Strategies to improve the corrosion resistance of microsion alloys for degradable implants: Prospects at

Progress in Materials Science 60, 1-71

DOI: 10.1016/j.pmatsci.2013.08.002

Citation Report

#	Article	IF	CITATIONS
1	Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings. Applied Surface Science, 2014, 316, 558-567.	3.1	93
2	In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy. Progress in Natural Science: Materials International, 2014, 24, 492-499.	1.8	41
3	Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg–Zn–Ca alloy in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 2014, 122, 746-751.	2.5	28
4	Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films, 2014, 562, 561-567.	0.8	61
5	Corrosion-Controlling and Osteo-Compatible Mg Ion-Integrated Phytic Acid (Mg-PA) Coating on Magnesium Substrate for Biodegradable Implants Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19531-19543.	4.0	106
6	Formation Mechanism, Degradation Behavior, and Cytocompatibility of a Nanorod-Shaped HA and Pore-Sealed MgO Bilayer Coating on Magnesium. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18258-18274.	4.0	77
7	Tailoring the composition of fluoride conversion coatings to achieve better corrosion protection of magnesium for biomedical applications. Journal of Materials Chemistry B, 2014, 2, 3365-3382.	2.9	49
8	Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium. Electrochimica Acta, 2014, 149, 218-230.	2.6	83
9	In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy. Frontiers of Materials Science, 2014, 8, 343-353.	1.1	53
10	Spectrophotometric analysis to monitor the corrosion behaviour of magnesium during immersion corrosion testing: A suitable alternative to pH measurement?. Corrosion Science, 2014, 89, 338-342.	3.0	4
11	Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 178-189.	1.5	91
12	Coloring and corrosion resistance of pure Mg modified by micro-arc oxidation method. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1625-1630.	1.1	12
13	Effect of mechanical alloying on the phase evolution, microstructure and bio-corrosion properties of a Mg/HA/TiO2/MgO nanocomposite. Ceramics International, 2014, 40, 16743-16759.	2.3	40
14	Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys: A Critical Review. Jom, 2014, 66, 1045-1060.	0.9	34
15	Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology, 2014, 258, 17-37.	2.2	808
16	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	14.8	854
17	Preliminary study on a bioactive Sr containing Ca–P coating on pure magnesium by a two-step procedure. Surface and Coatings Technology, 2014, 252, 79-86.	2.2	24
18	Spectroscopic study of plasma during electrolytic oxidation of magnesium-aluminium alloys. Journal of Physics: Conference Series, 2014, 565, 012013.	0.3	3

#	ARTICLE	IF	CITATIONS
20	A dualâ€ŧask design of corrosionâ€ɛontrolling and osteoâ€ɛompatible hexamethylenediaminetetrakis― (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application. Journal of Biomedical Materials Research - Part A, 2015, 103, 1640-1652.	2.1	16
21	Improving corrosion resistance of AZ91D magnesium alloy by laser surface melting and micro-arc oxidation. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 963-970.	0.8	17
22	A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration. Applied Surface Science, 2015, 351, 55-65.	3.1	31
23	Biodegradable polymeric coatings for surface modification of magnesium-based biomaterials. , 2015, , 355-376.		8
24	Improvement of corrosion resistance of magnesium alloys for biomedical applications. Corrosion Reviews, 2015, 33, 101-117.	1.0	67
25	Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy. Jom, 2015, 67, 2133-2144.	0.9	5
26	Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 283, 268-273.	2.2	54
27	Effect of Gd/Nd ratio on mechanical and biocorrosion properties of as-extruded Mg–Nd–Gd–Sr–Zn–Zr alloys. Materials Research Innovations, 2015, 19, S236-S239.	1.0	7
28	Microstructure, mechanical and corrosion properties of Mg–Nd–Zn–Zr–Zr alloy as a biodegradable material. Materials Science and Technology, 2015, 31, 866-873.	0.8	16
29	Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings. Materials Science and Engineering C, 2015, 49, 190-200.	3.8	28
30	Plasma electrolytic oxidation/micro-arc oxidation ofÂmagnesium and its alloys. , 2015, , 193-234.		11
31	Study on microstructure and properties of extruded Mg–2Nd–0.2Zn alloy as potential biodegradable implant material. Materials Science and Engineering C, 2015, 49, 422-429.	3.8	35
32	Surface design of biodegradable magnesium alloys for biomedical applications., 2015,, 89-119.		6
33	Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium. Surface and Coatings Technology, 2015, 269, 170-182.	2.2	64
34	Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B, 2015, 3, 2024-2042.	2.9	138
36	Hydrothermal biomimetic modification of microarc oxidized magnesium alloy for enhanced corrosion resistance and deposition behaviors in SBF. Surface and Coatings Technology, 2015, 269, 183-190.	2.2	22
37	Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Materials and Design, 2015, 85, 640-652.	3.3	271
38	Galvanic corrosion behaviour of carbon fibre reinforced polymer/magnesium alloys coupling. Corrosion Science, 2015, 98, 672-677.	3.0	48

#	Article	IF	Citations
39	Polymer-based degradable coatings for metallic biomaterials., 2015,, 393-422.		1
40	Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys. Materials & Design, 2015, 77, 6-14.	5.1	52
41	In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating. Colloids and Surfaces B: Biointerfaces, 2015, 128, 44-54.	2.5	46
42	Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96, 67-73.	3.0	91
43	Pre-Treatment and Organic Coating of Al Free Mg Alloy for Controlling Degradation Rates. Materials Science Forum, 2015, 828-829, 327-333.	0.3	1
44	Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance. Journal of Materials Science and Technology, 2015, 31, 1139-1143.	5. 6	90
45	Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy. Materials Science and Engineering C, 2015, 48, 434-443.	3.8	57
46	Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications. Corrosion Science, 2015, 91, 7-28.	3.0	126
47	Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 2015, 90, 402-412.	3.0	278
48	Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition. Surface and Coatings Technology, 2015, 269, 155-169.	2.2	90
49	Magnesium: Industrial and Research Developments Over the Last 15 Years. Corrosion, 2015, 71, 120-127.	0.5	140
50	A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy. Journal of Alloys and Compounds, 2015, 623, 274-281.	2.8	45
51	Corrosion Behavior of Electroless Ni-P/Ni-B Coating on Magnesium Alloy AZ91D in NaCl Environment. International Journal of Electrochemical Science, 2016, 11, 10053-10066.	0.5	15
52	Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 2016, 688, 841-857.	2.8	59
53	Growth Behaviors of Layered Double Hydroxide on Microarc Oxidation Film and Anti-Corrosion Performances of the Composite Film. Journal of the Electrochemical Society, 2016, 163, C917-C927.	1.3	40
54	Research Progress in Magnesium Alloys as Functional Materials. Rare Metal Materials and Engineering, 2016, 45, 2269-2274.	0.8	35
55	Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. Journal of Alloys and Compounds, 2016, 685, 222-230.	2.8	76
56	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(<scp> < scp>-lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Applied Materials & Dr. Interfaces, 2016, 8, 10014-10028.</scp>	4.0	256

#	Article	IF	CITATIONS
57	Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloy. Colloids and Surfaces B: Biointerfaces, 2016, 144, 284-292.	2.5	39
58	Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids and Surfaces B: Biointerfaces, 2016, 144, 170-179.	2.5	62
59	Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy. Surface and Coatings Technology, 2016, 307, 781-789.	2.2	45
60	Corrosive behaviour of implant biomaterials in oral environment. Materials Technology, 2016, 31, 689-695.	1.5	9
61	Nanoscale modification of magnesium with highly textural lamellar nanosheets towards increasing the corrosion resistance and bioactivity. Surface and Coatings Technology, 2016, 304, 425-437.	2.2	4
62	Influences of mesoporous magnesium silicate on the hydrophilicity, degradability, mineralization and primary cell response to a wheat protein based biocomposite. Journal of Materials Chemistry B, 2016, 4, 6428-6436.	2.9	14
63	Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content on the mechanical and corrosion properties. Materials and Design, 2016, 110, 188-195.	3.3	41
64	Incorporation of MoO 2 and ZrO 2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Materials Letters, 2016, 182, 260-263.	1.3	52
65	Role of PEO coatings in long-term biodegradation of a Mg alloy. Applied Surface Science, 2016, 389, 810-823.	3.1	54
66	Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Materials Technology, 2016, 31, 705-718.	1.5	22
67	Effects of electric parameters on structure and thermal control property of PEO ceramic coatings on Ti alloys. Surface and Coatings Technology, 2016, 307, 1284-1290.	2.2	28
68	Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation. Journal of Alloys and Compounds, 2016, 688, 699-708.	2.8	83
69	Characterization and biodegradation behavior ofÂmicro-arc oxidation coatings formed on Mg–Zn–Ca alloys in two different electrolytes. RSC Advances, 2016, 6, 104808-104818.	1.7	10
70	Investigation of absorptance and emissivity of thermal control coatings on Mg–Li alloys and OES analysis during PEO process. Scientific Reports, 2016, 6, 29563.	1.6	19
71	Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline. Corrosion Science, 2016, 111, 541-555.	3.0	110
72	Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy. Materials Science and Engineering C, 2016, 69, 95-107.	3.8	23
73	A simple strategy to modify the porous structure of plasma electrolytic oxidation coatings on magnesium. RSC Advances, 2016, 6, 16100-16114.	1.7	46
74	Incorporation of ZrO 2 particles in the oxide layer formed on Mg by anodizing: Influence of electrolyte concentration and current modes. Journal of Colloid and Interface Science, 2016, 464, 36-47.	5.0	13

