Pressure-induced amorphization and polyamorphism:

Progress in Materials Science 61, 216-282 DOI: 10.1016/j.pmatsci.2013.12.002

Citation Report

#	Article	IF	CITATIONS
1	Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4: A first-principles study. Computational Condensed Matter, 2014, 1, 1-7.	0.9	9
2	Raman and <i>ab initio</i> investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity. Journal of Applied Physics, 2015, 117, .	1.1	28
3	Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4. Journal of Chemical Physics, 2015, 143, 164508.	1.2	13
4	Polyamorphism in tetrahedral substances: Similarities between silicon and ice. Journal of Chemical Physics, 2015, 143, 034501.	1.2	1
5	High-pressure phase transition in Y ₃ Fe ₅ O ₁₂ . Journal of Physics Condensed Matter, 2015, 27, 405401.	0.7	7
6	Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(<scp>d</scp> , <scp>l</scp> -lactic acid-ran-glycolic acid) (PLGA). Soft Matter, 2015, 11, 5666-5677.	1.2	20
7	Size-dependent pressure-induced amorphization: a thermodynamic panorama. Physical Chemistry Chemical Physics, 2015, 17, 903-910.	1.3	18
8	Exploring the pressure–temperature behaviour of crystalline and plastic crystalline phases of N-isopropylpropionamide. CrystEngComm, 2015, 17, 2562-2568.	1.3	1
9	Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure. Scientific Reports, 2015, 5, 10810.	1.6	4
10	Fabrication of a Material Assembly of Silver Nanoparticles Using the Phase Gradients of Optical Tweezers. Physical Review Letters, 2015, 114, 143901.	2.9	76
11	Structural transformation between long and short-chain form of liquid sulfur from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2015, 142, 154502.	1.2	18
12	Supramolecular interactions in the solid state. IUCrJ, 2015, 2, 675-690.	1.0	108
13	Atomistic pathways of the pressure-induced densification of quartz. Physical Review B, 2015, 92, .	1.1	6
14	Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on. Physical Chemistry Chemical Physics, 2015, 17, 2917-2934.	1.3	99
15	Critical behavior of a water monolayer under hydrophobic confinement. Scientific Reports, 2014, 4, 4440.	1.6	41
16	Elasticity of single-crystal quartz to 10ÂGPa. Physics and Chemistry of Minerals, 2015, 42, 203-212.	0.3	57
17	Polyamorphism in Aluminum Nitride: A First Principles Molecular Dynamics Study. Journal of the American Ceramic Society, 2016, 99, 1594-1600.	1.9	8
18	Hydrate Networks under Mechanical Stress - A Case Study for Co3(PO4)2·8H2O. European Journal of Inorganic Chemistry, 2016, 2016, 2072-2081.	1.0	15

