Bacteria with ACC deaminase can promote plant growth

Microbiological Research 169, 30-39 DOI: 10.1016/j.micres.2013.09.009

Citation Report

#	Article	IF	CITATIONS
1	Screening of Endophytic Bacteria towards the Development of Cottage Industry: An in Vitro Study. Journal of Human Ecology: International, Interdisciplinary Journal of Man-environment Relationship, 2014, 47, 45-63.	0.1	13
2	Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 2014, 12, 1193-1206.	4.1	238
3	1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!. Frontiers in Plant Science, 2014, 5, 640.	1.7	213
4	Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 2014, 20, 425-434.	1.4	83
5	Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. , 2014, , 31-62.		117
6	Selection of mixed inoculants exhibiting growth-promoting activity in rice plants from undefined consortia obtained by continuous enrichment. Plant and Soil, 2014, 375, 215-227.	1.8	7
7	Phosphate Solubilizing Microorganisms. , 2014, , .		42
8	Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus, 2014, 3, 312.	1.2	39
9	Rapid degradation of <i>Pseudomonas fluorescens</i> 1-aminocyclopropane-1-carboxylic acid deaminase proteins expressed in transgenic <i>Arabidopsis</i> . FEMS Microbiology Letters, 2014, 355, 193-200.	0.7	10
10	Phylogeny and Functions of Bacterial Communities Associated with Field-Grown Rice Shoots. Microbes and Environments, 2014, 29, 329-332.	0.7	33
11	The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. International Journal of Molecular Sciences, 2015, 16, 25576-25604.	1.8	132
12	Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene―produced in plants. Frontiers in Microbiology, 2015, 6, 937.	1.5	185
13	Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome. Frontiers in Microbiology, 2015, 6, 1436.	1.5	98
14	Paenibacillus polymyxa A26 Sfp-type PPTase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum in kernel assay. Frontiers in Plant Science, 2015, 06, 368.	1.7	32
15	Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science, 2015, 6, 507.	1.7	176
16	Soluble and Volatile Metabolites of Plant Growth-Promoting Rhizobacteria (PGPRs). Advances in Botanical Research, 2015, , 241-284.	0.5	37
17	Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum) Tj ETQq0 0 () rgBT /Ovei 2.1	rlock_10 Tf 50

Methods to Study 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria. , 2015, , 287-305.

#	Article	IF	CITATIONS
20	Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum. , 2015, , 333-365.		14
21	Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. Journal of Microbiological Methods, 2015, 110, 7-14.	0.7	81
22	Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 2015, 125, 33-40.	4.2	20
23	Modulating Phytohormone Levels. , 2015, , 65-96.		7
24	Describing <i>Paenibacillus mucilaginosus</i> strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food and Agriculture, 2015, 1, 1000714.	0.6	61
25	<i>Streptomyces rochei </i> <scp>SM</scp> 3 Induces Stress Tolerance in Chickpea Against <i>Sclerotinia sclerotiorum</i> and NaCl. Journal of Phytopathology, 2015, 163, 583-592.	0.5	30
26	Beneficial Plant-Bacterial Interactions., 2015,,.		94
27	Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 2015, 5, 355-377.	1.1	350
28	Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2015, 2, 72-78.	0.7	193
29	Modification of 137Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms. Journal of Environmental Radioactivity, 2015, 149, 73-80.	0.9	10
30	NMR fingerprinting as a tool to evaluate post-harvest time-related changes of peaches, tomatoes and plums. Food Research International, 2015, 75, 106-114.	2.9	12
31	Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase. Organic Letters, 2015, 17, 3342-3345.	2.4	7
32	Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology, 2015, 93, 47-55.	2.1	89
33	Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek, 2015, 107, 1519-1532.	0.7	161
34	Handbook for Azospirillum. , 2015, , .		30
35	Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis, 2015, 67, 103-111.	1.2	16
36	Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiological Research, 2015, 181, 112-119.	2.5	25
37	Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination. Environmental Science and Pollution Research, 2015, 22, 19529-19537.	2.7	24

#	Article	IF	CITATIONS
38	Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 2015, 169, 13-22.	2.3	282
39	Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase. FEMS Microbiology Ecology, 2015, 91, fiv112.	1.3	45
40	Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie Van Leeuwenhoek, 2015, 107, 65-72.	0.7	22
41	Principles of Plant-Microbe Interactions. , 2015, , .		89
42	Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 2015, 81, 83-92.	1.4	193
43	Ethylene in Plants. , 2015, , .		28
44	Effects of Chemical and Biological Fertilizers on Some Morpho-Physiological Traits of Purslane (<i>Portulaca oleracea</i> L.) and Dragon's Head (<i>Lallemantia iberica</i> Fisch.) Tj E	TQ q Ω 0 0 ι	rg B T /Overloc
45	A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus). Genetics and Molecular Research, 2016, 15, .	0.3	27
46	Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	1.7	40
47	Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L Archives of Biological Sciences, 2016, 68, 363-374.	0.2	12
48	The Role of Rhizobial ACC Deaminase in the Nodulation Process of Leguminous Plants. International Journal of Agronomy, 2016, 2016, 1-9.	0.5	48
49	Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 2016, 7, 918.	1.7	324
50	Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness. Frontiers in Microbiology, 2016, 7, 2.	1.5	84
51	Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria. Frontiers in Microbiology, 2016, 7, 209.	1.5	114
52	Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut. Frontiers in Microbiology, 2016, 7, 1600.	1.5	200
53	Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules, 2016, 21, 573.	1.7	849
54	Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. , 2016, , 1-34.		2
55	Bioprospecting of Plant Growth Promoting Bacilli and Related Genera Prevalent in Soils of Pristine Sacred Groves: Biochemical and Molecular Approach. PLoS ONE, 2016, 11, e0152951.	1.1	40

#	Article	IF	Citations
56	Ethylene and Metal Stress: Small Molecule, Big Impact. Frontiers in Plant Science, 2016, 7, 23.	1.7	106
57	Microbially Assisted Phytoremediation of Heavy Metal–Contaminated Soils. , 2016, , 483-498.		12
58	Screening of Strong 1-Aminocyclopropane-1-Carboxylate Deaminase Producing Bacteria for Improving the Salinity Tolerance of Cowpea. Applied Microbiology Open Access, 2016, 02, .	0.2	2
59	Bacterial Modes of Action for Enhancing of Plant Growth. Journal of Biotechnology & Biomaterials, 2016, 6, .	0.3	11
60	Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems and Environment, 2016, 231, 68-78.	2.5	197
61	Potassium-Solubilizing Bacteria and Their Application in Agriculture. , 2016, , 293-313.		111
62	The role of Cryptococcus laurentii and mycorrhizal fungi in the nutritional physiology of Lupinus angustifolius L. hosting N2-fixing nodules. Plant and Soil, 2016, 409, 345-360.	1.8	15
63	Cadmiumâ€induced and transâ€generational changes in the cultivable and total seed endophytic community of <i>Arabidopsis thaliana</i> . Plant Biology, 2016, 18, 376-381.	1.8	41
64	Genome Sequencing and Transposon Mutagenesis of <i>Burkholderia seminalis</i> TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by <i>B. gladioli</i> . Molecular Plant-Microbe Interactions, 2016, 29, 435-446.	1.4	16
65	Diversity, Quorum Sensing, and Plant Growth Promotion by Endophytic Diazotrophs Associated with Sugarcane with Special Reference to Gluconacetobacter diazotrophicus. , 2016, , 495-509.		1
66	Bacillus spp.: A Potential Plant Growth Stimulator and Biocontrol Agent Under Hostile Environmental Conditions. , 2016, , 91-111.		15
67	Applications and Mechanisms of Plant Growth-Stimulating Rhizobacteria. , 2016, , 37-62.		11
68	Biotoxic Effect of Chromium (VI) on Plant Growth-Promoting Traits of Novel Cellulosimicrobium funkei Strain AR8 Isolated from Phaseolus vulgaris Rhizosphere. Geomicrobiology Journal, 2016, , 1-9.	1.0	13
70	Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 2016, 6, 28084.	1.6	198
71	Priming of Plant Defense and Plant Growth in Disease-Challenged Crops Using Microbial Consortia. , 2016, , 39-56.		3
72	Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia. Systematic and Applied Microbiology, 2016, 39, 151-159.	1.2	24
73	Plant Growth-Promoting Rhizobacteria: Key Mechanisms of Action. , 2016, , 23-37.		27
74	Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Archives of Microbiology, 2016, 198, 793-801.	1.0	6

ATION R

# 75	ARTICLE Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal	IF 3.9	Citations
76	contaminated mine soil. Science of the Total Environment, 2016, 562, 480-492. Stress and Mycorrhizal Plant. Fungal Biology, 2016, , 63-79.	0.3	5
77	Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	37
78	Recent Advances on Mycorrhizal Fungi. Fungal Biology, 2016, , .	0.3	7
79	Expression on roots and contribution to maize phytostimulation of 1-aminocyclopropane-1-decarboxylate deaminase gene acdS in Pseudomonas fluorescens F113. Plant and Soil, 2016, 407, 187-202.	1.8	21
80	Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiology and Molecular Biology of Plants, 2016, 22, 445-459.	1.4	70
81	Cultivation of Sweet Sorghum on Heavy Metal-Contaminated Soils by Phytoremediation Approach for Production of bioethanol. , 2016, , 271-292.		11
83	<i>Euphorbia milii</i> -Endophytic Bacteria Interactions Affect Hormonal Levels of the Native Host Differently Under Various Airborne Pollutants. Molecular Plant-Microbe Interactions, 2016, 29, 663-673.	1.4	24
84	The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Genetics, 2016, 50, 211-234.	3.2	627
85	Soybean Production Under Flooding Stress and Its Mitigation Using Plant Growth-Promoting Microbes. , 2016, , 23-40.		12
86	Soybeans, Stress, and Plant Growth-Promoting Rhizobacteria. , 2016, , 177-203.		4
87	Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: A pre-requisite for optimization of agromining. Environmental and Experimental Botany, 2016, 131, 1-9.	2.0	40
88	Nonâ€specific transient mutualism between the plant parasitic nematode, <i>Bursaphelenchus xylophilus</i> , and the opportunistic bacterium <i>Serratia quinivorans</i> BXF1, a plantâ€growth promoting pine endophyte with antagonistic effects. Environmental Microbiology, 2016, 18, 5265-5276.	1.8	15
89	Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms. Journal of Microbiological Methods, 2016, 131, 102-104.	0.7	12
90	Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiological Research, 2016, 192, 37-51.	2.5	63
91	Plant Growth Promoting Actinobacteria. , 2016, , .		15
92	Role of ACC Deaminase in Stress Control of Leguminous Plants. , 2016, , 179-192.		11
93	Evaluation of Plant Growth-Promoting Actinomycetes on Vigna. , 2016, , 275-286.		1

