Flexible high efficiency perovskite solar cells

Energy and Environmental Science 7, 994 DOI: 10.1039/c3ee43619e

Citation Report

#	Article	IF	CITATIONS
2	Rutherford Backscattering Spectroscopy of Mass Transport by Transformation of PbI2 into CH3NH3PbI3 within np-TiO2. Hybrid Materials, 2014, 1, .	0.7	3
3	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:ri <="" pre=""></mml:ri></mml:msub></mml:mrow></mml:mrow></mml:math></pre>	i> 1.1 mn>3 <td>126 126 nl:mn> </td>	126 126 nl:mn>
4	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	15.6	1,220
5	Effect of CH ₃ NH ₃ PbI ₃ thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19873-19881.	5.2	314
6	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	5.2	147
7	Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances, 2014, 4, 43286-43314.	1.7	238
8	Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Advances, 2014, 4, 62971-62977.	1.7	182
9	Perovskite photovoltaics featuring solution-processable TiO2as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale, 2014, 6, 11403-11410.	2.8	24
10	Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 2014, 8, 10640-10654.	7.3	353
11	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	2.2	86
12	A Transparent Conductive Adhesive Laminate Electrode for Highâ€Efficiency Organicâ€Inorganic Lead Halide Perovskite Solar Cells. Advanced Materials, 2014, 26, 7499-7504.	11.1	169
13	Efficient and Uniform Planarâ€Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials, 2014, 26, 6647-6652.	11.1	433
14	Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells. Materials Science in Semiconductor Processing, 2014, 27, 569-576.	1.9	29
15	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	15.6	266
16	Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466.	11.1	321
17	Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy and Environmental Science, 2014, 7, 3989-3993.	15.6	213
18	Recent Research Developments of Perovskite Solar Cells. Chinese Journal of Chemistry, 2014, 32, 957-963.	2.6	37
19	Radiative Recombination and Photoconversion of Methylammonium Lead Iodide Perovskite by First Principles: Properties of an Inorganic Semiconductor within a Hybrid Body. Journal of Physical	1.5	74

TATION REDO

#	Article	IF	Citations
20	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18.	8.2	504
21	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505-10510.	2.8	352
22	An 80.11% FF record achieved for perovskite solar cells by using the NH ₄ Cl additive. Nanoscale, 2014, 6, 9935-9938.	2.8	368
23	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	2.8	105
24	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
25	Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin, 2015, 40, 660-666.	1.7	58
26	Plasmonicâ€Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5038-5046.	7.8	198
27	Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes. Advanced Energy Materials, 2015, 5, 1500569.	10.2	285
29	Study on hole-transport-material-free planar TiO ₂ /CH ₃ NH ₃ PbI ₃ heterojunction solar cells: the simplest configuration of a working perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 14902-14909.	5.2	40
30	Perovskites: Solar cells & engineering applications – materials and device developments. Solar Energy, 2015, 122, 678-699.	2.9	133
31	Device architectures with nanocrystalline mesoporous scaffolds and thin compact layers for flexible perovskite solar cells and modules. , 2015, , .		0
32	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	10.2	241
33	Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. Particle and Particle Systems Characterization, 2015, 32, 709-720.	1.2	144
34	Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.	5.2	91
35	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
36	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	3.0	70
37	Low-Temperature Processed and Carbon-Based ZnO/CH ₃ NH ₃ PbI ₃ /C Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 4600-4605.	1.5	153
38	Low-Temperature and Solution-Processed Amorphous WO _{<i>X</i>} as Electron-Selective Layer for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 755-759.	2.1	224

#	Article	IF	CITATIONS
39	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4283-4289.	4.0	59
40	Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 9241-9248.	5.2	100
41	Perovskite thin-film solar cell: excitation in photovoltaic science. Science China Chemistry, 2015, 58, 221-238.	4.2	63
42	Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices. Electrochimica Acta, 2015, 175, 151-161.	2.6	89
43	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34
44	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	5.2	91
45	Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell. Nanoscale, 2015, 7, 11520-11524.	2.8	28
46	Effect of surface composition on electronic properties of methylammonium lead iodide perovskite. Journal of Materiomics, 2015, 1, 213-220.	2.8	49
47	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
48	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
49	Absorption Enhancement in Organic–Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18635-18640.	1.5	105
50	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
51	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
52	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	4.0	201
53	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	2.8	21
54	Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. Journal of Materials Chemistry A, 2015, 3, 9141-9145.	5.2	133
55	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
56	Recent Progress of Innovative Perovskite Hybrid Solar Cells. Israel Journal of Chemistry, 2015, 55, 966-977.	1.0	34

