as a photocathode for H2 evolution under visible light. New Journal of Chemistry, 0, , .	1.4	0
1859	A review of recent progress in 2D MXenes: Synthesis, properties, and applications. Diamond and Related Materials, 2023, 132, 109634.	1.8	8
1860	Gradient band alignment of N-doped titania nanosheets on TiO2 nanorod arrays for improved solar water oxidation. Journal of Alloys and Compounds, 2023, 936, 168342.	2.8	4
1861	Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Progress in Materials Science, 2023, 133, 101047.	16.0	14
1862	Visible light-driven selective oxidation of amines by cooperative photocatalysis of niobium oxide nanorods with an electron–proton transfer mediator. Journal of Colloid and Interface Science, 2023, 633, 959-966.	5.0	5
1863	Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2023, 25, 2706-2716.	1.3	8
1864	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
1865	Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Research, 2023, 16, 4736-4741.	5.8	5
1866	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3

\sim			-			
(17	ГΔТ	ION	R	FP	വ	ЪL
\sim			- 10			N 1

#	Article	IF	CITATIONS
1867	Structure-Dependent Surface Molecule-Modified Semiconductor Photocatalysts: Recent Progress and Future Challenges. ACS Sustainable Chemistry and Engineering, 2022, 10, 16476-16502.	3.2	8
1868	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
1869	Metal–Organic Frameworkâ€Based Photocatalysis for Solar Fuel Production. Small Methods, 2023, 7, .	4.6	43
1870	Unexpected Insulating Polymer Maneuvered Solar CO ₂ â€to‣yngas Conversion. Advanced Functional Materials, 2023, 33, .	7.8	25
1871	Solar-light-driven photocatalytic hydrogen evolution by push-pull thiophenoxy-substituted zinc phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2023, 27, 260-267.	0.4	3
1872	Synergistic Effect of Amorphous Ti(IV)-Hole and Ni(II)-Electron Cocatalysts for Enhanced Photocatalytic Performance of Bi2WO6. Catalysts, 2022, 12, 1633.	1.6	1
1873	Metal-free 2D-2D black phosphorus/covalent organic framework p-n heterojunction for efficient visible-light-driven hydrogen evolution without cocatalysts. International Journal of Hydrogen Energy, 2023, 48, 8867-8876.	3.8	7
1875	Strategies for Improving the Photocatalytic Methane to Methanol Conversion Efficiency. Current Organic Chemistry, 2023, 27, 399-410.	0.9	1
1876	Constructing metal-free heterophotocatalyst using two-dimensional carbon nitride sheets and violet phosphorene for highly efficient visible-light photocatalysis. Journal of Materials Science and Technology, 2023, 146, 113-120.	5.6	4
1877	Fabrication of In(OH)3–In2S3–Cu2O nanofiber for highly efficient photocatalytic hydrogen evolution under blue light LED excitation. International Journal of Hydrogen Energy, 2023, 48, 9318-9332.	3.8	10
1878	Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry - A European Journal, 2023, 29, .	1.7	3
1879	Sulfur- and Strontium-Doped Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 15834-15843.	2.5	4
1880	ALD-Deposited NiO Approaches the Performance of Platinum as a Hydrogen Evolution Cocatalyst on Carbon Nitride. ACS Catalysis, 2023, 13, 573-586.	5.5	4
1881	Morphology Matters: 0D/2D WO ₃ Nanoparticleâ€Ruthenium Oxide Nanosheet Composites for Enhanced Photocatalytic Oxygen Evolution Reaction Rates. Advanced Energy Materials, 2023, 13, .	10.2	13
1882	Fabrication of noble-metal-free hierarchical rectangular tubular S-scheme NiS/ZnIn2S4/AgIn(WO4)2 nanocomposite for highly efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 457, 141185.	6.6	5
1883	A Review of the Single-Step Flame Synthesis of Defective and Heterostructured TiO2 Nanoparticles for Photocatalytic Applications. Catalysts, 2023, 13, 196.	1.6	7
