Evaluation of the VIIRS and MODIS LST products in an

Remote Sensing of Environment 142, 111-121 DOI: 10.1016/j.rse.2013.11.014

Citation Report

#	Article	IF	CITATIONS
1	An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors. Sensors, 2014, 14, 21385-21408.	3.8	12
2	A hybrid method combining neighborhood information from satellite data with modeled diurnal temperature cycles over consecutive days. Remote Sensing of Environment, 2014, 155, 257-274.	11.0	39
3	Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from Geostationary Operational Environmental Satellites. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,780.	3.3	47
4	Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 2014, 154, 19-37.	11.0	122
5	Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sensing, 2014, 6, 9829-9852.	4.0	562
6	Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8552-8567.	3.3	150
7	Exploring the water storage changes in the largest lake (<scp>S</scp> elin <scp>C</scp> o) over the <scp>T</scp> ibetan <scp>P</scp> lateau during 2003–2012 from a basinâ€wide hydrological modeling. Water Resources Research, 2015, 51, 8060-8086.	4.2	137
8	Analysis of land surface temperature spatial heterogeneity using variogram model. , 2015, , .		2
9	Evaluation of VIIRS Land Surface Temperature Using CREST-SAFE Air, Snow Surface, and Soil Temperature Data. Geosciences (Switzerland), 2015, 5, 334-360.	2.2	3
10	Estimation and Validation of Land Surface Temperatures from Chinese Second-Generation Polar-Orbit FY-3A VIRR Data. Remote Sensing, 2015, 7, 3250-3273.	4.0	55
11	Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 2015, 7, 5828-5848.	4.0	14
12	Analysis of the Land Surface Temperature Scaling Problem: A Case Study of Airborne and Satellite Data over the Heihe Basin. Remote Sensing, 2015, 7, 6489-6509.	4.0	9
13	Evaluation of Land Surface Temperature Retrieval from FY-3B/VIRR Data in an Arid Area of Northwestern China. Remote Sensing, 2015, 7, 7080-7104.	4.0	28
14	Quality Assessment of S-NPP VIIRS Land Surface Temperature Product. Remote Sensing, 2015, 7, 12215-12241.	4.0	54
15	An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products. Remote Sensing, 2015, 7, 15269-15294.	4.0	10
16	Comparison of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA Climate Reference Network site. Remote Sensing of Environment, 2015, 165, 249-264.	11.0	37
17	Estimating time series of land surface energy fluxes using optimized two source energy balance schemes: Model formulation, calibration, and validation. Agricultural and Forest Meteorology, 2015, 208, 62-75.	4.8	41
18	Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring. Environmental Sciences: Processes and Impacts, 2015, 17, 1396-1404.	3.5	29