ARTICLE IF CITATIONS Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in 5.8 47 19 VO2(B) nanosheets. Nature Communications, 2016, 7, 12214. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced 1.2 24 amorphization. Journal of Chemical Physics, 2016, 144, 204503. First-principles study on the electronic, elastic and thermodynamic properties of three novel 21 2.0 0 germanium nitrides. Journal of Semiconductors, 2016, 37, 072002. Prediction of the solid–solid pressure-induced phase transition in cubic ionic crystals with empirical 0.5 potentials. Theoretical Chemistry Accounts, 2016, 135, 1. Semiâ€brittle flow of granitoid fault rocks in experiments. Journal of Geophysical Research: Solid 23 1.4 55 Earth, 2016, 121, 1677-1705. Revisiting pressure-induced phase transition in silicon clathrates using Ge substitution. Physical Review B, 2016, 93, . 1.1 Structural evolution mechanisms of amorphous and liquid < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>As</mml:mi><mml:mi><ml:mn12</mml:m12></mml:m12> 25 high pressures. Physical Review B, 2016, 93, . xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l²</mml:mi><mml:mo>a[^]</mml:mo><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi 1.1 26 16 mathvariant="normal">i</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>under Metastable structural transformations and pressure-induced amorphization in natural 27 (Mg,Fe)₂SiO₄olivine under static compression: A Raman spectroscopic study. 0.9 20 American Mineralogist, 2016, 101, 1642-1650. Structural studies of Bi2O3-Nb2O5-TeO2 glasses. Journal of Non-Crystalline Solids, 2016, 451, 68-76. 1.5 Structure and dynamics in network-forming materials. Journal of Physics Condensed Matter, 2016, 28, 29 0.7 8 503001. Grand and Semigrand Canonical Basin-Hopping. Journal of Chemical Theory and Computation, 2016, 12, 2.3 26 902-909. Amorphization and nanocrystallization of silicon under shock compression. Acta Materialia, 2016, 103, $\mathbf{31}$ 3.8 108 519-533. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction 1.3 sampling. Physical Chemistry Chemical Physics, 2017, 19, 4725-4733. Pressure-Induced Disordering in SnO₂ Nanoparticles. Journal of Physical Chemistry C, 33 1.5 23 2017, 121, 15463-15471. Pressure-induced elastic anomaly in a polyamorphous metallic glass. Applied Physics Letters, 2017, 110, . 1.5 Communication: Enthalpy relaxation in a metal-organic zeolite imidazole framework (ZIF-4) 35 1.2 10 glass-former. Journal of Chemical Physics, 2017, 146, 121101. Is High-Density Amorphous Ice Simply a "Derailed―State along the Ice I to Ice IV Pathway?. Journal of 2.1 38 Physical Chemistry Letters, 2017, 8, 1645-1650.

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
37	Relaxation processes of densified silica glass. Journal of Chemical Physics, 2017, 146, .	1.2	30
38	Impact of pressure on the structure of glass and its material properties. MRS Bulletin, 2017, 42, 734-737.	1.7	16
39	Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Transactions, 2017, 46, 14795-14803.	1.6	30
40	Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9791-9796.	3.3	48
41	Revisiting local structural changes in GeO ₂ glass at high pressure. Journal of Physics Condensed Matter, 2017, 29, 465401.	0.7	8
42	Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses. Scientific Reports, 2017, 7, 6564.	1.6	12
43	Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation. Nature Communications, 2017, 8, 1481.	5.8	31
44	First-Principles Study on Polymorphs of AgVO ₃ : Assessing to Structural Stabilities and Pressure-Induced Transitions. Journal of Physical Chemistry C, 2017, 121, 27624-27642.	1.5	22
45	Multiple pathways in pressure-induced phase transition of coesite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12894-12899.	3.3	7
46	Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. Journal of Materials Chemistry C, 2017, 5, 12157-12162.	2.7	35
47	High-pressure studies with x-rays using diamond anvil cells. Reports on Progress in Physics, 2017, 80, 016101.	8.1	118
48	High pressure Raman scattering study on Sm 2 Mo 4 O 15 system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 80-85.	2.0	6
50	Anomalous Features in the Potential Energy Landscape of a Waterlike Monatomic Model with Liquid and Glass Polymorphism. Physical Review Letters, 2018, 120, 035701.	2.9	6
51	Metastable States in Pressurized Bulk and Mesoporous Germanium. Journal of Physical Chemistry C, 2018, 122, 10929-10938.	1.5	6
52	Pressure-induced phase transition from calcite to aragonite detected by fluorescence spectroscopy. European Journal of Mineralogy, 2018, 30, 711-720.	0.4	4
53	Perspective: High pressure transformations in nanomaterials and opportunities in material design. Journal of Applied Physics, 2018, 124, .	1.1	37
54	Simple-to-Complex Transformation in Liquid Rubidium. Journal of Physical Chemistry Letters, 2018, 9, 2909-2913.	2.1	20
55	Pressure-Induced Sublattice Disordering in SnO2 : Invasive Selective Percolation. Physical Review Letters, 2018, 120, 265702.	2.9	11