#	Article	IF	CITATIONS
75	Formation of calcium phosphate coating on Mg-Zn-Ca alloy by micro-arc oxidation technique. Materials Letters, 2016, 164, 575-578.	1.3	20
76	Electrochemical Investigations of Polycaprolactone-Coated AZ31 Mg Alloy in Earle's Balance Salt Solution and Conventional Simulated Body Fluid. Jom, 2016, 68, 1701-1710.	0.9	14
77	Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10, 134-146.	1.1	27
78	Amorphous apatite thin film formation on a biodegradable Mg alloy for bone regeneration: strategy, characterization, biodegradation, and in vitro cell study. RSC Advances, 2016, 6, 22563-22574.	1.7	17
79	Effects of pulse voltage and deposition time on the adhesion strength of graded metal/carbon films deposited on bendable stainless steel foils by hybrid cathodic arc – glow discharge plasma assisted chemical vapor deposition. Applied Surface Science, 2016, 366, 535-544.	3.1	4
80	Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy. Applied Surface Science, 2016, 363, 91-100.	3.1	36
81	Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution. Applied Surface Science, 2016, 363, 328-337.	3.1	49
82	Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 2016, 661, 237-244.	2.8	75
83	Enhanced osteoblast differentiation and osseointegration of a bio-inspired HA nanorod patterned pore-sealed MgO bilayer coating on magnesium. Journal of Materials Chemistry B, 2016, 4, 683-693.	2.9	28
84	Investigating the effect of salicylate salt in enhancing the corrosion resistance of AZ91 magnesium alloy for biomedical applications. BioNanoMaterials, $2016,17,.$	1.4	7
85	Corrosion behavior of HA containing ceramic coated magnesium alloy in Hank's solution. Journal of Alloys and Compounds, 2017, 698, 643-653.	2.8	41
86	Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118, 84-95.	3.0	335
87	Tilt boundaries and associated solute segregation in a Mg–Gd alloy. Acta Materialia, 2017, 127, 505-518.	3.8	59
88	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. Advanced Healthcare Materials, 2017, 6, 1601269.	3.9	46
89	Effect of Ca-P compound formed by hydrothermal treatment on biodegradation and biocompatibility of Mg-3Al-1Zn-1.5Ca alloy; in vitro and in vivo evaluation. Scientific Reports, 2017, 7, 712.	1.6	18
90	Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating. Journal of Alloys and Compounds, 2017, 718, 126-133.	2.8	27
91	Deposition time effects on structure and corrosion resistance of duplex MAO/Al coatings on AZ31B Mg alloy. Anti-Corrosion Methods and Materials, 2017, 64, 357-364.	0.6	5
92	In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties. Journal of Materials Chemistry B, 2017, 5, 4162-4176.	2.9	24

#	Article	IF	CITATIONS
93	Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering C, 2017, 77, 1261-1274.	3.8	482
94	Fabrication of duplex coatings on biodegradable AZ31 magnesium alloy by integrating cerium conversion (CC) and plasma electrolytic oxidation (PEO) processes. Journal of Alloys and Compounds, 2017, 722, 698-715.	2.8	50
95	Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive. Journal of Materials Engineering and Performance, 2017, 26, 3204-3215.	1.2	9
96	Preparation and characterization of a calcium–phosphate–silicon coating on a Mg–Zn–Ca alloy via two-step micro-arc oxidation. Physical Chemistry Chemical Physics, 2017, 19, 15110-15119.	1.3	22
97	Characterisation and thermodynamic calculations of biodegradable Mg–2.2Zn–3.7Ce and Mg–Ca–2.2Zn–3.7Ce alloys. Materials Science and Technology, 2017, 33, 1333-1345.	0.8	7
98	Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 2017, 58, 515-526.	4.1	80
99	Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 2017, 5, 74-132.	5.5	397
100	A highly compact coating responsible for enhancing corrosion properties of Al-Mg-Si alloy. Materials Letters, 2017, 196, 316-319.	1.3	17
101	Effects of surface pre-treatments on Mode I and Mode II interlaminar strength of CFRP/Mg laminates. Surface and Coatings Technology, 2017, 319, 309-317.	2.2	21
103	Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy. Carbohydrate Polymers, 2017, 167, 185-195.	5.1	28
104	Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surface and Coatings Technology, 2017, 317, 125-133.	2.2	101
105	Point defects in ZnO crystals grown by various techniques. Journal of Physics: Conference Series, 2017, 791, 012017.	0.3	4
106	Corrosion behaviour of microarc-oxidised magnesium alloy in Earle's balanced salt solution. Surface Innovations, 2017, 5, 43-53.	1.4	9
107	Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets. Journal of Magnetism and Magnetic Materials, 2017, 426, 361-368.	1.0	21
108	Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets. Surface and Coatings Technology, 2017, 309, 621-627.	2.2	38
109	Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response. Journal of Materials Science: Materials in Medicine, 2017, 28, 169.	1.7	50
110	Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy. Journal of Materials Science and Technology, 2017, 33, 1263-1271.	5.6	84
111	Corrosion Properties of the Polypyrrole-molybdate Film Electro-polymerized on the AZ31 Mg Alloy. Rare Metal Materials and Engineering, 2017, 46, 1480-1485.	0.8	7

#	Article	IF	CITATIONS
112	Study on the corrosion resistance and anti-infection of modified magnesium alloy. Bio-Medical Materials and Engineering, 2017, 28, 339-345.	0.4	4
113	Structure and properties of newly designed MAO/TiN coating on AZ31B Mg alloy. Surface and Coatings Technology, 2017, 328, 319-325.	2.2	18
114	Fabrication and Characterization of a Biocompatible Coating Formed on a Heat-Treated Magnesium Alloy Using Micro-Arc Oxidation. , 2017, , .		0
115	Super-hydrophobic coating used in corrosion protection of metal material: review, discussion and prospects. Metallurgical Research and Technology, 2017, 114, 203.	0.4	22
116	Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Scientific Reports, 2017, 7, 9061.	1.6	28
117	Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. Journal of Alloys and Compounds, 2017, 728, 815-826.	2.8	90
118	Toward a nearly defect-free coating via high-energy plasma sparks. Scientific Reports, 2017, 7, 2378.	1.6	36
119	Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy. Journal of Alloys and Compounds, 2017, 726, 284-294.	2.8	37
120	A review of surfactants as corrosion inhibitors and associated modeling. Progress in Materials Science, 2017, 90, 159-223.	16.0	270
121	Bioactive calcium phosphate coatings on metallic implants. AIP Conference Proceedings, 2017, , .	0.3	3
122	Fabrication of environmentally friendly anti-corrosive composite coatings on AZ31B Mg alloy by plasma electrolytic oxidation and phytic acid/3-aminopropyltrimethoxysilane post treatment. Surface and Coatings Technology, 2017, 325, 579-587.	2.2	39
123	Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density. Journal of Materials Engineering and Performance, 2017, 26, 3710-3718.	1.2	7
124	Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy. Surface and Coatings Technology, 2017, 309, 86-95.	2.2	56
125	Corrosion and wear of PEO coated AZ91/SiC composites. Surface and Coatings Technology, 2017, 309, 1023-1032.	2.2	47
126	Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 117-126.	1.5	7
127	Resorbable bone fixation alloys, forming, and post-fabrication treatments. Materials Science and Engineering C, 2017, 70, 870-888.	3.8	85
128	Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity. Materials, 2017, 10, 696.	1.3	25
129	Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy. International Journal of Energy Production and Management, 2017, 4, 1-10.	1.9	17