# 57	ARTICLE Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A, 2015, 3, 9401-9405.	IF 5.2	Citations 146
58	Aqueous dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3431-3473.	18.7	389
59	New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21807-21818.	4.0	80
60	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
61	Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 2015, 107, .	1.5	55
62	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
63	Vibrational Properties of the Organic–Inorganic Halide Perovskite CH ₃ NH ₃ PbI ₃ from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. Journal of Physical Chemistry C, 2015, 119, 25703-25718.	1.5	276
64	Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 24008-24015.	4.0	257
65	Flexible luminescent waveguiding photovoltaics exhibiting strong scattering effects from the dye aggregation. Nano Energy, 2015, 15, 729-736.	8.2	23
66	Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 19431-19438.	4.0	34
67	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 2015, 9, 10287-10295.	7.3	335
68	Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 2015, 51, 15518-15521.	2.2	88
69	Elastic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 21070-21076.	5.2	74
70	TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 2015, 11, 728-735.	8.2	293
71	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
72	Multicolored Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 1248-1254.	11.1	1,077
73	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
74	Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Physical Chemistry Chemical Physics, 2015, 17, 1619-1629.	1.3	308

#	Article	IF	CITATIONS
75	Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. Journal of Materials Chemistry A, 2015, 3, 9152-9159.	5.2	240
76	Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4, 6071.	1.6	283
77	Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy and Environmental Science, 2015, 8, 916-921.	15.6	602
78	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	1.6	106
79	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
80	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
81	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	0.8	11
82	Cableâ€Type Waterâ€&urvivable Flexible Liâ€O ₂ Battery. Small, 2016, 12, 3101-3105.	5.2	102
83	Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material. Advanced Functional Materials, 2016, 26, 4464-4471.	7.8	136
84	An easy method to modify PEDOT:PSS/perovskite interfaces for solar cells with efficiency exceeding 15%. RSC Advances, 2016, 6, 65594-65599.	1.7	31
85	Shuntâ€Blocking Layers for Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500837.	1.9	73
86	<i>N</i> -channel field-effect transistors with an organic-inorganic layered perovskite semiconductor. Applied Physics Letters, 2016, 109, .	1.5	68
87	Field-effect transistors with vacuum-deposited organic-inorganic perovskite films as semiconductor channels. Journal of Applied Physics, 2016, 120, .	1.1	12
88	Roomâ€Temperature Atomic Layer Deposition of Al ₂ O ₃ : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells. ChemSusChem, 2016, 9, 3401-3406.	3.6	76
89	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	5.8	88
90	Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. ChemSusChem, 2016, 9, 31-35.	3.6	90
91	Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI 2 phase, and CH 3 NH 3 PbI 3 morphologies. Journal of Power Sources, 2016, 324, 142-149.	4.0	17
92	Enhanced TiO ₂ /MAPbI ₃ Electronic Coupling by Interface Modification with PbI ₂ . Chemistry of Materials, 2016, 28, 3612-3615.	3.2	60

#	Article	IF	Citations
93	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
94	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	1.7	10
95	Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT:PSS hole-transporter. Organic Electronics, 2016, 33, 221-226.	1.4	26
96	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
97	An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells. International Journal of Green Energy, 2016, 13, 859-906.	2.1	4
98	Novel Combination of Efficient Perovskite Solar Cells with Low Temperature Processed Compact TiO ₂ Layer via Anodic Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 12836-12842.	4.0	20
99	Absorption enhancement in CH ₃ NH ₃ PbI ₃ solar cell using a TiO ₂ /MoS ₂ nanocomposite electron selective contact. Materials Research Express, 2016, 3, 045022.	0.8	20
100	Solutionâ€Processed Organic–Inorganic Perovskite Fieldâ€Effect Transistors with High Hole Mobilities. Advanced Materials, 2016, 28, 10275-10281.	11.1	237
101	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	15.6	345
102	Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method. ACS Applied Materials & Interfaces, 2016, 8, 26013-26018.	4.0	25
103	Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. ACS Applied Materials & Interfaces, 2016, 8, 28406-28411.	4.0	83
104	Recent Development of Transparent Conducting Oxideâ€Free Flexible Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 8855-8884.	7.8	82
105	Flexible perovskite solar cells based on the metal–insulator–semiconductor structure. Chemical Communications, 2016, 52, 10791-10794.	2.2	30
106	Tailoring Hybrid Nonstoichiometric Ceria Redox Cycle for Combined Solar Methane Reforming and Thermochemical Conversion of H ₂ O/CO ₂ . Energy & Fuels, 2016, 30, 6050-6058.	2.5	54
107	The interface and its role in carrier transfer/recombination dynamics for the planar perovskite solar cells prepared under fully open air conditions. Current Applied Physics, 2016, 16, 1353-1363.	1.1	16
108	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	8.2	14
109	Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14017-14024.	5.2	53
110	Flexible Perovskite Solar Cell. , 2016, , 325-341.		2