#	Article	IF	CITATIONS
56	Origin of Pressureâ€Induced Metallization in Cu ₃ N: An Xâ€ray Absorption Spectroscopy Study. Physica Status Solidi (B): Basic Research, 2018, 255, 1800073.	0.7	4
57	Pressure-induced chemical reordering in supercooled polyionic sulfophosphate liquids. Journal of Non-Crystalline Solids, 2018, 499, 95-100.	1.5	2
58	X-ray Scattering and O–O Pair-Distribution Functions of Amorphous Ices. Journal of Physical Chemistry B, 2018, 122, 7616-7624.	1.2	58
59	High Pressure Phases and Amorphization of a Negative Thermal Expansion Compound TaVO5. Inorganic Chemistry, 2018, 57, 6973-6980.	1.9	7
60	Towards quantitative treatment of electron pair distribution function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 532-549.	0.5	38
61	Evidence of polyamorphic transitions during densified SiO2 glass annealing. Journal of Chemical Physics, 2019, 151, 164502.	1.2	14
62	Revisiting Pressure-Induced Transitions in Mesoporous Anatase TiO ₂ . Journal of Physical Chemistry C, 2019, 123, 23488-23496.	1.5	5
63	Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Pressure Research, 2019, 39, 608-618.	0.4	44
64	Pressure-induced tuning of lattice distortion in a high-entropy oxide. Communications Chemistry, 2019, 2, .	2.0	53
65	Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate. Journal of Chemical Physics, 2019, 150, 204506.	1.2	12
66	Pressure-induced magnetovolume effect in CoCrFeAl high-entropy alloy. Communications Physics, 2019, 2, .	2.0	16
67	Ultimate Mechanical Properties of Forsterite. Minerals (Basel, Switzerland), 2019, 9, 787.	0.8	12
68	Liquid state anomalies and the relationship to the crystalline phase diagram. Physical Review E, 2019, 99, 010103.	0.8	5
69	Polymorphs of ZnV ₂ O ₆ under Pressure: A First-Principle Investigation. Journal of Physical Chemistry C, 2019, 123, 3239-3253.	1.5	16
70	Pressure-induced amorphization, mechanical and electronic properties of zeolitic imidazolate framework (ZIF-8). Materials Chemistry and Physics, 2020, 240, 122222.	2.0	16
72	Pressure-induced amorphization and existence of molecular and polymeric amorphous forms in dense SO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8736-8742.	3.3	13
73	Polyamorphism Mirrors Polymorphism in the Liquid–Liquid Transition of a Molecular Liquid. Journal of the American Chemical Society, 2020, 142, 7591-7597.	6.6	17
74	Pressure-induced phase transition of isoreticular MOFs: Mechanical instability due to ligand buckling. Microporous and Mesoporous Materials, 2021, 312, 110765.	2.2	10

#	Article	IF	CITATIONS
75	Probing the coupling between the components in a graphene–mesoporous germanium nanocomposite using high-pressure Raman spectroscopy. Nanoscale Advances, 2021, 3, 2577-2584.	2.2	2
76	Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A, 2021, 9, 10562-10611.	5.2	250
77	Machine learning reveals the complexity of dense amorphous silicon. Nature, 2021, 589, 22-23.	13.7	7
80	Formation of Nanocrystalline and Amorphous Materials Causes Parallel Brittleâ€Viscous Flow of Crustal Rocks: Experiments on Quartzâ€Feldspar Aggregates. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021262.	1.4	8
81	lsostructural phase transition by point defect reorganization in the binary type-I clathrate Ba7.5Si45. Acta Materialia, 2021, 210, 116824.	3.8	3
82	Assessment of shock wave resistance on brookite TiO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 15134-15142.	1.1	4
83	Quantum polyamorphism in compressed distinguishable helium-4. Journal of Chemical Physics, 2021, 154, 224503.	1.2	2
84	Critical point of melting and its change at the decreases of a nanocrystal size. Journal of Physics and Chemistry of Solids, 2021, 155, 110116.	1.9	2
85	Hydrate vs Anhydrate under a Pressure-(De)stabilizing Effect of the Presence of Water in Solid Forms of Sulfamethoxazole. Crystal Growth and Design, 2021, 21, 6879-6888.	1.4	5
86	Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. Journal of Physics Condensed Matter, 2021, 33, 503004.	0.7	8
87	Compression tuned crystalline and amorphous phases of Gd2Si2O7: Raman spectroscopic and first-principles studies. Journal of Alloys and Compounds, 2022, 890, 161864.	2.8	0
88	Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	4.7	140
89	Semiconductor Clathrates: In Situ Studies of Their High Pressure, Variable Temperature and Synthesis Behavior. Springer Series in Materials Science, 2014, , 91-123.	0.4	1
90	Deformation behavior and amorphization in icosahedral boron-rich ceramics. Progress in Materials Science, 2020, 112, 100664.	16.0	34
91	Structure and properties of densified silica glass: characterizing the order within disorder. NPG Asia Materials, 2020, 12, .	3.8	57
92	Shear melting of silicon and diamond and the disappearance of the polyamorphic transition under shear. Physical Review Materials, 2018, 2, .	0.9	26
93	Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling. Journal of Applied Physics, 2021, 130, 145901.	1.1	1
94	Evolution of Structural and Electronic Properties of TiSe ₂ under High Pressure. Journal of Physical Chemistry Letters, 2021, 12, 9859-9867.	2.1	21