#	Article	IF	CITATIONS
130	Microstructure and Corrosion Resistance Studies of PEO Coated Mg Alloys with a HF and US Pretreatment. International Journal of Electrochemical Science, 2017, 12, 155-165.	0.5	7
131	Corrosion protection utilizing Ag layer on Cu coated AZ31 Mg alloy. Corrosion Science, 2018, 136, 201-209.	3.0	21
132	Optimization of defect-free protective layer considering the geometrical linearity of condensed phosphates. Journal of Alloys and Compounds, 2018, 752, 155-163.	2.8	14
133	Investigation on the in vitro cytocompatibility of Mg-Zn-Y-Nd-Zr alloys as degradable orthopaedic implant materials. Journal of Materials Science: Materials in Medicine, 2018, 29, 44.	1.7	20
134	Fabrication of hydroxyapatite coatings on AZ31 Mg alloy by micro-arc oxidation coupled with sol–gel treatment. RSC Advances, 2018, 8, 12368-12375.	1.7	24
135	Biomimetic gelatine coating for less-corrosive and surface bioactive Mg–9Al–1Zn alloys. Journal of Materials Research, 2018, 33, 1449-1462.	1.2	12
136	Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy. Journal of Alloys and Compounds, 2018, 745, 609-616.	2.8	25
137	Effect of organic additives on structure and corrosion resistance of MAO coating. Vacuum, 2018, 151, 8-14.	1.6	21
138	Degradable Magnesium Implantsâ€"Assessment of the Current Situation. Minerals, Metals and Materials Series, 2018, , 405-411.	0.3	4
139	Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution. Journal of Alloys and Compounds, 2018, 740, 330-345.	2.8	93
140	Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites. Materials Science and Engineering C, 2018, 90, 365-378.	3.8	28
141	A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function. ACS Biomaterials Science and Engineering, 2018, 4, 2169-2180.	2.6	83
142	Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility. Biomaterials Science, 2018, 6, 1846-1858.	2.6	65
143	Formation of flower-like structures for optimizing the corrosion resistance of Mg alloy. Materials Letters, 2018, 221, 196-200.	1.3	40
144	Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surface and Coatings Technology, 2018, 344, 1-11.	2.2	104
145	Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy. Applied Surface Science, 2018, 433, 653-667.	3.1	105
146	Formation of silicon-calcium-phosphate-containing coating on Mg-Zn-Ca alloy by a two-step micro-arc oxidation technique. Materials Letters, 2018, 212, 37-40.	1.3	20
147	Fabrication of corrosion resistant hydrophobic ceramic nanocomposite coatings on PEO treated AA7075. Ceramics International, 2018, 44, 874-884.	2.3	64

#	Article	IF	CITATIONS
148	Corrosion inhibition of hydrophobic coatings fabricated by micro-arc oxidation on an extruded Mg–5Sn–1Zn alloy substrate. Journal of Alloys and Compounds, 2018, 731, 731-738.	2.8	42
149	Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte. Materials Letters, 2018, 212, 98-102.	1.3	45
150	In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surface and Coatings Technology, 2018, 334, 450-460.	2.2	101
151	A new approach to enhancing interlaminar strength and galvanic corrosion resistance of CFRP/Mg laminates. Composites Part A: Applied Science and Manufacturing, 2018, 105, 78-86.	3.8	20
152	A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 1101-1111.	3.1	65
153	Effect of the process voltage and electrolyte composition on the structure and properties of Sr-incorporated micro-arc calcium phosphate coatings formed on Mg–0.8Ca. AIP Conference Proceedings, 2018, , .	0.3	1
154	Osteoimmunomodulation, osseointegration, and <i>in vivo </i> mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomaterials Science, 2018, 6, 3202-3218.	2.6	68
155	Preparation and corrosion resistance of superhydrophobic coatings on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 2287-2293.	1.7	30
156	The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings. Materials Today: Proceedings, 2018, 5, 15677-15685.	0.9	25
157	Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications. Materials Today: Proceedings, 2018, 5, 15603-15612.	0.9	40
158	Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods. Materials Today: Proceedings, 2018, 5, 15667-15676.	0.9	19
159	Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties. Journal of the Electrochemical Society, 2018, 165, C962-C972.	1.3	38
160	Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives. Journal of Biomaterials Applications, 2018, 33, 725-740.	1.2	23
161	Effect of the second-step voltages on the structural and corrosion properties of silicon–calcium–phosphate (Si–CaP) coatings on Mg–Zn–Ca alloy. Royal Society Open Science, 2018, 172410.	5 1. 1	14
162	Excellent Anti-Corrosive Composite Coating Containing Iron Oxide on AZ31B Mg Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 1059-1065.	0.3	3
163	Effects of Pulsed Unipolar and Bipolar Current Regimes on the Characteristics of Micro-Arc Oxidation Coating on LZ91 Magnesium-Lithium Alloy. International Journal of Electrochemical Science, 2018, , 2705-2717.	0.5	8
164	Degradation Behavior of Micro-Arc Oxidized ZK60 Magnesium Alloy in a Simulated Body Fluid. Metals, 2018, 8, 724.	1.0	25
165	Effect of electrolyte composition ratio of micro-arc oxidation on interlaminar strength of CFRP/Mg laminates. International Journal of Adhesion and Adhesives, 2018, 87, 98-104.	1.4	7

#	Article	IF	CITATIONS
166	Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2. Nature Communications, 2018, 9, 4058.	5.8	76
167	Influences of Na2SiO3 and EDTA-ZnNa2 concentration on properties of zinc-containing coatings on WE43 magnesium alloys. Surface and Coatings Technology, 2018, 356, 108-122.	2.2	16
168	An $ ilde{A}_i$ lisis de la bioactividad de Mg AZ31 recubierta por PEO (Plasma Electrolytic Oxidation). DYNA (Colombia), 2018, 85, 328-337.	0.2	3
169	Zirconium ions integrated in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a metalorganic-like complex coating on biodegradable magnesium for corrosion control. Corrosion Science, 2018, 144, 277-287.	3.0	29
170	Manipulating the degradation behavior and biocompatibility of Mg alloy through a two-step treatment combining sliding friction treatment and micro-arc oxidation. Journal of Materials Chemistry B, 2018, 6, 6431-6443.	2.9	6
171	A novel composite system composed of zirconia and LDHs film grown on plasma electrolysis coating: Toward a stable smart coating. Ultrasonics Sonochemistry, 2018, 49, 316-324.	3.8	50
172	In Vitro Corrosion and Antibacterial Performance of Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy: Effects of Tannic Acid. Journal of the Electrochemical Society, 2018, 165, C821-C829.	1.3	38
173	3D reconstruction of plasma electrolytic oxidation coatings on Mg alloy via synchrotron radiation tomography. Corrosion Science, 2018, 139, 395-402.	3.0	74
174	Evolution of the microstructure and fracture characteristics of a Mg-Nd-Zn-Zr-Mn alloy through heat treatment and extrusion. Journal of Alloys and Compounds, 2018, 765, 470-479.	2.8	18
175	Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning, 2018, 2018, 1-15.	0.7	134
176	Microstructure and Corrosion Behavior of Composite Coating on Pure Mg Acquired by Sliding Friction Treatment and Micro-Arc Oxidation. Materials, 2018, 11, 1232.	1.3	13
177	Surface modification of Magnesium and its alloy as orthopedic biomaterials with biopolymers. , 2018, , 197-210.		8
178	Biocompatible coatings for metallic biomaterials. , 2018, , 323-354.		4
179	The Surface Modification Methods for Constructing Polymer-Coated Stents. International Journal of Polymer Science, 2018, 2018, 1-7.	1.2	19
180	Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation. Materials, 2018, 11, 545.	1.3	32
181	Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 2018, 8, 105.	1.0	78
182	Characterization of the Micro-Arc Coatings Containing \hat{l}^2 -Tricalcium Phosphate Particles on Mg-0.8Ca Alloy. Metals, 2018, 8, 238.	1.0	26
183	Plasma Electrolytic Oxidation (PEO) of Metals and Alloys. , 2018, , 423-438.		24

#	Article	IF	CITATIONS
184	Enhanced Corrosion Protection Performance by Organic-Inorganic Materials Containing Thiocarbonyl Compounds. Scientific Reports, 2018, 8, 10925.	1.6	28
185	Enhanced fully-biodegradable Mg/PLA composite rod: Effect of surface modification of Mg-2Zn wire on the interfacial bonding. Surface and Coatings Technology, 2018, 350, 722-731.	2.2	21
186	Self-reinforced biodegradable Mg-2Zn alloy wires/polylactic acid composite for orthopedic implants. Composites Science and Technology, 2018, 162, 198-205.	3.8	21
187	Enhanced Wear Performance of Hybrid Epoxy-Ceramic Coatings on Magnesium Substrates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30741-30751.	4.0	21
188	Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy. Surface and Coatings Technology, 2018, 352, 273-284.	2.2	21
189	Functional PEO layers on magnesium alloys: innovative polymer-free drug-eluting stents. Surface Innovations, 2018, 6, 237-243.	1.4	29
190	InÂvitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy â€" The influence of intermetallic compound Mg2Ca. Journal of Alloys and Compounds, 2018, 764, 250-260.	2.8	95
191	Investigation of Corrosion Protection Performance of Multiphase PEO (Mg2SiO4, MgO, MgAl2O4) Coatings on Mg Alloy Formed in Aluminate-Silicate- based Mixture Electrolyte. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 425-441.	0.3	18
192	Influence of Plasma Electrolytic Oxidation on Corrosion Characteristics of Friction Stir Welded ZM21 Magnesium Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 735-742.	0.3	6
193	Fabrication and characterization of Mg–Mn hydrotalcite films on pure Mg substrates. Materials Research Express, 2019, 6, 116440.	0.8	8
194	PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications. Materials Science and Engineering C, 2019, 105, 110026.	3.8	52
195	Morphological modification and corrosion response of MgO and Mg3(PO4)2 composite formed on magnesium alloy. Composites Part B: Engineering, 2019, 176, 107225.	5.9	54
196	Evaluation of the Corrosion Resistance and Cytocompatibility of a Bioactive Micro-Arc Oxidation Coating on AZ31 Mg Alloy. Coatings, 2019, 9, 396.	1.2	17
197	The Elasticity of Calcium Phosphate MAO Coatings Containing Different Concentrations of Chitosan. IOP Conference Series: Materials Science and Engineering, 2019, 544, 012009.	0.3	0
198	Growth of plasma electrolytic oxidation coatings on Nb and corresponding corrosion resistance. Applied Surface Science, 2019, 491, 526-534.	3.1	20
199	Surface Modification with Micro-arc Oxidation. , 2019, , 523-534.		1
200	Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Materials Science and Engineering C, 2019, 104, 109947.	3.8	65
201	Effects of electrolyte concentration on the microstructure and properties of plasma electrolytic oxidation coatings on Ti-6Al-4V alloy. Surface and Coatings Technology, 2019, 375, 864-876.	2.2	36