#	Article	IF	Citations
111	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151-157.	8.2	200
112	Laser deposition for the controlled co-deposition of organolead halide perovskite. , 2016, , .		0
113	Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework. RSC Advances, 2016, 6, 82933-82940.	1.7	7
114	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
115	Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506.	3.5	7
116	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
117	Highly efficient metal halide substituted CH3NH3I(PbI2)1â^'X(CuBr2)X planar perovskite solar cells. Nano Energy, 2016, 27, 330-339.	8.2	106
118	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	1.4	19
119	Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold. Advanced Energy Materials, 2016, 6, 1601055.	10.2	95
120	Two‣tep Physical Deposition of a Compact Cul Holeâ€Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells. ChemSusChem, 2016, 9, 1929-1937.	3.6	64
121	Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. ACS Applied Materials & Interfaces, 2016, 8, 20067-20073.	4.0	88
122	Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772.	0.8	79
123	Efficient Perovskite Solar Cells Based on Multilayer Transparent Electrodes through Morphology Control. Journal of Physical Chemistry C, 2016, 120, 26703-26709.	1.5	12
124	Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature Communications, 2016, 7, 13319.	5.8	147
125	Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications. Scientific Reports, 2016, 5, 17684.	1.6	81
126	Color tunable nanopaper solar cells using hybrid CH3NH3PbI3â^'xBrx perovskite. Solar Energy, 2016, 139, 458-466.	2.9	33
127	A Cableâ€Shaped Lithium Sulfur Battery. Advanced Materials, 2016, 28, 491-496.	11.1	180
128	Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceramics International, 2016, 42, 7246-7252.	2.3	40

#	Article	IF	CITATIONS
129	Spatial confinement growth of perovskite nanocrystals for ultra-flexible solar cells. RSC Advances, 2016, 6, 59429-59437.	1.7	3
130	Cuprous Oxide as a Potential Low ost Holeâ€Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 302-313.	3.6	122
131	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
132	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	5.2	48
133	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107
134	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	2.8	99
135	Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. Journal of Materials Chemistry C, 2016, 4, 793-800.	2.7	171
136	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
137	An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 2016, 22, 223-231.	8.2	157
138	Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cells. RSC Advances, 2016, 6, 25062-25069.	1.7	10
139	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
140	Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 2016, 131, 176-182.	2.9	59
141	Decreasing Charge Losses in Perovskite Solar Cells Through mp-TiO ₂ /MAPI Interface Engineering. Chemistry of Materials, 2016, 28, 207-213.	3.2	77
142	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534
143	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137
144	Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell. Thin Solid Films, 2016, 605, 208-214.	0.8	18
145	A calorimetric approach to reach high performance perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 146, 44-50.	3.0	14
146	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy and Environmental Science, 2016, 9, 12-30.	15.6	449

#	Article	IF	CITATIONS
147	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	11.1	200
148	Flexible photovoltaic power systems: integration opportunities, challenges and advances. Flexible and Printed Electronics, 2017, 2, 013001.	1.5	41
149	Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20%. ACS Applied Materials & Interfaces, 2017, 9, 8113-8120.	4.0	72
150	Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. Journal of Semiconductors, 2017, 38, 011004.	2.0	10
151	Highâ€Performance Integrated Selfâ€Package Flexible Li–O ₂ Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378.	11.1	72
152	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	10.2	62
153	A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode. Materials Research Bulletin, 2017, 96, 196-200.	2.7	10
154	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	5.2	18
155	Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. Journal of Materials Chemistry A, 2017, 5, 13957-13965.	5.2	80
156	Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy, 2017, 150, 570-576.	2.9	84
157	Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 13639-13647.	5.2	68
158	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
159	Mechanism study on enhanced open-circuit voltage of perovskite solar cells with vapor-induced TiO 2 as electron-transport layer. Thin Solid Films, 2017, 629, 11-16.	0.8	10
160	Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 2017, 7, 17044-17062.	1.7	317
161	Lattice Distortions Drive Electron–Hole Correlation within Micrometer-Size Lead-Iodide Perovskite Crystals. ACS Energy Letters, 2017, 2, 265-269.	8.8	19
162	High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2017, 2, .	19.8	247
163	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
164	Physicochemical Interface Engineering of Cul/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21935-21944.	1.5	65

