Actin Dynamics, Architecture, and Mechanics in Cell Me

Physiological Reviews 94, 235-263 DOI: 10.1152/physrev.00018.2013

Citation Report

#	Article	IF	CITATIONS
2	Geometry-Driven Polarity in Motile Amoeboid Cells. PLoS ONE, 2014, 9, e113382.	1.1	26
3	Measuring F-actin properties in dendritic spines. Frontiers in Neuroanatomy, 2014, 8, 74.	0.9	44
4	Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Molecular Biology of the Cell, 2014, 25, 1216-1233.	0.9	29
5	Extending the molecular clutch beyond actin-based cell motility. New Journal of Physics, 2014, 16, 105012.	1.2	7
6	The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, 0408011-408016.	0.8	60
7	Correlative multicolor 3D SIM and STORM microscopy. Biomedical Optics Express, 2014, 5, 3326.	1.5	37
8	Directed Actin Assembly and Motility. Methods in Enzymology, 2014, 540, 283-300.	0.4	7
9	Spontaneous polarization in an interfacial growth model for actin filament networks with a rigorous mechanochemical coupling. Physical Review E, 2014, 90, 052706.	0.8	3
10	Cytoskeletal self-organization in neuromorphogenesis. Bioarchitecture, 2014, 4, 75-80.	1.5	4
11	The role of phosphoinositideâ€regulated actin reorganization in chemotaxis and cell migration. British Journal of Pharmacology, 2014, 171, 5541-5554.	2.7	44
12	Studying protein assembly with reversible Brownian dynamics of patchy particles. Journal of Chemical Physics, 2014, 140, 184112.	1.2	24
13	Novel roles for actin in mitochondrial fission. Journal of Cell Science, 2014, 127, 4549-60.	1.2	128
14	The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Letters, 2014, 355, 288-296.	3.2	49
15	Actin cable distribution and dynamics arising from cross-linking, motor pulling, and filament turnover. Molecular Biology of the Cell, 2014, 25, 3006-3016.	0.9	28
16	Capping protein regulators fine-tune actin assembly dynamics. Nature Reviews Molecular Cell Biology, 2014, 15, 677-689.	16.1	255
17	Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody. Plant Methods, 2014, 10, 12.	1.9	57
18	Myosin IIb controls actin dynamics underlying the dendritic spine maturation. Molecular and Cellular Neurosciences, 2014, 61, 56-64.	1.0	51
19	Spatiotemporal relationships between the cell shape and the actomyosin cortex of periodically protruding cells. Cytoskeleton, 2015, 72, 268-281.	1.0	21

TATION PEDO

# 20	ARTICLE Flow-Driven Cell Migration under External Electric Fields. Physical Review Letters, 2015, 115, 268101.	IF 2.9	Citations 23
21	Coordination of contractility, adhesion and flow in migrating <i>Physarum </i> amoebae. Journal of the Royal Society Interface, 2015, 12, 20141359.	1.5	60
22	Collisions of deformable cells lead to collective migration. Scientific Reports, 2015, 5, 9172.	1.6	129
23	Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus, 2015, 5, 20150038.	1.5	53
24	Brownian dynamics simulation study on force–velocity relation in actin-based membrane protrusion. Computational Particle Mechanics, 2015, 2, 329-337.	1.5	2
25	Supervillin binds the Rac/Rhoâ€GEF Trio and increases Trioâ€mediated Rac1 activation. Cytoskeleton, 2015, 72, 47-64.	1.0	11
26	Mechanics of Vascular Smooth Muscle. , 2015, 6, 111-168.		19
27	Condensation Agents Determine the Temperature–Pressure Stability of Fâ€Actin Bundles. Angewandte Chemie - International Edition, 2015, 54, 11088-11092.	7.2	8
29	Electron microscopy and three-dimensional single-particle analysis as tools for understanding the structural basis of mechanobiology. , 0, , 15-31.		0
30	Actin binding proteins in blood–testis barrier function. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 238-247.	1.2	17
31	Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast. Cytoskeleton, 2015, 72, 517-533.	1.0	11
32	Dynamic reorganization of the actin cytoskeleton. F1000Research, 2015, 4, 940.	0.8	35
33	CDC42 Use in Viral Cell Entry Processes by RNA Viruses. Viruses, 2015, 7, 6526-6536.	1.5	38
34	T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Frontiers in Immunology, 2015, 6, 586.	2.2	81
35	Primary Mechanisms of Thymosin β4 Repair Activity in Dry Eye Disorders and Other Tissue Injuries. , 2015, 56, 5110.		31
36	Nanomicellar Formulation of Clotrimazole Improves Its Antitumor Action toward Human Breast Cancer Cells. PLoS ONE, 2015, 10, e0130555.	1.1	13
37	Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions. PLoS ONE, 2015, 10, e0135204.	1.1	18
38	Rho-Associated Kinase Inhibitor (Y-27632) Attenuates Doxorubicin-Induced Apoptosis of Human Cardiac Stem Cells. PLoS ONE, 2015, 10, e0144513.	1.1	22

#	Article	IF	CITATIONS
39	Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. ELife, 2015, 4, .	2.8	41
40	Regulators of Actin Dynamics in Gastrointestinal Tract Tumors. Gastroenterology Research and Practice, 2015, 2015, 1-11.	0.7	8
41	Manganese superoxide dismutase promotes interaction of actin, S100A4 and Talin, and enhances rat gastric tumor cell invasion. Journal of Clinical Biochemistry and Nutrition, 2015, 57, 13-20.	0.6	8
42	A biomechanical perspective on stress fiber structure and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3065-3074.	1.9	85
43	Cytoskeletal dynamics: A view from the membrane. Journal of Cell Biology, 2015, 209, 329-337.	2.3	147
44	Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow. Soft Matter, 2015, 11, 4962-4972.	1.2	7
45	Mitochondrial fragmentation in excitotoxicity requires ROCK activation. Cell Cycle, 2015, 14, 1365-1369.	1.3	13
46	Membrane tension and cytoskeleton organization in cell motility. Journal of Physics Condensed Matter, 2015, 27, 273103.	0.7	178
47	Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clinical Plasma Medicine, 2015, 3, 24-31.	3.2	60
48	Schwann Cell Myelination. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020529.	2.3	267
49	Combinatorial genetic analysis of a network of actin disassemblyâ€promoting factors. Cytoskeleton, 2015, 72, 349-361.	1.0	18
50	Actin, actin-related proteins and profilin in diatoms: A comparative genomic analysis. Marine Genomics, 2015, 23, 133-142.	0.4	12
51	The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nature Reviews Immunology, 2015, 15, 559-573.	10.6	141
52	3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line. Biochemical and Biophysical Research Communications, 2015, 468, 269-273.	1.0	8
53	Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. Journal of Cell Biology, 2015, 208, 109-123.	2.3	180
54	A novel role for WAVE1 in controlling actin network growth rate and architecture. Molecular Biology of the Cell, 2015, 26, 495-505.	0.9	20
55	Global Resource Distribution: Allocation of Actin Building Blocks by Profilin. Developmental Cell, 2015, 32, 5-6.	3.1	15
56	Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia. Cell Reports, 2015, 11, 433-445.	2.9	69

#	Article	IF	CITATIONS
57	Reconstituting the actin cytoskeleton at or near surfaces in vitro. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3006-3014.	1.9	14
58	The Rho-mDia1 signaling pathway is required for cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells. Experimental Cell Research, 2015, 337, 28-36.	1.2	7
59	InÂvitro myogenesis induced by human recombinant elastin-like proteins. Biomaterials, 2015, 67, 240-253.	5.7	13
60	Myelination: Actin Disassembly Leads the Way. Developmental Cell, 2015, 34, 129-130.	3.1	14
61	The structure of FMNL2–Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nature Communications, 2015, 6, 7088.	5.8	63
62	Actin Mechanics and Fragmentation. Journal of Biological Chemistry, 2015, 290, 17137-17144.	1.6	86
63	WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly. Molecular Biology of the Cell, 2015, 26, 55-65.	0.9	58
64	Tropomyosin as a Regulator of Actin Dynamics. International Review of Cell and Molecular Biology, 2015, 318, 255-291.	1.6	44
65	Actin Age Orchestrates Myosin-5 and Myosin-6 Run Lengths. Current Biology, 2015, 25, 2057-2062.	1.8	45
66	Keeping it all together: auxin–actin crosstalk in plant development. Journal of Experimental Botany, 2015, 66, 4983-4998.	2.4	62
67	Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles. PLoS Computational Biology, 2015, 11, e1004076.	1.5	87
68	Geometrical and Mechanical Properties Control Actin Filament Organization. PLoS Computational Biology, 2015, 11, e1004245.	1.5	30
69	Architecture Dependence of Actin Filament Network Disassembly. Current Biology, 2015, 25, 1437-1447.	1.8	104
70	Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6619-6624.	3.3	87
71	A modular toolkit to inhibit proline-rich motif–mediated protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5011-5016.	3.3	39
72	Mechanical Heterogeneity Favors Fragmentation of Strained Actin Filaments. Biophysical Journal, 2015, 108, 2270-2281.	0.2	48
73	Staurosporine Induces Formation of Two Types of Extra-Long Cell Protrusions: Actin-Based Filaments and Microtubule-Based Shafts. Molecular Pharmacology, 2015, 87, 815-824.	1.0	4
74	Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter, 2015, 11, 8834-8847.	1.2	74

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
75	Biology, 2015, 36, 113-121.	2.6	19
76	Cell type–dependent mechanisms for formin-mediated assembly of filopodia. Molecular Biology of the Cell, 2015, 26, 4646-4659.	0.9	51
77	SH Domains. , 2015, , .		4
78	Measuring Cell Mechanics. Colloquium Series on Quantitative Cell Biology, 2015, 2, 1-75.	0.5	3
79	Membrane Repair: Mechanisms and Pathophysiology. Physiological Reviews, 2015, 95, 1205-1240.	13.1	273
80	Profilin Regulates F-Actin Network Homeostasis by Favoring Formin over Arp2/3 Complex. Developmental Cell, 2015, 32, 43-53.	3.1	230
81	Resistance to Photodynamic Therapy in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, ,	0.1	8
82	Cytoskeletal crosstalk: when three different personalities team up. Current Opinion in Cell Biology, 2015, 32, 39-47.	2.6	223
83	Signaling to Actin Stochastic Dynamics. Annual Review of Plant Biology, 2015, 66, 415-440.	8.6	77
84	Varying effects of EGF, HGF and TGFβ on formation of invadopodia and invasiveness of melanoma cell lines of different origin. European Journal of Histochemistry, 2016, 60, 2728.	0.6	30
85	Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. ELife, 2016, 5, .	2.8	121
86	Stochastic lag time in nucleated linear self-assembly. Journal of Chemical Physics, 2016, 144, 235101.	1.2	8
87	AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Molecular Biology of the Cell, 2016, 27, 2662-2674.	0.9	165
88	Zebrafish lines expressing UASâ€driven red probes for monitoring cytoskeletal dynamics. Genesis, 2016, 54, 483-489.	0.8	4
89	Artificial microtubule cytoskeleton construction, manipulation, and modeling via holographic trapping of network nodes. , 2016, , .		0
90	Self-organization of actin networks by a monomeric myosin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8387-E8395.	3.3	14
91	Defining functional interactions during biogenesis of epithelial junctions. Nature Communications, 2016, 7, 13542.	5.8	17
92	TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Scientific Reports, 2016, 6, 38319.	1.6	44

		CITATION REPORT		
#	Article		IF	Citations
93	Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing protein and Arp2/3 complex. Physical Biology, 2016, 13, 066009.	capping	0.8	11
94	Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynami action on F-actin organization in Sertoli cells. Scientific Reports, 2016, 6, 28589.	cs through its	1.6	54
95	Transport of germ cells across the seminiferous epithelium during spermatogenesis—t of both actin- and microtubule-based cytoskeletons. Tissue Barriers, 2016, 4, e1265042	he involvement	1.6	42
96	Role of Actin Cytoskeleton During Mammalian Sperm Acrosomal Exocytosis. Advances i Embryology and Cell Biology, 2016, 220, 129-144.	n Anatomy,	1.0	17
97	Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Er Cell Biology, 2016, , .	nbryology and	1.0	8
98	Formin' filaments at a faster CLIP. Science, 2016, 352, 894-895.		6.0	0
100	SnapShot: Mechanical Forces in Development I. Cell, 2016, 165, 754-754.e1.		13.5	15
101	Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopoc Biological Chemistry, 2016, 291, 9148-9160.	lia. Journal of	1.6	44
102	Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in k development. Plant Cell, Tissue and Organ Culture, 2016, 126, 239-253.	ernel	1.2	4
103	C. elegans Embryonic Morphogenesis. Current Topics in Developmental Biology, 2016, 3	116, 597-616.	1.0	42
104	Effects of crowders on the equilibrium and kinetic properties of protein aggregation. Ch Physics Letters, 2016, 659, 252-257.	emical	1.2	7
105	Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Sorting. Current Biology, 2016, 26, 2697-2706.	Protein	1.8	104
106	Sodium fluoride as a nucleating factor for Mg-actin polymerization. Biochemical and Bio Research Communications, 2016, 479, 741-746.	physical	1.0	4
107	How cellular membrane properties are affected by the actin cytoskeleton. Biochimie, 20	16, 130, 33-40.	1.3	22
108	A variational approach to the growth dynamics of pre-stressed actin filament networks. Physics Condensed Matter, 2016, 28, 375101.	Journal of	0.7	2
109	Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guid Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacteria Toxins. Current Topics in Microbiology and Immunology, 2016, 399, 35-51.	ance of al Protein	0.7	6
110	GPCRs and actin–cytoskeleton dynamics. Methods in Cell Biology, 2016, 132, 165-18	.8.	0.5	23

111	A new front in cell invasion: The invadopodial membrane. European Journal of Cell Biology, 2016, 95, 441-448.	1.6	27
-----	---	-----	----