#	Article	IF	CITATIONS
202	Degradation Behaviour of Mg0.6Ca and Mg0.6Ca2Ag Alloys with Bioactive Plasma Electrolytic Oxidation Coatings. Coatings, 2019, 9, 383.	1.2	14
203	Metallic glasses for biodegradable implants. Acta Materialia, 2019, 176, 297-305.	3.8	25
204	Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications. International Journal of Biomaterials, 2019, 2019, 1-21.	1.1	47
205	Mechanism of residual stress and surface roughness of substrate on fatigue behavior of micro-arc oxidation coated AA7075-T6 alloy. Surface and Coatings Technology, 2019, 380, 125014.	2.2	18
206	Superhydrophobic antibacterial polymer coatings. , 2019, , 245-279.		8
207	Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomaterials Science and Engineering, 2019, 5, 6541-6556.	2.6	15
208	Electrochemical and bioactive characteristics of the porous surface formed on Ti-xNb alloys via plasma electrolytic oxidation. Surface and Coatings Technology, 2019, 378, 125027.	2.2	46
209	Hierarchical Functionalized Polymericâ€Ceramic Coatings on Mgâ€Ca Alloys for Biodegradable Implant Applications. Macromolecular Bioscience, 2019, 19, e1900179.	2.1	13
210	Surface Modification of Pure Magnesium Mesh for Guided Bone Regeneration: In Vivo Evaluation of Rat Calvarial Defect. Materials, 2019, 12, 2684.	1.3	19
211	Ceramic coating for delayed degradation of Mg-1.2Zn-0.5Ca-0.5Mn bone fixation and instrumentation. Thin Solid Films, 2019, 687, 137456.	0.8	19
212	Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings. Innovations in Corrosion and Materials Science, 2019, 9, 3-27.	0.2	1
213	In vitro and in vivo assessment of the biocompatibility of an paclitaxel-eluting poly-l-lactide-coated Mg-Zn-Y-Nd alloy stent in the intestine. Materials Science and Engineering C, 2019, 105, 110087.	3.8	16
214	Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by micro-arc oxidation process. Journal of Materials Science, 2019, 54, 7333-7355.	1.7	68
215	Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Scientific Reports, 2019, 9, 933.	1.6	32
216	Bioactive coating on a new Mg-2Zn-0.5Nd alloy: modulation of degradation rate and cellular response. Materials Technology, 2019, 34, 394-402.	1.5	13
217	Magnesium-Based Bioresorbable Stent Materials: Review of Reviews. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1.2	24
218	Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity. Journal of Materials Chemistry A, 2019, 7, 10980-10987.	5. 2	35
219	Biodegradable magnesium alloys. , 2019, , 265-289.		11

#	ARTICLE	IF	CITATIONS
220	Role of cathodic current in plasma electrolytic oxidation of Al: A quantitative approach to in-situ evaluation of cathodically induced effects. Electrochimica Acta, 2019, 317, 221-231.	2.6	38
221	Hydration-dehydration behavior induced densification of porous plasma electrolysis coating. Journal of Alloys and Compounds, 2019, 798, 220-226.	2.8	10
222	Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets. Applied Surface Science, 2019, 486, 153-165.	3.1	72
223	Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy. Applied Surface Science, 2019, 487, 581-592.	3.1	31
224	"Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys― Materials Science and Engineering C, 2019, 103, 109700.	3.8	11
225	Effect of Electrolyte in Microarc Oxidation on Providing Corrosion Resistance to Inhomogeneous Microstructure in ZM21 Magnesium Alloy. Transactions of the Indian Institute of Metals, 2019, 72, 1617-1620.	0.7	4
226	A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chemical Engineering Journal, 2019, 373, 285-297.	6.6	168
227	Coatings for biodegradable magnesium-based supports for therapy of vascular disease: A general view. Materials Science and Engineering C, 2019, 102, 150-163.	3.8	63
228	Investigation on Corrosion Resistance and Formation Mechanism of a P–F–Zr Contained Micro-Arc Oxidation Coating on AZ31B Magnesium Alloy Using an Orthogonal Method. Coatings, 2019, 9, 197.	1.2	13
229	Fatigue life of micro-arc oxidation coated AA2024-T3 and AA7075-T6 alloys. International Journal of Fatigue, 2019, 124, 493-502.	2.8	18
230	Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Journal of Biomaterials Applications, 2019, 33, 1348-1372.	1.2	61
231	Effects of pack chromizing on the microstructure and anticorrosion properties of 316L stainless steel. Surface and Coatings Technology, 2019, 366, 86-96.	2.2	24
232	Smart Arbitrary Waveform Generator with Digital Feedback Control for High-Voltage Electrochemistry. Instruments, 2019, 3, 13.	0.8	6
233	Effect of starch on the corrosion behavior of Al-Mg-Si alloy processed by micro arc oxidation from an ecofriendly electrolyte system. Bioelectrochemistry, 2019, 128, 133-139.	2.4	21
234	Thermal shock behavior of YSZ thermal barrier coatings with a Ni-P/Al/Ni-P sandwich interlayer on AZ91D magnesium alloy substrate at 400â€Â°C. Surface and Coatings Technology, 2019, 367, 278-287.	2.2	13
235	Improved blood compatibility and cyto-compatibility of Zn-1Mg via plasma electrolytic oxidation. Materialia, 2019, 5, 100244.	1.3	23
236	Influence of irradiation intensity on corrosion properties of microarc oxidation film on AZ31 magnesium alloy with HIPIB. Anti-Corrosion Methods and Materials, 2019, 66, 418-424.	0.6	1
237	Role of Substrates in the Corrosion Behaviors of Micro-Arc Oxidation Coatings on Magnesium Alloys. Metals, 2019, 9, 1100.	1.0	11

#	Article	IF	CITATIONS
238	Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mgâ^Al layered double hydroxide coating. Transactions of Nonferrous Metals Society of China, 2019, 2066-2077.	1.7	65
239	Formation of a Pd/MgO Structured Catalyst for the Aqueous Oxidation of Silane to Silanol. Catalysts, 2019, 9, 834.	1.6	2
240	Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy. Applied Surface Science, 2019, 463, 535-544.	3.1	94
241	Synthesis and in-vitro performance of nanostructured monticellite coating on magnesium alloy for biomedical applications. Journal of Alloys and Compounds, 2019, 773, 180-193.	2.8	38
242	On the compactness of the oxide layer induced by utilizing a porosification agent. Applied Surface Science, 2019, 473, 715-725.	3.1	22
243	Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types. Biomedical Materials (Bristol), 2019, 14, 025005.	1.7	11
244	Formation Mechanism, Corrosion Behavior, and Cytocompatibility of Microarc Oxidation Coating on Absorbable High-Purity Zinc. ACS Biomaterials Science and Engineering, 2019, 5, 487-497.	2.6	52
245	Influence of current mode on microstructure and corrosion behavior of micro-arc oxidation (MAO) biodegradable Mg-Zn-Ca alloy in Hank's solution. Surface and Coatings Technology, 2019, 358, 331-339.	2.2	33
246	Corrosion behavior and cytocompatibility of nano-grained AZ31ÂMg alloy. Journal of Materials Science, 2019, 54, 4409-4422.	1.7	14
247	Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surface and Coatings Technology, 2019, 360, 153-171.	2.2	119
248	Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic physiological environments. Surface and Coatings Technology, 2019, 361, 240-248.	2.2	23
249	Inorganic-metallic bilayer on Mg alloy via wet and dry plasma treatments. Surface and Coatings Technology, 2019, 360, 56-63.	2.2	9
250	Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy. Electrochimica Acta, 2019, 299, 772-788.	2.6	45
251	Magnesium-based alloys and nanocomposites for biomedical application. , 2019, , 83-109.		12
252	Micromechanical analysis of bioresorbable PLLA/Mg composites coated with MgO: Effects of particle weight fraction, particle/matrix interface bonding strength and interphase. Composites Part B: Engineering, 2019, 162, 129-133.	5.9	16
253	Effect of annealing temperature on the corrosion resistance of MgO coatings on Mg alloy. Surface and Coatings Technology, 2019, 357, 691-697.	2.2	23
254	Influence of a MAO + PLGA coating on biocorrosion and stress corrosion cracking behavior of a magnesium alloy in a physiological environment. Corrosion Science, 2019, 148, 134-143.	3.0	82
255	Control of surface plasma discharge considering the crystalline size of Al substrate. Applied Surface Science, 2019, 477, 60-70.	3.1	25