#	Article	IF	CITATIONS
165	Scaffold-reinforced perovskite compound solar cells. Energy and Environmental Science, 2017, 10, 2500-2508.	15.6	77
166	Regulated Film Quality with Methylammonium Bromide Addition in a Two‣tep Sequential Deposition to Improve the Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1873-1879.	1.8	5
167	In Situ Complementary Doping, Thermoelectric Improvements, and Strain-Induced Structure within Alternating PEDOT:PSS/PANI Layers. ACS Applied Materials & Interfaces, 2017, 9, 33308-33316.	4.0	30
168	Semi-transparent Perovskite Solar Cells Developed by Considering Human Luminosity Function. Scientific Reports, 2017, 7, 10699.	1.6	34
169	Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700082.	3.1	50
170	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276
171	Vapor pressure of methylammonium halides. Part I: Setup verification and vapor pressure of methylammonium chloride. Thermochimica Acta, 2017, 658, 24-30.	1.2	5
172	Photonic Intermediate Structures for Perovskite/c-Silicon Four Terminal Tandem Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1190-1196.	1.5	7
173	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
174	Aluminum-Doped Zinc Oxide Thin Films Deposited on Flexible Cellulose Triacetate Substrates Prepared by RF Sputtering. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1563-1571.	1.9	2
175	Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy and Environmental Science, 2017, 10, 337-345.	15.6	391
176	Filling perovskite (5-AVA)y(CH3NH3)1â^'yPbI3 or (5-AVA)y(CH3NH3)1â^'yPbI3â^'xClx halide in a 3D gel framework for multi-deformable perovskite solar cell. Solar Energy Materials and Solar Cells, 2017, 160, 67-76.	3.0	8
177	Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Materials Chemistry Frontiers, 2017, 1, 100-110.	3.2	84
178	Recent advances of flexible hybrid perovskite solar cells. Journal of the Korean Physical Society, 2017, 71, 593-607.	0.3	16
179	ZnO-Based Electron Transporting Layer for Perovskite Solar Cells. , 0, , .		14
180	Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 2018, 179, 80-86.	3.0	104
181	Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid: Band gaps, structures, and their photoelectrocatalytic properties in CO2-saturated system. Journal of Solid State Chemistry, 2018, 261, 43-52.	1.4	8
182	MoS ₂ : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018, 29, 205201.	1.3	73

#	Article	IF	CITATIONS
183	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25
184	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
185	Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2018, 10, 14922-14929.	4.0	81
186	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.	2.9	36
187	Connecting the solution chemistry of PbI ₂ and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chemical Science, 2018, 9, 3200-3208.	3.7	55
188	Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes. Journal of Alloys and Compounds, 2018, 744, 404-411.	2.8	25
189	3D Electronic Channels Wrapped Largeâ€6ized Na ₃ V ₂ (PO ₄) ₃ as Flexible Electrode for Sodiumâ€lon Batteries. Small, 2018, 14, e1702864.	5.2	116
190	Highly sensitive sensing of glutathione based on Förster resonance energy transfer between MoS2 donors and Rhodamine 6G acceptors and its insight. Sensors and Actuators B: Chemical, 2018, 259, 980-989.	4.0	23
191	Recent advances of flexible perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 673-689.	7.1	75
193	Review—Power Sources for the Internet of Things. Journal of the Electrochemical Society, 2018, 165, B3130-B3136.	1.3	126
194	Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules. Nano Energy, 2018, 49, 300-307.	8.2	32
195	The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Advanced Materials, 2018, 30, 1700764.	11.1	141
196	High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 282-289.	1.3	23
197	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1
198	Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy and Environmental Science, 2018, 11, 354-364.	15.6	108
199	Flexible Perovskite Solar Cells onto Plastic Substrate Exceeding 13% Efficiency Owing to the Optimization of CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film via H ₂ O Additive. ACS Sustainable Chemistry and Engineering, 2018, 6, 1083-1090.	3.2	21
200	Rapid, Chemical-Free Generation of Optically Scattering Structures in Poly(ethylene terephthalate) Using a CO2 Laser for Lightweight and Flexible Photovoltaic Applications. International Journal of Photoenergy, 2018, 2018, 1-10.	1.4	0
202	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	14.4	50

#	Article	IF	CITATIONS
203	Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review. Current Opinion in Electrochemistry, 2018, 11, 130-140.	2.5	51
204	Flexible and transparent IWO films prepared by plasma arc ion plating for flexible perovskite solar cells. AIP Advances, 2018, 8, .	0.6	14
205	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	2.7	131
206	Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles. Optics Express, 2018, 26, A865.	1.7	19
207	Room Temperature Processing of Inorganic Perovskite Films to Enable Flexible Solar Cells. IScience, 2018, 6, 272-279.	1.9	44
208	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30
209	Use of Graphene for Solar Cells. Journal of the Korean Physical Society, 2018, 72, 1442-1453.	0.3	21
210	Flexible Perovskite Solar Cells. , 2018, , 341-371.		4
211	Scalable Triple Cation Mixed Halide Perovskite–BiVO ₄ Tandems for Biasâ€Free Water Splitting. Advanced Energy Materials, 2018, 8, 1801403.	10.2	128
212	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
213	Flexible solar cells based on carbon nanomaterials. Carbon, 2018, 139, 1063-1073.	5.4	102
214	Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Holeâ€Transportâ€Materialsâ€Free Perovskite Solar Cell. Solar Rrl, 2018, 2, 1800175.	3.1	37
215	Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy, 2018, 50, 710-716.	8.2	44
216	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	4.6	177
217	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	4.6	71
218	Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI ₃ films. Nanoscale, 2019, 11, 14276-14284.	2.8	51
219	Surface Plasmonâ€Assisted Transparent Conductive Electrode for Flexible Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900847.	3.6	13
220	Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN) ₂ Precursor. ACS Applied Energy Materials, 2019, 2, 6012-6022.	2.5	13