#	Article	IF	CITATIONS
112	Transcriptional Control of Developmental Cell Behaviors. Annual Review of Cell and Developmental Biology, 2016, 32, 77-101.	4.0	29
113	Myosins, Actin and Autophagy. Traffic, 2016, 17, 878-890.	1.3	78
114	From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology, 2016, 58, 299-311.	4.1	71
115	Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS Journal, 2016, 283, 3676-3693.	2.2	36
116	Plasticity of Cell Migration In Vivo and In Silico. Annual Review of Cell and Developmental Biology, 2016, 32, 491-526.	4.0	201
117	Paradoxical signaling regulates structural plasticity in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5298-307.	3.3	49
118	Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Molecular Biology of the Cell, 2016, 27, 2519-2522.	0.9	49
119	Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton. Current Opinion in Cell Biology, 2016, 42, 138-145.	2.6	44
120	Emerging Roles of YAP/TAZ in Mechanobiology. , 2016, , 83-96.		0
122	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810.	16.1	140
122 123	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885.	16.1 4.6	140 92
122 123 124	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403.	16.1 4.6 0.8	140 92 3
122 123 124 125	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Physical Review E, 2016, 94, 012401.	16.1 4.6 0.8 0.8	140 92 3 2
122 123 124 125 126	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Physical Review E, 2016, 94, 012401. Actin filaments growing against a barrier with fluctuating shape. Physical Review E, 2016, 93, 062414.	16.1 4.6 0.8 0.8	140 92 3 2 8
122 123 124 125 126 127	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810.F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885.Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403.Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Physical Review E, 2016, 94, 012401.Actin filaments growing against a barrier with fluctuating shape. Physical Review E, 2016, 93, 062414.Boundaries steer the contraction of active gels. Nature Communications, 2016, 7, 13120.	16.1 4.6 0.8 0.8 0.8 5.8	140 92 3 2 8 50
122 123 124 125 126 127 128	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Physical Review E, 2016, 94, 012401. Actin filaments growing against a barrier with fluctuating shape. Physical Review E, 2016, 93, 062414. Boundaries steer the contraction of active gels. Nature Communications, 2016, 7, 13120. Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron, 2016, 92, 1020-1035.	16.1 4.6 0.8 0.8 0.8 5.8 3.8	140 92 3 2 8 8 50
 122 123 124 125 126 127 128 129 	Internetwork competition for monomers governs actin cytoskeleton organization. Nature Reviews Molecular Cell Biology, 2016, 17, 799-810. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 2016, 18, 876-885. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Physical Review E, 2016, 94, 012401. Actin filaments growing against a barrier with fluctuating shape. Physical Review E, 2016, 93, 062414. Boundaries steer the contraction of active gels. Nature Communications, 2016, 7, 13120. Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron, 2016, 92, 1020-1035. Signalling Pathways Controlling Cellular Actin Organization. Handbook of Experimental Pharmacology, 2016, 235, 153-178.	 16.1 4.6 0.8 0.8 0.8 3.8 0.9 	 140 92 3 2 8 50 97 17

ARTICLE IF CITATIONS Cytoskeletal Organization: Actin., 2016, , 9-29. 131 2 Actin filamentsâ€"A target for redox regulation. Cytoskeleton, 2016, 73, 577-595. 1.0 SM22α inhibits lamellipodium formation and migration via Ras-Arp2/3 signaling in synthetic VSMCs. 133 2.1 23 American Journal of Physiology - Cell Physiology, 2016, 311, C758-C767. Influence of PECAM-1 ligand interactions on PECAM-1-dependent cell motility and filopodia extension. 134 Physiological Reports, 2016, 4, e13030. The hepatocyte proteome in organotypic rat liver models and the influence of the local 135 0.7 4 microenvironment. Proteome Science, 2016, 15, 12. Visualization of Actin Assembly and Filament Turnover by In Vitro Multicolor TIRF Microscopy. 0.4 Methods in Molecular Biology, 2016, 1407, 287-306. Cadherin2/4-signaling via PTP1B and catenins is critical for nucleokinesis during radial neuronal 137 1.2 18 migration in the neocortex. Development (Cambridge), 2016, 143, 2121-34. Chemotaxis. Methods in Molecular Biology, 2016, , . 0.4 138 N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and 139 1.6 41 cancer cell migrations. European Journal of Cell Biology, 2016, 95, 415-426. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection. 140 0.2 Biophysical Journal, 2016, 110, 2517-2527. Effects of simulated microgravity on human brain nervous tissue. Neuroscience Letters, 2016, 627, 141 1.0 14 199-204. Actin Rings of Power. Developmental Cell, 2016, 37, 493-506. 3.1 Glycosylphosphatidylinositol-anchored proteins as regulators of cortical cytoskeleton. 143 0.7 16 Biochemistry (Moscow), 2016, 81, 636-650. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1953-1960. 144 1.1 147 The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the 145 1.9 16 transcriptional level. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2255-2266. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton, 2016, 73, 146 1.0 84 435-441. The cytoskeleton as a novel target for treatment of renal fibrosis., 2016, 166, 1-8. 147 19 Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Journal of 148 74 Biomechanical Engineering, 2016, 138, 021004.

#	Article	IF	CITATIONS
149	Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration. ACS Nano, 2016, 10, 2091-2102.	7.3	47
150	Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis?. Seminars in Cell and Developmental Biology, 2016, 59, 141-156.	2.3	44
151	Regulation of blood–testis barrier by actin binding proteins and protein kinases. Reproduction, 2016, 151, R29-R41.	1.1	44
152	Profilin-Dependent Nucleation and Assembly of Actin Filaments Controls Cell Elongation in Arabidopsis. Plant Physiology, 2016, 170, 220-233.	2.3	51
153	Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1495-1508.	1.4	25
154	STRIPAK complexes in cell signaling and cancer. Oncogene, 2016, 35, 4549-4557.	2.6	88
155	Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces. Nanoscale, 2016, 8, 6008-6013.	2.8	14
156	Architecture and Connectivity Govern Actin Network Contractility. Current Biology, 2016, 26, 616-626.	1.8	221
157	Fiber networks amplify active stress. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2827-2832.	3.3	143
158	Trapping, entrainment and synchronization of semiflexible polymers in narrow, asymmetric confinements. Soft Matter, 2016, 12, 87-92.	1.2	5
159	Covalent DNA–Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells. Chemical Research in Toxicology, 2016, 29, 190-202.	1.7	43
160	Mechanobiology of cell migration in the context of dynamic two-way cell–matrix interactions. Journal of Biomechanics, 2016, 49, 1355-1368.	0.9	42
162	AAMP Regulates Endothelial Cell Migration and Angiogenesis Through RhoA/Rho Kinase Signaling. Annals of Biomedical Engineering, 2016, 44, 1462-1474.	1.3	16
163	Fibrous Proteins: Structures and Mechanisms. Sub-Cellular Biochemistry, 2017, , .	1.0	13
164	Tropomyosin Structure, Function, and Interactions: A Dynamic Regulator. Sub-Cellular Biochemistry, 2017, 82, 253-284.	1.0	57
165	P2Y ₁₂ Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 515-524.	1.1	31
166	Growing, splitting and stacking myosin II filaments. Nature Cell Biology, 2017, 19, 77-79.	4.6	13
167	The assembly and function of perinuclear actin cap in migrating cells. Protoplasma, 2017, 254, 1207-1218.	1.0	35

#	ARTICLE	IF	CITATIONS
168	Physical Model for Stabilization and Repair of Trans-endothelial Apertures. Biophysical Journal, 2017, 112, 388-397.	0.2	8
169	Measuring the flexural rigidity of actin filaments and microtubules from their thermal fluctuating shapes: A new perspective. Journal of the Mechanics and Physics of Solids, 2017, 101, 64-92.	2.3	11
170	Plant Actin-Depolymerizing Factors Possess Opposing Biochemical Properties Arising from Key Amino Acid Changes throughout Evolution. Plant Cell, 2017, 29, 395-408.	3.1	52
171	Geometry and network connectivity govern the mechanics of stress fibers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2622-2627.	3.3	50
172	Collective cell migration: a physics perspective. Reports on Progress in Physics, 2017, 80, 076601.	8.1	158
173	Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness. Biophysical Journal, 2017, 112, 692-702.	0.2	57
174	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	2.3	33
175	Liquid behavior of cross-linked actin bundles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2131-2136.	3.3	106
176	Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells. Acta Biomaterialia, 2017, 55, 239-248.	4.1	58
177	Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications. Journal of Colloid and Interface Science, 2017, 504, 101-110.	5.0	40
178	Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nature Communications, 2017, 8, 15237.	5.8	132
179	New waves in dendritic spine actin cytoskeleton: From branches and bundles to rings, from actin binding proteins to post-translational modifications. Molecular and Cellular Neurosciences, 2017, 84, 77-84.	1.0	25
180	High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli. Analytical Chemistry, 2017, 89, 6015-6020.	3.2	67
181	Human phosphatase CDC14A regulates actin organization through dephosphorylation of epithelial protein lost in neoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5201-5206.	3.3	23
182	Antibody-coupled hydroxyapatite nanoparticles as efficient tools for labeling intracellular proteins. Materials Science and Engineering C, 2017, 71, 909-918.	3.8	13
183	ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends. Current Biology, 2017, 27, 1956-1967.e7.	1.8	179
184	Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Review of Proteomics, 2017, 14, 581-592.	1.3	35
185	Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Science Advances, 2017, 3, e1603032.	4.7	143

#	Article	IF	CITATIONS
186	Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nature Communications, 2017, 8, 15817.	5.8	123
187	The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. Journal of Cell Biology, 2017, 216, 1267-1276.	2.3	23
188	Chromatin tethering to the nuclear envelope by nuclear actin filaments: a novel role of the actin cytoskeleton in the <i>Xenopus</i> blastula. Genes To Cells, 2017, 22, 376-391.	0.5	27
189	The effect of G3 PAMAM dendrimer conjugated with B-group vitamins on cell morphology, motility and ATP level in normal and cancer cells. European Journal of Pharmaceutical Sciences, 2017, 102, 275-283.	1.9	14
190	FMNL formins boost lamellipodial force generation. Nature Communications, 2017, 8, 14832.	5.8	112
191	Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics. Journal of Chemical Theory and Computation, 2017, 13, 2332-2341.	2.3	40
192	Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells. Physical Review Letters, 2017, 118, 048102.	2.9	4
193	Dynamics in steady state <i>in vitro</i> acto-myosin networks. Journal of Physics Condensed Matter, 2017, 29, 163002.	0.7	9
194	Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Molecular and Cellular Biochemistry, 2017, 432, 131-139.	1.4	13
195	Microtubules in 3D cell motility. Journal of Cell Science, 2017, 130, 39-50.	1.2	102
196	The Actin Cytoskeleton. Handbook of Experimental Pharmacology, 2017, , .	0.9	2
197	The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells. Peptides, 2017, 88, 106-114.	1.2	12
198	Actin Turnover in Lamellipodial Fragments. Current Biology, 2017, 27, 2963-2973.e14.	1.8	58
199	Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8977-E8986.	3.3	106
200	Network heterogeneity regulates steering in actin-based motility. Nature Communications, 2017, 8, 655.	5.8	30
201	Adaptive Actin Networks. Developmental Cell, 2017, 42, 565-566.	3.1	3
202	Differential functions of WAVE regulatory complex subunits in the regulation of actin-driven processes. European Journal of Cell Biology, 2017, 96, 715-727.	1.6	28
203	Cell Biology: Capturing Formin's Mechano-Inhibition. Current Biology, 2017, 27, R1078-R1080. 	1.8	3

#	Article	IF	CITATIONS
204	Actin assembly mechanisms at a glance. Journal of Cell Science, 2017, 130, 3427-3435.	1.2	229
205	Viscoelastic Dissipation Stabilizes Cell Shape Changes during Tissue Morphogenesis. Current Biology, 2017, 27, 3132-3142.e4.	1.8	120
206	Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 83-103.	0.8	8
207	UNC-45a promotes myosin folding and stress fiber assembly. Journal of Cell Biology, 2017, 216, 4053-4072.	2.3	40
208	Androgen Regulates Dimorphic F-Actin Assemblies in the Genital Organogenesis. Sexual Development, 2017, 11, 190-202.	1.1	8
209	Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnology Advances, 2017, 35, 867-888.	6.0	17
210	Adaptive Response of Actin Bundles under Mechanical Stress. Biophysical Journal, 2017, 113, 1072-1079.	0.2	27
211	Actin Filament Strain Promotes Severing and Cofilin Dissociation. Biophysical Journal, 2017, 112, 2624-2633.	0.2	49
212	Stabilization of protein-protein interactions in drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 925-940.	2.5	129
213	Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton. Nanoscale, 2017, 9, 12051-12059.	2.8	33
214	The cell wall of Arabidopsis thaliana influences actin network dynamics. Journal of Experimental Botany, 2017, 68, 4517-4527.	2.4	22
215	3D microniches reveal the importance of cell size and shape. Nature Communications, 2017, 8, 1962.	5.8	145
216	ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder. American Journal of Human Genetics, 2017, 101, 1021-1033.	2.6	83
217	A new method to measure mechanics and dynamic assembly of branched actin networks. Scientific Reports, 2017, 7, 15688.	1.6	13
218	A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nature Cell Biology, 2017, 19, 1389-1399.	4.6	170
219	Mechanobiology of collective cell behaviours. Nature Reviews Molecular Cell Biology, 2017, 18, 743-757.	16.1	518
220	Profilin Directly Promotes Microtubule Growth through Residues Mutated in Amyotrophic Lateral Sclerosis. Current Biology, 2017, 27, 3535-3543.e4.	1.8	66
221	Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nature Communications, 2017, 8, 15862.	5.8	58