#	Article	IF	CITATIONS
19	Estimating mountain glacier surface temperatures from Landsat-ETM + thermal infrared data: A case study of Qiyi glacier, China. Remote Sensing of Environment, 2015, 163, 286-295.	11.0	29
20	Validation of the results of the satellite monitoring of land surface temperature. Russian Meteorology and Hydrology, 2015, 40, 131-140.	1.3	2
21	Intercomparison of Operational Land Surface Temperature Products Derived From MSG-SEVIRI and Terra/Aqua-MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4163-4170.	4.9	28
22	Investigating the Impact of Soil Moisture on Thermal Infrared Emissivity Using ASTER Data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 294-298.	3.1	23
23	Modeling Directional Brightness Temperature Over Mixed Scenes of Continuous Crop and Road: A Case Study of the Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 234-238.	3.1	17
24	Regression Kriging-Based Upscaling of Soil Moisture Measurements From a Wireless Sensor Network and Multiresource Remote Sensing Information Over Heterogeneous Cropland. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 92-96.	3.1	46
25	Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China. Hydrology and Earth System Sciences, 2016, 20, 2333-2352.	4.9	46
26	Satellite Retrieval of Surface Evapotranspiration with Nonparametric Approach: Accuracy Assessment over a Semiarid Region. Advances in Meteorology, 2016, 2016, 1-14.	1.6	8
27	Estimating the Surface Air Temperature by Remote Sensing in Northwest China Using an Improved Advection-Energy Balance for Air Temperature Model. Advances in Meteorology, 2016, 2016, 1-11.	1.6	15
28	Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels. Hydrology and Earth System Sciences, 2016, 20, 4409-4438.	4.9	11
29	Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A) Method. Remote Sensing, 2016, 8, 644.	4.0	5
30	Validation of Regional-Scale Remote Sensing Products in China: From Site to Network. Remote Sensing, 2016, 8, 980.	4.0	25
31	Improving HJ-1B IRS land surface temperature product using ASTER Global Emissivity Dataset. , 2016, , .		7
32	Retrieval of Leaf, Sunlit Soil, and Shaded Soil Component Temperatures Using Airborne Thermal Infrared Multiangle Observations. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4660-4671.	6.3	31
33	Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 2016, 540, 574-587.	5.4	64
34	Temporal and spatial variability of daytime land surface temperature in Houston: Comparing DISCOVERâ€AQ aircraft observations with the WRF model and satellites. Journal of Geophysical Research D: Atmospheres, 2016, 121, 185-195.	3.3	5
35	Retrieving land surface temperature from Landsat 8 TIRS data using RTTOV and ASTER GED. , 2016, , .		7
36	Ground validation and uncertainty esitmation of VIIRS land surface temperature product. , 2016, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
37	Land surface temperature and emissivity estimation for Urban Heat Island assessment using medium- and low-resolution space-borne sensors: A review. Geocarto International, 2017, 32, 455-470.	3.5	37
38	Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 1-10.	11.1	65
39	A simple temperature domain twoâ€source model for estimating agricultural field surface energy fluxes from Landsat images. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5211-5236.	3.3	43
40	Estimation of Surface Upward Longwave Radiation Using a Direct Physical Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4412-4426.	6.3	27
41	Evaluation of MODIS land surface temperature with <i>in-situ</i> snow surface temperature from CREST-SAFE. International Journal of Remote Sensing, 2017, 38, 4722-4740.	2.9	6
42	Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agricultural and Forest Meteorology, 2017, 244-245, 82-97.	4.8	69
43	Estimation of Evapotranspiration Using a Nonparametric Approach Under All Sky: Accuracy Evaluation and Error Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2528-2539.	4.9	11
44	Evaluating Four Remote Sensing Methods for Estimating Surface Air Temperature on a Regional Scale. Journal of Applied Meteorology and Climatology, 2017, 56, 803-814.	1.5	18
45	Modeling the Temporal Variability of Thermal Emissions From Row-Planted Scenes Using a Radiosity and Energy Budget Method. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6010-6026.	6.3	13
46	New methods for calculating bare soil land surface temperature over mountainous terrain. Journal of Mountain Science, 2017, 14, 2471-2483.	2.0	4
47	A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index. Remote Sensing, 2017, 9, 780.	4.0	10
48	Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression. Remote Sensing, 2017, 9, 789.	4.0	96
49	Estimating Land Surface Temperature from Feng Yun-3C/MERSI Data Using a New Land Surface Emissivity Scheme. Remote Sensing, 2017, 9, 1247.	4.0	32
50	Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm. Advances in Meteorology, 2017, 2017, 1-10.	1.6	0
51	Estimating Subpixel Surface Heat Fluxes through Applying Temperature-Sharpening Methods to MODIS Data. Remote Sensing, 2017, 9, 836.	4.0	14
52	Mapping daily evapotranspiration using ASTER and MODIS images based on data fusion over irrigated agricultural areas. , 2017, , .		1
53	A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature. Remote Sensing, 2017, 9, 43.	4.0	8
54	Analyzing land surface temperature trends using non-parametric approach: A case of Delhi, India. Urban Climate, 2018, 24, 19-25.	5.7	19