#	Article	IF	CITATIONS
221	Scalable Deposition Methods for Largeâ€area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2, 119-145.	7.3	153
222	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	1.6	21
223	Application of Perovskiteâ€Structured Materials in Fieldâ€Effect Transistors. Advanced Electronic Materials, 2019, 5, 1900444.	2.6	43
224	Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Materials Today Energy, 2019, 14, 100341.	2.5	12
226	Dialkoxymethano[60]fullerenes as electron acceptors in thin-film organic solar cells. Tetrahedron, 2019, 75, 130514.	1.0	3
227	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880.	11.7	242
228	Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 103437.	3.3	61
229	Study of inverted planar CH3NH3PbI3 perovskite solar cells fabricated under environmental conditions. Solar Energy, 2019, 180, 594-600.	2.9	11
230	Green Anti-solvent Processed Efficient Flexible Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4343-4350.	3.2	24
231	Recent Progress of Flexible Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800566.	1.2	36
233	Efficient mixed halide perovskite solar cells via solvent engineering process. Dyes and Pigments, 2019, 168, 311-316.	2.0	16
234	Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 2019, 48, 2738-2766.	18.7	165
235	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
236	Efficient Mixedâ€Cation Mixedâ€Halide Perovskite Solar Cells by Allâ€Vacuum Sequential Deposition Using Metal Oxide Electron Transport Layer. Solar Rrl, 2019, 3, 1900050.	3.1	31
237	Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI3 perovskite thin films. APL Materials, 2019, 7, .	2.2	18
238	Flexible, transparent nanocellulose paper-based perovskite solar cells. Npj Flexible Electronics, 2019, 3, .	5.1	117
239	Flexible silicon heterojunction solar cells on 40 $\hat{A}\mu$ m thin substrates. , 2019, , .		3
240	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24

#	Article	IF	CITATIONS
241	Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 888-900.	5.2	60
242	Scalable Processing of Low-Temperature TiO ₂ Nanoparticles for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 47-58.	2.5	33
243	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
244	High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 2019, 65, 19-25.	1.4	13
245	Flexible Perowskitâ€ S olarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27
246	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
247	Improved performance of inverted planar MAPbI3 based perovskite solar cells using bromide post-synthesis treatment. Solar Energy, 2019, 177, 538-544.	2.9	10
248	Improved open-circuit voltage via Cs2CO3-Doped TiO2 for high-performance and stable perovskite solar cells. Organic Electronics, 2020, 77, 105495.	1.4	9
249	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9
250	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	1.5	17
251	Mechanically tuning spin-orbit coupling effects in organic-inorganic hybrid perovskites. Nano Energy, 2020, 67, 104285.	8.2	6
252	Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials, 2020, 3, 785-793.	2.5	23
253	Preparation of Ordered MAPbI ₃ Perovskite Needle-Like Crystal Films by Electric Field and Microdroplet Jetting 3D Printing. Crystal Growth and Design, 2020, 20, 1405-1414.	1.4	7
254	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
255	Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 2826-2834.	4.0	62
256	MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity. Applied Surface Science, 2020, 504, 144468.	3.1	17
257	Enhanced charge-transportation properties of low-temperature processed Al-doped ZnO and its impact on PV cell parameters of organic-inorganic perovskite solar cells. Solid-State Electronics, 2020, 164, 107714.	0.8	21
258	Magnetite as Inorganic Hole Transport Material for Lead Halide Perovskite-Based Solar Cells with Enhanced Stability. Industrial & Engineering Chemistry Research, 2020, 59, 743-750.	1.8	25

#	Article	IF	CITATIONS
259	Interlayer Engineering for Flexible Large-Area Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 777-784.	2.5	13
260	The Transmittance Modulation of ZnO/Cu/ZnO Transparent Conductive Electrodes Prepared on Glass Substrates. Materials, 2020, 13, 3916.	1.3	5
261	Fabrication and characteristics of flexible normally-off AlGaN/GaN HEMTs. AIP Advances, 2020, 10, 105317.	0.6	1
262	The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?. Advanced Energy Materials, 2020, 10, 2003073.	10.2	135
264	Heteroatom-doped graphene as sensing materials: a mini review. RSC Advances, 2020, 10, 28608-28629.	1.7	85
265	Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Materials, 2020, 33, 116-138.	9.5	66
266	Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics. Joule, 2020, 4, 2088-2100.	11.7	6
267	Preparation and Testing of Anisotropic MAPbI3 Perovskite Photoelectric Sensors. ACS Applied Materials & amp; Interfaces, 2020, 12, 44248-44255.	4.0	26
268	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228.	11.1	39
269	Stress Effects on Vibrational Spectra of a Cubic Hybrid Perovskite: A Probe of Local Strain. Journal of Physical Chemistry C, 2020, 124, 27287-27299.	1.5	7
270	Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells. Frontiers in Chemistry, 2020, 8, 603375.	1.8	22
271	Optical and electrical optimization of all-perovskite pin type junction tandem solar cells. Journal Physics D: Applied Physics, 2020, 53, 315104.	1.3	8
272	Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13, 1997-2018.	5.8	52
273	Critical review of recent progress of flexible perovskite solar cells. Materials Today, 2020, 39, 66-88.	8.3	169
274	Layer conductance reduction and failure analysis due to bending for superflexible perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12821-12832.	5.2	12
275	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
276	Interfacial engineering for organic and perovskite solar cells using molecular materials. Journal Physics D: Applied Physics, 2020, 53, 263001.	1.3	6
277	Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells. Dyes and Pigments, 2020, 182, 108634.	2.0	9