#	Article	IF	CITATIONS
222	Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles. Nature Communications, 2017, 8, 15863.	5.8	38
223	Fuel-Mediated Transient Clustering of Colloidal Building Blocks. Journal of the American Chemical Society, 2017, 139, 9763-9766.	6.6	100
224	On the kinetics of body versus end evaporation and addition of supramolecular polymers. European Physical Journal E, 2017, 40, 65.	0.7	1
225	An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs. BMC Bioinformatics, 2017, 18, 268.	1.2	17
226	Shape regulation generates elastic interaction between living cells. New Journal of Physics, 2017, 19, 063011.	1.2	15
227	Distinct VASP tetramers synergize in the processive elongation of individual actin filaments from clustered arrays. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5815-E5824.	3.3	60
228	Computational simulation of forminâ€mediated actin polymerization predicts homologueâ€dependent mechanosensitivity. Cytoskeleton, 2017, 74, 29-39.	1.0	14
229	A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration. Biochemical and Biophysical Research Communications, 2017, 482, 43-49.	1.0	11
230	Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clinical and Experimental Metastasis, 2017, 34, 37-49.	1.7	33
231	Label free imaging of cellâ€substrate contacts by holographic total internal reflection microscopy. Journal of Biophotonics, 2017, 10, 1163-1170.	1.1	16
232	<i>Leishmania</i> infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cellular Microbiology, 2017, 19, e12668.	1.1	16
233	In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy. Microscopy (Oxford, England), 2017, 66, 272-282.	0.7	36
234	Novel Insights into the Role of the Cytoskeleton in Cancer. , 0, , .		4
235	The Actomyosin Network and Cellular Motility: A S100A4 Regulatory View into the Process. , 2017, , .		0
236	From Systems to Organisations. Systems, 2017, 5, 23.	1.2	2
237	Drive the Car(go)s—New Modalities to Control Cargo Trafficking in Live Cells. Frontiers in Molecular Neuroscience, 2017, 10, 4.	1.4	5
238	Emerging Mechanisms and Roles for Asymmetric Cytokinesis. International Review of Cell and Molecular Biology, 2017, 332, 297-345.	1.6	12
239	Characterization of the role of RILP in cell migration. European Journal of Histochemistry, 2017, 61, 2783.	0.6	11

#	Article	IF	CITATIONS
240	Cellular Motility. , 2017, , 651-669.		0
241	Center or periphery? Modeling the effects of focal adhesion placement during cell spreading. PLoS ONE, 2017, 12, e0171430.	1.1	9
243	Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget, 2017, 8, 5800-5813.	0.8	14
244	An Electromagnetically Actuated Double-Sided Cell-Stretching Device for Mechanobiology Research. Micromachines, 2017, 8, 256.	1.4	19
245	Cortical actin nodes: Their dynamics and recruitment of podosomal proteins as revealed by super-resolution and single-molecule microscopy. PLoS ONE, 2017, 12, e0188778.	1.1	9
246	Mechanical hysteresis in actin networks. Soft Matter, 2018, 14, 2052-2058.	1.2	32
247	Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors. Journal Physics D: Applied Physics, 2018, 51, 145401.	1.3	7
248	Rearrangement of Actin Microfilaments in the Development of Olfactory Receptor Cells in Fish. Scientific Reports, 2018, 8, 3692.	1.6	8
249	Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, 2018, , .	0.4	0
250	Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Selfâ€Emergence of a Cellâ€Like Structure. ChemBioChem, 2018, 19, 1370-1374.	1.3	37
251	Interaction between cardiac myosin-binding protein C and formin Fhod3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4386-E4395.	3.3	22
252	Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector. Biochemical and Biophysical Research Communications, 2018, 500, 423-428.	1.0	8
253	Actin retrograde flow controls natural killer cell response by regulating the conformation state of <scp>SHP</scp> â€1. EMBO Journal, 2018, 37, .	3.5	48
254	The desmin network is a determinant of the cytoplasmic stiffness of myoblasts. Biology of the Cell, 2018, 110, 77-90.	0.7	25
255	Protein Nanosheet Mechanics Controls Cell Adhesion and Expansion on Low-Viscosity Liquids. Nano Letters, 2018, 18, 1946-1951.	4.5	93
256	Synthetic Transient Crosslinks Program the Mechanics of Soft, Biopolymerâ€Based Materials. Advanced Materials, 2018, 30, e1706092.	11.1	35
257	The MICALs are a Family of F-actin Dismantling Oxidoreductases Conserved from Drosophila to Humans. Scientific Reports, 2018, 8, 937.	1.6	33
258	Actin-Dependent Nonlytic Rotavirus Exit and Infectious Virus Morphogenetic Pathway in Nonpolarized Cells. Journal of Virology, 2018, 92, .	1.5	19

ARTICLE IF CITATIONS Interplay of structure, elasticity, and dynamics in actin-based nematic materials. Proceedings of the 259 3.3 73 National Academy of Sciences of the United States of America, 2018, 115, E124-E133. Mechanoreciprocity in cell migration. Nature Cell Biology, 2018, 20, 8-20. 4.6 Invading, Leading and Navigating Cells in <i>Caenorhabditis elegans</i>: Insights into Cell Movement 261 1.2 48 <i>i>in Vivo</i>. Genetics, 2018, 208, 53-78. Novel microtubule inhibitor MPT0B098 inhibits hypoxia-induced epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Journal of Biomedical Science, 2018, 25, 28. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility 264 2.8 12 of Actomyosin Force Dipoles. Physical Review X, 2018, 8, . Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration. Biophysical Journal, 2018, 114, 0.2 1467-1476. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure. Journal of Physical 266 1.2 21 Chemistry B, 2018, 122, 3826-3835. Spatial Fluctuations at Vertices of Epithelial Layers: Quantification of Regulation by Rho Pathway. 0.2 Biophysical Journal, 2018, 114, 939-946. Calcium mediates cell shape change in human peritoneal mesothelial cells. Cell Calcium, 2018, 72, 268 1.1 4 116-126. Actin filaments growing against an elastic membrane: Effect of membrane tension. Physical Review E, 0.8 2018, 97, 032408. Continuum mechanical model for cross-linked actin networks with contractile bundles. Journal of 270 2.3 10 the Mechanics and Physics of Solids, 2018, 110, 100-117. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis. Cytometry Part A: 271 1.1 the Journal of the International Society for Analytical Cytology, 2018, 93, 357-370. The actin-organizing formin protein Fhod3 is required for postnatal development and functional 272 1.6 37 maintenance of the adult heart in mice. Journal of Biological Chemistry, 2018, 293, 148-162. Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environmental Science: Nano, 2018, 5, 228-245. 2.2 39 Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin. Archives of Biochemistry and Biophysics, 274 1.4 14 2018, 638, 18-26. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta 33 Pharmacologica Sinica, 2018, 39, 459-471. Computational modeling of singleâ€cell mechanics and cytoskeletal mechanobiology. Wiley 276 6.6 36 Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1407. WH2 and prolineâ€rich domains of WASPâ€family proteins collaborate to accelerate actin filament 277 elongation. EMBO Journal, 2018, 37, 102-121.

#	ARTICLE	IF	CITATIONS
278	PFN2a, a new partner of RARα in the cytoplasm. Biochemical and Biophysical Research Communications, 2018, 495, 846-853.	1.0	1
279	Contribution of the cytoskeleton to mechanosensitivity reported by dinoflagellate bioluminescence. Cytoskeleton, 2018, 75, 12-21.	1.0	5
280	Structure, regulation and related diseases of the actin-binding protein gelsolin. Expert Reviews in Molecular Medicine, 2018, 20, e7.	1.6	69
281	AmotP130 regulates Rho <scp>GTP</scp> ase and decreases breast cancer cell mobility. Journal of Cellular and Molecular Medicine, 2018, 22, 2390-2403.	1.6	6
282	Data-Driven Finite Element Models of Passive Filamentary Networks. Complexity, 2018, 2018, 1-7.	0.9	1
284	Polarity sorting drives remodeling of actin-myosin networks. Journal of Cell Science, 2018, 132, .	1.2	50
285	The Role of Melanoma Cell-Stroma Interaction in Cell Motility, Invasion, and Metastasis. Frontiers in Medicine, 2018, 5, 307.	1.2	27
286	Building a dendritic actin filament network branch by branch: models of filament orientation pattern and force generation in lamellipodia. Biophysical Reviews, 2018, 10, 1577-1585.	1.5	19
287	MYPT1 is targeted by miR-145 inhibiting viability, migration and invasion in 2D and 3D HeLa cultures. Biochemical and Biophysical Research Communications, 2018, 507, 348-354.	1.0	11
288	Lamellipodia in Stationary and Fluctuating States. Modeling and Simulation in Science, Engineering and Technology, 2018, , 211-258.	0.4	0
289	Cell Movement. Modeling and Simulation in Science, Engineering and Technology, 2018, , .	0.4	2
290	Polymerization and depolymerization of actin with nucleotide states at filament ends. Biophysical Reviews, 2018, 10, 1513-1519.	1.5	11
291	Rotating lamellipodium waves in polarizing cells. Communications Physics, 2018, 1, .	2.0	8
292	Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12926-12931.	3.3	39
293	Sperm Motility: Models for Dynamic Behavior in Complex Environments. Modeling and Simulation in Science, Engineering and Technology, 2018, , 169-209.	0.4	10
294	Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Developmental Cell, 2018, 47, 3-19.	3.1	166
295	<i>Pseudomonas syringae</i> evades phagocytosis by animal cells via type III effectorâ€mediated regulation of actin filament plasticity. Environmental Microbiology, 2018, 20, 3980-3991.	1.8	8
296	Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10345-10350.	3.3	21

ARTICLE IF CITATIONS # TREKâ€'TRAAK twoâ€'pore domain potassium channels protect human retinal pigment epithelium cells from 297 1.8 9 oxidative stress. International Journal of Molecular Medicine, 2018, 42, 2584-2594. Vimentin Diversity in Health and Disease. Cells, 2018, 7, 147. 1.8 192 299 The eukaryotic ancestor shapes up. Nature, 2018, 562, 352-353. 13.7 22 A minimal rupture cascade model for living cell plasticity. New Journal of Physics, 2018, 20, 053057. 300 1.2 Fractional rheology of muscle precursor cells. Journal of Rheology, 2018, 62, 1347-1362. 301 1.3 1 Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly. Journal of Cell Science, 2018, 131, . 1.2 Stability, Convergence, and Sensitivity Analysis of the FBLM and the Corresponding FEM. Bulletin of 303 0.9 0 Mathematical Biology, 2018, 80, 2789-2827. Mechanisms of invasion and motility of high-grade gliomas in the brain. Molecular Biology of the 304 Cell, 2018, 29, 2509-2515. Cell migration in the <i>Xenopus</i> gastrula. Wiley Interdisciplinary Reviews: Developmental Biology, 305 5.9 19 2018, 7, e325. Highly Dispersed Fullerenols Hamper Osteoclast Ruffled Border Formation by Perturbing 5.2 Ca²⁺ Bundles. Small, 2018, 14, e1802549 Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress 307 0.2 45 Relaxation. Biophysical Journal, 2018, 115, 1055-1067. WDR5 Stabilizes Actin Architecture to Promote Multiciliated Cell Formation. Developmental Cell, 3.1 2018, 46, 595-610.e3. Potent and Readily Accessible Bistramideâ€...A Analogues through Diverted Total Synthesis. Chemistry - A 310 1.7 9 European Journal, 2018, 24, 16271-16275. Stem Cell Expansion and Fate Decision on Liquid Substrates Are Regulated by Self-Assembled 44 Nanosheets. ACS Nano, 2018, 12, 9206-9213. 312 Organization of Immunological Synapses and Kinapses., 2018, , 1-37. 1 Balancing forces in migration. Current Opinion in Cell Biology, 2018, 54, 43-49. Structural basis of actin monomer re-charging by cyclase-associated protein. Nature 314 5.8 60 Communications, 2018, 9, 1892. The functional architecture of axonal actin. Molecular and Cellular Neurosciences, 2018, 91, 151-159.