#	Article	IF	CITATIONS
256	Residual stress relaxation and duty cycle on high cycle fatigue life of micro-arc oxidation coated AA7075-T6 alloy. International Journal of Fatigue, 2020, 130, 105283.	2.8	18
257	Effect of ZnO pore-sealing layer on anti-corrosion and in-vitro bioactivity behavior of plasma electrolytic oxidized AZ91 magnesium alloy. Materials Letters, 2020, 258, 126779.	1.3	38
258	Microarc oxidation coatings containing TiC and NbC on magnesium alloy. Surface Engineering, 2020, 36, 1171-1179.	1.1	15
259	Characteristics of selenium-containing coatings on WE43 magnesium alloy by micro-arc oxidation. Materials Letters, 2020, 261, 126944.	1.3	20
260	Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors. Applied Surface Science, 2020, 504, 144462.	3.1	68
261	Fabrication and Characterization of Porous Micro-arc Oxidation/Al Composite Coating: Bio-inspired Strategy from Cancellous Bone Structure. Journal of Materials Engineering and Performance, 2020, 29, 87-97.	1.2	4
262	Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy. Journal of Alloys and Compounds, 2020, 823, 153721.	2.8	91
263	Tailored alumina coatings for corrosion inhibition considering the synergism between phosphate ions and benzotriazole. Journal of Alloys and Compounds, 2020, 822, 153566.	2.8	12
264	Facile fabrication and biological properties of super-hydrophobic coating on magnesium alloy used as potential implant materials. Surface and Coatings Technology, 2020, 384, 125223.	2.2	40
265	Surface modulation of inorganic layer via soft plasma electrolysis for optimizing chemical stability and catalytic activity. Chemical Engineering Journal, 2020, 391, 123614.	6.6	16
266	Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31. Frontiers of Materials Science, 2020, 14, 426-441.	1.1	10
267	Relaxation Kinetics of Plasma Electrolytic Oxidation Coated Al Electrode: Insight into the Role of Negative Current. Journal of Physical Chemistry C, 2020, 124, 23784-23797.	1.5	13
268	Zn- or Cu-Containing CaP-Based Coatings Formed by Micro-arc Oxidation on Titanium and Ti-40Nb Alloy: Part lâ€"Microstructure, Composition and Properties. Materials, 2020, 13, 4116.	1.3	26
269	A new environmentally-friendly route to <i>in situ</i> form a high-corrosion-resistant nesquehonite film on pure magnesium. RSC Advances, 2020, 10, 35480-35489.	1.7	9
270	Effect of phosphate-based sealing treatment on the corrosion performance of a PEO coated AZ91D mg alloy. Journal of Magnesium and Alloys, 2020, 8, 1328-1340.	5.5	39
271	Characterization of bioactive ceramic coatings synthesized by plasma electrolyte oxidation on AZ31 magnesium alloy having different Na2SiO3Â-9H2O concentrations. Materials Today Communications, 2020, 25, 101642.	0.9	11
272	Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. Materials, 2020, 13, 4307.	1.3	6
273	Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy. Journal of Magnesium and Alloys, 2020, 9, 1443-1443.	5.5	59

#	Article	IF	CITATIONS
274	A review on plasma electrolytic oxidation (PEO) of niobium: Mechanism, properties and applications. Surfaces and Interfaces, 2020, 21, 100719.	1.5	29
275	Recent Advances in the Control of the Degradation Rate of PEO Treated Magnesium and Its Alloys for Biomedical Applications. Metals, 2020, 10, 907.	1.0	19
276	Effect of TiO2 Thin Film Coating on AZ91D Alloy and Investigation of Corrosion Behavior, Mechanical Properties, and Biocompatibility. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	2
277	Formation of stable coral reef-like structures via self-assembly of functionalized polyvinyl alcohol for superior corrosion performance of AZ31 Mg alloy. Materials and Design, 2020, 193, 108823.	3.3	37
278	Advantage of an in-situ reactive incorporation over direct particles incorporation of V2O5 for a competitive plasma electrolysis coating. Surface and Coatings Technology, 2020, 399, 126200.	2.2	25
279	Relationship between the Porous Structure Hierarchy and the Physical and Mechanical Properties of Calcium Phosphate Drug Carriers. Russian Physics Journal, 2020, 63, 1249-1256.	0.2	3
280	Potential Applications of Magnesium-Based Polymeric Nanocomposites Obtained by Electrospinning Technique. Nanomaterials, 2020, 10, 1524.	1.9	22
281	Corrosion and Biocompatibility Behavior of the Micro-Arc Oxidized AZ31B Alloy in Simulated Body Fluid. International Journal of Electrochemical Science, 2020, 15, 6405-6424.	0.5	5
282	Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys. Journal of Alloys and Compounds, 2020, 848, 156598.	2.8	27
283	Enhancing anti-wear and anti-corrosion performance of cold spraying aluminum coating by high current pulsed electron beam irradiation. Vacuum, 2020, 182, 109772.	1.6	25
284	In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications. Journal of Materials Engineering and Performance, 2020, 29, 6053-6065.	1.2	8
285	Effect of GelMA Hydrogel Coatings on Corrosion Resistance and Biocompatibility of MAO-Coated Mg Alloys. Materials, 2020, 13, 3834.	1.3	18
286	Degradation Resistance and In Vitro Cytocompatibility of Iron-Containing Coatings Developed on WE43 Magnesium Alloy by Micro-Arc Oxidation. Coatings, 2020, 10, 1138.	1.2	8
287	Design and in situ prepare a novel composite coating on Mg alloy for active anti-corrosion protection. Journal of Alloys and Compounds, 2020, 831, 154580.	2.8	32
288	On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review. Ceramics International, 2020, 46, 20587-20607.	2.3	85
289	Interaction of different cell types with magnesium modified by plasma electrolytic oxidation. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111153.	2.5	13
290	Corrosion Resistance Enhancement of Micro-Arc Oxidation Ceramic Layer by Mg-Al-Co Layered Double Hydroxide Coating. Transactions of the Indian Ceramic Society, 2020, 79, 59-66.	0.4	20
291	Corrosion resistance and biocompatibility of polydopamine/hyaluronic acid composite coating on AZ31 magnesium alloy. Surfaces and Interfaces, 2020, 20, 100560.	1.5	11

#	Article	IF	CITATIONS
292	Facile sealing treatment with stannous citrate complex to enhance performance of electrodeposited Ti/SnO2–Sb electrode. Chemosphere, 2020, 255, 126973.	4.2	13
293	Revealing the Effects of Microarc Oxidation on the Mechanical and Degradation Properties of Mg-Based Biodegradable Composites. ACS Omega, 2020, 5, 13694-13702.	1.6	6
294	Influence of Cu2+ lons on the Corrosion Resistance of AZ31 Magnesium Alloy with Microarc Oxidation. Materials, 2020, 13, 2647.	1.3	7
295	Effect of Hydrothermal Treatment Time on Microstructure and Corrosion Behavior of Micro-arc Oxidation/Layered Double Hydroxide Composite Coatings on LA103Z Mg-Li Alloy in 3.5Âwt.% NaCl Solution. Journal of Materials Engineering and Performance, 2020, 29, 4032-4039.	1.2	21
296	Surface modification, including polymerization, nanocoating, and microencapsulation., 2020, , 83-99.		0
297	Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing Technologies, 2020, 6, 405-440.	0.8	46
298	Effect of deep cryogenic treatment on the microstructure and corrosion behavior of the microarc oxidized Mg-2.0Zn-0.5Ca alloy. Journal of Materials Research and Technology, 2020, 9, 3943-3949.	2.6	16
299	Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science, 2020, 112, 100663.	16.0	196
300	Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. Materials Today Communications, 2020, 25, 101403.	0.9	10
301	Preparation and Degradation Behavior of Composite Bio-Coating on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation and Electrophoresis Deposition. Frontiers in Materials, 2020, 7, .	1.2	13
302	Improving the corrosion resistance and bioactivity of magnesium by a carbonate conversion-polycaprolactone duplex coating approach. New Journal of Chemistry, 2020, 44, 4772-4785.	1.4	12
303	Preparation of poly(εâ€caprolactone)â€hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Material Design and Processing Communications, 2020, 2, e170.	0.5	5
304	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5 . 5	274
305	Biocompatible Janus Membrane with Double Selfâ€Healing Ability for Intelligent Anticorrosion. Advanced Materials Interfaces, 2020, 7, 1901782.	1.9	5
306	Fabrication and characterization of dicalcium phosphate coatings deposited on magnesium substrates by a chemical conversion route. Surface and Coatings Technology, 2020, 386, 125505.	2.2	13
307	ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomaterialia, 2020, 107, 313-324.	4.1	64
308	Microstructural characteristics of PEO coating: Effect of surface nanocrystallization. Journal of Alloys and Compounds, 2020, 823, 153823.	2.8	25
309	Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surfaces and Interfaces, 2020, 18, 100441.	1.5	41