CITATION REPORT

	CITATION	Report	
#	Article	IF	CITATIONS
55	Multiple timescale analysis of the urban heat island effect based on the Community Land Model: a case study of the city of Xi'an, China. Environmental Monitoring and Assessment, 2018, 190, 8.	2.7	10
56	Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 2018, 70, 84-92.	2.8	76
57	A Practical Two-Stage Algorithm for Retrieving Land Surface Temperature from AMSR-E Data—A Case Study Over China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 1939-1948.	4.9	8
58	An analysis of spatial representativeness of air temperature monitoring stations. Theoretical and Applied Climatology, 2018, 132, 857-865.	2.8	7
59	Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135, 1-12.	11.1	22
60	Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sensing, 2018, 10, 1852.	4.0	37
61	Analysis of the longâ€ŧerm highâ€resolution infrared radiation sounder land surface temperature against ground measurements during 1980–2009 in the Poyang Lake basin, China. International Journal of Climatology, 2018, 38, 5733-5745.	3.5	3
62	Evaluation of a Two-Source Energy Balance Model for Estimating Regional Land Surface Heat Fluxes During the HiWATER-MUSOEXE. , 2018, , .		1
63	Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sensing, 2018, 10, 736.	4.0	4
64	Preliminary Evaluation of the Two Collection 6 Modis Land Surface Temperature Products in an Arid Area of Northwest China. , 2018, , .		0
65	A Temperature and Emissivity Separation Algortihm for Chinese Gaofen-5 Satelltie Data. , 2018, , .		2
66	Continuous Daily Evapotranspiration Estimation at the Field-Scale over Heterogeneous Agricultural Areas by Fusing ASTER and MODIS Data. Remote Sensing, 2018, 10, 1694.	4.0	12
67	Land Surface Temperature. , 2018, , 264-283.		9
68	Land Surface Temperature Product Development for JPSS and GOES-R Missions. , 2018, , 284-303.		12
69	Intercomparison of Three Two-Source Energy Balance Models for Partitioning Evaporation and Transpiration in Semiarid Climates. Remote Sensing, 2018, 10, 1149.	4.0	21
70	Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products. Journal of Glaciology, 2018, 64, 506-516.	2.2	17
71	Estimation of land surface temperature from three thermal infrared channels of MODIS data for dust aerosol skies. Optics Express, 2018, 26, 4148.	3.4	4
72	Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data. Remote Sensing, 2018, 10, 474.	4.0	27

#	Article	IF	CITATIONS
73	A New Directional Canopy Emissivity Model Based on Spectral Invariants. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 6911-6926.	6.3	26
74	An alternative split-window algorithm for retrieving land surface temperature from Visible Infrared Imaging Radiometer Suite data. International Journal of Remote Sensing, 2019, 40, 1640-1654.	2.9	10
75	Influence of emissivity angular variation on land surface temperature retrieved using the generalized split-window algorithm. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101917.	2.8	13
76	Comparison of the MuSyQ and MODIS Collection 6 Land Surface Temperature Products Over Barren Surfaces in the Heihe River Basin, China. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8081-8094.	6.3	35
77	A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives. Remote Sensing of Environment, 2019, 232, 111304.	11.0	91
78	Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E/AMSR-2 and MODIS/GOES Observations. Remote Sensing, 2019, 11, 1704.	4.0	27
79	Japan Aerospace Exploration Agency's public-health monitoring and analysis platform: A satellite-derived environmental information system supporting epidemiological study. Geospatial Health, 2019, 14, .	0.8	4
80	The effect of thermal radiation from surrounding terrain on glacier surface temperatures retrieved from remote sensing data: A case study from Qiyi Glacier, China. Remote Sensing of Environment, 2019, 231, 111267.	11.0	16
81	Impact of environmental pollution on the retrieval of AOD products from Visible Infrared Imaging Radiometer Suite (VIIRS) over wuhan. Atmospheric Pollution Research, 2019, 10, 2063-2071.	3.8	7
82	Evaluating the Temperature Difference Parameter in the SSEBop Model with Satellite-Observed Land Surface Temperature Data. Remote Sensing, 2019, 11, 1947.	4.0	8
83	Estimating monthly average temperature by remote sensing in China. Advances in Space Research, 2019, 63, 2345-2357.	2.6	24
84	Spatiotemporal variations and its influencing factors of grassland net primary productivity in Inner Mongolia, China during the period 2000–2014. Journal of Arid Environments, 2019, 165, 106-118.	2.4	29
85	Advances in quantitative remote sensing product validation: Overview and current status. Earth-Science Reviews, 2019, 196, 102875.	9.1	63
86	Using 3D robust smoothing to fill land surface temperature gaps at the continental scale. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101879.	2.8	18
87	A surface temperature and moisture intercomparison study of the Weather Research and Forecasting model, inâ€situ measurements and satellite observations over the Atacama Desert. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2202-2220.	2.7	17
88	Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 2019, 225, 16-29.	11.0	258
89	Remote sensing of earth's energy budget: synthesis and review. International Journal of Digital Earth, 2019, 12, 737-780.	3.9	105
90	Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area. Frontiers of Earth Science, 2019, 13, 614-627.	2.1	13