#	Article	IF	CITATIONS
316	Mechanotransduction by the Actin Cytoskeleton: Converting Mechanical Stimuli into Biochemical Signals. Annual Review of Biophysics, 2018, 47, 617-631.	4.5	95
317	Modulation of formin processivity by profilin and mechanical tension. ELife, 2018, 7, .	2.8	43
318	Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Current Biology, 2018, 28, 2033-2045.e5.	1.8	29
319	A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes. ELife, 2018, 7, .	2.8	26
320	Prestressed cells are prone to cytoskeleton failures under localized shear strain: an experimental demonstration on muscle precursor cells. Scientific Reports, 2018, 8, 8602.	1.6	10
321	Aβ-Mediated Dysregulation of F-Actin Nanoarchitecture Leads to Loss of Dendritic Spines and Alzheimer's Disease-Related Cognitive Impairments. Journal of Neuroscience, 2018, 38, 5840-5842.	1.7	4
322	Emergence of coexisting ordered states in active matter systems. Science, 2018, 361, 255-258.	6.0	93
323	Regulation of ILâ€1 signaling through control of focal adhesion assembly. FASEB Journal, 2018, 32, 3119-3132.	0.2	9
324	WDR1 Promotes Cell Growth and Migration and Contributes to Malignant Phenotypes of Non-small Cell Lung Cancer through ADF/cofilin-mediated Actin Dynamics. International Journal of Biological Sciences, 2018, 14, 1067-1080.	2.6	24
325	The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Molecular Biology of the Cell, 2018, 29, 1346-1358.	0.9	52
326	Cellular and Nuclear Forces: An Overview. Methods in Molecular Biology, 2018, 1805, 1-29.	0.4	6
327	Interplay between membrane tension and the actin cytoskeleton determines shape changes. Physical Biology, 2018, 15, 065004.	0.8	19
328	Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biology, 2018, 16, e2005345.	2.6	41
329	Active Mechanics Reveal Molecular-Scale Force Kinetics in Living Oocytes. Biophysical Journal, 2018, 114, 1667-1679.	0.2	67
330	Calcium influx differentially regulates migration velocity and directedness in response to electric field application. Experimental Cell Research, 2018, 368, 202-214.	1.2	21
331	Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. Journal of Allergy and Clinical Immunology, 2018, 142, 1589-1604.e11.	1.5	64
332	Dysregulation in Actin Cytoskeletal Organization Drives Increased Stiffness and Migratory Persistence in Polyploidal Giant Cancer Cells. Scientific Reports, 2018, 8, 11935.	1.6	49
333	Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Molecular Biology of the Cell, 2018, 29, 1992-2004.	0.9	30

	CHAIR		
#	Article	IF	CITATIONS
334	Apelin Effects Migration and Invasion Abilities of Colon Cancer Cells. Cells, 2018, 7, 113.	1.8	19
335	An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 1-13.	1.5	30
336	Fabrication and biocompatibility of agarose acetate nanofibrous membrane by electrospinning. Carbohydrate Polymers, 2018, 197, 237-245.	5.1	22
337	Mechanics of Cell Crawling by Means of Force-free Cyclic Motion. Journal of the Physical Society of Japan, 2018, 87, 044803.	0.7	12
338	The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism. PLoS Pathogens, 2018, 14, e1006947.	2.1	42
339	Self-organized stress patterns drive state transitions in actin cortices. Science Advances, 2018, 4, eaar2847.	4.7	46
340	Mechanochemistry in cancer cell metastasis. Chinese Chemical Letters, 2019, 30, 7-14.	4.8	12
341	Actin from the apicomplexan Neospora caninum (NcACT) has different isoforms in 2D electrophoresis. Parasitology, 2019, 146, 33-41.	0.7	2
342	Eukaryotic cell dynamics from crawlers to swimmers. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1376.	6.2	13
343	Cirrhotic stiffness affects the migration of hepatocellular carcinoma cells and induces sorafenib resistance through YAP. Journal of Cellular Physiology, 2019, 234, 2639-2648.	2.0	27
344	Dynamic stability of the actin ecosystem. Journal of Cell Science, 2019, 132, .	1.2	28
345	The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motility. Physical Biology, 2019, 16, 066006.	0.8	18
346	TGF-Î ² -induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine, 2019, 47, 208-220.	2.7	60
347	Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP. Small, 2019, 15, e1902202.	5.2	13
348	Interplay between surface and bending energy helps membrane protrusion formation. Physical Review E, 2019, 100, 020401.	0.8	5
349	Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118516.	1.9	20
350	Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. Journal of Allergy and Clinical Immunology, 2019, 144, 1074-1090.	1.5	15
351	Plastic Deformation and Fragmentation of Strained Actin Filaments. Biophysical Journal, 2019, 117, 453-463.	0.2	19

#	Article	IF	Citations
352	Shear Modulus Measurement by Quantitative Phase Imaging and Correlation with Atomic Force Microscopy. Biophysical Journal, 2019, 117, 696-705.	0.2	22
353	Reconstitution reveals how myosin-VI self-organises to generate a dynamic mechanism of membrane sculpting. Nature Communications, 2019, 10, 3305.	5.8	8
354	Stress relaxation in F-actin solutions by severing. Soft Matter, 2019, 15, 6300-6307.	1.2	1
355	Mechanical and kinetic factors drive sorting of F-actin cross-linkers on bundles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16192-16197.	3.3	43
356	Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells, 2019, 8, 639.	1.8	93
357	Cross-linker–mediated regulation of actin network organization controls tissue morphogenesis. Journal of Cell Biology, 2019, 218, 2743-2761.	2.3	32
358	Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chemical Communications, 2019, 55, 9072-9075.	2.2	22
359	The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. Structure, 2019, 27, 1211-1223.e5.	1.6	53
360	Tunable corrugated patterns in an active nematic sheet. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22464-22470.	3.3	32
361	Diverse Effects of Small Molecule Inhibitors on Actin Cytoskeleton Dynamics in HIV-1 Infection. Journal of Bacteriology and Virology, 2019, 49, 69.	0.0	2
362	How Dissipation Constrains Fluctuations in Nonequilibrium Liquids: Diffusion, Structure, and Biased Interactions. Physical Review X, 2019, 9, .	2.8	37
363	RhoA Controls Axon Extension Independent of Specification in the Developing Brain. Current Biology, 2019, 29, 3874-3886.e9.	1.8	71
364	Turnover versus treadmilling in actin network assembly and remodeling. Cytoskeleton, 2019, 76, 562-570.	1.0	20
365	Solvable model of a many-filament Brownian ratchet. Physical Review E, 2019, 100, 042122.	0.8	4
366	Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis. MSystems, 2019, 4, .	1.7	11
367	Steady-state and transient analysis of the Peskin-Odell-Oster Brownian ratchet model in the limit of large but finite diffusion. Physical Review E, 2019, 100, 022132.	0.8	0
368	Reversible signal transmission in an active mechanical metamaterial. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190146.	1.0	10
369	Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Frontiers in Physiology, 2019, 10, 1106.	1.3	8

# 370	ARTICLE Active cargo positioning in antiparallel transport networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14835-14842.	IF 3.3	CITATIONS
371	Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils. Journal of Cell Biology, 2019, 218, 3258-3271.	2.3	12
372	Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Current Biology, 2019, 29, 2852-2866.e5.	1.8	38
373	Intracellular forces from stiffness. Nature Materials, 2019, 18, 1037-1038.	13.3	5
374	Platinum(II) coordination compounds with 4′-pyridyl functionalized 2,2′:6′,2″-terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. Journal of Inorganic Biochemistry, 2019, 201, 110809.	1.5	12
375	Cancer Cells Sense Fibers by Coiling on them in a Curvature-Dependent Manner. IScience, 2019, 19, 905-915.	1.9	26
376	Cytoskeletal polarization and cytokinetic signaling drives polar lobe formation in spiralian embryos. Developmental Biology, 2019, 456, 201-211.	0.9	22
377	Knockout of the neonatal Fc receptor in cultured podocytes alters IL-6 signaling and the actin cytoskeleton. American Journal of Physiology - Cell Physiology, 2019, 317, C1048-C1060.	2.1	8
378	Correlation of the cell mechanical behavior and quantified cytoskeletal parameters in normal and cancerous breast cell lines. Biorheology, 2019, 56, 207-219.	1.2	10
379	How the mechanobiome drives cell behavior, viewed through the lens of control theory. Journal of Cell Science, 2019, 132, .	1.2	23
380	Prestrain and cholinergic receptor-dependent differential recruitment of mechanosensitive energy loss and energy release elements in airway smooth muscle. Journal of Applied Physiology, 2019, 126, 823-831.	1.2	0
381	Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2595-2602.	3.3	78
382	Benproperine, an ARPC2 inhibitor, suppresses cancer cell migration and tumor metastasis. Biochemical Pharmacology, 2019, 163, 46-59.	2.0	41
383	Specialized Roles for Actin in Osteoclasts: Unanswered Questions and Therapeutic Opportunities. Biomolecules, 2019, 9, 17.	1.8	32
384	Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke. FASEB Journal, 2019, 33, 4947-4961.	0.2	16
385	Fiber plucking by molecular motors yields large emergent contractility in stiff biopolymer networks. Soft Matter, 2019, 15, 1481-1487.	1.2	5
386	Optimization of Protein–Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy. IEEE Nanotechnology Magazine, 2019, 18, 509-517.	1.1	4
387	Filament flexibility enhances power transduction of F-actin bundles. Journal of Chemical Physics, 2019, 150, 185101.	1.2	3

#	Article	IF	CITATIONS
388	Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers. Cellular and Molecular Bioengineering, 2019, 12, 415-427.	1.0	10
389	The nature and intensity of mechanical stimulation drive different dynamics of MRTF-A nuclear redistribution after actin remodeling in myoblasts. PLoS ONE, 2019, 14, e0214385.	1.1	15
390	Cofilin drives rapid turnover and fluidization of entangled F-actin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12629-12637.	3.3	33
391	Sizes of actin networks sharing a common environment are determined by the relative rates of assembly. PLoS Biology, 2019, 17, e3000317.	2.6	31
392	Stochastic models of polymerization-based axonal actin transport. Physical Biology, 2019, 16, 056001.	0.8	1
393	Self-organizing motors divide active liquid droplets. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11125-11130.	3.3	44
394	A Journey through the Cytoskeleton with Protein Kinase CK2. Current Protein and Peptide Science, 2019, 20, 547-562.	0.7	27
395	Network Contractility during Cytokinesis—From Molecular to Global Views. Biomolecules, 2019, 9, 194.	1.8	31
396	Extracellular Matrix Geometry and Initial Adhesive Position Determine Stress Fiber Network Organization during Cell Spreading. Cell Reports, 2019, 27, 1897-1909.e4.	2.9	35
397	Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophysical Journal, 2019, 116, 1719-1731.	0.2	34
398	MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC. Molecular Cancer, 2019, 18, 93.	7.9	16
399	Regulation of ezrin tension by S-nitrosylation mediates non-small cell lung cancer invasion and metastasis. Theranostics, 2019, 9, 2555-2571.	4.6	27
400	New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. International Review of Cell and Molecular Biology, 2019, 346, 129-155.	1.6	16
401	Buckling of filamentous actin bundles in filopodial protrusions. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 365-375.	1.5	8
402	From mechanical resilience to active material properties in biopolymer networks. Nature Reviews Physics, 2019, 1, 249-263.	11.9	111
403	Regulation of Actin Dynamics in the C. elegans Somatic Gonad. Journal of Developmental Biology, 2019, 7, 6.	0.9	13
404	Actin filaments regulate microtubule growth at theÂcentrosome. EMBO Journal, 2019, 38, .	3.5	82
405	Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8326-8335	3.3	27

#	Article	IF	Citations
406	The role of vasodilatorâ€stimulated phosphoprotein in podocyte functioning. Cell Biology International, 2019, 43, 1092-1101.	1.4	6
407	Why the Lipid Divide? Membrane Proteins as Drivers of the Split between the Lipids of the Three Domains of Life. BioEssays, 2019, 41, e1800251.	1.2	25
408	Role of mechanical flow for actin network organization. Acta Biomaterialia, 2019, 90, 217-224.	4.1	7
409	Cytoskeletal and Actinâ€Based Polymerization Motors and Their Role in Minimal Cell Design. Advanced Biology, 2019, 3, 1800311.	3.0	7
410	Interplay Between the Persistent Random Walk and the Contact Inhibition of Locomotion Leads to Collective Cell Behaviors. Bulletin of Mathematical Biology, 2019, 81, 3301-3321.	0.9	3
411	Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5061-5070.	3.3	75
412	More from less – bottom-up reconstitution of cell biology. Journal of Cell Science, 2019, 132, .	1.2	61
413	Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3594-3603.	3.3	33
414	From isolated structures to continuous networks: A categorization of cytoskeletonâ€based motile engineered biological microstructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1553.	3.3	6
415	Actin Filament Mechanics and Structure in Crowded Environments. Journal of Physical Chemistry B, 2019, 123, 2770-2779.	1.2	12
416	Actin filaments pushing against a barrier: Comparison between two force generation mechanisms. European Physical Journal E, 2019, 42, 15.	0.7	3
417	Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in <i>C. elegans</i> . Development (Cambridge), 2019, 146, .	1.2	34
418	Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27043-27052.	3.3	43
419	Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nature Communications, 2019, 10, 5803.	5.8	97
420	Spatial integration of mechanical forces by α-actinin establishes actin network symmetry. Journal of Cell Science, 2019, 132, .	1.2	25
421	The ArfGAP ASAP1 Controls Actin Stress Fiber Organization via Its N-BAR Domain. IScience, 2019, 22, 166-180.	1.9	21
422	Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. Advances in Experimental Medicine and Biology, 2019, 1190, 33-42.	0.8	5
423	Isothermal Microcalorimetry of Tumor Cells: Enhanced Thermogenesis by Metastatic Cells. Frontiers in Oncology, 2019, 9, 1430.	1.3	13

#	Article	IF	CITATIONS
424	Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Developmental Biology, 2019, 448, 260-270.	0.9	6
425	A crosslinked and ribosylated actin trimer does not interact productively with myosin. Biochemistry and Cell Biology, 2019, 97, 140-147.	0.9	1
426	Bioelectronics of The Cellular Cytoskeleton: Monitoring Cytoskeletal Conductance Variation for Sensing Drug Resistance. ACS Sensors, 2019, 4, 353-362.	4.0	13
427	Stress-dependent amplification of active forces in nonlinear elastic media. Soft Matter, 2019, 15, 331-338.	1.2	12
428	<i>Magnaporthe oryzae</i> Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis. Molecular Plant-Microbe Interactions, 2019, 32, 437-451.	1.4	11
429	Transforming Growth Factor-Î ² Promotes Morphomechanical Effects Involved in Epithelial to Mesenchymal Transition in Living Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 108.	1.8	10
430	Unraveling the Mechanobiology of the Immune System. Advanced Healthcare Materials, 2019, 8, e1801332.	3.9	31
431	Dendritic spines: Revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 161-193.	2.5	165
432	The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Research, 2019, 263, 27-33.	1.1	14
433	Actin–microtubule crosstalk in cell biology. Nature Reviews Molecular Cell Biology, 2019, 20, 38-54.	16.1	395
434	Quantitative Variations with pH of Actin Depolymerizing Factor/Cofilin's Multiple Actions on Actin Filaments. Biochemistry, 2019, 58, 40-47.	1.2	36
435	Multiscale Mechanical Behavior of Large Arteries. , 2019, , 180-202.		1
436	The discovery of actin: "to see what everyone else has seen, and to think what nobody has thoughtâ€*. Journal of Muscle Research and Cell Motility, 2020, 41, 3-9.	0.9	11
437	The CDC42 effector protein MRCK \hat{l}^2 autophosphorylates on Threonine 1108. Small GTPases, 2020, 11, 451-460.	0.7	5
438	A mesoscopic theory to describe the flexibility regulation in F-actin networks: An approach of phase transitions with nonlinear elasticity. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103432.	1.5	1
439	Synthetic Systems Powered by Biological Molecular Motors. Chemical Reviews, 2020, 120, 288-309.	23.0	100
440	Capping proteins regulate fungal development, DONâ€ŧoxisome formation and virulence in <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2020, 21, 173-187.	2.0	20
441	Beneficial and detrimental effects of the phytochemical naringenin on rainbow trout intestinal epithelial cells. Journal of Functional Foods, 2020, 64, 103653.	1.6	2