#	Article	IF	Citations
94	Role of Endophytic Actinomycetes in Crop Protection: Plant Growth Promotion and Biological Control. , 2016, , 147-160.		4
95	Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens. Current Microbiology, 2016, 73, 346-353.	1.0	25
96	Draft Genome Sequence of the Biocontrol and Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens strain UM270. Standards in Genomic Sciences, 2016, 11, 5.	1.5	21
97	Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticulturae, 2016, 207, 183-192.	1.7	51
99	Symbiotic and Agronomic Characterization of Bradyrhizobial Strains Nodulating Cowpea in Northern Peru. , 2016, , 195-212.		3
100	Draft Genome Sequence of Pseudomonas fluorescens Strain ET76, Isolated from Rice Rhizosphere in Northwestern Morocco. Genome Announcements, 2016, 4, .	0.8	4
101	Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Applied Soil Ecology, 2016, 100, 211-225.	2.1	50
102	Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 2016, 43, 161.	1.1	155
103	Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2016, 2, .	0.6	308
104	Earthworms, pesticides and sustainable agriculture: a review. Environmental Science and Pollution Research, 2016, 23, 8227-8243.	2.7	134
105	Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnology, 2016, 33, 706-717.	2.4	39
106	Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing <i>Paenibacillus lentimorbus</i> B-30488. Plant Signaling and Behavior, 2016, 11, e1113363.	1.2	60
107	Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta, 2016, 243, 1097-1114.	1.6	82
108	Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of Microbiology, 2016, 198, 379-387.	1.0	83
109	Microbial Inoculants as Agents of Growth Promotion and Abiotic Stress Tolerance in Plants. , 2016, , 23-36.		30
110	Inoculation methods using <i>Rhodococcus erythropolis</i> strain P30 affects bacterial assisted phytoextraction capacity of <i>Nicotiana tabacum</i> . International Journal of Phytoremediation, 2016, 18, 406-415.	1.7	19
111	Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 2016, 21, 58-64.	1.2	195
112	Changes in volatiles in carrots inoculated with ACC deaminase-producing bacteria isolated from organic crops. Plant and Soil, 2016, 407, 173-186.	1.8	11

#	Article	IF	CITATIONS
113	Rhizobacterial communities associated with the flora of three serpentine outcrops of the Iberian Peninsula. Plant and Soil, 2016, 403, 233-252.	1.8	22
114	Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses. Journal of Plant Growth Regulation, 2016, 35, 276-300.	2.8	138
115	An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosystems, 2017, 151, 331-340.	0.8	36
116	Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia. Environmental Science and Pollution Research, 2017, 24, 7016-7022.	2.7	6
117	Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. Journal of the Science of Food and Agriculture, 2017, 97, 3685-3690.	1.7	20
118	Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of the Total Environment, 2017, 583, 352-368.	3.9	185
119	The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 2017, 199, 513-517.	1.0	94
120	Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by <i>Rhodococcus erythropolis</i> CD 106 strain. International Journal of Phytoremediation, 2017, 19, 614-620.	1.7	31
122	Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. International Journal of Phytoremediation, 2017, 19, 834-843.	1.7	68
123	Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant and Soil, 2017, 416, 117-132.	1.8	85
124	Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere, 2017, 27, 177-192.	2.1	250
125	Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis, 2017, 73, 213-222.	1.2	31
126	Application of <i>Bacillus megaterium</i> MCR-8 improved phytoextraction and stress alleviation of nickel in <i>Vinca rosea</i> . International Journal of Phytoremediation, 2017, 19, 813-824.	1.7	63
127	ACC deaminase-containing plant growth-promoting rhizobacteria protect <i>Papaver somniferum</i> from downy mildew. Journal of Applied Microbiology, 2017, 122, 1286-1298.	1.4	40
128	Alleviation of environmental stress in plants: The role of beneficial <i>Pseudomonas</i> spp Critical Reviews in Environmental Science and Technology, 2017, 47, 372-407.	6.6	45
129	Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes. Archives of Microbiology, 2017, 199, 991-1001.	1.0	5
130	Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis. Antonie Van Leeuwenhoek, 2017, 110, 1087-1103.	0.7	21
131	Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech, 2017, 7, 27.	1.1	26

	CITA	TION REPORT	
#	Article	IF	CITATIONS
132	Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiological Research, 2017, 202, 1-10.	2.5	43
133	Colonization strategy of the endophytic plant growth-promoting strains of <i>Pseudomonas fluorescens</i> and <i>Klebsiella oxytoca</i> on the seeds, seedlings and roots of the epiphytic orchid, <i>Dendrobium nobile</i> Lindl. Journal of Applied Microbiology, 2017, 123, 217-232.	1.4	52
134	Microbial Strategies for Vegetable Production. , 2017, , .		14
135	Diversity and Function of Endophytic Microbial Community of Plants with Economical Potential. , 2017, , 209-243.		12
136	Plant Growth-Promoting Bacteria: Importance in Vegetable Production. , 2017, , 23-48.		14
137	Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Applied Soil Ecology, 2017, 119, 26-34.	2.1	105
138	Plant Biotechnology: Recent Advancements and Developments. , 2017, , .		16
139	Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. Annals of Botany, 2017, 120, 101-122.	1.4	16
140	Diversity and Benefits of Microorganisms from the Tropics. , 2017, , .		14
141	Development of formulations based on <i>Streptomyces rochei</i> strain PTL2 spores for biocontrol of <i>Rhizoctonia solani</i> damping-off of tomato seedlings. Biocontrol Science and Technology, 2017, 27, 723-738.	0.5	34
142	Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech, 2017, 7, 137.	1.1	42
143	Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production Under Salt Stress. , 2017, , 101-131.		6
144	Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant and Soil, 2017, 417, 99-116.	1.8	57
145	Coordination between <i>Bradyrhizobium</i> and <i>Pseudomonas</i> alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 2017, 12, 100-107.	1.0	145
146	Rhizobacterial Pseudomonas spp. Strains Harbouring acdS Gene Could Enhance Metallicolous Legume Nodulation in Zn/Pb/Cd Mine Tailings. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	7
147	Bioremediation of Salt Affected Soils: An Indian Perspective. , 2017, , .		28
148	Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Science of the Total Environment, 2017, 584-585, 329-338.	3.9	79
149	Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation. Environmental Science and Pollution Research, 2017, 24, 8866-8878.	2.7	10

#	Article	IF	CITATIONS
150	ACC deaminaseâ€producing rhizosphere bacteria modulate plant responses to flooding. Journal of Ecology, 2017, 105, 979-986.	1.9	51
152	Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms and Molecular Mechanisms. , 2017, , 1-29.		13
153	Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 2017, 33, 197.	1.7	683
154	Biotechnological Perspectives of Legume–Rhizobium Symbiosis. Soil Biology, 2017, , 247-256.	0.6	8
155	Plant Bioregulators: A Stress Mitigation Strategy for Resilient Agriculture. , 2017, , 235-259.		5
156	Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 2017, 121, 102-117.	2.1	178
157	Endophytic Phytohormones and Their Role in Plant Growth Promotion. , 2017, , 89-105.		39
158	Functional Importance of the Plant Microbiome. , 2017, , .		20
159	Integrated Mechanisms of Plant Disease Containment by Rhizospheric Bacteria: Unraveling the Signal Cross Talk Between Plant and Fluorescent Pseudomonas. , 2017, , 263-291.		7
160	Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture. , 2017, , 163-182.		6
161	Microbial Functions of the Rhizosphere. , 2017, , 177-210.		16
162	Bacterial Endophytes: Potential Candidates for Plant Growth Promotion. , 2017, , 611-632.		2
163	Microbial Interactions and Plant Health. , 2017, , 61-84.		1
164	Innovative liquid formulation of digestates for producing a biofertilizer based on <i>Bacillus siamensis</i> : Field testing on sweet pepper. Journal of Plant Nutrition and Soil Science, 2017, 180, 748-758.	1.1	38
165	Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Research in Microbiology, 2017, 168, 760-772.	1.0	16
166	Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiological Research, 2017, 205, 25-34.	2.5	64
167	Enhancing digestibility of Miscanthus using lignocellulolytic enzyme produced by Bacillus. Bioresource Technology, 2017, 245, 1008-1015.	4.8	22
168	Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. , 2017, , 195-215.		18

#	Article	IF	CITATIONS
169	Potential Role of Plant-Associated Bacteria in Plant Metal Uptake and Implications in Phytotechnologies. Advances in Botanical Research, 2017, , 87-126.	0.5	36
170	Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 2017, 185, 942-952.	4.2	78
171	Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiology and Biochemistry, 2017, 118, 479-493.	2.8	102
172	Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes. Methods in Molecular Biology, 2017, 1631, 349-362.	0.4	20
175	Rhizotrophs: Plant Growth Promotion to Bioremediation. , 2017, , .		8
176	Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant and Soil, 2017, 419, 523-539.	1.8	58
177	Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria. , 2017, , 125-143.		12
178	Role of Biofertilizers in Sustainable Agriculture Under Abiotic Stresses. Microorganisms for Sustainability, 2017, , 281-301.	0.4	6
179	Premier Biocontrol Traits of Pseudomonads: Siderophores, Phenazines or What Else?. Microorganisms for Sustainability, 2017, , 351-390.	0.4	2
180	Microbial Biofertilizer: A Potential Tool for Sustainable Agriculture. Microorganisms for Sustainability, 2017, , 25-52.	0.4	6
181	Beneficial Microbes for Disease Suppression and Plant Growth Promotion. , 2017, , 395-432.		21
182	Genome Sequencing of <i>Microbacterium</i> sp. Yaish 1, a Bacterial Strain Isolated from the Rhizosphere of Date Palm Trees Affected by Salinity. Genome Announcements, 2017, 5, .	0.8	13
183	Genomic Features of Mutualistic Plant Bacteria. Sustainable Development and Biodiversity, 2017, , 99-125.	1.4	1
184	The Legume Nodule Microbiome: A Source of Plant Growth-Promoting Bacteria. , 2017, , 41-70.		20
185	Plant Growth-Promoting Microbes: Diverse Roles in Agriculture and Environmental Sustainability. , 2017, , 71-111.		28
186	Plant-Microbe Interactions in Adaptation of Agricultural Crops to Abiotic Stress Conditions. , 2017, , 163-200.		91
187	Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 2017, 107, 8-32.	1.6	199
188	Effect of <i>Pseudomonas fluorescens</i> RB4 and <i>Bacillus subtilis</i> 189 on the phytoremediation potential of <i>Catharanthus roseus</i> (L.) in Cu and Pb-contaminated soils. International Journal of Phytoremediation, 2017, 19, 514-521.	1.7	32