#	Article	IF	CITATIONS
310	Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review. ACS Omega, 2020, 5, 941-947.	1.6	30
311	Optimized Micro-Arc Oxidation Coating Thickness on ALZ Magnesium Lithium Alloy. Materials Science Forum, 2020, 975, 37-42.	0.3	0
312	Investigating an effective model to estimate the water diffusion coefficient of a hybrid polymer-oxide coating. Progress in Organic Coatings, 2020, 141, 105548.	1.9	4
313	Superhydrophobic coatings for corrosion protection of magnesium alloys. Journal of Materials Science and Technology, 2020, 52, 100-118.	5.6	164
314	Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum. Metals, 2020, 10, 394.	1.0	18
315	Comparative Study of the Structure, Properties, and Corrosion Behavior of Sr-Containing Biocoatings on Mg0.8Ca. Materials, 2020, 13, 1942.	1.3	14
316	Hard acid–hard base interactions responsible for densification of alumina layer for superior electrochemical performance. Corrosion Science, 2020, 170, 108663.	3.0	36
317	Nanostructure and nanocomposite MAO coatings and their corrosion properties. , 2020, , 423-449.		1
318	Biological behavior exploration of a paclitaxel-eluting poly- <scp>l</scp> -lactide-coated Mg–Zn–Y–Nd alloy intestinal stent <i>in vivo</i> . RSC Advances, 2020, 10, 15079-15090.	1.7	8
319	Effects of Deposition Thickness on Electrochemical Behaviors of AZ31B Magnesium Alloy with Composite Coatings Prepared by Micro-arc Oxidation and Electrophoretic Deposition. International Journal of Electrochemical Science, 2020, 15, 1378-1390.	0.5	8
320	Biocompatibility and bone regeneration of PEO/Mg-Al LDH-coated pure Mg: an in vitro and in vivo study. Science China Materials, 2021, 64, 460-473.	3.5	15
321	A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration. Chemical Engineering Journal, 2021, 403, 126323.	6.6	40
322	Role of incorporation of ZnO nanoparticles on corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation technique. Surfaces and Interfaces, 2021, 22, 100728.	1.5	27
323	Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. Journal of Alloys and Compounds, 2021, 853, 157010.	2.8	106
324	Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioactive Materials, 2021, 6, 158-168.	8.6	46
325	Superior corrosion protection and adhesion strength of epoxy coating applied on AZ31 magnesium alloy pre-treated by PEO/Silane with inorganic and organic corrosion inhibitors. Corrosion Science, 2021, 178, 109065.	3.0	110
326	Investigation of characterization and tribological behavior of composite oxide coatings doped with h-BN and graphite particles on ZA-27 alloy by micro-arc oxidation. Journal of Adhesion Science and Technology, 2021, 35, 1305-1319.	1.4	5
327	Corrosion resistance of PEO and primer coatings on magnesium alloy. Journal of Asian Ceramic Societies, 2021, 9, 40-52.	1.0	11

#	Article	IF	CITATIONS
328	Stabilization of AZ31 Mg alloy in sea water via dual incorporation of MgO and WO3 during micro-arc oxidation. Journal of Alloys and Compounds, 2021, 853, 157036.	2.8	43
329	Advances in LDH coatings on Mg alloys for biomedical applications: A corrosion perspective. Applied Clay Science, 2021, 202, 105948.	2.6	52
330	Alloying criteria and investigations on the properties of novel AM series alloy fabricated using stir casting. Materials Today: Proceedings, 2021, 44, 86-91.	0.9	2
331	Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy. Journal of Adhesion Science and Technology, 2021, 35, 242-255.	1.4	17
332	Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress in Materials Science, 2021, 117, 100735.	16.0	282
333	Developments in plasma electrolytic oxidation (PEO) coatings for biodegradable magnesium alloys. Materials Today: Proceedings, 2021, 46, 1407-1415.	0.9	26
334	Effect of zinc content on the microstructure, in vitro bioactivity, and corrosion behavior of the microarc oxidized Mg–xZn–0.6Ca (x = 3.0, 4.5, 6.0) alloy. Biointerphases, 2021, 16, 011007.	0.6	3
336	A Review on LDH-Smart Functionalization of Anodic Films of Mg Alloys. Nanomaterials, 2021, 11, 536.	1.9	25
337	Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization. Journal of Magnesium and Alloys, 2022, 10, 1368-1380.	5.5	26
338	Design and Multidimensional Screening of Flash-PEO Coatings for Mg in Comparison to Commercial Chromium(VI) Conversion Coating. Metals, 2021, 11, 337.	1.0	6
339	Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy. Surfaces and Interfaces, 2021, 22, 100894.	1.5	12
340	The influence of EDTAâ€2Na on microstructure and corrosion resistance of PEO coating for AA1060 alloy. International Journal of Applied Ceramic Technology, 2021, 18, 928-936.	1.1	5
341	Synchronous Growth of Porous MgO and Half-Embedded Nano-Ru on a Mg Plate: A Monolithic Catalyst for Fast Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 3616-3623.	3.2	20
342	Preparation of Coating on the Titanium Surface by Micro-Arc Oxidation to Improve Corrosion Resistance. Coatings, 2021, 11, 230.	1.2	18
343	Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation. Surface and Coatings Technology, 2021, 410, 126983.	2.2	26
344	Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications. Progress in Organic Coatings, 2021, 152, 106112.	1.9	13
345	Surface Modification of Biomedical MgCa4.5 and MgCa4.5Gd0.5 Alloys by Micro-Arc Oxidation. Materials, 2021, 14, 1360.	1.3	6
346	Microstructure, degradation properties and cytocompatibility of micro-arc oxidation coatings on the microwave sintered Ti-15Mg metal-metal composite. Journal of Materials Research and Technology, 2021, 11, 1654-1664.	2.6	3

#	Article	IF	CITATIONS
347	Effect of solution pH on stress corrosion cracking behavior of modified AZ80 magnesium alloy in simulated body fluid. Materials Chemistry and Physics, 2021, 261, 124232.	2.0	16
348	Optimization of Surface Properties of Plasma Electrolytic Oxidation Coating by Organic Additives: A Review. Coatings, 2021, 11, 374.	1.2	22
349	Biodegradable magnesiumâ€based biomaterials: An overview of challenges and opportunities. MedComm, 2021, 2, 123-144.	3.1	77
350	Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process. Materials Today: Proceedings, 2021, 47, 5652-5662.	0.9	22
351	Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy. Journal of Magnesium and Alloys, 2022, 10, 2147-2157.	5.5	23
352	Corrosion Evaluation of Pure Mg Coated by Fluorination in 0.1 M Fluoride Electrolyte. Scanning, 2021, 2021, 1-11.	0.7	4
353	Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings, 2021, 11, 620.	1.2	16
354	Plasma Electrolytic Oxidation (PEO) Processâ€"Processing, Properties, and Applications. Nanomaterials, 2021, 11, 1375.	1.9	111
355	Preparation and Degradation Characteristics of MAO/APS Composite Bio-Coating in Simulated Body Fluid. Coatings, 2021, 11, 667.	1.2	7
356	Fabrication of low-cost Ni-P composite coating on Mg alloys with a significant improvement of corrosion resistance: Critical role of mitigating the galvanic contact between the substrate and the coating. Corrosion Science, 2021, 183, 109329.	3.0	27
357	Preparation and Characterization of a Sol–Gel AHEC Pore-Sealing Film Prepared on Micro Arc Oxidized AZ31 Magnesium Alloy. Metals, 2021, 11, 784.	1.0	2
358	Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. Journal of Magnesium and Alloys, 2022, 10, 3143-3155.	5.5	12
359	Improving the Corrosion Behavior of Biodegradable AM60 Alloy through Plasma Electrolytic Oxidation. Metals, 2021, 11, 953.	1.0	21
360	Degradation of Mg-Zn-Y-Nd alloy intestinal stent and its effect on the growth of intestinal endothelial tissue in rabbit model. Journal of Magnesium and Alloys, 2022, 10, 2208-2219.	5.5	5
361	Effect of Cu on microarc oxidation coated Al– <i>x</i> Cu alloys. Surface Engineering, 2021, 37, 1098-1109.	1.1	4
362	Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surfaces and Interfaces, 2021, 25, 101283.	1.5	27
363	Corrosion resistance of T-ZnOw/PDMS-MAO composite coating on the sintered NdFeB magnet. Journal of Magnetism and Magnetic Materials, 2021, 534, 168049.	1.0	15
364	Study on Micro-arc Oxidation of Mg-Zn-Y-Nd-Ca Magnesium Alloys. Journal of Physics: Conference Series, 2021, 2011, 012086.	0.3	0