	Сітл	CITATION REPORT	
#	Article	IF	Citations
442	Force Generation by Myosin Motors: A Structural Perspective. Chemical Reviews, 2020, 120, 5-35.	23.0	91
443	Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segmentâ€1. Proteins: Structure, Function and Bioinformatics, 2020, 88, 385-392.	1.5	4
444	Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Seminars in Cell and Developmental Biology, 2020, 102, 122-131.	2.3	15
445	Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. Journal of Proteomics. 2020. 217. 103645.	1.2	51
446	Cytoskeletal tension actively sustains the migratory T ell synaptic contact. EMBO Journal, 2020, 39, e102783.	3.5	53
447	Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 2020, 17, 016005.	0.8	6
448	Actin protrusions push at apical junctions to maintain E-cadherin adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 432-438.	3.3	59
449	Lncâ€MUC20â€9 binds to ROCK1 and functions as a tumor suppressor in bladder cancer. Journal of Cellular Biochemistry, 2020, 121, 4214-4225.	1.2	10
450	Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta, 2020, 90, 62-70.	0.7	27
451	Cells as Functional Load Sensors and Drivers of Adaptation. , 2020, , 79-98.		1
452	Towards a structural understanding of the remodeling of the actin cytoskeleton. Seminars in Cell and Developmental Biology, 2020, 102, 51-64.	2.3	63
453	Geometrical Constraints Greatly Hinder Formin mDia1 Activity. Nano Letters, 2020, 20, 22-32.	4.5	20
454	The Actin Cytoskeleton as an Active Adaptive Material. Annual Review of Condensed Matter Physics, 2020, 11, 421-439.	5.2	86
455	The advantages of microfluidics to study actin biochemistry and biomechanics. Journal of Muscle Research and Cell Motility, 2020, 41, 175-188.	0.9	9
456	F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annual Review of Cell and Developmental Biology, 2020, 36, 35-60.	4.0	60
457	<pre><scp>FLN</scp>â€1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of subâ€cellular organelles in a contractile tissue. Cytoskeleton, 2020, 77, 379-398.</pre>	1.0	8
458	The elastic properties and deformation mechanisms of actin filament networks crosslinked by filamins. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104075.	1.5	10
459	β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomple CXCR4. Frontiers in Immunology, 2020, 11, 550824.	x on 2.2	13

#	Article	IF	CITATIONS
460	Elasticity spectra as a tool to investigate actin cortex mechanics. Journal of Nanobiotechnology, 2020, 18, 147.	4.2	13
461	Reconfiguring DNA Nanotube Architectures <i>via</i> Selective Regulation of Terminating Structures. ACS Nano, 2020, 14, 13451-13462.	7.3	14
462	Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science, 2020, 370, .	6.0	40
463	Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration. Cell Systems, 2020, 11, 286-299.e4.	2.9	20
464	Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Developmental Cell, 2020, 55, 97-107.	3.1	15
465	Photoreceptor Discs: Built Like Ectosomes. Trends in Cell Biology, 2020, 30, 904-915.	3.6	50
466	Engineering Lightâ€Responsive Contractile Actomyosin Networks with DNA Nanotechnology. Advanced Biology, 2020, 4, 2000102.	3.0	17
467	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	5.8	24
468	Profilin: many facets of a small protein. Biophysical Reviews, 2020, 12, 827-849.	1.5	38
469	Profilin choreographs actin and microtubules in cells and cancer. International Review of Cell and Molecular Biology, 2020, 355, 155-204.	1.6	32
470	MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton. Cells, 2020, 9, 1649.	1.8	9
471	Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium, 2020, 90, 102251.	1.1	15
472	The dynamics of actin network turnover is self-organized by a growth-depletion feedback. Scientific Reports, 2020, 10, 6215.	1.6	16
473	Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Science Advances, 2020, 6, .	4.7	59
474	The Role of ADF/Cofilin in Synaptic Physiology and Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 594998.	1.8	39
475	Role of Cofilin in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 584898.	1.8	25
476	ArabidopsisÂcalcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity. Nature Communications, 2020, 11, 6234.	5.8	29
477	Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Frontiers in Cell and Developmental Biology, 2020, 8, 591141.	1.8	11

#	Article	IF	CITATIONS
478	Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophysical Journal, 2020, 119, 553-566.	0.2	10
479	Inward Tension of Talin and Integrin-related Osmotic Pressure are involved Synergetically in the Invasion and Metastasis of Non-small Cell Lung Cancer. Journal of Cancer, 2020, 11, 5032-5041.	1.2	4
480	Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. Langmuir, 2020, 36, 10639-10656.	1.6	43
481	Regulation of the Actin Cytoskeleton in Podocytes. Cells, 2020, 9, 1700.	1.8	67
482	Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear. Biomolecules, 2020, 10, 1089.	1.8	5
483	Cryo-electron Tomography Workflows for Quantitative Analysis of Actin Networks Involved in Cell Migration. Microscopy and Microanalysis, 2020, 26, 2518-2519.	0.2	5
484	Comparative interactomics analysis reveals potential regulators of α6β4 distribution in keratinocytes. Biology Open, 2020, 9, .	0.6	11
485	Smart diagnostics devices through artificial intelligence and mechanobiological approaches. 3 Biotech, 2020, 10, 351.	1.1	5
486	Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. International Review of Cell and Molecular Biology, 2020, 356, 131-196.	1.6	23
487	Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers. Nature Communications, 2020, 11, 4100.	5.8	31
488	Investigating the Effects of Molecular Crowding on the Kinetics of Protein Aggregation. Journal of Physical Chemistry B, 2020, 124, 9829-9839.	1.2	22
489	Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biology, 2020, 10, 200157.	1.5	15
490	Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration. Communications Biology, 2020, 3, 616.	2.0	16
491	mTOR plays a pivotal role in multiple processes of enamel organ development principally through the mTORC1 pathway and in part via regulating cytoskeleton dynamics. Developmental Biology, 2020, 467, 77-87.	0.9	4
492	4-Hydroxyacetophenone modulates the actomyosin cytoskeleton to reduce metastasis. Proceedings of the United States of America, 2020, 117, 22423-22429.	3.3	24
493	Insights into eukaryogenesis from the fossil record. Interface Focus, 2020, 10, 20190105.	1.5	49
494	Myosin 1b flattens and prunes branched actin filaments. Journal of Cell Science, 2020, 133, .	1.2	7
495	Kinetics of actin networks formation measured by time resolved particle-tracking microrheology. Soft Matter, 2020, 16, 7869-7876.	1.2	11

#	Article	IF	CITATIONS
496	A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 2020, 4, 036104.	3.3	36
497	Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Molecular Biology of the Cell, 2020, 31, 2363-2378.	0.9	11
498	Feedback regulation of crystal growth by buffering monomer concentration. Nature Communications, 2020, 11, 6057.	5.8	11
499	A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables. Molecular Biology of the Cell, 2020, 31, 1988-2001.	0.9	16
500	Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Frontiers in Cell and Developmental Biology, 2020, 8, 583226.	1.8	41
501	Ofloxacin as a Disruptor of Actin Aggresome "Hirano Bodies†A Potential Repurposed Drug for the Treatment of Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2020, 12, 591579.	1.7	3
502	Axonal cytomechanics in neuronal development. Journal of Biosciences, 2020, 45, 1.	0.5	12
503	Optical Manipulation of F-Actin with Photoswitchable Small Molecules. Journal of the American Chemical Society, 2020, 142, 9240-9249.	6.6	63
504	Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability. Nature Cell Biology, 2020, 22, 791-802.	4.6	30
505	Understanding the properties of liquid-crystalline polymers by computational modeling. JPhys Materials, 2020, 3, 032008.	1.8	19
506	Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Molecular Biology of the Cell, 2020, 31, 1259-1272.	0.9	17
507	Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Molecular and Cellular Neurosciences, 2020, 106, 103503.	1.0	24
508	Mapping Cell Membrane Organization and Dynamics Using Soft Nanoimprint Lithography. ACS Applied Materials & Interfaces, 2020, 12, 29000-29012.	4.0	6
509	Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13519-13528.	3.3	47
510	Cofilin is required for polarization of tension in stress fiber networks during migration. Journal of Cell Science, 2020, 133, .	1.2	12
511	Superficial and deep zone articular chondrocytes exhibit differences in actin polymerization status and actin-associated molecules in vitro. Osteoarthritis and Cartilage Open, 2020, 2, 100071.	0.9	3
512	Controlling Electrospun Polymer Morphology for Tissue Engineering Demonstrated Using hepG2 Cell Line. Journal of Visualized Experiments, 2020, , .	0.2	10
513	Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Computational Biology, 2020, 16, e1007693.	1.5	15

#	Article	IF	CITATIONS
514	Low Intensity Vibrations Augment Mesenchymal Stem Cell Proliferation and Differentiation Capacity during in vitro Expansion. Scientific Reports, 2020, 10, 9369.	1.6	21
515	Actin binding proteins, actin cytoskeleton and spermatogenesis – Lesson from toxicant models. Reproductive Toxicology, 2020, 96, 76-89.	1.3	22
516	Multicompartment Polymer Vesicles with Artificial Organelles for Signalâ€Triggered Cascade Reactions Including Cytoskeleton Formation. Advanced Functional Materials, 2020, 30, 2002949.	7.8	57
517	Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices. Cells, 2020, 9, 1432.	1.8	7
518	Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD+ Synthesis During Inflammation and Infection. Frontiers in Immunology, 2020, 11, 31.	2.2	53
519	Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells, 2020, 9, 1533.	1.8	9
520	Tissue engineered endometrial barrier exposed to peristaltic flow shear stresses. APL Bioengineering, 2020, 4, 026107.	3.3	10
521	Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin. Molecular Biology of the Cell, 2020, 31, 2021-2034.	0.9	34
522	Tuning molecular motor transport through cytoskeletal filament network organization. Soft Matter, 2020, 16, 2135-2140.	1.2	11
523	Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments. Current Biology, 2020, 30, 767-778.e5.	1.8	29
524	The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1). Journal of Biological Chemistry, 2020, 295, 3134-3147.	1.6	11
525	Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5861-5872.	3.3	35
526	Spontaneous formation of chaotic protrusions in a polymerizing active gel layer. New Journal of Physics, 2020, 22, 013003.	1.2	5
527	Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie, 2020, 171-172, 72-78.	1.3	14
528	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	0.9	31
529	Mechanisms regulating myoblast fusion: A multilevel interplay. Seminars in Cell and Developmental Biology, 2020, 104, 81-92.	2.3	64
530	MyBP-C: one protein to govern them all. Journal of Muscle Research and Cell Motility, 2020, 41, 91-101.	0.9	51
531	Effect of F-actin and Microtubules on Cellular Mechanical Behavior Studied Using Atomic Force Microscope and an Image Recognition-Based Cytoskeleton Quantification Approach. International Journal of Molecular Sciences, 2020, 21, 392	1.8	19

	Сітаті	CITATION REPORT	
#	Article	IF	Citations
532	Elastic ripening and inhibition of liquid–liquid phase separation. Nature Physics, 2020, 16, 422-425.	6.5	92
533	Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2506-2512	. 3.3	57
534	Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. American Journal of Physiology - Renal Physiology, 2020, 318, G504-G517.	1.6	16
535	On the mechanical response of the actomyosin cortex during cell indentations. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2061-2079.	1.4	1
536	Threeâ€dimensional organization of the cytoskeleton: A cryoâ€electron tomography perspective. Protein Science, 2020, 29, 1302-1320.	3.1	24
537	Knockout of ACTB and ACTG1 with CRISPR/Cas9(D10A) Technique Shows that Non-Muscle β and γ Actin Are Not Equal in Relation to Human Melanoma Cells' Motility and Focal Adhesion Formation. International Journal of Molecular Sciences, 2020, 21, 2746.	1.8	20
538	Haploid male germ cells—the Grand Central Station of protein transport. Human Reproduction Update, 2020, 26, 474-500.	5.2	51
539	Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17, 276-287.	1.2	38
540	Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers in Medical Science, 2021, 36, 437-445.	1.0	7
541	Microtubules provide guidance cues for myofibril and sarcomere assembly and growth. Developmental Dynamics, 2021, 250, 60-73.	0.8	7
542	Crowding tunes the organization and mechanics of actin bundles formed by crosslinking proteins. FEBS Letters, 2021, 595, 26-40.	1.3	6
543	Spatial organization and crosstalk of vimentin and actin stress fibers regulate the osteogenic differentiation of human adiposeâ€derived stem cells. FASEB Journal, 2021, 35, e21175.	0.2	10
544	Actin dynamics during tumor cell dissemination. International Review of Cell and Molecular Biology, 2021, 360, 65-98.	1.6	17
545	Functional vinorelbine plus schisandrin B liposomes destroying tumor metastasis in treatment of gastric cancer. Drug Development and Industrial Pharmacy, 2021, 47, 100-112.	0.9	8
546	Role of Î ³ -adducin in actin cytoskeleton rearrangements in podocyte pathophysiology. American Journal of Physiology - Renal Physiology, 2021, 320, F97-F113.	1.3	9
547	Motility and Mechanical Properties of Dendritic Cells Deteriorated by Extracellular Acidosis. Inflammation, 2021, 44, 737-745.	1.7	6
548	Probing tissue mechanics at the cellular-length scale in cancer microenvironments. , 2021, , 71-103.		2
549	Membrane Homeostasis: The Role of Actin Cytoskeleton. Journal of the Indian Institute of Science, 2021, 101, 81-95.	0.9	2