#	Article	IF	CITATIONS
189	Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World Journal of Microbiology and Biotechnology, 2017, 33, 9.	1.7	51
190	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
191	Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 2017, 24, 3315-3335.	2.7	406
192	Endophytes of Jatropha curcas promote growth of maize. Rhizosphere, 2017, 3, 20-28.	1.4	16
193	Role of Plant Growth Promoting Rhizobacteria in Reclamation of Wasteland. , 2017, , 61-80.		4
194	Phytoremediation of Light Crude Oil by Maize (<i>Zea mays</i> L.) Bio-Augmented with Plant Growth Promoting Bacteria. Soil and Sediment Contamination, 2017, 26, 749-763.	1.1	17
195	Genotype-Specific Enrichment of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Positive Bacteria in Winter Wheat Rhizospheres. Soil Science Society of America Journal, 2017, 81, 796-805.	1.2	17
196	A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere, 2017, 8, e02048.	1.0	20
197	Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 2017, 8, 667.	1.3	423
198	Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars. Frontiers in Plant Science, 2017, 8, 132.	1.7	137
199	Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1510.	1.7	182
200	Role of Nano-silver and the Bacterial Strain Enterobacter cloacae in Increasing Vase Life of Cut Carnation â€ ⁻ Omea'. Frontiers in Plant Science, 2017, 8, 1590.	1.7	40
201	Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 2017, 5, 77.	1.6	426
202	Bacillus amyloliquefaciens SAY09 Increases Cadmium Resistance in Plants by Activation of Auxin-Mediated Signaling Pathways. Genes, 2017, 8, 173.	1.0	52
203	Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International Journal of Environmental Research and Public Health, 2017, 14, 1504.	1.2	685
204	Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 2017, 5, .	1.5	215
205	An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. Frontiers in Microbiology, 2017, 8, 386.	1.5	126
206	The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Frontiers in Microbiology, 2017, 8, 1945.	1.5	222

#	Article	IF	CITATIONS
207	Complete Genome Sequence Analysis of Enterobacter sp. SA187, a Plant Multi-Stress Tolerance Promoting Endophytic Bacterium. Frontiers in Microbiology, 2017, 8, 2023.	1.5	83
208	The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Frontiers in Microbiology, 2017, 8, 2538.	1.5	95
209	Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in Microbiology, 2017, 8, 2552.	1.5	488
210	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	0.7	10
211	The Bacterial and Fungal Microbiota of Hyperaccumulator Plants. Advances in Botanical Research, 2017, 83, 43-86.	0.5	42
212	Bacterial Compatibility in Combined Inoculations Enhances the Growth of Potato Seedlings. Microbes and Environments, 2017, 32, 14-23.	0.7	53
213	Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Research Notes, 2017, 10, 531.	0.6	26
214	Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development. AMB Express, 2017, 7, 208.	1.4	33
215	Plant Growth Promoting Bacteria Isolated From a Mexican Natural Ecosystem Induce Water Stress Resistance in Maize and Sorghum Plants. Journal of Microbial & Biochemical Technology, 2017, 9, .	0.2	3
217	Distribution of 1-aminocyclopropane-1-carboxylate deaminase and d-cysteine desulfhydrase genes among type species of the genus Methylobacterium. Antonie Van Leeuwenhoek, 2018, 111, 1723-1734.	0.7	12
218	A nodule endophytic <i>Bacillus megaterium</i> strain isolated from <i>Medicago polymorpha</i> enhances growth, promotes nodulation by <i>Ensifer medicae</i> and alleviates salt stress in alfalfa plants. Annals of Applied Biology, 2018, 172, 295-308.	1.3	72
219	Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifoliusâ^'endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 2018, 213, 11-19.	3.8	42
220	Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek, 2018, 111, 1645-1660.	0.7	37
221	Role of <i>Burkholderia cepacia</i> CS8 in Cd-stress alleviation and phytoremediation by <i>Catharanthus roseus</i> . International Journal of Phytoremediation, 2018, 20, 581-592.	1.7	39
222	Dracaena sanderiana endophytic bacteria interactions: Effect of endophyte inoculation on bisphenol A removal. Ecotoxicology and Environmental Safety, 2018, 157, 318-326.	2.9	24
223	Plant Hormones as Key Regulators in Plant-Microbe Interactions Under Salt Stress. Microorganisms for Sustainability, 2018, , 165-182.	0.4	9
224	Potential of Endophytic Bacteria in Heavy Metal and Pesticide Detoxification. Microorganisms for Sustainability, 2018, , 307-336.	0.4	13
225	Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. Molecular Plant-Microbe Interactions, 2018, 31, 633-650.	1.4	23

# 226	ARTICLE Plant Growth–Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils. , 2018, , 281-295.	IF	CITATIONS 38
227	Microorganisms for Green Revolution. Microorganisms for Sustainability, 2018, , .	0.4	5
228	Purple cornâ€associated rhizobacteria with potential for plant growth promotion. Journal of Applied Microbiology, 2018, 124, 1254-1264.	1.4	14
229	Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. Microorganisms for Sustainability, 2018, , 127-163.	0.4	38
230	Comparative effects of ethylene inhibitors on <i>Agrobacterium</i> -mediated transformation of drought-tolerant wild watermelon. Bioscience, Biotechnology and Biochemistry, 2018, 82, 433-441.	0.6	9
231	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganisms for Sustainability, 2018, , 21-43.	0.4	35
232	From Interaction to Gene Induction: An Eco-friendly Mechanism of PGPR-Mediated Stress Management in the Plant. Microorganisms for Sustainability, 2018, , 217-232.	0.4	16
233	Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. Plant Physiology and Biochemistry, 2018, 125, 178-184.	2.8	33
234	ACC-Deaminase Producing Rhizobacteria: Prospects and Application as Stress Busters for Stressed Agriculture. Microorganisms for Sustainability, 2018, , 161-175.	0.4	14
235	Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Management, 2018, 73, 351-359.	3.7	12
236	Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 2018, 13, 46-52.	1.5	135
237	Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: Community characterization and isolation of Hg-resistant plant growth-promoting bacteria. Science of the Total Environment, 2018, 622-623, 1165-1177.	3.9	65
238	The expression of an exogenous ACC deaminase by the endophyte <i>Serratia grimesii</i> BXF1 promotes the early nodulation and growth of common bean. Letters in Applied Microbiology, 2018, 66, 252-259.	1.0	52
239	Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea maysL.) Rhizosphere. Communications in Soil Science and Plant Analysis, 2018, 49, 88-98.	0.6	20
240	Endophytic bacterium <i>Bacillus subtilis</i> (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. Journal of Plant Interactions, 2018, 13, 37-44.	1.0	164
241	Solutes in native plants in the Arabian Gulf region and the role of microorganisms: future research. Journal of Plant Ecology, 2018, 11, 671-684.	1.2	9
242	Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 2018, 6, 52.	4.9	121
243	Perspectives of Rhizobacteria with ACC Deaminase Activity in Plant Growth Under Abiotic Stress. Soil Biology, 2018, , 303-321.	0.6	27

#	Article	IF	CITATIONS
244	Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. International Journal of Phytoremediation, 2018, 20, 692-698.	1.7	47
245	Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicology and Environmental Safety, 2018, 157, 9-20.	2.9	138
246	Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. , 2018, , .		6
247	Bioformulation and Fluid Bed Drying: A New Approach Towards an Improved Biofertilizer Formulation. , 2018, , 47-62.		12
248	ACC Deaminase fromLysobacter gummosusOH17 Can Promote Root Growth inOryza sativaNipponbare Plants. Journal of Agricultural and Food Chemistry, 2018, 66, 3675-3682.	2.4	13
249	Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen. Current Microbiology, 2018, 75, 997-1005.	1.0	11
250	Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156, 225-246.	2.9	529
251	Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed <i>Cannabis sativa</i> . Environmental Technology (United Kingdom), 2018, 39, 1705-1714.	1.2	40
252	Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. Journal of Experimental Botany, 2018, 69, 825-844.	2.4	104
253	Use of bacterial acc deaminase to increase oil (especially poly aromatic hydrocarbons) phytoremediation efficiency for maize (<i>zea mays</i>) seedlings. International Journal of Phytoremediation, 2018, 20, 476-482.	1.7	5
254	Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and Environmental Safety, 2018, 147, 602-609.	2.9	83
255	Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 2018, 147, 881-896.	2.9	340
256	From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 2018, 20, 384-397.	1.7	199
257	A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 2018, 169, 20-32.	1.0	261
258	Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 147, 175-191.	2.9	377
259	Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, 2018, 206, 33-42.	2.5	92
260	Subcellular distribution and biotransformation of phenanthrene in pakchoi after inoculation with endophytic Pseudomonas sp. as probed using HRMS coupled with isotope-labeling. Environmental Pollution, 2018, 237, 858-867.	3.7	25
261	Waste Bioremediation. Energy, Environment, and Sustainability, 2018, , .	0.6	12

#	Article	IF	CITATIONS
262	Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils. Energy, Environment, and Sustainability, 2018, , 301-312.	0.6	6
263	Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants?. Agriculture, Ecosystems and Environment, 2018, 253, 98-112.	2.5	130
264	Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. Journal of Plant Physiology, 2018, 220, 43-59.	1.6	36
265	Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 2018, 207, 8-18.	2.5	70
266	Sinergism between Azotobacter chroococcum and Bradyrhizobium yuanmingense in the growth of Lactuca sativa "lettuce". Scientia Agropecuaria, 2018, 9, 519-526.	0.5	0
267	Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	1.7	13
268	Physiological and biochemical changes in Matricaria chamomilla induced by Pseudomonas fluorescens and water deficit stress. Acta Agriculturae Slovenica, 2018, 111, .	0.2	9
269	Soil Microbes and Sustainable Agriculture. Pedosphere, 2018, 28, 167-169.	2.1	28
270	Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1801.	1.7	204
272	Endophytic Pseudomonads and Their Metabolites. Reference Series in Phytochemistry, 2018, , 1-28.	0.2	0
274	Microbial Assisted Phytoremediation for Heavy Metal Contaminated Soils. , 2018, , 295-317.		8
275	1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports, 2018, 8, 17513.	1.6	79
276	Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE, 2018, 13, e0204408.	1.1	147
277	Beneficial Soil Microbiome for Sustainable Agriculture Production. Sustainable Agriculture Reviews, 2018, , 443-481.	0.6	27
278	Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1473.	1.7	1,088
279	Elucidating Bacterial Gene Functions in the Plant Microbiome. Cell Host and Microbe, 2018, 24, 475-485.	5.1	129
280	Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. Journal of Plant Physiology, 2018, 231, 434-442.	1.6	82
281	Serratia liquefaciens KM4 Improves Salt Stress Tolerance in Maize by Regulating Redox Potential, Ion Homeostasis, Leaf Gas Exchange and Stress-Related Gene Expression. International Journal of Molecular Sciences, 2018, 19, 3310.	1.8	109