1884	Enhancing Builtâ€in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C ₆₀ Fullerene into Zirconiumâ€Based Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1885	Harvesting the two-electron process for solar water splitting. Cell Reports Physical Science, 2023, 4, 101211.	2.8	5

		CITATION REPORT		
#	Article		IF	Citations
1886	2D Zinc Oxide $\hat{a} \in$ "Synthesis, Methodologies, Reaction Mechanism, and Applications. S	imall, 2023, 19, .	5.2	22
1887	Co _x P/Hollow Porous C ₃ N ₄ as Highly Efficient S Photocatalyst for H ₂ Evolution from Water Splitting. European Journal of Chemistry, 2023, 26, .		1.0	1
1888	Metal doped black phosphorus/molybdenum disulfide (BP/MoS2–Y (Y: Ni, Co)) heter photocatalytic hydrogen evolution and electrochemical nitrite sensing applications. Int Journal of Hydrogen Energy, 2023, 48, 14238-14254.	ojunctions for the ernational	3.8	10
1889	Synergistic effect of oxygen vacancies and Ni particles over the ZnWO ₄ /C heterostructure for enhanced photocatalytic reduction and oxidation activities. Catalys and Technology, 2023, 13, 1196-1207.	idS sis Science	2.1	5
1890	Vanadium tetrasulfide as an earth-abundant and noble-metal-free cocatalyst for a solar conversion reaction. Journal of Materials Chemistry C, 2023, 11, 1782-1790.	-to-hydrogen	2.7	9
1891	Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocata with Al2O3. Nature Catalysis, 2023, 6, 80-88.	lyst modified	16.1	41
1892	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: I advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	Recent	16.0	15
1893	Enhancing Builtâ€in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by E C ₆₀ Fullerene into Zirconiumâ€Based Metalâ€Organic Frameworks. Ange 135, .	ncapsulating wandte Chemie, 2023,	1.6	3
1894	Advances in photochemical splitting of seawater over semiconductor nano-catalysts fo production: A critical review. Journal of Industrial and Engineering Chemistry, 2023, 12	r hydrogen 1, 1-14.	2.9	23
1895	Ni-based Electro/Photo-Catalysts in HER – A Review. Surfaces and Interfaces, 2023, 3	6, 102619.	1.5	2
1896	An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green H Production. Catalysts, 2023, 13, 66.	ydrogen	1.6	11
1897	Mo(S,O)/(Ce,Mo)(S,O) sulfo-oxide with heterovalent metal states for efficient visible-lig hydrogen evolution and pollutant reduction via in-situ generated protons. Internationa Hydrogen Energy, 2023, 48, 10841-10858.		3.8	16
1898	Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitric Cocatalyst and Zn0.5Cd0.5S Solid Solution. Chemical Research in Chinese Universities		1.3	0
1899	In-situ growth of heterojunction CdS/TiO2 nanofibers monolithic photocatalyst sheet f hydrogen evolution. Sustainable Energy and Fuels, 0, , .	or enhanced	2.5	0
1900	A critical review on layered double hydroxide (LDH)-derived functional nanomaterials as and sustainable photocatalysts. Sustainable Energy and Fuels, 2023, 7, 1145-1186.	s potential	2.5	12
1901	Triazine-free polyimide for photocatalytic hydrogen production. International Journal of Energy, 2023, 48, 15967-15974.	Hydrogen	3.8	5
1902	Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Phot Sustainable Chemistry and Engineering, 2023, 11, 1221-1252.	cocatalysts. ACS	3.2	30
1903	Panchromatic Pt/TiO2-Based Photocatalysts Sensitized with Carboxylated Chlorin Dyac Splitting Hydrogen Evolution. Applied Surface Science, 2023, , 156570.	ls for Water	3.1	1

#	Article	IF	CITATIONS
1904	Pivotal role of oxygen during the synthesis of Cu(OH)2/TiO2 and its effect on photocatalytic hydrogen production activity. Catalysis Today, 2023, 423, 114007.	2.2	2