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
91	Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sensing, 2019, 11, 155.	4.0	56
92	Controls on Land Surface Temperature in Deserts of Southern California Derived from MODIS Satellite Time Series Analysis, 2000 to 2018. Climate, 2019, 7, 32.	2.8	4
93	Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration. Advances in Meteorology, 2019, 2019, 1-13.	1.6	4
94	VIIRS LST Product Validation Based on Spatial Representativeness Evaluation of the Ground Measurements. , 2019, , .		0
95	A Combined Algorithm for Soil and Vegetation Temperatures with SLSTR Dual-Angle Data. , 2019, , .		0
96	Improvement of Split-Window Algorithm for Land Surface Temperature Retrieval from Sentinel-3A SLSTR Data Over Barren Surfaces Using ASTER GED Product. Remote Sensing, 2019, 11, 3025.	4.0	14
97	Evaluation of the Musyq Land Surface Temperature Product in an Arid Area of Northwest China. , 2019, , .		0
98	Mapping Regional Turbulent Heat Fluxes via Assimilation of MODIS Land Surface Temperature Data into an Ensemble Kalman Smoother Framework. Earth and Space Science, 2019, 6, 2423-2442.	2.6	10
99	High Temporal Resolution Land Surface Temperature Retrieval from Global Geostationary Satellite Data. , 2019, , .		0
100	Evaluation of Atmospheric Correction Methods for the ASTER Temperature and Emissivity Separation Algorithm Using Ground Observation Networks in the HiWATER Experiment. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 3001-3014.	6.3	16
101	A remote sensing method for retrieving land surface emissivity and temperature in cloudy areas: a case study over South China. International Journal of Remote Sensing, 2019, 40, 1724-1735.	2.9	7
102	Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan. Meteorology and Atmospheric Physics, 2019, 131, 467-486.	2.0	21
103	Determination of thermal pollution of water resources caused by Neka power plant through processing satellite imagery. Environment, Development and Sustainability, 2020, 22, 1953-1975.	5.0	17
104	Land Surface Emissivity Product for NOAA JPSS and GOES-R Missions: Methodology and Evaluation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 307-318.	6.3	27
105	Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sensing, 2020, 12, 21.	4.0	74
106	Understanding the attributes of the dual oasis effect in an arid region using remote sensing and observational data. Ecosystem Health and Sustainability, 2020, 6, .	3.1	4
107	Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture, 2020, 19, 277-290.	3.5	42
108	Intercomparison of In Situ Sensors for Ground-Based Land Surface Temperature Measurements. Sensors, 2020, 20, 5268.	3.8	18