#	Article	IF	CITATIONS
282	Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: Effects on early nodulation in alfalfa. Chilean Journal of Agricultural Research, 2018, 78, 360-369.	0.4	17
283	Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus. Frontiers in Microbiology, 2018, 9, 2507.	1.5	127
284	Plant growth-promoting rhizobacteria used in South Korea. Applied Biological Chemistry, 2018, 61, 709-716.	0.7	11
285	Halotolerant Bacterial Diversity Associated with Suaeda fruticosa (L.) Forssk. Improved Growth of Maize under Salinity Stress. Agronomy, 2018, 8, 131.	1.3	51
286	Soil microbial and Ni-agronomic responses to Alyssum murale interplanted with a legume. Applied Soil Ecology, 2018, 132, 60-73.	2.1	8
287	Isolation of Endophytes: The Gold Standard?. Reference Series in Phytochemistry, 2018, , 1-12.	0.2	0
288	The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. Frontiers in Plant Science, 2018, 9, 1134.	1.7	13
289	Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum virgatum L.) biomass. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	30
290	Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Reports, 2018, 37, 1599-1609.	2.8	123
291	Isolation, Diversity, and Growth-Promoting Activities of Endophytic Bacteria From Tea Cultivars of Zijuan and Yunkang-10. Frontiers in Microbiology, 2018, 9, 1848.	1.5	63
292	Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems and Environment, 2018, 267, 129-140.	2.5	104
293	Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicology and Environmental Safety, 2018, 164, 648-658.	2.9	71
294	Enhancement of the efficiency of Cd phytoextraction using bacterial endophytes isolated from <i>Chromolaena odorata</i> , a Cd hyperaccumulator. International Journal of Phytoremediation, 2018, 20, 1096-1105.	1.7	20
295	Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review. , 2018, , 57-106.		18
296	Biofertilizers Based on Bacterial Endophytes Isolated from Cereals: Potential Solution to Enhance These Crops. , 2018, , 175-203.		5
297	Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants. Polar Biology, 2018, 41, 1973-1982.	0.5	33
298	Drought-Tolerant Pseudomonas spp. Improve the Growth Performance of Finger Millet (Eleusine) Tj ETQq0 0 0 rgB 227-240.	T /Overloo 2.1	ck 10 Tf 50 105
299	What is the agronomic potential of biofertilizers for maize? A meta-analysis. FEMS Microbiology Ecology, 2018, 94, .	1.3	37

#	Article	IF	CITATIONS
300	Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant and Soil, 2018, 428, 35-55.	1.8	170
301	Flooding Stress in Plants and Approaches to Overcome. , 2018, , 355-366.		9
302	Impact of Pseudomonas graminis strain CPA-7 on respiration and ethylene production in fresh-cut â€~Golden delicious' apple according to the maturity stage and the preservation strategy. Postharvest Biology and Technology, 2018, 144, 36-45.	2.9	2
303	Endophytic Actinobacteria from Native Plants of Algerian Sahara. , 2018, , 109-124.		2
304	Chlorophytum comosum–bacteria interactions for airborne benzene remediation: Effect of native endophytic Enterobacter sp. EN2 inoculation and blue-red LED light. Plant Physiology and Biochemistry, 2018, 130, 181-191.	2.8	15
305	Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity. Agriculture (Switzerland), 2018, 8, 117.	1.4	9
306	1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome, 2018, 6, 114.	4.9	55
307	Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions. Frontiers in Plant Science, 2018, 9, 114.	1.7	174
308	Diversity of Bacterial Microbiota of Coastal Halophyte Limonium sinense and Amelioration of Salinity Stress Damage by Symbiotic Plant Growth-Promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 2018, 84, .	1.4	90
309	Microbe-Mediated Enhancement of Nitrogen and Phosphorus Content for Crop Improvement. , 2018, , 293-304.		10
310	Bioprospecting PGPR Microflora by Novel Immunobased Techniques. , 2018, , 465-478.		5
311	In Silico Approach for Sustainable Agriculture. , 2018, , .		1
313	Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Systematic and Applied Microbiology, 2018, 41, 629-640.	1.2	17
314	Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Frontiers in Microbiology, 2018, 9, 148.	1.5	304
315	Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Frontiers in Microbiology, 2018, 9, 284.	1.5	40
316	Plant Growth Promotion Under Water: Decrease of Waterlogging-Induced ACC and Ethylene Levels by ACC Deaminase-Producing Bacteria. Frontiers in Microbiology, 2018, 9, 1096.	1.5	83
317	Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Frontiers in Microbiology, 2018, 9, 1297.	1.5	37
318	Endophytic Microorganisms: Their Role in Plant Growth and Crop Improvement. , 2018, , 391-413.		3

#	Article	IF	CITATIONS
319	Plant Growth-Promoting Rhizobacteria (PGPR): Perspective in Agriculture Under Biotic and Abiotic Stress. , 2018, , 333-342.		32
320	Bacterial Microbiota of Rice Roots: 16S-Based Taxonomic Profiling of Endophytic and Rhizospheric Diversity, Endophytes Isolation and Simplified Endophytic Community. Microorganisms, 2018, 6, 14.	1.6	75
321	Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environmental Reviews, 2018, 26, 316-332.	2.1	47
322	Influence of new agromining cropping systems on soil bacterial diversity and the physico-chemical characteristics of an ultramafic soil. Science of the Total Environment, 2018, 645, 380-392.	3.9	22
323	Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. Science of the Total Environment, 2018, 645, 721-732.	3.9	36
324	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	5.2	105
325	The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, 2018, 127, 599-607.	2.8	97
326	Plant growth promoting attributes and alleviation of salinity stress to wheat by biofilm forming Brevibacterium sp. FAB3 isolated from rhizospheric soil. Saudi Journal of Biological Sciences, 2018, , .	1.8	19
327	Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L Applied Biological Chemistry, 2018, 61, 575-585.	0.7	20
328	Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicology and Environmental Safety, 2018, 164, 579-588.	2.9	37
329	Non-halophilic endophytes associated with the euhalophyte Arthrocnemum macrostachyum and their plant growth promoting activity potential. FEMS Microbiology Letters, 2018, 365, .	0.7	9
330	Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Frontiers in Microbiology, 2018, 9, 1929.	1.5	168
331	Novel Perspectives of Biotic and Abiotic Stress Tolerance Mechanism in Actinobacteria. , 2018, , 235-244.		7
332	Towards Plant-Beneficiary Rhizobacteria and Agricultural Sustainability. , 2018, , 1-46.		9
333	Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS ONE, 2018, 13, e0191218.	1.1	98
334	Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China. Systematic and Applied Microbiology, 2018, 41, 516-527.	1.2	48
335	Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecological Indicators, 2019, 105, 601-612.	2.6	66
336	Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H ⁺ â€pumping pyrophosphatase in pepper plants. Environmental Microbiology, 2019, 21, 3212-3228.	1.8	60

#	Article	IF	CITATIONS
337	Enhancement of alfalfa yield and quality by plant growthâ€promoting rhizobacteria under salineâ€alkali conditions. Journal of the Science of Food and Agriculture, 2019, 99, 281-289.	1.7	58
338	The Role of Microbes to Improve Crop Productivity and Soil Health. Ecowise, 2019, , 249-265.	0.1	34
339	Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. European Journal of Plant Pathology, 2019, 153, 787-800.	0.8	35
340	Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol. European Journal of Plant Pathology, 2019, 153, 397-415.	0.8	7
341	Applications of Plant–Microbe Interactions in Agro-Ecosystems. , 2019, , 1-34.		6
342	Role of Endophytes in Plant Health and Abiotic Stress Management. , 2019, , 119-144.		42
343	An Ecological Loop: Host Microbiomes across Multitrophic Interactions. Trends in Ecology and Evolution, 2019, 34, 1118-1130.	4.2	88
344	Status and Prospects of Bacterial Inoculants for Sustainable Management of Agroecosystems. Soil Biology, 2019, , 137-172.	0.6	14
345	Applications of Beneficial Microbe in Arid and Semiarid Agroecosystem: IAA-Producing Bacteria. , 2019, , 105-118.		4
346	Affirmative Plant-Microbe Interfaces Toward Agroecosystem Sustainability. , 2019, , 145-170.		3
347	Microbe-Mediated Plant Growth Promotion: A Mechanistic Overview on Cultivable Plant Growth-Promoting Members. Soil Biology, 2019, , 435-463.	0.6	6
348	Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms, 2019, 7, 269.	1.6	87
349	Saline Soil-based Agriculture by Halotolerant Microorganisms. , 2019, , .		19
350	Halotolerant Rhizobacteria: A Promising Probiotic for Saline Soil-Based Agriculture. , 2019, , 53-73.		10
351	Restoration of Plant Growth Under Saline Soil by Halotolerant Plant Growth-Promoting Rhizobacteria (PGPR). , 2019, , 23-51.		3
352	Drought tolerance improvement in plants: an endophytic bacterial approach. Applied Microbiology and Biotechnology, 2019, 103, 7385-7397.	1.7	119
353	Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants. Applied and Environmental Microbiology, 2019, 85, .	1.4	23
354	Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. , 2019, , 1-22.		25

#	Article	IF	CITATIONS
355	Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. , 2019, , 103-146.		17
356	Growth Promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an Endophytic 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Actinobacterial Isolate. Frontiers in Microbiology, 2019, 10, 1694.	1.5	53
357	Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. , 2019, , 123-156.		0
358	Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in <i>Coriandrum sativum</i> . Journal of Plant Interactions, 2019, 14, 386-396.	1.0	50
359	Genomic Diversity of Two Hydrocarbon-Degrading and Plant Growth-Promoting Pseudomonas Species Isolated from the Oil Field of Bóbrka (Poland). Genes, 2019, 10, 443.	1.0	33
360	Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant and Soil, 2019, 442, 1-22.	1.8	43
361	Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products, 2019, 139, 111553.	2.5	189
362	Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Frontiers in Microbiology, 2019, 10, 1590.	1.5	39
363	Metagenomic analysis of bacterial endophyte community structure and functions in Panax ginseng at different ages. 3 Biotech, 2019, 9, 300.	1.1	39
364	Isolation and Characterization of Halotolerant Plant Growth Promoting Rhizobacteria From Durum Wheat (Triticum turgidum subsp. durum) Cultivated in Saline Areas of the Dead Sea Region. Frontiers in Microbiology, 2019, 10, 1639.	1.5	80
365	Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms, 2019, 7, 212.	1.6	61
366	Plant Growth-Promoting Bacteria for Improving Crops Under Saline Conditions. Soil Biology, 2019, , 329-352.	0.6	3
367	Salinity Stress-Dependent Coordination of Metabolic Networks in Relation to Salt Tolerance in Plants. Soil Biology, 2019, , 401-422.	0.6	3
368	Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Science of the Total Environment, 2019, 692, 267-280.	3.9	67
369	Vineyard Soil Microbiome Composition Related to Rotundone Concentration in Australian Cool Climate †Peppery' Shiraz Grapes. Frontiers in Microbiology, 2019, 10, 1607.	1.5	40
370	Effect of Salt Stress on Plants and Role of Microbes in Promoting Plant Growth Under Salt Stress. Soil Biology, 2019, , 423-435.	0.6	13
372	ACC Deaminase-Producing Bacteria: A Key Player in Alleviating Abiotic Stresses in Plants. , 2019, , 267-291.		16
373	Advances in the Application of Plant Growth-Promoting Rhizobacteria in Horticulture. , 2019, , 67-76.		3