#	Article	IF	CITATIONS
95	Modelling Networks in Varying Dimensions. Springer Series in Materials Science, 2015, , 215-254.	0.4	1
96	Materials From Extreme High Pressure Conditions. , 2019, , .		1
97	Percolation transitions in compressed SiO2 glasses. Nature, 2021, 599, 62-66.	13.7	22
98	When kinetics plays strange tricks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122078119.	3.3	0
99	Confining Natural/Mimetic Enzyme Cascade in an Amorphous Metal–Organic Framework for the Construction of Recyclable Biomaterials with Catalytic Activity. Langmuir, 2022, 38, 927-936.	1.6	20
100	On amorphization as a deformation mechanism under high stresses. Current Opinion in Solid State and Materials Science, 2022, 26, 100976.	5.6	21
101	Dynamic Shock Wave-Induced Amorphous-to-Crystalline Switchable Phase Transition of Lithium Sulfate. Journal of Physical Chemistry C, 2022, 126, 3194-3201.	1.5	16
102	Topological Ordering of Memory Glass on Extended Length Scales. Journal of the American Chemical Society, 2022, 144, 7414-7421.	6.6	8
103	Pressure-induced structural transformation of clathrate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ge</mml:mi><mml:mn>136via ultrafast recrystallization of an amorphous intermediate. Physical Review B, 2022, 105, .</mml:mn></mml:msub></mml:math 	l:m1n1≥ <td>nl:msub></td>	nl : msub>
104	Oxide glasses under pressure: Recent insights from experiments and simulations. Journal of Applied Physics, 2022, 131, .	1.1	9
105	Localized Soft Vibrational Modes and Coherent Structural Phase Transformations in Rutile TiO ₂ Nanoparticles under Negative Pressure. Nano Letters, 0, , .	4.5	0
106	Shock-formed carbon materials with intergrown sp ³ - and sp ² -bonded nanostructured units. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
107	On the Definition of Phase Diagram. Crystals, 2022, 12, 1186.	1.0	1
108	Thermal relaxation of silica phases densified under electron irradiation. Journal of Non-Crystalline Solids, 2022, 597, 121917.	1.5	4
109	Thermal Relaxation of Silica Phases Densified Under Electron Irradiation. SSRN Electronic Journal, 0, ,	0.4	0
111	Coupling between mechanical stresses and lithium penetration in a lithium ion battery. Mechanics of Materials, 2023, 177, 104532.	1.7	4
113	Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz. Nature Communications, 2023, 14, .	5.8	5
114	Pressure-Optimized Band Cap and Enhanced Photoelectric Response of Graphitic Carbon Nitride with Nitrogen Vacancies. Physical Review Applied, 2023, 19, .	1.5	2

#	Article	IF	CITATIONS
115	Structural transitions at high pressure and metastable phase in Si0.8Ge0.2. Journal of Alloys and Compounds, 2023, 954, 170180.	2.8	0