#	Article	IF	CITATIONS
365	Enhanced Properties of Micro Arc Oxidation Coating with Cu Addition on TC4 Alloy in Marine Environment. Coatings, 2021, 11, 1168.	1.2	4
366	Effect of SiC addition in electrolyte on the microstructure and tribological properties of micro-arc oxidation coatings on Al-Mg-Sc alloy. Surface Topography: Metrology and Properties, 2021, 9, 035043.	0.9	7
367	Study on corrosion resistance of TC4 titanium alloy microâ€arc oxidation/(PTFEÂ+ graphite) composite coating. International Journal of Applied Ceramic Technology, 2022, 19, 397-408.	1.1	10
368	Fabrication of functionalized coating with a unique flowery-flake structure for an effective corrosion performance and catalytic degradation. Chemical Engineering Journal, 2021, 420, 129737.	6.6	40
369	Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering. Surface and Coatings Technology, 2021, 422, 127508.	2.2	26
370	Effect of graphene oxide on properties of AZ91 magnesium alloys coating developed by micro-arc oxidation process. Journal of Alloys and Compounds, 2022, 892, 162106.	2.8	28
371	Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys. Journal of Magnesium and Alloys, 2021, 9, 1487-1504.	5.5	44
372	Preparation and characterization of micro-arc oxidation coating on hollow glass microspheres/Mg alloy degradable composite. Materials Chemistry and Physics, 2021, 271, 124935.	2.0	10
373	Multipurpose surface modification of PEO coatings using tricalcium phosphate addition to improve the bedding for apatite compounds. Journal of Alloys and Compounds, 2021, 877, 160275.	2.8	21
374	The effect of in-situ reactive incorporation of MoOx on the corrosion behavior of Ti-6Al-4ÂV alloy coated via micro-arc oxidation coating. Corrosion Science, 2021, 192, 109764.	3.0	32
375	Regulating corrosion reactions to enhance the anti-corrosion and self-healing abilities of PEO coating on magnesium. Corrosion Science, 2021, 192, 109840.	3.0	26
376	Self-assembled nanocomposite hydrogels enhanced by nanoparticles phosphonate-magnesium coordination for bone regeneration. Applied Materials Today, 2021, 25, 101182.	2.3	10
377	Advances in coatings on magnesium alloys for cardiovascular stents – A review. Bioactive Materials, 2021, 6, 4729-4757.	8.6	93
378	Electrochemical Surface Treatments for Mg Alloys. , 2022, , 87-112.		1
379	Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis. Journal of Materials Science and Technology, 2022, 105, 57-67.	5.6	29
380	Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy. Journal of Magnesium and Alloys, 2018, 6, 229-237.	5.5	57
381	Effect of ultrasonic assisted sintering on mechanical properties and degradation behaviour of Mg15Nb3Zn1Ca biomaterial. Journal of Magnesium and Alloys, 2021, 9, 1989-2008.	5.5	9
382	Fabrication and Corrosion Resistance Evaluation of Novel Epoxy/Oxide Layer (MgO) Coating on Mg Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 1039-1050.	0.3	6

#	Article	IF	CITATIONS
383	Process Design of Micro-Arc Oxidation Coatings Based on Magnesium Lithium Alloy and Their Characteristics. International Journal of Electrochemical Science, 2017, 12, 11256-11270.	0.5	5
384	Self-sealing Microarc Oxidation Coating Mainly Containing ZrO2 and Nano Mg2Zr5O12 on AZ91D Mg Alloy. International Journal of Electrochemical Science, 2020, 15, 12447-12461.	0.5	9
385	Improving the performance of magnesium alloys for automotive applications. WIT Transactions on the Built Environment, 2014, , .	0.0	19
386	Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath. Journal of the Korean Institute of Surface Engineering, 2016, 49, 401-407.	0.1	4
387	Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair. Materials Science and Engineering C, 2021, 131, 112491.	3.8	12
388	Laser machined micropatterns as corrosion protection of both hydrophobic and hydrophilic magnesium. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104920.	1.5	8
389	Improving the electrochemical stability of AZ31 Mg alloy in a 3.5wt.% NaCl solution via the surface functionalization of plasma electrolytic oxidation coating. Journal of Magnesium and Alloys, 2022, 10, 1311-1325.	5.5	35
390	Roles of the microâ€arc oxidation coating on the corrosion resistance and mechanical properties of extruded Mg–2Zn–0.5Zr–1.5Dy (mass%) alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 414-426.	0.8	4
393	Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy. Korean Journal of Materials Research, 2018, 28, 544-550.	0.1	4
394	Electrolyte Temperature Dependence on the Properties of Plasma Anodized Oxide Films Formed on AZ91D Magnesium Alloy. Korean Journal of Materials Research, 2019, 29, 288-296.	0.1	2
395	Thickness and corrosion resistance optimization of Micro-ARC oxidation coating on Mg-Al-Li-Zn alloy using Taguchi approach. Journal of Science and Technology Issue on Information and Communications Technology, 0, , 62-66.	0.1	0
396	Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials, 2022, 12, 42-63.	8.6	42
397	Evaluation of Corrosion Behavior and In Vitro of Strontium-Doped Calcium Phosphate Coating on Magnesium. Materials, 2021, 14, 6625.	1.3	4
398	Constructing Mechanochemical Durable Superhydrophobic Composite Coating towards Superior Anticorrosion. Advanced Materials Technologies, 2022, 7, 2101223.	3.0	14
399	Improvement in corrosion resistance of micro-arc oxidized AZ91 alloy sealed with cement-mixed paraffin wax. Journal of Materials Research and Technology, 2021, 15, 6956-6973.	2.6	7
400	Corrosion and Biocompatibility of Pure Zn with a Micro-Arc-Oxidized Layer Coated with Calcium Phosphate. Coatings, 2021, 11, 1425.	1.2	8
401	Effect of power of ultrasound during micro-arc oxidation on morphology, elemental and phase composition of calcium phosphate coatings. Journal of Physics: Conference Series, 2021, 2064, 012057.	0.3	0
402	Duty cycle influence on the corrosion behavior of coatings created by plasma electrolytic oxidation on AZ31B magnesium alloy in simulated body fluid. Corrosion Communications, 2021, 3, 62-70.	2.7	11

#	ARTICLE	IF	Citations
403	Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys. Journal of Materials Chemistry B, 2021, 9, 9893-9899.	2.9	15
404	A drug-loaded bio-functional anticorrosion coating on Mg alloy for orthopedic applications. Materials Letters, 2022, 311, 131581.	1.3	4
405	Selective laser melting of an Mg/Metallic Glass hybrid for significantly improving chemical and mechanical performances. Applied Surface Science, 2022, 580, 152229.	3.1	8
406	Plasma electrolytic oxidation (PEO) coating to enhance in vitro corrosion resistance of AZ91 magnesium alloy coated with polydimethylsiloxane (PDMS). Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
408	Effect of thermal conductivity on micro-arc oxidation coatings. Surface Engineering, 2022, 38, 44-53.	1.1	6
409	Development and screening of (Ca-P-Si-F)-PEO coatings for biodegradability control of Mg-Zn-Ca alloys. Journal of Magnesium and Alloys, 2022, 10, 2220-2237.	5.5	13
410	Recent progress on coatings of biomedical magnesium alloy. Smart Materials in Medicine, 2022, 3, 104-116.	3.7	75
411	Preparation and corrosion resistance of a self-sealing hydroxyapatite- MgO coating on magnesium alloy by microarc oxidation. Ceramics International, 2022, 48, 13676-13683.	2.3	18
412	Effect of Fe ³⁺ and F ^{â^'} on black microâ€arc oxidation ceramic coating of magnesium alloy. International Journal of Applied Ceramic Technology, 2022, 19, 2203-2212.	1.1	6
413	Partially biodegradable Ti Mg composites prepared by microwave sintering for biomedical application. Materials Characterization, 2022, 185, 111748.	1.9	6
414	Modification effect of graphene oxide on oxidation coating of Ti-3Zr-2Sn-3Mo-25ÂNb near- \hat{l}^2 titanium alloy. Journal of Alloys and Compounds, 2022, 901, 163561.	2.8	12
415	Endothelial function after the exposition of magnesium degradation products. Materials Science and Engineering C, 2022, 134, 112693.	3.8	3
417	Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials, 2022, 15, 2172.	1.3	15
418	Controllable Degradable Plasma Electrolytic Oxidation Coated Mg Alloy for Biomedical Application. Frontiers in Chemical Engineering, 2022, 4, .	1.3	6
419	Advances in micro-arc oxidation coatings on Mg-Li alloys. Applied Surface Science Advances, 2022, 8, 100219.	2.9	27
420	Effect of spray powder particle size on the bionic hydrophobic structures and corrosion performance of Fe-based amorphous metallic coatings. Surface and Coatings Technology, 2022, 437, 128377.	2.2	14
421	The effect of Sr addition on the microstructure and corrosion behaviour of a Mg-Zn-Ca alloy. Surface and Coatings Technology, 2022, 437, 128328.	2.2	19
422	Effect of EDTA addition on the biotribological properties of coatings obtained from PEO on the Ti6Al4V alloy in a phosphate-based solution. Surfaces and Interfaces, 2022, 30, 101857.	1.5	2