#	Article	IF	CITATIONS
109	Monitoring soil carbon flux with in-situ measurements and satellite observations in a forested region. Geoderma, 2020, 378, 114617.	5.1	7
110	Using Landsat 8 data to compare percent impervious surface area and normalized difference vegetation index as indicators of urban heat island effects in Connecticut, USA. Environmental Earth Sciences, 2020, 79, 1.	2.7	9
111	An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4689-4701.	4.9	44
112	Recent fall Eurasian cooling linked to North Pacific sea surface temperatures and a strengthening Siberian high. Nature Communications, 2020, 11, 5202.	12.8	22
113	Adjustment From Temperature Annual Dynamics for Reconstructing Land Surface Temperature Based on Downscaled Microwave Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5272-5283.	4.9	6
114	An Operational Split-Window Algorithm for Retrieving Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data. Remote Sensing, 2020, 12, 2613.	4.0	14
115	An Improved Temperature and Emissivity Separation Algorithm for the Advanced Himawari Imager. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 7105-7124.	6.3	28
116	Calculation of land surface emissivity and retrieval of land surface temperature based on a spectral mixing model. Infrared Physics and Technology, 2020, 108, 103333.	2.9	15
117	Estimating surface heat and water vapor fluxes by combining two-source energy balance model and back-propagation neural network. Science of the Total Environment, 2020, 729, 138724.	8.0	16
118	Monitoring of water surface temperature of Eurasian large lakes using <scp>MODIS</scp> land surface temperature product. Hydrological Processes, 2020, 34, 3582-3595.	2.6	9
119	Ecological environment assessment for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing. Ecological Indicators, 2020, 117, 106521.	6.3	52
120	Evaluation of Six High-Spatial Resolution Clear-Sky Surface Upward Longwave Radiation Estimation Methods with MODIS. Remote Sensing, 2020, 12, 1834.	4.0	14
121	New hybrid algorithm for land surface temperature retrieval from multiple-band thermal infrared image without atmospheric and emissivity data inputs. International Journal of Digital Earth, 2020, 13, 1430-1453.	3.9	16
122	On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting, 2020, 35, 891-919.	1.4	20
123	Wind Speed-Independent Two-Source Energy Balance Model Based on a Theoretical Trapezoidal Relationship between Land Surface Temperature and Fractional Vegetation Cover for Evapotranspiration Estimation. Advances in Meteorology, 2020, 2020, 1-22.	1.6	3
124	Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 1794-1807.	6.3	56
125	A Temperature-Domain SEBAL Model Based on a Wind Speed-Independent Theoretical Trapezoidal Space Between Fractional Vegetation Coverage and Land Surface Temperature. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 756-760.	3.1	3
126	Quantifying the influences of land surface parameters on LST variations based on GeoDetector model in Syr Darya Basin, Central Asia. Journal of Arid Environments, 2021, 186, 104415.	2.4	25

#	Article	IF	CITATIONS
127	Temperaturas mÃnimas estivales en el sureste de la penÃnsula ibérica a partir de termografÃas satelitales Revista De Estudios Andaluces, 2021, , 8-33.	0.2	0
128	Retrieving Land Surface Temperature From Chinese FY-3D MERSI-2 Data Using an Operational Split Window Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6639-6651.	4.9	11
129	Estimating Downward Shortwave Solar Radiation on Clear-Sky Days in Heterogeneous Surface Using LM-BP Neural Network. Energies, 2021, 14, 273.	3.1	5
130	Spatial Downscaling of MODIS Land Surface Temperature Based on a Geographically and Temporally Weighted Autoregressive Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7637-7653.	4.9	8
131	On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient. Agricultural and Forest Meteorology, 2021, 298-299, 108308.	4.8	21
132	Comparing different space-borne sensors and methods for the retrieval of land surface temperature. Earth Science Informatics, 2021, 14, 985-995.	3.2	6
133	Reconstruction of the Daily MODIS Land Surface Temperature Product Using the Two-Step Improved Similar Pixels Method. Remote Sensing, 2021, 13, 1671.	4.0	21
134	A Fourâ€Parameter Model for Estimating Diurnal Temperature Cycle From MODIS Land Surface Temperature Product. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033855.	3.3	2
135	Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 2021, 256, 112313.	11.0	114
136	Land surface thermal alteration and pattern simulation based on influencing factors of rural landscape. Geocarto International, 2022, 37, 5278-5306.	3.5	5
137	On the Effective Surface Temperature of a Natural Landscape: Infrared or Not Infrared. Boundary-Layer Meteorology, 2021, 180, 353-362.	2.3	1
138	Effects of biomass burning on chlorophyll-a concentration and particulate organic carbon in the subarctic North Pacific Ocean based on satellite observations and WRF-Chem model simulations: A case study. Atmospheric Research, 2021, 254, 105526.	4.1	14
139	Estimating evapotranspiration based on the satellite-retrieved near-infrared reflectance of vegetation (NIR _v) over croplands. GIScience and Remote Sensing, 2021, 58, 889-913.	5.9	5
140	Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 51-67.	11.1	37
141	Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A review of reconstruction and spatiotemporal fusion techniques. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 112-137.	9.6	61
142	A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters. Remote Sensing of Environment, 2021, 264, 112612.	11.0	24
143	Continuous evaluation of the spatial representativeness of land surface temperature validation sites. Remote Sensing of Environment, 2021, 265, 112669.	11.0	21
144	Estimation of all-sky 1Âkm land surface temperature over the conterminous United States. Remote Sensing of Environment, 2021, 266, 112707.	11.0	35