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
374	Genomics and Physiological Evidence of Heavy Metal Tolerance in Plants. , 2019, , 55-69.		2
375	Root bacterial endophytes as potential biological control agents against fungal rice pathogens. Archives of Phytopathology and Plant Protection, 2019, 52, 560-581.	0.6	11
377	Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte. Plant and Soil, 2019, 445, 307-322.	1.8	51
378	Co-existence of Leclercia adecarboxylata (LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production. World Journal of Microbiology and Biotechnology, 2019, 35, 172.	1.7	21
379	Impact of Plant Growth Promoting Rhizobacteria in the Orchestration of Lycopersicon esculentum Mill. Resistance to Plant Parasitic Nematodes: A Metabolomic Approach to Evaluate Defense Responses Under Field Conditions. Biomolecules, 2019, 9, 676.	1.8	47
380	Biotechnological Applications of Nonconventional Yeasts. , 2019, , .		6
382	Seed Coating with Thyme Essential Oil or Paraburkholderia phytofirmans PsJN Strain: Conferring Septoria Leaf Blotch Resistance and Promotion of Yield and Grain Isotopic Composition in Wheat. Agronomy, 2019, 9, 586.	1.3	12
383	Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Frontiers in Microbiology, 2019, 10, 1209.	1.5	24
384	Life Within the Leaf: Ecology and Applications of Foliar Bacterial Endophytes. , 2019, , 208-231.		4
385	Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. Reviews of Environmental Contamination and Toxicology, 2019, 252, 1-50.	0.7	1
386	Profiling of ACC synthase gene (ACS11) expression in Arabidopsis induced by abiotic stresses. Applied Biological Chemistry, 2019, 62, .	0.7	21
387	Mitigation of drought stress effects on soybean gas exchanges induced by Azospirillum brasilense and plant regulators. Pesquisa Agropecuaria Tropical, 0, 49, .	1.0	7
388	Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME Journal, 2019, 13, 3093-3101.	4.4	51
389	Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms, 2019, 7, 337.	1.6	74
390	Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicology and Environmental Safety, 2019, 184, 109591.	2.9	48
391	Enteric bacteria from the earthworm (Metaphire posthuma) promote plant growth and remediate toxic trace elements. Journal of Environmental Management, 2019, 250, 109530.	3.8	17
392	Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101326.	1.5	108
393	Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 2019, 7, 329.	1.6	22

#	Article	IF	CITATIONS
394	Proteolytic Activity in Meadow Soil after the Application of Phytohormones. Biomolecules, 2019, 9, 507.	1.8	2
395	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	1.6	20
396	Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety, 2019, 185, 109706.	2.9	93
397	ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Applied Soil Ecology, 2019, 136, 184-190.	2.1	56
398	Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany, 2019, 159, 23-33.	2.0	67
399	Impact of Postharvest Storage on the Infection and Colonization of <i>Penicillium digitatum</i> and <i>Penicillium expansum</i> on Nectarine. Plant Disease, 2019, 103, 1584-1594.	0.7	4
400	Silicate Solubilization and Plant Growth Promoting Potential of Rhizobium Sp. Isolated from Rice Rhizosphere. Silicon, 2019, 11, 2895-2906.	1.8	42
401	Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Brazilian Journal of Microbiology, 2019, 50, 449-458.	0.8	54
402	Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports (Amsterdam, Netherlands), 2019, 21, e00305.	2.1	53
403	Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (<i>Triticum aestivum</i> L.) plants. Canadian Journal of Microbiology, 2019, 65, 387-403.	0.8	86
404	Empowering rice seedling growth by endophytic Bradyrhizobium sp. SUTN 9â€2. Letters in Applied Microbiology, 2019, 68, 258-266.	1.0	22
405	Phosphate solubilization by microorganisms. , 2019, , 161-176.		59
406	Dose-dependent effects of Pseudomonas trivialis rhizobacteria and synergistic growth stimulation effect with earthworms on the common radish. Rhizosphere, 2019, 10, 100156.	1.4	5
407	Optimization of plant hormonal balance by microorganisms prevents plant heavy metal accumulation. Journal of Hazardous Materials, 2019, 379, 120787.	6.5	33
408	ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology, 2019, 10, 1506.	1.5	327
409	The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. Reference Series in Phytochemistry, 2019, , 591-607.	0.2	13
410	Isolation of Endophytes: The Gold Standard?. Reference Series in Phytochemistry, 2019, , 269-280.	0.2	0
411	Endophytic Pseudomonads and Their Metabolites. Reference Series in Phytochemistry, 2019, , 33-59.	0.2	3

#	Article	IF	CITATIONS
412	Stimulation of Seed Germination and Growth Parameters of Rice var. Sahbhagi by Enterobacter cloacae in the Presence of Ammonium Sulphate as Substitute of ACC. , 2019, , 117-124.		5
413	Effect of Long-Term Farming Practices on Agricultural Soil Microbiome Members Represented by Metagenomically Assembled Genomes (MAGs) and Their Predicted Plant-Beneficial Genes. Genes, 2019, 10, 424.	1.0	61
414	An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, 2019, 9, 261.	1.1	46
415	The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential. Brazilian Journal of Microbiology, 2019, 50, 777-789.	0.8	13
416	Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the Total Environment, 2019, 682, 779-799.	3.9	146
417	Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 2019, 9, 6892.	1.6	32
418	Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. Environmental Science and Pollution Research, 2019, 26, 18053-18070.	2.7	17
419	Co-cultivation of Trichoderma asperellum CDFS1009 and Bacillus amyloliquefaciens 1841 Causes Differential Gene Expression and Improvement in the Wheat Growth and Biocontrol Activity. Frontiers in Microbiology, 2019, 10, 1068.	1.5	62
420	Climatic Resilient Agriculture for Root, Tuber, and Banana Crops using Plant Growth-Promoting Microbes. , 2019, , 307-329.		3
421	Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	37
422	Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. , 2019, , 579-614.		14
423	Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum) Tj ETQq1 1 0.78431	.4 rgBT /Ov	verjgck 10 T
424	Plant Stage, Not Drought Stress, Determines the Effect of Cultivars on Bacterial Community Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.). Frontiers in Microbiology, 2019, 10, 828.	1.5	31
425	Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges – A review. Journal of Advanced Research, 2019, 19, 3-13.	4.4	25
426	Rhizospheric Microbial Diversity: An Important Component for Abiotic Stress Management in Crop Plants Toward Sustainable Agriculture. , 2019, , 115-134.		6
427	Bacterial Mechanisms Promoting the Tolerance to Drought Stress in Plants. , 2019, , 185-224.		12
428	Bacillus spp.: As Plant Growth-Promoting Bacteria. , 2019, , 225-237.		47
429	Biological Control of Nematodes by Plant Growth Promoting Rhizobacteria: Secondary Metabolites Involved and Potential Applications. , 2019, , 253-264.		14

#	Article	IF	Citations
430	Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Frontiers in Microbiology, 2019, 10, 719.	1.5	55
431	Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. PLoS ONE, 2019, 14, e0207968.	1.1	16
432	Microbes in Cahoots with Plants: MIST to Hit the Jackpot of Agricultural Productivity during Drought. International Journal of Molecular Sciences, 2019, 20, 1769.	1.8	39
433	Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology, 2019, 19, 80.	1.3	146
434	The impact of Pseudomonas putida UW3 and UW4 strains on photosynthetic activities of selected field crops under saline conditions. International Journal of Phytoremediation, 2019, 21, 944-952.	1.7	4
435	Microbiota in non-flooded and flooded rice culms. FEMS Microbiology Ecology, 2019, 95, .	1.3	12
436	Non-pathogenic Staphylococcus strains augmented the maize growth through oxidative stress management and nutrient supply under induced salt stress. Annals of Microbiology, 2019, 69, 727-739.	1.1	9
437	Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria. Journal of Applied Microbiology, 2019, 126, 1835-1849.	1.4	28
438	Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. Planta, 2019, 249, 1903-1919.	1.6	27
439	Heavy metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by <i>Bacillus subtilis</i> BM2. RSC Advances, 2019, 9, 6125-6142.	1.7	44
440	Endophytes of finger millet (Eleusine coracana) seeds. Symbiosis, 2019, 78, 203-213.	1.2	10
441	Screening of lindane degrading bacteria isolated from soil for their plant growth promoting attributes. Environmental Sustainability, 2019, 2, 97-106.	1.4	10
442	Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. Rhizosphere Biology, 2019, , 133-149.	0.4	37
443	Comparative genomics of <i>Paraburkholderia kururiensis</i> and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. MicrobiologyOpen, 2019, 8, e00801.	1.2	31
444	Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 2019, 138, 160-170.	2.1	68
445	Physiological Diversity of Spitsbergen Soil Microbial Communities Suggests Their Potential as Plant Growth-Promoting Bacteria. International Journal of Molecular Sciences, 2019, 20, 1207.	1.8	14
446	Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatalysis and Agricultural Biotechnology, 2019, 18, 101089.	1.5	20
447	ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Archives of Microbiology, 2019, 201, 817-822.	1.0	44

# 448	ARTICLE Silicon: A Sustainable Tool in Abiotic Stress Tolerance in Plants. , 2019, , 333-356.	IF	CITATIONS
449	Mechanism of Interaction of Endophytic Microbes with Plants. , 2019, , 237-257.		3
450	The Ecology of Seed Microbiota. , 2019, , 103-125.		9
451	Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. BioMed Research International, 2019, 2019, 1-12.	0.9	104
452	Response of Mediterranean Ornamental Plants to Drought Stress. Horticulturae, 2019, 5, 6.	1.2	85
453	Symbiotic microbes of Saxifraga stellaris ssp. alpigena from the copper creek of Schwarzwand (Austrian Alps) enhance plant tolerance to copper. Chemosphere, 2019, 228, 183-194.	4.2	12
456	Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 2019, 139, 569-577.	2.8	148
457	Rhizome Endophytes: Roles and Applications in Sustainable Agriculture. , 2019, , 405-421.		2
458	Plant Growth Promotion Driven by a Novel <i>Caulobacter</i> Strain. Molecular Plant-Microbe Interactions, 2019, 32, 1162-1174.	1.4	31
459	Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 2019, 173, 504-513.	2.9	71
460	Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in Microbiology, 2018, 9, 3262.	1.5	39
461	Culturable Stress-Tolerant Plant Growth-Promoting Bacterial Endophytes Associated with Adhatoda vasica. Journal of Soil Science and Plant Nutrition, 2019, 19, 290-298.	1.7	11
462	Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant Gene, 2019, 18, 100175.	1.4	46
463	Morphoanatomy and Chlorophyll of Lettuce Plants Induced by Rhizobacteria. Journal of Agricultural Studies, 2019, 7, 196.	0.2	1
464	Deciphering the Factors for Nodulation and Symbiosis of Mesorhizobium Associated with Cicer arietinum in Northwest India. Sustainability, 2019, 11, 7216.	1.6	17
466	Usage of some Halo bacteria species to alleviate sodium chloride toxicity in Vigna radiate L. cuttings in terms rooting response. IOP Conference Series: Earth and Environmental Science, 2019, 388, 012051.	0.2	1
467	Role of Wetland Soil Bacteria in Enhancing the Phytoremediation Process through Bioavailability Phenomenon. , 2019, , .		3
468	Functional Diversity of Plant Growth-Promoting Rhizobacteria: Recent Progress and Future Prospects. , 2019, , 229-253.		5