1905	Construction of Efficient D–A-Type Photocatalysts by B–N Bond Substitution for Water Splitting. Macromolecules, 2023, 56, 858-866.	2.2	7
1906	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
1907	In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. Nanomaterials, 2023, 13, 420.	1.9	7
1908	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
1909	Biomass components toward H ₂ and value-added products by sunlight-driven photocatalysis with electronically integrated Au ^{<i>δ</i>â´`} –TiO ₂ : concurrent utilization of electrons and holes. , 2023, 1, 481-493.		5
1910	Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews, 2023, 52, 2145-2192.	18.7	17
1911	Deciphering the photocatalytic hydrogen generation process of Fresnoite Ba ₂ TiGe ₂ O ₈ by electronic structure and bond analyses. Dalton Transactions, 2023, 52, 3769-3776.	1.6	1
1912	Role of nanocomposites in hydrogen production. , 2023, , 149-173.		0
1913	Cocatalysts for Photocatalytic Overall Water Splitting: A Mini Review. Catalysts, 2023, 13, 355.	1.6	13
1914	Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution. Chinese Journal of Catalysis, 2023, 47, 254-264.	6.9	10
1915	Hollow Spherical Pd/CdS/NiS with Carrier Spatial Separation for Photocatalytic Hydrogen Generation. Nanomaterials, 2023, 13, 1326.	1.9	1
1916	Enhanced photocatalytic Cr(VI) reduction and H2 production of CdSe quantum dots supported on Co-encapsulated N-doped carbon. Journal of the Taiwan Institute of Chemical Engineers, 2023, 146, 104798.	2.7	4
1917	A novel macro-meso-micro intimate heterogeneous structure constructed 3DOM TiO2/rGO/TiN composite for efficiently solar photocatalysis degradation of organic dye pollutants. Applied Surface Science, 2023, 621, 156774.	3.1	8
1918	Al-SrTiO3 decorated with non-noble metal co-catalyst NC-W2N for boosting photocatalytic overall water splitting via enhancing interfacial redox activity and charge separation. Journal of Alloys and Compounds, 2023, 947, 169515.	2.8	5
1919	Solvothermal preparation of hydrangea-like CuBi2O4 twining TiO2 NTAs with enhanced photoelectrocatalytic dye degradation and hydrogen generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131389.	2.3	4
1920	Nitrogen-doped carbon dot impregnated g-C3N4/SnS2 nanocomposite as an efficient mediator and co-catalyst for enhanced photocatalytic degradation and water splitting. Journal of Alloys and Compounds, 2023, 947, 169594.	2.8	18
1921	A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications. Journal of Alloys and Compounds, 2023, 950, 169888.	2.8	12

#	Article	IF	CITATIONS
1922	Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering, 2023, 11, 109356.	3.3	5
1923	Revealing the effects of transition metal doping on CoSe cocatalyst for enhancing photocatalytic H2 production. Applied Catalysis B: Environmental, 2023, 328, 122503.	10.8	24
1924	Synergism of electronic structure regulation and interface engineering for boosting hydrogen evolution reaction on S-Scheme FeS2/S-ZnSnO3 heterostructure. Applied Surface Science, 2023, 625, 157192.	3.1	2
1925	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
1926	Concurrent fabrication of ZnO–ZnFe2O4 hybrid nanocomposite for enhancing photocatalytic degradation of organic pollutants and its bacterial inactivation. Chemosphere, 2023, 318, 137928.	4.2	15
1927	In Situ Reconstructed Moâ€doped Amorphous FeOOH Boosts the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2023, 18, .	1.7	7
1928	Engineering of mixed metal oxides photocatalysts derived from transition-metal-based layered double hydroxide towards selective oxidation of cyclohexane under visible light. Applied Catalysis A: General, 2023, 653, 119067.	2.2	6