#	Article	IF	CITATIONS
278	Efficient, Flexible, and Ultraâ€Lightweight Inverted PbS Quantum Dots Solar Cells on Allâ€CVDâ€Growth of Parylene/Graphene/oCVD PEDOT Substrate with High Powerâ€perâ€Weight. Advanced Materials Interfaces, 2020, 7, 2000498.	1.9	24
279	An all carbon dye sensitized solar cell: A sustainable and low-cost design for metal free wearable solar cell devices. Journal of Colloid and Interface Science, 2020, 569, 386-401.	5.0	18
280	Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application. Journal of Materials Science: Materials in Electronics, 2020, 31, 7524-7538.	1.1	9
282	Effect of lithium bis(trifluoromethane)sulfonimide treatment on titanium dioxide-based electron transporting layer of perovskite solar cells. Thin Solid Films, 2020, 700, 137888.	0.8	2
283	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
284	Progress of Highâ€Throughput and Lowâ€Cost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
285	Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy and Environmental Science, 2020, 13, 685-743.	15.6	340
286	Balanced strain-dependent carrier dynamics in flexible organic–inorganic hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 3374-3379.	2.7	20
287	Showerhead-Assisted Chemical Vapor Deposition of Perovskite Films for Solar Cell Application. MRS Advances, 2020, 5, 385-393.	0.5	2
288	Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. Journal of Energy Chemistry, 2021, 54, 151-173.	7.1	51
289	Electron reflection effect in the perovskite solar cells. Solid State Communications, 2021, 323, 114111.	0.9	0
290	Photovoltaic technologies for flexible solar cells: beyond silicon. Materials Today Energy, 2021, 19, 100583.	2.5	37
291	Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. ChemSusChem, 2021, 14, 512-538.	3.6	38
292	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
293	Acids. RSC Nanoscience and Nanotechnology, 2021, , 157-183.	0.2	1
294	Pre-bent Flow-Field Plates for Enhanced Performance in Flexible Polymer Electrolyte Membrane Fuel Cells in Curved Shape. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 869-878.	2.7	7
295	Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, 2021, 2021, 6849171.	2.8	75
296	SnO ₂ /TiO ₂ Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3424-3430.	2.5	32

#	Article	IF	Citations
297	Controlling Neutral Plane of Flexible Substrates by Asymmetric Impregnation of Glass Fabric for Protecting Brittle Films on Foldable Electronics. Advanced Engineering Materials, 2021, 23, 2001280.	1.6	17
299	A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics, 2021, 27, 2307-2334.	1.2	34
300	Strain Engineering in Electrochemical Activity and Stability of BiFeO ₃ Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 4104-4111.	2.1	5
301	Switchedâ€On: Progress, Challenges, and Opportunities in Metal Halide Perovskite Transistors. Advanced Functional Materials, 2021, 31, 2101029.	7.8	57
302	Progress of Perovskite Solar Modules. Advanced Energy and Sustainability Research, 2021, 2, 2000051.	2.8	19
303	Reliable Output Performance of a Photovoltaic–Piezoelectric Hybridized Energy Harvester with an Automatic Position-Adjustable Bending Instrument. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1077-1086.	2.7	2
304	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
305	Refractive index of different perovskite materials. Journal of Materials Research, 2021, 36, 1773-1793.	1.2	12
306	Low-cost Cu-based inorganic hole transporting materials in perovskite solar cells: Recent progress and state-of-art developments. Materials Today Chemistry, 2021, 20, 100427.	1.7	12
307	Zn, Co, and Fe Tridoped N–C Core–Shell Nanocages as the High-Efficiency Oxygen Reduction Reaction Electrocatalyst in Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28324-28333.	4.0	57
308	Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 2100191.	3.1	8
309	Synthesis and applications of Perovskite in heavy metal ions removal-A brief perspective. Materials Today: Proceedings, 2022, 55, 201-211.	0.9	5
310	An Intrinsically Micro…Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications. Advanced Materials, 2021, 33, e2100566.	11.1	9
311	A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors, 2021, 21, 4131.	2.1	56
312	Shape memory polymer solar cells with active deformation. Advanced Composites and Hybrid Materials, 2021, 4, 957-965.	9.9	31
313	Coâ€Evaporated MAPbI ₃ with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible pâ€iâ€n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103252.	7.8	40
314	Investigation of various commercial PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene) Tj ETQq0 0 0 rgB Journal of Materials Science: Materials in Electronics, 2021, 32, 21450-21461.	T /Overloc 1.1	k 10 Tf 50 10 3
315	Improvement of fill factor by the utilization of Zn-doped PEDOT:PSS hole-transport layers for p-i-n planar type of perovskite solar cells. Electrochimica Acta, 2021, 388, 138658.	2.6	11