#	Article	IF	CITATIONS
469	Isolation, Screening, and Characterization of Plant-Growth-Promoting Bacteria from Durum Wheat Rhizosphere to Improve N and P Nutrient Use Efficiency. Microorganisms, 2019, 7, 541.	1.6	26
470	1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. Frontiers in Plant Science, 2019, 10, 1602.	1.7	61
471	Phyto and Rhizo Remediation. Microorganisms for Sustainability, 2019, , .	0.4	2
472	Phytohormone Mediation of Interactions Between Plants and Non-Symbiotic Growth Promoting Bacteria Under Edaphic Stresses. Frontiers in Plant Science, 2019, 10, 1368.	1.7	167
473	Plant–bacterial interactions in management of plant growth under abiotic stresses. , 2019, , 21-45.		8
474	Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , .	0.6	18
475	Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Microbiology, 2019, 10, 2791.	1.5	312
477	Beneficial Endophytic Bacteria-Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Frontiers in Microbiology, 2019, 10, 2888.	1.5	70
478	Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy, 2019, 9, 712.	1.3	146
479	Synergistic Effect of Biochar and Plant Growth Promoting Rhizobacteria on Alleviation of Water Deficit in Rice Plants under Salt-Affected Soil. Agronomy, 2019, 9, 847.	1.3	54
480	Plant Growth-Promoting Microbial Enzymes. , 2019, , 521-534.		8
481	Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microbial Ecology, 2019, 77, 429-439.	1.4	102
482	Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie Van Leeuwenhoek, 2019, 112, 283-295.	0.7	37
483	Impact of ripeness on the infection and colonisation of Penicillium digitatum and P. expansum on plum. Postharvest Biology and Technology, 2019, 149, 148-158.	2.9	8
484	Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system's performance. International Journal of Environmental Science and Technology, 2019, 16, 4611-4620.	1.8	19
485	Characterizing the hypertolerance potential of two indigenous bacterial strains (<i>Bacillus) Tj ETQq1 1 0.7843 Applied Microbiology, 2019, 126, 1117-1127.</i>	14 rgBT /O 1.4	verlock 10 28
486	Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 2019, 170, 436-445.	2.9	76
487	Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere, 2019, 217, 576-583.	4.2	66

#	Article	IF	CITATIONS
488	Endophytic Bacteria in Plant Salt Stress Tolerance: Current and Future Prospects. Journal of Plant Growth Regulation, 2019, 38, 650-668.	2.8	103
489	Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania. Science of the Total Environment, 2019, 654, 237-249.	3.9	27
490	The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. Reference Series in Phytochemistry, 2019, , 1-17.	0.2	9
491	Integrated phytoremediation system for uranium-contaminated soils by adding a plant growth promoting bacterial mixture and mowing grass. Journal of Soils and Sediments, 2019, 19, 1799-1808.	1.5	30
492	Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Science of the Total Environment, 2019, 655, 328-336.	3.9	55
493	Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Applied Microbiology and Biotechnology, 2019, 103, 643-657.	1.7	40
494	1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium <i>Pseudomonas putida</i> UW4. Molecular Plant-Microbe Interactions, 2019, 32, 750-759.	1.4	35
495	Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatalysis and Agricultural Biotechnology, 2019, 17, 507-513.	1.5	37
496	Long-term silicate fertilization increases the abundance of Actinobacterial population in paddy soils. Biology and Fertility of Soils, 2019, 55, 109-120.	2.3	36
497	Disruption of <i>acdS</i> gene reduces plant growth promotion activity and maize saline stress resistance by <i>Rahnella aquatilis</i> HX2. Journal of Basic Microbiology, 2019, 59, 402-411.	1.8	18
498	Mechanisms of Plant-Microbe Interactions and its Significance for Sustainable Agriculture. , 2019, , 17-39.		13
499	A Thorough Comprehension of Host Endophytic Interaction Entailing the Biospherical Benefits: A Metabolomic Perspective. Reference Series in Phytochemistry, 2019, , 1-19.	0.2	0
500	The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 2019, 219, 26-39.	2.5	145
501	Amelioration of Salinity Stress by PGPR. , 2019, , 85-106.		43
502	Portraying Rhizobacterial Mechanisms in Drought Tolerance. , 2019, , 195-216.		12
503	Plant Growth-Promoting Rhizobacteria: Diversity and Applications. , 2019, , 129-173.		57
504	Plant Growth-Promoting Microbes: Contribution to Stress Management in Plant Hosts. , 2019, , 199-236.		6
505	Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environmental and Experimental Botany, 2019, 159, 55-65.	2.0	109

#	ARTICLE Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid)	IF	Citations
506	Deaminase in Soil-Borne Fungal Pathogen <i>Verticillium dahliae</i> Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Molecular Plant-Microbe Interactions, 2019, 32, 639-653.	1.4	28
507	Phytoremediation. , 2019, , 1-49.		30
508	Future Perspective in Organic Farming Fertilization. , 2019, , 269-315.		8
509	Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Momordica Charantia L , 2019, , 217-238.		4
510	Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 2019, 26, 1179-1186.	1.8	52
511	Effect of Silicon and Phosphate-Solubilizing Bacteria on Improved Phosphorus (P) Uptake Is Not Specific to Insoluble P-Fertilized Sorghum (Sorghum bicolor L.) Plants. Journal of Plant Growth Regulation, 2020, 39, 239-253.	2.8	24
512	Functional Diversity of Plant Endophytes and Their Role in Assisted Phytoremediation. , 2020, , 237-255.		3
513	Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science, 2020, , .	0.3	9
514	Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L Plant and Soil, 2020, 451, 57-73.	1.8	51
515	Belowground Microbial Communities: Key Players for Soil and Environmental Sustainability. SpringerBriefs in Environmental Science, 2020, , 5-22.	0.3	10
516	Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere, 2020, 240, 124890.	4.2	62
517	The aeroponic rhizosphere microbiome: community dynamics in early succession suggest strong selectional forces. Antonie Van Leeuwenhoek, 2020, 113, 83-99.	0.7	10
518	In Planta Colonization and Role of T6SS in Two Rice <i>Kosakonia</i> Endophytes. Molecular Plant-Microbe Interactions, 2020, 33, 349-363.	1.4	30
519	Reviews of Environmental Contamination and Toxicology Volume 252. Reviews of Environmental Contamination and Toxicology, 2020, , .	0.7	1
520	Bioeconomy for Sustainable Development. , 2020, , .		70
521	The Impact of Silicon on Photosynthetic and Biochemical Responses of Sugarcane under Different Soil Moisture Levels. Silicon, 2020, 12, 1355-1367.	1.8	68
522	Nutrient Dynamics for Sustainable Crop Production. , 2020, , .		21
523	<i>Bacillus</i> species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 2020, 128, 1583-1594.	1.4	250

#	Article	IF	CITATIONS
524	Engineering rhizobacterial community resilience with mannose nanofibril hydrogels towards maintaining grain production under drying climate stress. Soil Biology and Biochemistry, 2020, 142, 107715.	4.2	8
525	Bacillus firmus strain FSS2C ameliorated oxidative stress in wheat plants induced by azo dye (r	eactiveÂ) I.1	Tj ETQq1 l
526	Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101501.	1.5	119
527	Enhancing the 1-Aminocyclopropane-1-Carboxylate Metabolic Rate of Pseudomonas sp. UW4 Intensifies Chemotactic Rhizocompetence. Microorganisms, 2020, 8, 71.	1.6	15
528	Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere, 2020, 30, 40-61.	2.1	171
529	Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101487.	1.5	277
530	Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environmental Pollution, 2020, 259, 113694.	3.7	55
531	Microbial inoculum development for ameliorating crop drought stress: A case study of Variovorax paradoxus 5C-2. New Biotechnology, 2020, 56, 103-113.	2.4	20
532	Ameliorative effects of inoculation with <i>Serratia marcescens</i> and grafting on growth of eggplant seedlings under salt stress. Journal of Plant Nutrition, 2020, 43, 594-603.	0.9	11
533	Rhizoremediation – A promising tool for the removal of soil contaminants: A review. Journal of Environmental Chemical Engineering, 2020, 8, 103543.	3.3	58
534	Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere, 2020, 246, 125823.	4.2	80
535	Achromobacter sp. FB-14 harboring ACC deaminase activity augmented rice growth by upregulating the expression of stress-responsive CIPK genes under salinity stress. Brazilian Journal of Microbiology, 2020, 51, 719-728.	0.8	16
536	Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pesticide Biochemistry and Physiology, 2020, 163, 216-226.	1.6	15
537	Biosynthesis and purification of indole-3-acetic acid by halotolerant rhizobacteria isolated from Little Runn of Kachchh. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101435.	1.5	12
538	Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 2020, 232, 126389.	2.5	96
539	Cottage Industry of Biocontrol Agents and Their Applications. , 2020, , .		8
540	Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Applied Soil Ecology, 2020, 150, 103453.	2.1	38
541	Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Frontiers in Microbiology, 2020, 11, 2044.	1.5	23

#	Article	IF	CITATIONS
542	Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	91
543	Assessment of the Capacity of Beneficial Bacterial Inoculants to Enhance Canola (Brassica napus L.) Growth under Low Water Activity. Agronomy, 2020, 10, 1449.	1.3	4
544	Halophile plant growth-promoting rhizobacteria induce salt tolerance traits in wheat seedlings (Triticum aestivum L.). Pedosphere, 2020, 30, 684-693.	2.1	16
545	Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 2020, 10, 15642.	1.6	31
546	Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiological Research, 2020, 241, 126579.	2.5	9
547	Enhancing the Rice Seedlings Growth Promotion Abilities of Azoarcus sp. CIB by Heterologous Expression of ACC Deaminase to Improve Performance of Plants Exposed to Cadmium Stress. Microorganisms, 2020, 8, 1453.	1.6	14
548	Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium With Biocontrol and Stress Tolerance Properties, Isolated From Sugarcane Root. Frontiers in Microbiology, 2020, 11, 580081.	1.5	63
549	Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar, 2020, 2, 287-305.	6.2	34
550	Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce. Agronomy, 2020, 10, 1523.	1.3	44
551	Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere, 2020, 16, 100240.	1.4	13
552	Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere, 2020, 16, 100241.	1.4	38
553	Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicology and Environmental Safety, 2020, 205, 111333.	2.9	82
554	Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. Journal of Arid Land, 2020, 12, 730-740.	0.9	26
555	Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. Ecotoxicology and Environmental Safety, 2020, 204, 111020.	2.9	62
556	Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiology and Biochemistry, 2020, 156, 242-256.	2.8	61
557	Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 2020, 26, 69-82.	4.4	130
558	Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere, 2020, 15, 100229.	1.4	51
559	The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms, 2020, 8, 1037.	1.6	206