1929	Simultaneous Improvement in Hole Storage and Interfacial Catalysis over Ni–Fe Oxyhydroxide-Modified Tantalum Nitride Photoanodes. ACS Catalysis, 2023, 13, 2647-2656.	5.5	5
1930	Biohybrid Moleculeâ€Based Photocatalysts for Water Splitting Hydrogen Evolution. ChemPlusChem, 2023, 88, .	1.3	1
1931	Engineered Cobalt Singleâ€Atoms@BiFeO ₃ Heteronanostructures for Highly Efficient Solar Water Oxidation. Small, 2023, 19, .	5.2	6
1932	Methodological Investigation of the Band Gap Determination of Solid Semiconductors via UV/Vis Spectroscopy. ChemPhotoChem, 2023, 7, .	1.5	3
1933	AktivitÃ ts steigerung von Hydrogenase zur photokatalytischen Wasserstofferzeugung an Luft mittels Lösemitteltuning. Angewandte Chemie, 0, , .	1.6	0
1934	Augmenting the Performance of Hydrogenase for Aerobic Photocatalytic Hydrogen Evolution via Solvent Tuning. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1935	Heterojunction nanoarchitectonics of WOx/Au-g-C3N4 with efficient photogenerated carrier separation and transfer toward improved NO and benzene conversion. Materials Today Advances, 2023, 17, 100355.	2.5	7
1938	In-situ construction of Mn0.2Cd0.8S/NiB composite for highly efficient full spectrum-driven photocatalytic H2 evolution. Journal of Environmental Chemical Engineering, 2023, 11, 109522.	3.3	1
1939	Room temperature design of Ce(<scp>iv</scp>)-MOFs: from photocatalytic HER and OER to overall water splitting under simulated sunlight irradiation. Chemical Science, 2023, 14, 3451-3461.	3.7	13
1940	Photoredox-Catalyzed Plastic Waste Conversion: Nonselective Degradation versus Selective Synthesis. ACS Catalysis, 2023, 13, 3575-3590.	5.5	36
1941	Engineering a Selfâ€Grown TiO ₂ /Tiâ€MOF Heterojunction with Selectively Anchored Highâ€Density Pt Singleâ€Atomic Cocatalysts for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4

#	Article	IF	CITATIONS
1942	Engineering a Selfâ€Grown TiO ₂ /Tiâ€MOF Heterojunction with Selectively Anchored Highâ€Density Pt Singleâ€Atomic Cocatalysts for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	1.6	2
1943	CoP-Embedded Graphitic N-Doped C Nanosheets in Ohmic Contact with S-Deficient CdS Nanocrystals Triggering Efficient Visible-Light Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2023, 6, 4437-4448.	2.4	5
1944	Role of Co-catalysts for Photocatalytic H2O Splitting and CO2 Reduction. , 2023, , 231-274.		1
1945	Recent Developments in (Oxy)nitride Photocatalysts With Narrow Bandgaps for Solar-driven Water Splitting. , 2023, , 53-91.		0
1946	Post-cyclization of a bisimine-linked covalent organic framework to enhance the performance of visible-light photocatalytic hydrogen evolution. Polymer Chemistry, 2023, 14, 1323-1329.	1.9	1
1947	Fabrication of Noble-Metal-Free Mo2C/CdIn2S4 Heterojunction Composites with Elevated Carrier Separation for Photocatalytic Hydrogen Production. Molecules, 2023, 28, 2508.	1.7	3
1948	Recent advances on catalysts for photocatalytic selective hydrogenation of nitrobenzene to aniline. Frontiers in Chemistry, 0, 11, .	1.8	1
1949	Single transition metal atom centered clusters activating semiconductor surface lattice atoms for efficient solar fuel production. Journal of Materials Chemistry A, 2023, 11, 7746-7755.	5.2	2
1950	Hydration Mechanisms of Tungsten Trioxide Revealed by Water Adsorption Isotherms and First-Principles Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2023, 127, 5584-5596.	1.5	1
1951	Boosted Photoreforming of Plastic Waste <i>via</i> Defect-Rich NiPS ₃ Nanosheets. Journal of the American Chemical Society, 2023, 145, 6410-6419.	6.6	38
1952	Cellulose as sacrificial agents for enhanced photoactivated hydrogen production. Sustainable Energy and Fuels, 2023, 7, 1981-1991.	2.5	3