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
550	Elasticity of connected semiflexible quadrilaterals. Soft Matter, 2021, 17, 102-112.	1.2	2	4
551	Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. Jo Materials Chemistry B, 2021, 9, 3106-3130.	urnal of 2.	9	109
552	How to Move from Cell to Cell without Leaving the Intracellular Space: Lessons from Intrac Parasites. Molecular Genetics, Microbiology and Virology, 2021, 36, 1-9.	ellular O.	0	0
553	Cancer type-specific alterations in actin genes: Worth a closer look?. International Review of Molecular Biology, 2021, 360, 133-184.	of Cell and 1.	6	5
554	Store operated calcium channels in cancer progression. International Review of Cell and Me Biology, 2021, 363, 123-168.	olecular 1.6	6	9
555	Cytoskeleton Actin Organization. , 2021, , 154-166.			0
556	Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. Jo Biological Chemistry, 2021, 296, 100181.	urnal of 1.0	6	11
557	More than just a barrier: using physical models to couple membrane shape to cell function. Matter, 2021, 17, 3533-3549.	Soft 1.:	2	15
558	Dissociation Mechanisms of G-actin Subunits Govern Deformation Response of Actin Filam Biomacromolecules, 2021, 22, 907-917.	ent. 2.0	6	6
559	LSP1â€myosin1e bimolecular complex regulates focal adhesion dynamics and cell migratio Journal, 2021, 35, e21268.	n. FASEB O.	2	14
560	Role of Cytoskeletal Protein, Actin in Various Diseases. , 2021, , 95-124.			0
562	Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus, 20. 90-114.	21, 12, 0.	6	14
563	Microglia Degrade Extracellular Tau Oligomers Deposits via Purinergic P2Y12-Driven Podos Filopodia Formation and Induce Chemotaxis. SSRN Electronic Journal, 0, , .	omes, 0.	4	0
564	Sculpting the shapes of giant unilamellar vesicles using isotropic–nematic–isotropic pl Soft Matter, 2021, 17, 9078-9086.	nase cycles. 1.:	2	2
565	Fueling the cytoskeleton – links between cell metabolism and actin remodeling. Journal o Science, 2021, 134, .	of Cell 1.:	2	56
568	Actin Cytoskeleton and Regulation of TGFÎ ² Signaling: Exploring Their Links. Biomolecules,	2021, 11, 336. 1.	8	17
569	Innate immune receptor clustering and its role in immune regulation. Journal of Cell Scienc 134, .	e, 2021, 1.5	2	15
570	The origin of the expressed retrotransposed gene ACTBL2 and its influence on human mela motility and focal adhesion formation. Scientific Reports, 2021, 11, 3329.	noma cells' 1.0	6	11

#	Article	IF	CITATIONS
571	Ocean acidification increases polyspermy of a broadcast spawning bivalve species by hampering membrane depolarization and cortical granule exocytosis. Aquatic Toxicology, 2021, 231, 105740.	1.9	10
572	Characterization of immune cell migration using microfabrication. Biophysical Reviews, 2021, 13, 185-202.	1.5	20
574	Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements. Materials Science and Engineering C, 2021, 121, 111860.	3.8	5
576	Cell Cytoskeleton and Stiffness Are Mechanical Indicators of Organotropism in Breast Cancer. Biology, 2021, 10, 259.	1.3	16
578	Spatiotemporal Control of Supramolecular Polymerization and Gelation of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2021, 143, 3562-3570.	6.6	39
579	Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors. European Physical Journal E, 2021, 44, 45.	0.7	5
582	Actin on and around the Nucleus. Trends in Cell Biology, 2021, 31, 211-223.	3.6	74
583	Cell biology: Centrosomes in inner space. Current Biology, 2021, 31, R301-R303.	1.8	0
584	The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Current Biology, 2021, 31, 1192-1205.e6.	1.8	29
585	Remodelling of membrane tubules by the actin cytoskeleton. Biology of the Cell, 2021, 113, 329-343.	0.7	7
586	Stir it up: The role of actin in mitochondrial mixing during mitosis. Developmental Cell, 2021, 56, 1080-1082.	3.1	0
588	Reconstitution of contractile actomyosin rings in vesicles. Nature Communications, 2021, 12, 2254.	5.8	74
589	The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. Journal of Cell Science, 2021, 134, .	1.2	54
591	Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Reports, 2021, 35, 108971.	2.9	14
592	Actin polymerization state regulates osteogenic differentiation in humanÂadipose-derived stem cells. Cellular and Molecular Biology Letters, 2021, 26, 15.	2.7	19
594	Event-Chain Monte-Carlo Simulations of Dense Soft Matter Systems. Frontiers in Physics, 2021, 9, .	1.0	5
595	Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. Journal of Cell Science, 2021, 134, .	1.2	16
596	Vimentin regulates the assembly and function of matrix adhesions. Wound Repair and Regeneration, 2021, 29, 602-612.	1.5	30

#	Article	IF	CITATIONS
597	Multiple roles for actin in secretory and endocytic pathways. Current Biology, 2021, 31, R603-R618.	1.8	45
598	Diffusivity Estimation for Activator–Inhibitor Models: Theory and Application to Intracellular Dynamics of the Actin Cytoskeleton. Journal of Nonlinear Science, 2021, 31, 1.	1.0	9
601	Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear. IScience, 2021, 24, 102486.	1.9	6
602	Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors. Frontiers in Physics, 2021, 9, .	1.0	9
603	Selfâ€Organizing Microdroplet Protocells Displaying Lightâ€Driven Oscillatory and Morphological Evolution. Small, 2021, 17, e2101162.	5.2	6
607	Effect of F-Actin Organization in Lamellipodium on Viscoelasticity and Migration of Huh-7 Cells Under pH Microenvironments Using AM-FM Atomic Force Microscopy. Frontiers in Physics, 2021, 9, .	1.0	8
608	Actin bundle architecture and mechanics regulate myosin II force generation. Biophysical Journal, 2021, 120, 1957-1970.	0.2	14
609	Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nature Metabolism, 2021, 3, 714-727.	5.1	37
610	Stochastic Kinetic Treatment of Protein Aggregation and the Effects of Macromolecular Crowding. Journal of Physical Chemistry B, 2021, 125, 6068-6079.	1.2	8
611	Architecture-Dependent Mechano-Adaptation in Single Vascular Smooth Muscle Cells. Journal of Biomechanical Engineering, 2021, 143, .	0.6	7
612	Upregulated Expression of Profilin1 on Dendritic Cells in Patients With Severe Aplastic Anemia. Frontiers in Immunology, 2021, 12, 631954.	2.2	5
613	Viscoelastic Networks: Forming Cells and Tissues. Frontiers in Physics, 2021, 9, .	1.0	22
614	Mechanical Regulation of Transcription: Recent Advances. Trends in Cell Biology, 2021, 31, 457-472.	3.6	75
615	Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Frontiers in Cell and Developmental Biology, 2021, 9, 665519.	1.8	26
616	Profilin 3 genetic architecture in glioma formalin fixed paraffin embedded (FFPE) archive. Gene, 2021, 787, 145614.	1.0	3
618	Deeply Infiltrating iRGDâ€Graphene Oxide for the Intensive Treatment of Metastatic Tumors through PTTâ€Mediated Chemosensitization and Strengthened Integrin Targetingâ€Based Antimigration. Advanced Healthcare Materials, 2021, 10, e2100536.	3.9	18
619	Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioactive Materials, 2022, 9, 343-357.	8.6	29
620	The ependymal cell cytoskeleton in the normal and injured spinal cord of mice. Journal of Neuroscience Research, 2021, 99, 2592-2609.	1.3	3

#	Article	IF	CITATIONS
621	Formation of Large Intracellular Actin Networks Following Plasmonic Cell Fusion. IEEE Transactions on Nanobioscience, 2021, 20, 271-277.	2.2	2
622	Gelsolin Contributes to the Motility of A375 Melanoma Cells and This Activity Is Mediated by the Fibrous Extracellular Matrix Protein Profile. Cells, 2021, 10, 1848.	1.8	7
623	Cofilin and Neurodegeneration: New Functions for an Old but Gold Protein. Brain Sciences, 2021, 11, 954.	1.1	6
624	Phenomenological model of motility by spatiotemporal modulation of active interactions. New Journal of Physics, 2021, 23, 083001.	1.2	2
625	Probing mechanobiological role of filamin A in migration and invasion of human U87 glioblastoma cells using submicron soft pillars. Nano Convergence, 2021, 8, 19.	6.3	5
626	Linoleic and oleic acids enhance cell migration by altering the dynamics of microtubules and the remodeling of the actin cytoskeleton at the leading edge. Scientific Reports, 2021, 11, 14984.	1.6	7
627	Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS Journal, 2021, , .	2.2	5
629	Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioactive Materials, 2022, 9, 120-133.	8.6	20
630	Comparison of actin- and microtubule-based motility systems for application in functional nanodevices. New Journal of Physics, 2021, 23, 075007.	1.2	18
631	The cytoskeleton and connected elements in bone cell mechano-transduction. Bone, 2021, 149, 115971.	1.4	23
632	Direct measurement of nearâ€nanoâ€Newton forces developed by selfâ€organizing actomyosin fibers bound α•atenin. Biology of the Cell, 2021, 113, 441-449.	0.7	1
633	Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows. PLoS Computational Biology, 2021, 17, e1009268.	1.5	6
634	Optogenetic control of intracellular flows and cell migration: A comprehensive mathematical analysis with a minimal active gel model. Physical Review E, 2021, 104, 024406.	0.8	3
635	Intermediate filaments ensure resiliency of single carcinoma cells, while active contractility of the actin cortex determines their invasive potential. New Journal of Physics, 2021, 23, 083028.	1.2	2
636	Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers. Cells and Development, 2021, 168, 203736.	0.7	8
637	Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA. Molecular Biology of the Cell, 2021, 32, 1758-1771.	0.9	14
638	Modeling spatiotemporally varying protein–protein interactions in CyLaKS, the Cytoskeleton Lattice-based Kinetic Simulator. European Physical Journal E, 2021, 44, 105.	0.7	5
640	Identification and characterization of profilin gene family in Rice. Electronic Journal of Biotechnology, 2021, 54, 47-47.	1.2	0

#	Article	IF	CITATIONS
641	Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer?. Biology, 2021, 10, 913.	1.3	2
642	Extracellular Calcium Ion Concentration Regulates Chondrocyte Elastic Modulus and Adhesion Behavior. International Journal of Molecular Sciences, 2021, 22, 10034.	1.8	9
643	Cartilage Acidic Protein a Novel Therapeutic Factor to Improve Skin Damage Repair?. Marine Drugs, 2021, 19, 541.	2.2	3
644	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	2.9	15
645	Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Molecular Neurobiology, 2021, 58, 6316-6334.	1.9	6
646	Abnormal dendritic morphology in the cerebellum of cyclooxygenaseâ€2 ^{â^'} knockin mice. European Journal of Neuroscience, 2021, 54, 6355-6373.	1.2	4
647	Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Communications Biology, 2021, 4, 1136.	2.0	26
648	Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity. ACS Macro Letters, 2021, 10, 1151-1158.	2.3	8
649	Investigating the morphological dynamics of the plasma membrane by high-speed atomic force microscopy. Journal of Cell Science, 2021, 134, .	1.2	5
652	A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks. Nature Communications, 2021, 12, 5329.	5.8	57
653	Super-Resolution Imaging of the Actin Cytoskeleton in Living Cells Using TIRF-SIM. Methods in Molecular Biology, 2022, 2364, 3-24.	0.4	4
654	Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays. PLoS ONE, 2021, 16, e0257495.	1.1	5
655	At the nuclear envelope of bone mechanobiology. Bone, 2021, 151, 116023.	1.4	14
656	Ca2+-dependent binding of S100A6 to cofilin-1 regulates actin filament polymerization-depolymerization dynamics. Cell Calcium, 2021, 99, 102457.	1.1	5
657	Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. Biophysical Reports, 2021, 1, 100021.	0.7	5
659	How to move from cell to cell without leaving the intracellular space: lessons from intracellular parasites. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2021, 39, 3.	0.1	0
660	Emergence of Log-Normal Type Distributions in Avalanche Processes in Living Systems: A Network Model. Frontiers in Applied Mathematics and Statistics, 2021, 6, .	0.7	6
661	Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. Journal of the Indian Institute of Science, 2021, 101, 51-62.	0.9	6

#	Article	IF	CITATIONS
662	The multiple roles of actin-binding proteins at invadopodia. International Review of Cell and Molecular Biology, 2021, 360, 99-132.	1.6	6
663	Actin filament alignment causes mechanical hysteresis in cross-linked networks. Soft Matter, 2021, 17, 5499-5507.	1.2	16
664	In Vitro Biochemical Characterization of Cytokinesis Actin-Binding Proteins. Methods in Molecular Biology, 2016, 1369, 151-179.	0.4	17
665	Effects of Arginine and Its Deprivation on Human Glioblastoma Physiology and Signaling. Advances in Experimental Medicine and Biology, 2020, 1202, 243-258.	0.8	6
666	How Actin Tracks Affect Myosin Motors. Advances in Experimental Medicine and Biology, 2020, 1239, 183-197.	0.8	4
667	Plant Actin Cytoskeleton: New Functions from Old Scaffold. Plant Cell Monographs, 2018, , 103-137.	0.4	20
668	New insight into nucleo α-amino acids – Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorganic Chemistry, 2020, 100, 103864.	2.0	6
669	Collisions of deformable cells lead to collective migration. , 0, .		1
670	Scaling behaviour in steady-state contracting actomyosin networks. Nature Physics, 2019, 15, 509-516.	6.5	43
671	Finger-like membrane protrusions are favored by heterogeneities in the actin network. Soft Matter, 2020, 16, 7222-7230.	1.2	5
672	Drops and fibers — how biomolecular condensates and cytoskeletal filaments influence each other. Emerging Topics in Life Sciences, 2020, 4, 247-261.	1.1	54
673	Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29684-29690.	3.3	21
674	Cortical contraction drives the 3D patterning of epithelial cell surfaces. Journal of Cell Biology, 2020, 219, .	2.3	24
675	Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. Journal of Cell Biology, 2020, 219, .	2.3	19
699	Nonlinear Elastic and Inelastic Properties of Cells. Journal of Biomechanical Engineering, 2020, 142, .	0.6	14
700	Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona. F1000Research, 2016, 5, 1084.	0.8	12
701	MoCAP proteins regulated by MoArk1-mediated phosphorylation coordinate endocytosis and actin dynamics to govern development and virulence of Magnaporthe oryzae. PLoS Genetics, 2017, 13, e1006814.	1.5	46
702	TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS ONE, 2015, 10, e0130540.	1.1	56