#	Article	IF	Citations
316	Recent progress of flexible perovskite solar cells. Nano Today, 2021, 39, 101155.	6.2	61
317	Sensing Mechanism of H2O, NH3, and O2 on the Stability-Improved Cs2Pb(SCN)2Br2 Surface: A Quantum Dynamics Investigation. ACS Omega, 2021, 6, 24244-24255.	1.6	0
318	Hydrogen generation via cross-linked glucomannan supported cobalt nano catalyst. International Journal of Hydrogen Energy, 2021, 46, 36137-36151.	3.8	2
319	Study of the effect of capping agent variation on P3HT:CdSe hybrid solar cells. Optik, 2021, 248, 168059.	1.4	2
320	A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 538-560.	7.1	33
321	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
322	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2
323	Efficiency enhancement of perovskite solar cells by designing GeSe nanowires in the structure of the adsorbent layer. Nanotechnology, 2020, 31, 465405.	1.3	14
324	A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar Cells. Proceedings of the Nature Research Society, 0, 2, .	0.0	70
325	Progress and Prospect on Stability of Perovskite Photovoltaics. Journal of Modern Materials, 2017, 4, 16-30.	0.8	9
326	Optimization of ZnO/Cu/ZnO Flexible Transparent Conductive Electrodes Fabricated by Magnetron Sputtering. Journal of Korean Institute of Metals and Materials, 2019, 57, 795-800.	0.4	7
328	Recent coating materials for textile-based solar cells. AIMS Materials Science, 2019, 6, 234-251.	0.7	31
329	Synergism at the Nanoscale. Advances in Chemical and Materials Engineering Book Series, 2016, , 42-77.	0.2	3
330	Recent Progress in Flexible Perovskite Solar Cell Development. Journal of the Korean Ceramic Society, 2018, 55, 325-336.	1.1	15
331	A review of the perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038805.	0.2	26
332	Recent research progress in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 237902.	0.2	7
333	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
334	Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 2021, 42, 101605.	2.0	16

#	Article	IF	CITATIONS
335	Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance. , 2019, , 227-246.		1
336	Indium tin oxide-free perovskite solar cells with high flexibility and mechanical stability based on the ultrathin Au electrodes. Optical Engineering, 2019, 58, 1.	0.5	2
337	Inkjet printed perovskite solar cells: progress and prospects. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158807.	0.2	1
338	Generation of new carbon–carbon and carbon–heteroatom bonds mediated by agro-waste extracts: a review. Environmental Chemistry Letters, 2022, 20, 841-873.	8.3	5
339	Charge Carrier and Mobile ion Dynamic Processes in Perovskite Solar Cells: Progress and Prospect. , 2020, , 1-34.		0
340	Fiber Perovskite Solar Cells. , 2020, , 137-159.		0
341	Impact of Nanoscale Morphology on Charge Carrier Delocalization and Mobility in an Organic Semiconductor. Advanced Materials, 2021, 33, e2104852.	11.1	9
342	Uniform H-CdS@NiCoP core–shell nanosphere for highly efficient visible-light-driven photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2022, 608, 2730-2739.	5.0	26
343	Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system. Advanced Powder Technology, 2022, 33, 103353.	2.0	7
344	Analysis of performance parameters during degradation of triple-cation-based organic–inorganic hybrid perovskite solar cells. Inorganic Chemistry Communication, 2022, 135, 109094.	1.8	5
345	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	1.9	20
346	Development of colored perovskite solar cells using cholesteric helicoidal superstructures. Nano Energy, 2022, 93, 106801.	8.2	14
347	C ₆₀ Thin Films in Perovskite Solar Cells: Efficient or Limiting Charge Transport Layer?. ACS Applied Energy Materials, 2022, 5, 1646-1655.	2.5	6
348	Solid-state gas sensors: sensing mechanisms and materials. Bulletin of Materials Science, 2022, 45, 1.	0.8	6
349	Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 243-266.	2.5	59
350	High power, long cycle life capacitive carbon from Hibiscus cannabinus, a Agri-bio-waste with simultaneous value addition in water treatment application. Chemical Engineering Journal, 2022, 435, 134952.	6.6	17
351	Room-temperature processed hole-transport layer in flexible inverted perovskite solar cell module. Chemical Engineering Journal, 2022, 435, 134805.	6.6	16
352	SCAPS Simulation for Perovskite Solar Cell. Journal of Solar Energy Research Updates, 0, 8, 21-26.	0.0	7