#	Article	IF	CITATIONS
145	Research on the Lake Surface Water Temperature Downscaling Based on Deep Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5550-5558.	4.9	2
146	Comparative Analysis and Prediction of Ecological Quality of Delhi. Lecture Notes in Civil Engineering, 2021, , 163-177.	0.4	0
147	Evaluation of the MOD11A2 product for canopy temperature monitoring in the Brazilian Atlantic Forest. Environmental Monitoring and Assessment, 2021, 193, 45.	2.7	6
148	Estimation of land surface heat fluxes based on visible infrared imaging radiometer suite data: case study in northern China. Journal of Applied Remote Sensing, 2017, 11, 1.	1.3	4
149	Generating the 30-m land surface temperature product over continental China and USA from landsat 5/7/8 data. Science of Remote Sensing, 2021, 4, 100032.	4.8	21
150	Determination of the Correlation between the Air Temperature Measured <i>in Situ</i> and Remotely Sensed Data from MODIS and SEVIRI in Congo-Brazzaville. Atmospheric and Climate Sciences, 2018, 08, 192-211.	0.3	2
151	Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD, ARM, and NDBC sites. International Journal of Digital Earth, 2021, 14, 640-660.	3.9	26
152	A TIR forest reflectance and transmittance (FRT) model for directional temperatures with structural and thermal stratification. Remote Sensing of Environment, 2022, 268, 112749.	11.0	13
153	Estimating Regional Evapotranspiration Using a Satellite-Based Wind Speed Avoiding Priestley–Taylor Approach. Water (Switzerland), 2021, 13, 3144.	2.7	1
154	Thermally derived evapotranspiration from the Surface Temperature Initiated Closure (STIC) model improves cropland GPP estimates under dry conditions. Remote Sensing of Environment, 2022, 271, 112901.	11.0	10
155	A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data. Remote Sensing, 2022, 14, 1215.	4.0	5
156	Up-scaling the latent heat flux from instantaneous to daily-scale: A comparison of three methods. Journal of Hydrology: Regional Studies, 2022, 40, 101057.	2.4	2
157	Comparing Coarse-Resolution Land Surface Temperature Products over Western Australia. Remote Sensing, 2022, 14, 2296.	4.0	12
158	Ten Years of VIIRS Land Surface Temperature Product Validation. Remote Sensing, 2022, 14, 2863.	4.0	2
159	A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis. Earth System Science Data, 2022, 14, 3091-3113.	9.9	10
160	Using of Remote Sensing-Based Auxiliary Variables for Soil Moisture Scaling and Mapping. Remote Sensing, 2022, 14, 3373.	4.0	1
161	Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series. Remote Sensing, 2022, 14, 3385.	4.0	0
162	Uncertainty quantification in land surface temperature retrieved from Himawari-8/AHI data by operational algorithms. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 171-187.	11.1	4