#	Article	IF	CITATIONS
560	Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. , 2020, , 49-60.		47
561	Quorum Sensing System Affects the Plant Growth Promotion Traits of Serratia fonticola GS2. Frontiers in Microbiology, 2020, 11, 536865.	1.5	14
562	Characterization of Endophytic Microbial Communities in Store-Bought Kale Evaluated by Different Plant Tissue Homogenization Methods. Phytobiomes Journal, 2020, 4, 211-216.	1.4	3
563	Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Scientific Reports, 2020, 10, 20409.	1.6	46
564	The Yield Responses to Crop Bioremediation Practices on Haplustept and Fluvaquent Saline-Sodic Soils. Communications in Soil Science and Plant Analysis, 2020, 51, 2639-2657.	0.6	0
565	Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (<i>Zea mays</i> L.) plants. International Journal of Phytoremediation, 2021, 23, 1-12.	1.7	8
566	Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops. Agronomy, 2020, 10, 1788.	1.3	24
567	Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration. Plants, 2020, 9, 1630.	1.6	17
568	Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation. , 0, , .		17
569	Plant-microbe Interactions for Sustainable Agriculture in the Postgenomic Era. Current Genomics, 2020, 21, 168-178.	0.7	19
570	Isolation and molecular characterization of plant growth promoting bacteria from the rhizosphere of orchids in Turkey. Rhizosphere, 2020, 16, 100280.	1.4	10
572	Significance of inoculation with Bacillus subtilis to alleviate drought stress in wheat (TriticumÂaestivum L.). Vegetos, 2020, 33, 782-792.	0.8	14
573	Comparative Genomics of Microbacterium Species to Reveal Diversity, Potential for Secondary Metabolites and Heavy Metal Resistance. Frontiers in Microbiology, 2020, 11, 1869.	1.5	29
574	Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences, 2020, 27, 3622-3633.	1.8	70
575	Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. Frontiers in Plant Science, 2020, 11, 963.	1.7	40
576	Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 2020, 239, 126569.	2.5	78
577	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.4	10
578	Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Molecular Biology Reports, 2020, 47, 6015-6026.	1.0	43

#	Article	IF	CITATIONS
579	Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 2020, 240, 126564.	2.5	5
580	High-Throughput Sequencing and Expression Analysis Suggest the Involvement of Pseudomonas putida RA-Responsive microRNAs in Growth and Development of Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 5468.	1.8	12
581	Potassium solubilizing and mobilizing microbes: Biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. , 2020, , 177-202.		22
582	Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 2020, 9, 1002.	1.6	13
583	Silicon Supply Improves Leaf Gas Exchange, Antioxidant Defense System and Growth in Saccharum officinarum Responsive to Water Limitation. Plants, 2020, 9, 1032.	1.6	29
584	Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. Applied Sciences (Switzerland), 2020, 10, 7326.	1.3	70
585	Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere. Rhizosphere, 2020, 16, 100267.	1.4	9
586	Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions. Journal of Biotechnology, 2020, 324, 183-197.	1.9	28
587	Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Frontiers in Microbiology, 2020, 11, 580024.	1.5	314
588	P-Solubilizing Streptomyces roseocinereus MS1B15 With Multiple Plant Growth-Promoting Traits Enhance Barley Development and Regulate Rhizosphere Microbial Population. Frontiers in Plant Science, 2020, 11, 1137.	1.7	41
589	The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Frontiers in Microbiology, 2020, 11, 548037.	1.5	39
590	Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Scientific Reports, 2020, 10, 14857.	1.6	99
591	Interactive Role of Silicon and Plant–Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change. Plants, 2020, 9, 1055.	1.6	30
592	Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. Journal of Soil Science and Plant Nutrition, 2020, 20, 1614-1624.	1.7	18
593	Diazotrophic bacteria from maize exhibit multifaceted plant growth promotion traits in multiple hosts. PLoS ONE, 2020, 15, e0239081.	1.1	13
594	Impact of Plant Growth Promoting Bacteria on Salicornia ramosissima Ecophysiology and Heavy Metal Phytoremediation Capacity in Estuarine Soils. Frontiers in Microbiology, 2020, 11, 553018.	1.5	47
595	Metagenomics: Techniques, Applications, Challenges and Opportunities. , 2020, , .		7
596	Cold stress alleviation using individual and combined inoculation of ACC deaminase producing microbes in Ocimum sanctum. Environmental Sustainability, 2020, 3, 289-301.	1.4	12

#	Article	IF	Citations
597	Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Frontiers in Microbiology, 2020, 11, 1952.	1.5	127
598	Screening of Bacterial Endophytes Able to Promote Plant Growth and Increase Salinity Tolerance. Applied Sciences (Switzerland), 2020, 10, 5767.	1.3	23
599	PGPRâ€mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 2020, 60, 828-861.	1.8	157
600	Plant growth-promoting Bacillus sp. strain SDA-4 confers Cd tolerance by physio-biochemical improvements, better nutrient acquisition and diminished Cd uptake in Spinacia oleracea L Physiology and Molecular Biology of Plants, 2020, 26, 2417-2433.	1.4	21
601	Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Scientific Reports, 2020, 10, 20951.	1.6	39
602	Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. Frontiers in Plant Science, 2020, 11, 590774.	1.7	49
603	Plant Growth-Promoting Rhizobacteria Isolated from Degraded Habitat Enhance Drought Tolerance of Acacia (Acacia abyssinica Hochst. ex Benth.) Seedlings. International Journal of Microbiology, 2020, 2020, 1-13.	0.9	20
604	Role of rhizospheric microbial diversity in plant growth promotion in maintaining the sustainable agrosystem at high altitude regions. , 2020, , 147-196.		17
605	Metabolites Secreted by a Plant-Growth-Promoting Pantoea agglomerans Strain Improved Rooting of Pyrus communis L. cv Dar Gazi Cuttings. Frontiers in Microbiology, 2020, 11, 539359.	1.5	26
606	The Role of Secretion Systems, Effectors, and Secondary Metabolites of Beneficial Rhizobacteria in Interactions With Plants and Microbes. Frontiers in Plant Science, 2020, 11, 589416.	1.7	51
607	<i>Pseudomonas stutzeri</i> MJL19, a rhizosphereâ€colonizing bacterium that promotes plant growth under saline stress. Journal of Applied Microbiology, 2020, 129, 1321-1336.	1.4	26
608	Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses. Sugar Tech, 2020, 22, 741-749.	0.9	67
609	Drought tolerant bacterial endophytes with potential plant probiotic effects from Ananas comosus. Biologia (Poland), 2020, 75, 1769-1778.	0.8	24
610	Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 2020, 11, 359.	1.7	705
611	Uncovering PGPB Vibrio spartinae inoculation-triggered physiological mechanisms involved in the tolerance of Halimione portulacoides to NaCl excess. Plant Physiology and Biochemistry, 2020, 154, 151-159.	2.8	8
612	Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake. Plant and Soil, 2020, 452, 397-412.	1.8	20
613	Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple (Malus) Tj ETQq0 (0 rgBT /C 1.8	Verlock 10 T

614	Poaceae with PCPR Bacteria and Arbuscular Mycorrhizae Partnerships as a Model System for Plant Microbiome Manipulation for Phytoremediation of Petroleum Hydrocarbons Contaminated Agricultural Soils. Agronomy, 2020, 10, 547.	1.3	19
-----	---	-----	----

#	Article	IF	CITATIONS
615	Salinity and its tolerance strategies in plants. , 2020, , 47-76.		16
616	Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME Journal, 2020, 14, 2116-2130.	4.4	56
617	Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. Journal of Plant Interactions, 2020, 15, 93-105.	1.0	87
618	Management of abiotic stress and sustainability. , 2020, , 883-916.		1
619	Halotolerant microbes and their applications in sustainable agriculture. , 2020, , 39-49.		2
620	Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech, 2020, 10, 305.	1.1	25
621	Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Van Leeuwenhoek, 2020, 113, 1263-1278.	0.7	34
622	Metagenomics analysis of rhizospheric bacterial communities of Saccharum arundinaceum growing on organometallic sludge of sugarcane molasses-based distillery. 3 Biotech, 2020, 10, 316.	1.1	47
623	Genomic insights into a plant growthâ€promoting <i>Pseudomonas koreensis</i> strain with cyclic lipopeptideâ€mediated antifungal activity. MicrobiologyOpen, 2020, 9, e1092.	1.2	26
624	<i>Streptomyces</i> Endophytes Promote Host Health and Enhance Growth across Plant Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	44
625	Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy, 2020, 10, 794.	1.3	77
626	Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture. Frontiers in Plant Science, 2020, 11, 634.	1.7	36
627	Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Brazilian Journal of Microbiology, 2020, 51, 1861-1871.	0.8	22
628	Microbial consortia inoculants stimulate early growth of maize depending on nitrogen and phosphorus supply. Plant, Soil and Environment, 2020, 66, 105-112.	1.0	22
629	Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology, 2020, , .	0.4	17
630	Agriculturally important microbial biofilms: Biodiversity, ecological significances, and biotechnological applications. , 2020, , 221-265.		25
631	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134
632	Biocommercial aspects of microbial endophytes for sustainable agriculture. , 2020, , 323-347.		5

# 633	ARTICLE Genomic insights of plant endophyte interaction: prospective and impact on plant fitness. , 2020, , 227-249.	IF	CITATIONS
634	Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. Journal of Experimental Botany, 2020, 71, 3878-3901.	2.4	118
635	Capacity of Pseudomonas Strains to Degrade Hydrocarbons, Produce Auxins and Maintain Plant Growth under Normal Conditions and in the Presence of Petroleum Contaminants. Plants, 2020, 9, 379.	1.6	22
636	Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives. Microorganisms for Sustainability, 2020, , 161-189.	0.4	17
637	Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Applied Microbiology and Biotechnology, 2020, 104, 4577-4592.	1.7	44
638	Plant Microbe Symbiosis. , 2020, , .		13
639	Endophytic microbial influence on plant stress responses. , 2020, , 161-193.		5
640	Enhanced remediation of Cr ⁶⁺ in bacterialâ€assisted floating wetlands. Water and Environment Journal, 2020, 34, 970-978.	1.0	6
641	Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 2020, 10, 320.	1.1	31
642	Microbial Services to Nurture Plant Health Under Stressed Soils. , 2020, , 157-179.		3
643	Mechanisms in plant growthâ€promoting rhizobacteria that enhance legume–rhizobial symbioses. Journal of Applied Microbiology, 2020, 129, 1133-1156.	1.4	43
644	Plant-Growth-Promoting Bacteria (PGPB) against Insects and Other Agricultural Pests. Agronomy, 2020, 10, 861.	1.3	45
645	Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 2020, 743, 140682.	3.9	261
646	Bioprospection of native psychrotolerant plant-growth-promoting rhizobacteria from Peruvian Andean Plateau soils associated with Chenopodium quinoa. Canadian Journal of Microbiology, 2020, 66, 641-652.	0.8	10
647	Prospecting plant–microbe interactions for enhancing nutrient availability and grain biofortification. , 2020, , 203-228.		5
648	Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 2020, 240, 126549.	2.5	31
649	Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution, 2020, 266, 114982.	3.7	71
650	Pyridoxal 5′-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress. Plant Physiology and Biochemistry, 2020, 154, 782-795.	2.8	14