	C	ITATION REPORT	
#	Article	IF	Citations
703	The role of myosin II in glioma invasion: A mathematical model. PLoS ONE, 2017, 12, e0171312.	1.1	27
704	βHâ€spectrin is required for ratcheting apical pulsatile constrictions during tissue invagination. EMB Reports, 2020, 21, e49858.	0 2.0	22
705	Endothelial cells on the move: dynamics in vascular morphogenesis and disease. Vascular Biology (Bristol, England), 2020, 2, H29-H43.	1.2	42
706	MIEN1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics. Oncotarget, 2016, 7, 54913-54924.	0.8	26
707	Gefitinib or lapatinib with foretinib synergistically induce a cytotoxic effect in melanoma cell lines. Oncotarget, 2018, 9, 18254-18268.	0.8	21
708	<i>MICAL2</i> is a novel human cancer gene controlling mesenchymal to epithelial transition involve in cancer growth and invasion. Oncotarget, 2016, 7, 1808-1825.	d 0.8	55
709	Extracellular vesicles in motion. Matters, 0, , .	1.0	7
710	Mapping the Mechanome–A Protocol for Simultaneous Live Imaging and Quantitative Analysis of 0 Mechanoadaptation and Ingression. Bio-protocol, 2019, 9, e3439.	Cell 0.2	2
711	Directional Control of Mature Osteoblast Derived from Juvenile Mouse Calvariae. Materials Transactions, 2017, 58, 958-962.	0.4	2
712	Roles of Actin in the Morphogenesis of the Early Caenorhabditis elegans Embryo. International Journal of Molecular Sciences, 2020, 21, 3652.	1.8	5
713	Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS Biophysics, 2017, 4, 615-658.	0.3	8
714	Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Reports, 2017, 50, 621-627.	1.1	15
715	Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. ELife, 2018, 7, .	2.8	23
716	Gating mechanisms during actin filament elongation by formins. ELife, 2018, 7, .	2.8	25
717	Morphogenetic degeneracies in the actomyosin cortex. ELife, 2018, 7, .	2.8	41
718	Quantitative regulation of the dynamic steady state of actin networks. ELife, 2019, 8, .	2.8	16
719	B cells extract antigens at Arp2/3-generated actin foci interspersed with linear filaments. ELife, 2019,	8, 2.8	29
720	Ataxin-7 and Non-stop coordinate SCAR protein levels, subcellular localization, and actin cytoskeleton organization. ELife, 2019, 8, .	2.8	13

	CITATION RE	PORT	
#	Article	IF	CITATIONS
721	Profilin and formin constitute a pacemaker system for robust actin filament growth. ELife, 2019, 8, .	2.8	80
722	Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. ELife, 2020, 9, .	2.8	76
723	Keratins and plakin family cytolinker proteins control the length of epithelial microridge protrusions. ELife, 2020, 9, .	2.8	19
726	Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes. PLoS Computational Biology, 2021, 17, e1009506.	1.5	9
728	Protective mitochondrial fission induced by stress-responsive protein GJA1-20k. ELife, 2021, 10, .	2.8	17
729	Plastin and spectrin cooperate to stabilize the actomyosin cortex during cytokinesis. Current Biology, 2021, 31, 5415-5428.e10.	1.8	14
730	Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Frontiers in Physiology, 2021, 12, 727338.	1.3	10
731	Isolation and Initial Characterization of Resistant Cells to Photodynamic Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 117-145.	0.1	1
732	Cytoskeletal Signaling by Src Homology Domain-Containing Adaptor Proteins. , 2015, , 187-207.		0
736	Preferential Arrangement of Mature Osteoblast from Juvenile Mouse Calvariae on the Oriented Collagen Substrate. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 480-484.	0.2	0
744	Mechanical Regulation of the WAVE Complex by Actin Elongation in the Lamellipodium. SSRN Electronic Journal, 0, , .	0.4	0
754	Modyfikacje potranslacyjne aktyny. Cosmos: Problems of Biological Sciences, 2018, 67, 43-55.	0.0	0
759	Phosphorylation of Arp2 is not essential for Arp2/3 complex activity in fission yeast. Life Science Alliance, 2018, 1, e201800202.	1.3	5
761	Actin Polymerization: A Cellular Perspective for Motility. , 2019, , 1-14.		0
764	Structural Organization of Cells—The Cytoskeleton. , 2019, , 355-371.		0
776	Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. International Journal of Molecular Sciences, 2021, 22, 11566.	1.8	26
777	How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764516.	2.0	0
778	Phagocytic â€~teeth' and myosin-ll â€~jaw' power target constriction during phagocytosis. ELife, 2021, 1	0, 2.8	35

# 779	ARTICLE Physics of liquid crystals in cell biology. Trends in Cell Biology, 2022, 32, 140-150.	IF 3.6	Citations 24
781	Towards the Idea of Molecular Brains. International Journal of Molecular Sciences, 2021, 22, 11868.	1.8	19
782	Nanomechanical Insight of Pancreatic Cancer Cell Membrane during Receptor Mediated Endocytosis of Targeted Gold Nanoparticles. ACS Applied Bio Materials, 2021, 4, 984-994.	2.3	9
783	Pulling the springs of a cell by single-molecule force spectroscopy. Emerging Topics in Life Sciences, 2021, 5, 77-87.	1.1	1
784	Connecting Actin Polymer Dynamics Across Multiple Scales. Association for Women in Mathematics Series, 2021, , 7-33.	0.1	0
789	Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease. Biomedical Science Letters, 2020, 26, 1-7.	0.0	1
790	Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. Journal of Structural Biology, 2021, 213, 107808.	1.3	22
796	Living Soft Matter Physics : active protein networks govern cell shape changes. Europhysics News, 2020, 51, 18-18.	0.1	0
797	Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles. Journal of Visualized Experiments, 2021, , .	0.2	9
799	Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions. Frontiers in Molecular Biosciences, 2021, 8, 760950.	1.6	2
800	Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. Journal of Cell Science, 2021, 134, .	1.2	7
802	Salt-Mediated Stiffening, Destruction, and Resculpting of Actomyosin Network. Frontiers in Physics, 2021, 9, .	1.0	1
803	mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. MBio, 2021, , e0293921.	1.8	3
805	A Coarse-Grained Lattice Spring Model to Characterize Nanoindented Stem Cells. Lecture Notes in Mechanical Engineering, 2022, , 623-629.	0.3	1
806	Encapsulated Actomyosin Patterns Drive Cell-Like Membrane Shape Changes. SSRN Electronic Journal, 0, , .	0.4	2
807	Time-lapse imaging of Drosophila testis for monitoring actin dynamics and sperm release. STAR Protocols, 2022, 3, 101020.	0.5	0
808	Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophysical Journal, 2022, 121, 327-335.	0.2	5
809	Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nature Methods, 2022, 19, 216-222.	9.0	40

	CITATION REPORT		
#	Article	IF	CITATIONS
810	Structural Aspects of LIMK Regulation and Pharmacology. Cells, 2022, 11, 142.	1.8	9
812	Biomarker Potential of Vimentin in Oral Cancers. Life, 2022, 12, 150.	1,1	5
813	Graphene Enhances Actin Filament Assembly Kinetics and Modulates NIH-3T3 Fibroblast Cell Spreading. International Journal of Molecular Sciences, 2022, 23, 509.	1.8	6
815	Controlled Fabrication of Bioactive Microtubes for Screening Anti-Tongue Squamous Cell Migration Drugs. Frontiers in Chemistry, 2022, 10, 771027.	1.8	0
818	From Single to Collective Motion of Social Amoebae: A Computational Study of Interacting Cells. Frontiers in Physics, 2022, 9, .	1.0	4
819	Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Current Opinion in Genetics and Development, 2022, 73, 101897.	1.5	18
820	WASP integrates substrate topology and cell polarity to guide neutrophil migration. Journal of Cell Biology, 2022, 221, .	2.3	28
821	The Role of LIM Kinase in the Male Urogenital System. Cells, 2022, 11, 78.	1.8	11
822	Angiogenesis: Dynamics of Endothelial Cells in Sprouting and Bifurcation. Theoretical Biology, 2021, , 25-83.	0.0	1
823	Modeling the dynamic growth and branching of actin filaments. Soft Matter, 2022, , .	1.2	2
824	Acquiring structural and mechanical information of a fibrous network through deep learning. Nanoscale, 2022, 14, 5044-5053.	2.8	5
825	Dual Control of Formin-Nucleated Actin Assembly by the Chromatin and ER in Mouse Oocytes. SSRN Electronic Journal, 0, , .	0.4	0
827	Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells. International Journal of Nanomedicine, 2022, Volume 17, 969-981.	3.3	1
828	Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Current Biology, 2022, 32, 1577-1592.e8.	1.8	11
829	Hypothiocyanous Acid Disrupts the Barrier Function of Brain Endothelial Cells. Antioxidants, 2022, 11, 608.	2.2	3
830	Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Frontiers in Cell and Developmental Biology, 2022, 10, 869069.	1.8	23
832	Reâ€evaluating the actinâ€dependence of spectraplakin functions during axon growth and maintenance. Developmental Neurobiology, 2022, 82, 288-307.	1.5	3
834	Pulsatile contractions and pattern formation in excitable actomyosin cortex. PLoS Computational Biology, 2022, 18, e1009981.	1.5	11

#	Article	IF	CITATIONS
835	Deconstructing the role of myosin contractility inÂforce fluctuations within focal adhesions. Biophysical Journal, 2022, 121, 1753-1764.	0.2	3
837	Ena/VASP proteins in cell edge protrusion, migration and adhesion. Journal of Cell Science, 2022, 135, .	1.2	34
839	Biochemical characterization of actin assembly mechanisms with ALS-associated profilin variants. European Journal of Cell Biology, 2022, 101, 151212.	1.6	15
840	The mammalian endocytic cytoskeleton. European Journal of Cell Biology, 2022, 101, 151222.	1.6	6
841	Capturing actin assemblies in cells using in situ cryo-electron tomography. European Journal of Cell Biology, 2022, 101, 151224.	1.6	6
843	ERRα coordinates actin and focal adhesion dynamics. Cancer Gene Therapy, 2022, 29, 1429-1438.	2.2	6
844	Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Seminars in Cell and Developmental Biology, 2023, 133, 107-122.	2.3	18
845	Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. Journal of Lipid Research, 2022, 63, 100206.	2.0	10
846	Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces. Biomaterials, 2022, 284, 121494.	5.7	22
847	Outer hair cell electromechanics as a problem in soft matter physics: Prestin, the membrane and the cytoskeleton. Hearing Research, 2022, 423, 108426.	0.9	1
848	Biophysical Approaches for Applying and Measuring Biological Forces. Advanced Science, 2022, 9, e2105254.	5.6	15
849	Dynamics of the Actin Cytoskeleton at Adhesion Complexes. Biology, 2022, 11, 52.	1.3	10
850	Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nature Biomedical Engineering, 2021, 5, 1411-1425.	11.6	96
852	Active forces modulate collective behaviour and cellular organization. Comptes Rendus - Biologies, 2021, 344, 325-335.	0.1	0
853	Fundamental mechanics of cell shape and cell movement. , 2022, , 85-100.		1
854	The cellular microenvironment and cytoskeletal actin dynamics in liver fibrogenesis. Biocell, 2022, .	0.4	6
855	Cellular substructures, actin dynamics, and actin-binding proteins regulating cell migration. , 2022, , 25-50.		0
856	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis. , 2022, , 245-270.		0

#	Article	IF	CITATIONS
857	Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO Journal, 2022, 41, e107982.	3.5	6
859	Membrane Repairing Capability of Non-Small Cell Lung Cancer Cells Is Regulated by Drug Resistance and Epithelial-Mesenchymal-Transition. Membranes, 2022, 12, 428.	1.4	1
860	Encapsulated actomyosin patterns drive cell-like membrane shape changes. IScience, 2022, 25, 104236.	1.9	19
882	A role for myosin II clusters and membrane energy in cortex rupture for Dictyostelium discoideum. PLoS ONE, 2022, 17, e0265380.	1.1	5
883	Mechanical Properties of the Cell Surface Layer Measured by Contact Atomic Force Microscopy. Biologically-inspired Systems, 2022, , 51-72.	0.4	5
884	Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. Soft Matter, 2022, 18, 3917-3927.	1.2	3
885	β2-Integrins – Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Frontiers in Immunology, 2022, 13, 809590.	2.2	7
886	Myosin 1D and the branched actin network control the condensation of p62 bodies. Cell Research, 2022, 32, 659-669.	5.7	12
887	Cancer as a biophysical disease: Targeting the mechanical-adaptability program. Biophysical Journal, 2022, 121, 3573-3585.	0.2	11
888	Actin Stress Fibers Response and Adaptation under Stretch. International Journal of Molecular Sciences, 2022, 23, 5095.	1.8	4
889	Establishing Neuronal Polarity: Microtubule Regulation during Neurite Initiation. , 0, , .		0
890	Fingering instability of active nematic droplets. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 234009.	0.7	8
891	A Model of F-actin Organization in Granuloreticulopodia in Foraminifera: Morphogenetic and Evolutionary Implications from Novel Fluorescent and Polarised Light Observations. Protist, 2022, , 125886.	0.6	0
892	Orchestrating nonmuscle myosin II filament assembly at the onset of cytokinesis. Molecular Biology of the Cell, 2022, 33, mbcE21120599.	0.9	6
893	Passive and active fiber reorientation in anisotropic materials. International Journal of Engineering Science, 2022, 176, 103688.	2.7	9
894	Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx?. Experimental Cell Research, 2022, 417, 113204.	1.2	2
895	Localization of host endocytic and actinâ€associated proteins during <i>Shigella flexneri</i> intracellular motility and intercellular spreading. Anatomical Record, 2022, , .	0.8	3
896	Role of actin-binding proteins in the regulation of cellular mechanics. European Journal of Cell Biology, 2022, 101, 151241.	1.6	14