#	Article	IF	Citations
423	Katkılı oksit kaplaması býyýtülen AZ91 alaşımının kan plazması içerisindeki biyoçözà incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	¼nürlÃ 0.3	¹¼ÄŸÃ¹¼nù¼
424	Improving the Chemical Stability of Al Alloy through the Densification of the Alumina Layer Assisted by SiF62â^ Anion Hydrolysis. Nanomaterials, 2022, 12, 1354.	1.9	4
425	Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings: A review. Journal of Magnesium and Alloys, 2022, 10, 1171-1190.	5.5	53
426	High-Activity and Excellent-Reusability Γ-Fe2o3/Sio2 Coating on Tc4 Titanium Alloy by Plasma Electrolytic Oxidation for Enhanced Photo-Fenton Degradation. SSRN Electronic Journal, 0, , .	0.4	O
427	Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles. Coatings, 2022, 12, 580.	1.2	1
428	Oxyhydroxide-Coated PEO–Treated Mg Alloy for Enhanced Corrosion Resistance and Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 50.	1.8	4
429	Microhardness and biological behavior of AZ91D-nHAp surface composite for bio-implants. Journal of Electrochemical Science and Engineering, 0, , .	1.6	5
430	Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants. Corrosion Reviews, 2022, 40, 289-333.	1.0	12
431	Evaluation of the long-term anticorrosion behavior of (OCPÂ+ÂCa-P)/MAO coated magnesium in simulated body fluids. Surface and Coatings Technology, 2022, 441, 128586.	2.2	2
432	High-activity and excellent-reusability \hat{I}^3 -Fe2O3/SiO2 coating on TC4 titanium alloy by plasma electrolytic oxidation for enhanced photo-Fenton degradation. Chemosphere, 2022, 303, 135105.	4.2	10
433	Meniscus Inspired Flexible Superhydrophobic Coating with Remarkable Erosion Resistance for Pipeline Gas Transmission. SSRN Electronic Journal, 0, , .	0.4	0
434	Surface Coatings and Functionalization Strategies for Corrosion Mitigation. ACS Symposium Series, 0, , 291-316.	0.5	1
435	Advanced protective layer design on the surface of Mg-based metal and application in batteries: Challenges and progress. Journal of Power Sources, 2022, 542, 231755.	4.0	20
436	Corrosion and tribocorrosion protection of AZ31B Mg alloy by a hydrothermally treated PEO/chitosan composite coating. Progress in Organic Coatings, 2022, 170, 107002.	1.9	11
437	Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioactive Materials, 2023, 19, 717-757.	8.6	46
438	Systems, Properties, Surface Modification and Applications of Biodegradable Magnesium-Based Alloys: A Review. Materials, 2022, 15, 5031.	1.3	14
439	Effect of micro-arc oxidation coating defects on fatigue property of Al alloy substrate. Journal of Materials Research and Technology, 2022, 20, 2479-2488.	2.6	4
440	Surface Modification of WE43 Magnesium Alloys with Dopamine Hydrochloride Modified GelMA Coatings. Coatings, 2022, 12, 1074.	1.2	1

#	Article	IF	Citations
441	Structural design and mechanical performance of composite vascular grafts. Bio-Design and Manufacturing, 2022, 5, 757-785.	3.9	12
442	Bioinspired Surface Design for Magnesium Alloys with Corrosion Resistance. Metals, 2022, 12, 1404.	1.0	3
443	Improving the tribocorrosion performance of plasma electrolytic oxidized coatings on AZ31B magnesium alloy using pullulan as an electrolyte additive. Surface and Coatings Technology, 2022, 446, 128754.	2.2	15
444	Surface configuration of microarc oxidized Ti with regionally loaded chitosan hydrogel containing ciprofloxacin for improving biological performance. Materials Today Bio, 2022, 16, 100380.	2.6	7
445	Meniscus inspired flexible superhydrophobic coating with remarkable erosion resistance for pipeline gas transmission. Chemical Engineering Journal, 2023, 451, 138573.	6.6	14
446	A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys. Journal of Magnesium and Alloys, 2022, 10, 2354-2383.	5 . 5	41
447	Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material. Metals, 2022, 12, 1500.	1.0	6
448	Influence of voltage modes on microstructure and corrosion resistance of micro-arc oxidation coating on magnesium alloy. Journal of Adhesion Science and Technology, 2023, 37, 2232-2246.	1.4	4
449	Effect of MAO/Ta2O5 composite coating on the corrosion behavior of Mg–Sr alloy and its inÂvitro biocompatibility. Journal of Materials Research and Technology, 2022, 20, 4566-4575.	2.6	10
450	Increasing the compact density and its consistency in the cross-section for enhancing the anti-corrosion and mechanical properties of micro-arc oxidation coatings. Journal of Materials Research and Technology, 2022, 21, 1344-1352.	2.6	6
451	Robust Superhydrophobic Coatings for Enhanced Corrosion Resistance and Dielectric Properties. Coatings, 2022, 12, 1655.	1.2	2
452	Anticorrosive lanthanum embedded PEO/GPTMS coating on magnesium alloy by plasma electrolytic oxidation with silanization. Materials Today Communications, 2022, 33, 104662.	0.9	5
453	First-principles study on the elastic anisotropy and thermal properties of Mg–Y compounds. Journal of Physics and Chemistry of Solids, 2022, 171, 111034.	1.9	11
454	The corrosion resistance of SiO2-hexadecyltrimethoxysilane hydrophobic coating on AZ91 alloy pretreated by plasma electrolytic oxidation. Progress in Organic Coatings, 2023, 174, 107232.	1.9	5
455	PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties. Surfaces and Interfaces, 2023, 36, 102495.	1.5	12
456	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	2.4	54
457	Chromate-Free Corrosion Protection Strategies for Magnesium Alloysâ€"A Review: Part Ilâ€"PEO and Anodizing. Materials, 2022, 15, 8515.	1.3	14
458	Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials. Journal of Functional Biomaterials, 2022, 13, 267.	1.8	18

#	Article	IF	CITATIONS
459	Effect of annealing and build direction on microarc oxidation coatings and its apatite induction ability of Ti6Al4VE alloy manufactured by selective laser melting. Journal of Materials Research, 0, , .	1.2	1
460	Photoluminescent and Photocatalytic Properties of Eu3+-Doped MgAl Oxide Coatings Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy. Coatings, 2022, 12, 1830.	1.2	8
461	Corrosion and Wear Behavior of TiO2/TiN Duplex Coatings on Titanium by Plasma Electrolytic Oxidation and Gas Nitriding. Materials, 2022, 15, 8300.	1.3	5
462	Study on the Influence of Graphene Content Variation on the Microstructure Evolution and Properties of Laser Additive Manufacturing Nickel-Based/SiC Composite Cladding Layer on Aluminum Alloy Surface. Materials, 2022, 15, 8219.	1.3	0
463	Effect of PLGA+MAO composite coating on the degradation of magnesium alloy in vivo and in vitro. Materials Today Communications, 2023, 34, 105197.	0.9	0
464	Self-healing performance and corrosion resistance of a bilayer calcium carbonate coating on microarc-oxidized magnesium alloy. Corrosion Science, 2023, 212, 110927.	3.0	15
465	Effects of Altering Magnesium Metal Surfaces on Degradation In Vitro and In Vivo during Peripheral Nerve Regeneration. Materials, 2023, 16, 1195.	1.3	2
466	The Biocompatibility and Antibacterial Properties of the CNTs-Doped Magnesium Based Composite Implants in a Long-Term Biodegradation Process. Journal of Nanomaterials, 2023, 2023, 1-17.	1.5	0
467	Recent advances in surface endothelialization of the magnesium alloy stent materials. Journal of Magnesium and Alloys, 2023, 11, 48-77.	5.5	5
468	Instant micro-arc oxidation constructing the ultrafine nanoparticles as high-performance catalyst and mechanism study. Materials Chemistry and Physics, 2023, 301, 127654.	2.0	0
469	Bio-inspired and metal-derived superwetting surfaces: Function, stability and applications. Advances in Colloid and Interface Science, 2023, 314, 102879.	7.0	12
470	Methods for fabrication of ceramic coatings. , 2023, , 215-242.		0
471	Machine learning based prediction of the corrosion behaviour of biodegradable magnesium alloys with PEO coatings. Proceedings in Applied Mathematics and Mechanics, 2023, 22, .	0.2	0
472	Comparative study on the microgalvanic corrosion phenomena of WE43 alloy in Cl- / HCO3- / CO32-environments. International Journal of Electrochemical Science, 2023, 18, 100139.	0.5	1
482	Synthesis of implantable ceramic coatings and their properties. , 2023, , 53-86.		0
498	Antibacterial activities of plasma electrolytic oxidation coated magnesium alloys. AIP Conference Proceedings, 2023, , .	0.3	0