1953	Principal strategies for designing graphdiyne-based catalyst toward green hydrogen production from water electrolysis. JPhys Energy, 2023, 5, 021001.	2.3	0
1954	Enhanced Photocatalytic Activity of Two-Dimensional Polar Monolayer SiTe for Water-Splitting via Strain Engineering. Molecules, 2023, 28, 2971.	1.7	0
1955	Mechanistic Insight into the Synergy between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution. Advanced Materials, 2023, 35, .	11.1	18
1956	Enhanced hydrogen generation via overall water splitting using novel MoS2-BN nanoflowers assembled TiO2 ternary heterostructures. International Journal of Hydrogen Energy, 2023, 48, 22044-22059.	3.8	31
1957	Solar Fuel Production from Hydrogen Sulfide: An Upstream Energy Perspective. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	1
1958	Perovskite Materials for Photovoltaics: A Review. EPJ Applied Physics, 0, , .	0.3	0
1959	Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: A review. Chinese Chemical Letters, 2023, 34, 108417.	4.8	4

#	Article	IF	CITATIONS
1960	Organic ligands/dyes as photon-downshifting materials for clean energy. , 2023, , 265-280.		0
1961	Biomass Photoreforming for Hydrogen and Valueâ€Added Chemicals Coâ€Production on Hierarchically Porous Photocatalysts. Advanced Energy Materials, 2023, 13, .	10.2	16
1962	Significant improvement of TiO2 photocatalytic hydrogen generation by photothermic synergistic action and underlying mechanism. International Journal of Hydrogen Energy, 2023, 48, 26665-26675.	3.8	4
1963	Optimizing the band structure of sponge-like S-doped poly(heptazine imide) with quantum confinement effect towards boosting visible-light photocatalytic H2 generation. Journal of Colloid and Interface Science, 2023, 644, 116-123.	5.0	5
1964	Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO ₂ to CH ₄ . Nanoscale, 2023, 15, 8548-8577.	2.8	10
1965	Non-Noble Nanoparticles Cocatalysts in TiO ₂ for Photocatalytic Hydrogen Production from Water. A review. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2023, 70, 203-212.	0.1	1
1966	Customâ€Made Piezoelectric Solid Solution Material for Cancer Therapy. Small, 2023, 19, .	5.2	5
1967	Aggregationâ€Induced Structural Symmetry Breaking Promotes Charge Separation for Efficient Photocatalytic Hydrogen Production. ChemSusChem, 2023, 16, .	3.6	4
1991	Multi-functional photocatalytic systems for solar fuel production. Journal of Materials Chemistry A, 2023, 11, 14614-14629.	5.2	1
1998	Tandem cells for unbiased photoelectrochemical water splitting. Chemical Society Reviews, 2023, 52, 4644-4671.	18.7	17
2013	2D transition metal-based phospho-chalcogenides and their applications in photocatalytic and electrocatalytic hydrogen evolution reactions. Journal of Materials Chemistry A, 2023, 11, 16933-16962.	5.2	9
2021	Photocatalytic Seawater Splitting for hydrogen fuel production: Impact of Seawater Components and Accelerating Reagents on the Overall Performance. Sustainable Energy and Fuels, 0, , .	2.5	2
2026	Cocatalysts in photocatalytic methane conversion: recent achievements and prospects. Science China Chemistry, 2023, 66, 2532-2557.	4.2	3
2038	A chemist's guide to photoelectrode development for water splitting – the importance of molecular precursor design. , 2023, 1, 832-873.		2
2067	Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. Journal of Electronic Materials, 2024, 53, 1-15.	1.0	0
2080	Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Materials Chemistry Frontiers, 2024, 8, 1230-1249.	3.2	0
2081	Basic comprehension and recent trends in photoelectrocatalytic systems. Green Chemistry, 2024, 26, 1682-1708.	4.6	0
2097	Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Advances, 2024, 6, 1286-1330.	2.2	0