#	Article	IF	CITATIONS
353	Mechanical Stability Study on PEDOT:PSS-Based ITO-Free Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3081-3091.	2.5	11
354	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	8.8	54
355	Sulfides as a new class of stable cost-effective materials compared to organic/inorganic hole transport materials for perovskite solar cells. Ceramics International, 2022, , .	2.3	4
356	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	2.6	31
357	Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Advanced Materials, 2022, 34, e2200720.	11.1	50
358	Millimeterâ€Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€ŧoâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	36
359	Recent advances in constructing heterojunctions of binary semiconductor photocatalysts for visible light responsive <scp> CO ₂ </scp> reduction to energy efficient fuels: A review. International Journal of Energy Research, 2022, 46, 5523-5584.	2.2	32
360	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 117.	14.4	68
361	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
362	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
363	Triphenylamine substituted copper and zinc phthalocyanines as alternative hole-transporting materials for solution-processed perovskite solar cells. Dalton Transactions, 2022, 51, 9385-9396.	1.6	2
364	Robust Super-Amphiphobic Titanium Surface for Liquid/Liquid Mini Separations. Coatings, 2022, 12, 805.	1.2	0
365	Systematic review of molybdenum disulfide for solar cell applications: Properties, mechanism and application. Materials Today Communications, 2022, 32, 104078.	0.9	7
366	Electrical and Photoelectric Properties of Organic-Inorganic Heterojunctions PEDOT:PSS/n-CdTe. East European Journal of Physics, 2021, , 43-48.	0.1	0
367	Photovoltaic performance of flexible perovskite solar cells under bending state. Solar Energy, 2022, 245, 146-152.	2.9	12
368	Mechanical Properties of Solar Cell Structures. , 2022, , .		0
369	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
370	Mixed <scp>cobalt–zinc</scp> hexacyanoferrate hollow <scp>microâ€cubes</scp> for a <scp>highâ€voltage</scp> hybrid supercapacitor. International Journal of Energy Research, 2022, 46, 23310-23325.	2.2	4

#	Article	IF	CITATIONS
371	Structural, optical and dielectric properties of low temperature assisted grown crystals of CH3NH3Pb1-xCdxBr3. Materials Chemistry and Physics, 2022, 292, 126852.	2.0	2
372	Recent development in electron transport layers for efficient tin-based perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 2022, 1258, 012015.	0.3	0
373	Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability. Nano Letters, 2022, 22, 9586-9595.	4.5	12
374	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53
375	Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science, 2022, 26, 101042.	5.6	18
376	Mechanical properties estimation of 2D–3D mixed organic-inorganic perovskites based on methylammonium and phenylethyl-ammonium system using a combined experimental and first-principles approach. Journal of Alloys and Compounds, 2023, 936, 168328.	2.8	2
377	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	10
378	Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule, 2022, 6, 2692-2734.	11.7	22
379	Recent Advances in Mechanically Transferable IIIâ€Nitride Based on 2D Buffer Strategy. Advanced Functional Materials, 2023, 33, .	7.8	3
380	Design of organic/inorganic multilayer water vapor barrier thin films deposited via plasma polymerization for encapsulation. Thin Solid Films, 2023, 767, 139672.	0.8	2
381	Ultra-thin thermally grown silicon dioxide nanomembrane for waterproof perovskite solar cells. Journal of Power Sources, 2023, 563, 232810.	4.0	3
382	3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. Results in Optics, 2023, 11, 100385.	0.9	6
383	Design of flexible hydrophobic photocatalytic sheets on polydimethylsiloxane substrates based on carrier migration of Si-O-Ti hybrid bonds for photodegradation of dye molecules. Applied Surface Science, 2023, 616, 156415.	3.1	1
384	High-mobility electrolyte-gated perovskite transistors on flexible plastic substrate via interface and composition engineering. Applied Surface Science, 2023, 623, 156984.	3.1	5
385	Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Structures, 2023, 4, .	6.9	32
386	Effective light management, stretchable and transparent nanofiber electrode via the incorporation of phosphors into composite nanofibers for wearable perovskite solar cells. Textile Reseach Journal, 2023, 93, 3228-3239.	1.1	1
387	Early career scientists converse on the future of soft robotics. Frontiers in Robotics and AI, 0, 10, .	2.0	1
388	The influence of various microplastics on PBDEs contaminated soil remediation by nZVI and sulfide-nZVI: Impedance, electron-accepting/-donating capacity and aging. Science of the Total	3.9	7

#	Article	IF	CITATIONS
394	Industrial perspectives on the upscaling of perovskite materials for photovoltaic applications and its environmental impacts. , 2023, , 117-142.		0
396	Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	6
397	Optical detection of nitroaromatic compounds using MAPbBr3 at room temperature. Journal of Chemical Sciences, 2023, 135, .	0.7	0
405	Efficiency boost in non-doped blue organic light-emitting diodes: Harnessing aggregation-induced emission – a comprehensive review. Journal of Materials Chemistry C, 2024, 12, 765-818.	2.7	0