CITATION REPORT

#	Article	IF	CITATIONS
163	Land Surface Temperature Retrieval from Gf5-02 Satellite data using a Split-Window Algorithm. , 2022, , .		0
164	A Literature Systematic Review of Thermal Infrared Remote Sensing Satellites Land Surface Temperature. , 2022, , .		0
165	Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan. Applied Sciences (Switzerland), 2022, 12, 10458.	2.5	2
166	Satellite thermographies as an essential tool for the identification of cold air pools: an example from SE Spain. European Journal of Remote Sensing, 2022, 55, 586-597.	3.5	1
167	Continental-scale evaluation of three ECOSTRESS land surface temperature products over Europe and Africa: Temperature-based validation and cross-satellite comparison. Remote Sensing of Environment, 2022, 282, 113296.	11.0	13
168	PKULAST-An Extendable Model for Land Surface Temperature Retrieval From Thermal Infrared Remote Sensing Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 9278-9292.	4.9	0
169	Deep learning modelling of long-term satellite remotely sensed data for low-temperature asphalt binder selection. Innovative Infrastructure Solutions, 2023, 8, .	2.2	0
170	Retrieval of Land Surface Emissivities Over Partially Vegetated Surfaces From Satellite Data Using Radiative Transfer Models. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-21.	6.3	3
171	Reconstruction of Hourly All-Weather Land Surface Temperature by Integrating Reanalysis Data and Thermal Infrared Data From Geostationary Satellites (RTG). IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	3
172	Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 2023, 61, .	23.0	67
173	Long-term multi source analysis for asphalt binder PG selection using deep learning high air temperature modelling. Road Materials and Pavement Design, 2023, 24, 2504-2521.	4.0	0
174	Evaluation of Three Land Surface Temperature Products From Landsat Series Using in Situ Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-19.	6.3	0
175	Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data. Earth System Science Data, 2023, 15, 869-895.	9.9	9
176	Detection of geothermal potential based on land surface temperature derived from remotely sensed and in-situ data. Geo-Spatial Information Science, 0, , 1-17.	5.3	4
177	An atmospheric influence correction method for longwave radiation-based in-situ land surface temperature. Remote Sensing of Environment, 2023, 293, 113611.	11.0	9
178	Correction for LST directionality impact on the estimation of surface upwelling longwave radiation over vegetated surfaces at the satellite scale. Remote Sensing of Environment, 2023, 295, 113649.	11.0	2
179	Urban heat island and ecological condition modeling using thermal remote sensing in Tigray–Northern Ethiopia. Modeling Earth Systems and Environment, 2024, 10, 735-749.	3.4	0
180	Estimating Hourly Land Surface Temperature From FY-4A AGRI Using an Explicitly Emissivity-Dependent Split-Window Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 5474-5487.	4.9	2

#	Article	IF	CITATIONS
181	Land Surface Temperature Retrieval From Sentinel-3A SLSTR Data: Comparison Among Split-Window, Dual-Window, Three-Channel, and Dual-Angle Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	6.3	2
182	Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests. Agricultural and Forest Meteorology, 2023, 340, 109618.	4.8	1
183	Near-Real-Time Estimation of Hourly All-Weather Land Surface Temperature by Fusing Reanalysis Data and Geostationary Satellite Thermal Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-18.	6.3	1
184	An Operational Split-Window Algorithm for Generating Long-Term Land Surface Temperature Products From Chinese Fengyun-3 Series Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	6.3	1
185	Spatiotemporal Heterogeneity of Multiple In Situ Observational Sites and Its Site Deployment Optimization Strategy. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-18.	6.3	0
186	Estimation of the deep drainage for irrigated cropland based on satellite observations and deep neural networks. Remote Sensing of Environment, 2023, 298, 113819.	11.0	0
187	A Temperature-Based Validation Method for Medium and High Spatial Resolution LST Products. , 2023, ,		0
188	Comparisons of Three Single-Channel Algorithms for Retrieving Land Surface Temperature from HJ-1B Satellite Data. , 2023, , .		0
189	Improving HJ-1B/IRS LST Retrieval of the Generalized Single-Channel Algorithm with Refined ERA5 Atmospheric Profile Database. Remote Sensing, 2023, 15, 5092.	4.0	0
190	Multi-criteria decision making for solar power - Wind power plant site selection using a GIS-intuitionistic fuzzy-based approach with an application in the Netherlands. Energy Strategy Reviews, 2024, 51, 101307.	7.3	1
191	MODIS land surface temperature in East Antarctica: accuracy and its main affecting factors. Journal of Glaciology, 0, , 1-12.	2.2	0
192	Downscaling Land Surface Temperature Derived from Microwave Observations with the Super-Resolution Reconstruction Method: A Case Study in the CONUS. Remote Sensing, 2024, 16, 739.	4.0	Ο