#	Article	IF	CITATIONS
900	Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Reports, 2022, 39, 110868.	2.9	4
902	WASP family proteins: Molecular mechanisms and implications in human disease. European Journal of Cell Biology, 2022, 101, 151244.	1.6	19
904	A mechanism with severing near barbed ends and annealing explains structure and dynamics of dendritic actin networks. ELife, 0, 11, .	2.8	4
905	The molecular mechanism of load adaptation by branched actin networks. ELife, 0, 11, .	2.8	16
906	Comprehensively characterizing cellular changes and the expression of THSD7A and PLA2R1 under multiple in vitro models of podocyte injury. Cell Biochemistry and Function, 0, , .	1.4	0
907	Visualizing molecules of functional human profilin. ELife, 0, 11, .	2.8	11
908	Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nature Communications, 2022, 13, .	5.8	8
909	Granger-causal inference of the lamellipodial actin regulator hierarchy by live cell imaging without perturbation. Cell Systems, 2022, 13, 471-487.e8.	2.9	9
910	Exploration of Deformation of F-Actin during Macropinocytosis by Confocal Microscopy and 3D-Structured Illumination Microscopy. Photonics, 2022, 9, 461.	0.9	0
912	Toward Tissueâ€Like Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels. Advanced Materials, 2022, 34, .	11.1	11
913	Regulation of cellular communication network factor 1 by Ras homolog family member A in bovine steroidogenic luteal cells. Journal of Animal Science, 2022, 100, .	0.2	2
914	Actin–microtubule dynamic composite forms responsive active matter with memory. Proceedings of the United States of America, 2022, 119, .	3.3	11
915	Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. Journal of Cell Science, 2022, 135, .	1.2	9
916	Membrane ruffling is a mechanosensor of extracellular fluid viscosity. Nature Physics, 2022, 18, 1112-1121.	6.5	31
917	Smooth Muscle Myosin Localizes at the Leading Edge and Regulates the Redistribution of Actin-regulatory Proteins during Migration. Cells, 2022, 11, 2334.	1.8	1
918	Compression-induced buckling of a semiflexible filament in two and three dimensions. Journal of Chemical Physics, 2022, 157, .	1.2	1
920	Biochemical and mechanical regulation of actin dynamics. Nature Reviews Molecular Cell Biology, 2022, 23, 836-852.	16.1	73
921	Divergent Nanotube Synthesis through Reversible Macrocycle Assembly. Accounts of Materials Research, 2022, 3, 935-947.	5.9	2

#	Article	IF	Citations
922	Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. Physical Review Letters, 2022, 129, .	2.9	4
923	Encapsulated bacteria deform lipid vesicles into flagellated swimmers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
926	Actin network architecture can ensure robust centering or sensitive decentering of the centrosome. EMBO Journal, 2022, 41, .	3.5	10
927	Dual control of formin-nucleated actin assembly by the chromatin and ER in mouse oocytes. Current Biology, 2022, , .	1.8	2
928	VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Molecular Biology of the Cell, 2022, 33, .	0.9	4
929	Multiscale architecture: Mechanics of composite cytoskeletal networks. Biophysics Reviews, 2022, 3, .	1.0	6
930	Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells, 2022, 11, 2777.	1.8	10
931	Structural mechanism for bidirectional actin cross-linking by T-plastin. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
932	Molecular and structural basis of actin filament severing by ADF/cofilin. Computational and Structural Biotechnology Journal, 2022, 20, 4157-4171.	1.9	4
933	Computational study of the impact of nucleotide variations on highly conserved proteins: In the case of actin. Biophysics and Physicobiology, 2022, 19, n/a.	0.5	0
934	Symmetry-breaking, motion and bistability of active drops through polarization-surface coupling. Soft Matter, 2022, 18, 5823-5832.	1.2	3
935	Non-equilibrium shapes and dynamics of active vesicles. Soft Matter, 2022, 18, 6868-6881.	1.2	6
936	Biomechanics Approaches for Cancer Detection: Cell Adhesion and Cell Mechanics. , 2022, , .		0
938	N-terminal acetylation and arginylation of actin determines the architecture and assembly rate of linear and branched actin networks. Journal of Biological Chemistry, 2022, 298, 102518.	1.6	6
939	Emerging role of caldesmon in cancer: A potential biomarker for colorectal cancer and other cancers. World Journal of Gastrointestinal Oncology, 2022, 14, 1637-1653.	0.8	5
940	Directed cell invasion and asymmetric adhesion drive tissue elongation and turning in C.Âelegans gonad morphogenesis. Developmental Cell, 2022, 57, 2111-2126.e6.	3.1	10
941	Regulation of fenestra formation via actin-dynamin2 interaction in rat pituitary endothelial cells. Cell and Tissue Research, 2022, 390, 441-451.	1.5	1
942	Mitochondrial dysfunction triggers actin polymerization necessary for rapid glycolytic activation. Journal of Cell Biology, 2022, 221, .	2.3	4

#	Article	IF	Citations
943	Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks. Biochemical Society Transactions, 2022, 50, 1527-1539.	1.6	7
944	The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery. Journal of Cell Biology, 2022, 221, .	2.3	2
945	MLL regulates the actin cytoskeleton and cell migration by stabilising Rho GTPases via the expression of RhoGDI1. Journal of Cell Science, 2022, 135, .	1.2	3
946	Cooperative bundling by fascin generates actin structures with architectures that depend on filament length. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
948	Cytoskelett. , 2022, , 229-237.		0
949	A Uniform and Isotropic Cytoskeletal Tiling Fills Dendritic Spines. ENeuro, 2022, 9, ENEURO.0342-22.2022.	0.9	4
950	Molecular dynamics simulation study on the structures of fascin mutants. Journal of Molecular Recognition, 2023, 36, .	1.1	1
951	How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus, 2022, 12, .	1.5	4
952	Self-organization in amoeboid motility. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
953	Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions. Science Advances, 2022, 8, .	4.7	18
954	A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Frontiers in Immunology, 0, 13, .	2.2	1
955	Actin Architecture Steers Microtubules in Active Cytoskeletal Composite. Nano Letters, 2022, 22, 8584-8591.	4.5	3
956	Reciprocal regulation of actin filaments and cellular metabolism. European Journal of Cell Biology, 2022, 101, 151281.	1.6	3
958	Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Advances in Biological Regulation, 2023, 87, 100923.	1.4	3
959	A tug of war between filament treadmilling and myosin induced contractility generates actin rings. ELife, 0, 11, .	2.8	5
960	Pattern formation and the mechanics of a motor-driven filamentous system confined by rigid membranes. Physical Review Research, 2022, 4, .	1.3	3
961	F-actin architecture determines constraints on myosin thick filament motion. Nature Communications, 2022, 13, .	5.8	16
962	The Sall2 transcription factor promotes cell migration regulating focal adhesion turnover and integrin $\hat{1}^21$ expression. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1

#	Article	IF	CITATIONS
963	Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Molecular Biology of the Cell, 2023, 34, .	0.9	2
964	Evaluating the Impact of a Biomimetic Mechanical Environment on Cancer Invasion and Matrix Remodeling. Advanced Healthcare Materials, 2023, 12, .	3.9	6
966	Nonlinear Microscale Mechanics of Actin Networks Governed by Coupling of Filament Crosslinking and Stabilization. Polymers, 2022, 14, 4980.	2.0	1
967	Deciphering actin remodelling in immune cells through the prism of actin-related inborn errors of immunity. European Journal of Cell Biology, 2023, 102, 151283.	1.6	4
968	Twirling, whirling, and overwhirling revisited: Viscous dynamics of rotating filaments and ribbons. Physical Review Fluids, 2022, 7, .	1.0	1
969	Remeshing flexible membranes under the control of free energy. PLoS Computational Biology, 2022, 18, e1010766.	1.5	1
970	Mechanochemical subcellular-element model of crawling cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
971	AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution. BioEssays, 2023, 45, .	1.2	2
972	Enseñando a ser madres: la educación de mujer a mujer en la Valencia del primer tercio del siglo XX. Asclepio, 2022, 74, p614.	0.2	0
973	ILEE: Algorithms and toolbox for unguided and accurate quantitative analysis of cytoskeletal images. Journal of Cell Biology, 2023, 222, .	2.3	2
974	Scratching beyond the surface — minimal actin assemblies as tools to elucidate mechanical reinforcement and shape change. Emerging Topics in Life Sciences, 2022, 6, 583-592.	1.1	1
976	Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Molecular Biology of the Cell, 2023, 34, .	0.9	5
978	Quantifying Strain-Sensing Protein Recruitment During Stress Fiber Repair. Methods in Molecular Biology, 2023, , 169-182.	0.4	1
979	Cell size and actin architecture determine force generation in optogenetically activated cells. Biophysical Journal, 2023, 122, 684-696.	0.2	6
980	Lipocalin 2 inhibits actin glutathionylation to promote invasion and migration. FEBS Letters, 2023, 597, 1086-1097.	1.3	2
981	Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors. Biological Chemistry, 2023, .	1.2	1
982	Ena/VASP clustering at microspike tips involves lamellipodin but not I-BAR proteins, and absolutely requires unconventional myosin-X. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
983	Structural basis underlying specific biochemical activities of non-muscle tropomyosin isoforms. Cell Reports, 2023, 42, 111900.	2.9	3

#	Article	IF	CITATIONS
984	Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Scientific Reports, 2023, 13, .	1.6	2
985	LILAC: enhanced actin imaging with an optogenetic Lifeact. Nature Methods, 2023, 20, 214-217.	9.0	3
986	Liquid-like VASP condensates drive actin polymerization and dynamic bundling. Nature Physics, 2023, 19, 574-585.	6.5	10
987	Biomolecular condensation involving the cytoskeleton. Brain Research Bulletin, 2023, 194, 105-117.	1.4	7
988	Actin based motility unveiled: How chemical energy is converted into motion. Journal of the Mechanics and Physics of Solids, 2023, 175, 105273.	2.3	1
990	Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. Physical Review Letters, 2023, 130, .	2.9	3
991	Interactions between \hat{l}^2 -arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders. Frontiers in Endocrinology, 0, 14, .	1.5	1
993	Structural insights into actin isoforms. ELife, 0, 12, .	2.8	11
994	Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules, 2023, 24, 1131-1140.	2.6	4
995	MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	8
996	Bioinspired Membrane Interfaces: Controlling Actomyosin Architecture and Contractility. ACS Applied Materials & Interfaces, 2023, 15, 11586-11598.	4.0	2
997	Actin Bundles Dynamics and Architecture. Biomolecules, 2023, 13, 450.	1.8	12
998	From WRC to Arp2/3: Collective molecular mechanisms of branched actin network assembly. Current Opinion in Cell Biology, 2023, 80, 102156.	2.6	16
999	Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO Journal, 2023, 42, .	3.5	7
1000	Unleashed Actin Assembly in Capping Protein-Deficient B16-F1 Cells Enables Identification of Multiple Factors Contributing to Filopodium Formation. Cells, 2023, 12, 890.	1.8	1
1001	CTNNA1, a New HDGC Gene: Inactivating Mechanisms and Driven Phenotypes. , 2023, , 55-78.		0
1002	Bending actin filaments: twists of fate. Faculty Reviews, 0, 12, .	1.7	1
1003	Computational Physics of Active Matter. , 2023, , 354-390.		0

ARTICLE IF CITATIONS What is â€~Active Matter'?., 2023, , 1-31. 1004 0 The Arp2/3 complex enhances cell migration on elastic substrates. Molecular Biology of the Cell, 2023, 34, . Generic stress rectification in nonlinear elastic media. Soft Matter, 2023, 19, 2970-2976. 1006 1.2 1 Fascin â⁻' F-actin interaction studied by molecular dynamics simulation and protein network analysis. Journal of Biomolecular Structure and Dynamics, 2024, 42, 435-444. Tau aggregates improve the Purinergic receptor P2Y12-associated podosome rearrangements in 1008 1.9 1 microglial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119477. Nonlinear elastic behaviors and deformation mechanisms of nano-structured crosslinked biopolymer networks. Extreme Mechanics Letters, 2023, , 102017. How Hydrogel Stiffness Affects Adipogenic Differentiation of Mesenchymal Stem Cells under 1010 2.3 2 Controlled Morphology. ACS Applied Bio Materials, 2023, 6, 3441-3450. Configurational dynamics of flexible filaments in bacterial active baths. New Journal of Physics, 2023, 25, 043029. 1.2 Fine mapping and candidate gene analysis of gynoecy trait in chieh-qua (Benincasa hispida Cogn. var.) Tj ETQq0 0 Q rgBT /Overlock 10 T 1013

1026	The multiple links between actin and mitochondria. Nature Reviews Molecular Cell Biology, 2023, 24, 651-667.	16.1	8
1034	A Ciliary Branched Actin Network Drives Photoreceptor Disc Morphogenesis. Advances in Experimental Medicine and Biology, 2023, , 507-511.	0.8	1
1085	pH-regulated single cell migration. Pflugers Archiv European Journal of Physiology, 2024, 476, 639-658.	1.3	1