# 651	ARTICLE Molecular mechanism of plant-microbe interactions. , 2020, , 85-136.	IF	CITATIONS
652	Endophytic microbe approaches in bioremediation of organic pollutants. , 2020, , 157-174.		8
653	Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 2020, 20, 38.	1.3	122
654	Isolation and Identification of ACC Deaminase Producing Bacteria from Rhizosfer and Plant Roots of Maize, Cowpea, and Groundnut Growing under Saline Stress. IOP Conference Series: Earth and Environmental Science, 2020, 439, 012015.	0.2	0
655	Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Frontiers in Microbiology, 2020, 11, 14.	1.5	20
656	ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech, 2020, 10, 119.	1.1	87
657	The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants. Current Microbiology, 2020, 77, 564-577.	1.0	44
658	The extreme plantâ€growthâ€promoting properties of <i>Pantoea phytobeneficialis</i> MSR2 revealed by functional and genomic analysis. Environmental Microbiology, 2020, 22, 1341-1355.	1.8	29
659	Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere, 2020, 251, 126310.	4.2	91
660	Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicology and Environmental Safety, 2020, 194, 110374.	2.9	92
661	Membrane shell permeability of Rs-198 microcapsules and their ability for growth promoting bioactivity compound releasing. RSC Advances, 2020, 10, 1159-1171.	1.7	7
662	Preliminary screening of rhizobacteria for biocontrol of little seed canary grass (<i>Phalaris) Tj ETQq1 1 0.784314 66, 368-376.</i>	rgBT /Ove 0.8	erlock 10 Tf. 20
663	ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 2020, 235, 126439.	2.5	200
664	Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine) Tj ETQq1 1 0.7	84314 rgE 1.1	BT /Qverlock
665	Bioremediation and Biotechnology. , 2020, , .		32
666	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
667	Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient. FEMS Microbiology Ecology, 2020, 96, .	1.3	4
668	Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 2020, 234, 126422.	2.5	80

	CITA	CITATION REPORT	
# 669	ARTICLE Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 2020, 199, 104577.	IF 2.6	Citations 95
670	Gluconacetobacter diazotrophicus Changes The Molecular Mechanisms of Root Development in Oryza sativa L. Growing Under Water Stress. International Journal of Molecular Sciences, 2020, 21, 333.	1.8	44
671	Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Science of the Total Environment, 2020, 729, 139020.	3.9	36
672	Plant growth enhancement is not a conserved feature in the Caulobacter genus. Plant and Soil, 2020, 449, 81-95.	1.8	17
673	Benefits of plant-endophyte interaction for sustainable agriculture. , 2020, , 35-55.		1
674	Plant growth-promoting mechanisms of endophytes. , 2020, , 57-74.		0
675	The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. Journal of Hazardous Materials, 2020, 395, 122661.	6.5	67
676	Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communities. Science of the Total Environment, 2020, 726, 138530.	3.9	14
677	Effects of <i>Bacillus methylotrophicus</i> M4â€1 on physiological and biochemical traits of wheat under salinity stress. Journal of Applied Microbiology, 2020, 129, 695-711.	1.4	19
678	Deciphering the Root Endosphere Microbiome of the Desert Plant <i>Alhagi sparsifolia</i> for Drought Resistance-Promoting Bacteria. Applied and Environmental Microbiology, 2020, 86, .	1.4	44
679	Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 2020, 11, 297.	1.7	57
680	Legume Biofortification and the Role of Plant Growth-Promoting Bacteria in a Sustainable Agricultural Era. Agronomy, 2020, 10, 435.	1.3	30
681	Isolation, Characterization and Identification of Indigenous Endophytic Bacteria Exhibiting PGP and Antifungal Traits from the Internal Tissue of Sugarcane Crop. Sugar Tech, 2020, 22, 563-573.	0.9	4
682	Polyamine-producing actinobacteria enhance biomass production and seed yield in Salicornia bigelovii. Biology and Fertility of Soils, 2020, 56, 499-519.	2.3	40
683	Co-occurrence of rhizobacteria with nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate deamination abilities in the maize rhizosphere. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
684	Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling. Sustainability, 2020, 12, 2159.	1.6	133
685	Alleviation of drought stress in maize (<i>Zea mays</i> L.) by using endogenous endophyte <i>Bacillus subtilis</i> in North West Himalayas. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 361-370.	0.3	11
686	Enhanced uptake of Cd, Cr, and Cu in Catharanthus roseus (L.) G.Don by Bacillus cereus: application of moss and compost to reduce metal availability. Environmental Science and Pollution Research, 2020, 27, 39807-39818.	2.7	21

#	Article	IF	CITATIONS
687	Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397, 122720.	6.5	127
688	Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum) Tj ETQq1 1	0.784314 2.8	l rgBT /Over
689	The Effect of Biochars and Endophytic Bacteria on Growth and Root Rot Disease Incidence of Fusarium Infested Narrow-Leafed Lupin (Lupinus angustifolius L.). Microorganisms, 2020, 8, 496.	1.6	26
690	Antifungal and Plant Growth–Promoting Bacillus under Saline Stress Modify their Membrane Composition. Journal of Soil Science and Plant Nutrition, 2020, 20, 1549-1559.	1.7	26
691	Engineering bacterial ACC deaminase for improving plant productivity under stressful conditions. , 2020, , 259-277.		11
692	Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 2021, 40, 926-944.	2.8	161
693	Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water-Deficit Stress. Journal of Plant Growth Regulation, 2021, 40, 162-178.	2.8	36
694	Investigating the ideal mixture of soil and organic compound with Bacillus sp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana seedlings. South African Journal of Botany, 2021, 137, 249-256.	1.2	10
695	Iron metabolism in soybean grown in calcareous soil is influenced by plant growth-promoting rhizobacteria – A functional analysis. Rhizosphere, 2021, 17, 100274.	1.4	10
696	Plant growth promoting rhizobacteria in phytoremediation of environmental contaminants: challenges and future prospects. , 2021, , 191-218.		1
697	Targeted plant hologenome editing for plant trait enhancement. New Phytologist, 2021, 229, 1067-1077.	3.5	25
698	Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. Acta Ecologica Sinica, 2021, 41, 120-129.	0.9	21
699	Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 2021, 21, 49-68.	1.7	193
700	Root colonizing Burkholderia sp. AQ12 enhanced rice growth and upregulated tillering-responsive genes in rice. Applied Soil Ecology, 2021, 157, 103769.	2.1	9
701	Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. Microbial Ecology, 2021, 81, 687-702.	1.4	18
702	Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals. , 2021, , .		10
703	Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere, 2021, 266, 128983.	4.2	42
704	Highâ€temperature resilience in Bacillus safensis primed wheat plants: A study of dynamic response associated with modulation of antioxidant machinery, differential expression of HSPs and osmolyte biosynthesis, Environmental and Experimental Botany, 2021, 182, 104315	2.0	12

#	Article	IF	CITATIONS
705	Impact of Inoculation with Pseudomonas aestus CMAA 1215T on the Non-target Resident Bacterial Community in a Saline Rhizosphere Soil. Current Microbiology, 2021, 78, 218-228.	1.0	6
706	Potential use of efficient resistant plant growth promoting rhizobacteria in biofertilization and phytoremediation of heavy metal contaminated soil. , 2021, , 285-293.		1
707	Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Brazilian Journal of Microbiology, 2021, 52, 349-361.	0.8	9
708	Development of indigenous microbial consortium for biocontrol management. , 2021, , 91-104.		6
709	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
710	Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 2021, 20, 4-23.	1.7	76
711	Characterization of Paenibacillus polymixa N179 as a robust and multifunctional biocontrol agent. Biological Control, 2021, 154, 104505.	1.4	4
713	Microbial interventions are an easier alternative to engineer higher organisms. Microbial Biotechnology, 2021, 14, 26-30.	2.0	0
714	Assessment of PAH degradation potential of native species from a coking plant through identifying of the beneficial bacterial community within the rhizosphere soil. Chemosphere, 2021, 264, 128513.	4.2	25
715	Phytoaugmentation technology for phytoremediation of environmental pollutants: current scenario and future prospects. , 2021, , 329-381.		7
717	Rhizosphere plant-microbe interactions under water stress. Advances in Applied Microbiology, 2021, 115, 65-113.	1.3	27
718	Role of Microorganisms in Managing Soil Fertility and Plant Nutrition in Sustainable Agriculture. , 2021, , 93-114.		0
719	Silicon and Plant Responses Under Adverse Environmental Conditions. , 2021, , 357-385.		5
720	Food Sustainability Enhancement: Plant Growth-Promoting Bacteria as Key Players in the Alleviation of Drought Stress in Plants. , 2021, , 593-610.		4
721	Microbial secondary metabolites and their role in stress management of plants. , 2021, , 283-319.		4
722	Microbial Endophytes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Sustainable Development and Biodiversity, 2021, , 35-75.	1.4	3
723	Biofertilizers: Mechanisms and application. , 2021, , 151-166.		14
724	Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production. , 2021, , 15-31.		5

#	Article	IF	CITATIONS
725	Protection of Photosynthesis by Halotolerant Staphylococcus sciuri ET101 in Tomato (Lycoperiscon) Tj ETQq0 0 Carboxylation and Oxygenation in Stress Mitigation. Frontiers in Microbiology, 2020, 11, 547750.	0 rgBT /0 1.5	verlock 10 Tf 30
726	Development of Biofertilizers and Microbial Consortium an Approach to Sustainable Agriculture Practices. Rhizosphere Biology, 2021, , 315-348.	0.4	1
727	1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in <i>Pseudomonas azotoformans</i> Is Associated with the Amelioration of Salinity Stress in Tomato. Journal of Agricultural and Food Chemistry, 2021, 69, 913-921.	2.4	16
728	Toward the mitigation of biotic and abiotic stresses through plant growth promoting rhizobacteria. , 2021, , 161-172.		1
729	Exploiting the potential of plant growth-promoting rhizobacteria in legume production. , 2021, , 1-32.		2
730	Biofertilizers: Microbes for Agricultural Productivity. Sustainable Development and Biodiversity, 2021, , 407-469.	1.4	3
731	Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat. BioMed Research International, 2021, 2021, 1-12.	0.9	9
732	Beneficial plant-associated bacteria modulate host hormonal system enhancing plant resistance toward abiotic stress. , 2021, , 113-151.		3
733	Soil microbiome to maximize the benefits to crop plants—a special reference to rhizosphere microbiome. , 2021, , 125-140.		0
734	Effect of substitution of chemical fertilizer by bioinoculants on plant performance and rhizospheric bacterial community: case study with Cajanus cajan. Brazilian Journal of Microbiology, 2021, 52, 373-386.	0.8	5
735	Plant Growth Stimulation by Microbial Consortia. Agronomy, 2021, 11, 219.	1.3	131
736	Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 2021, 13, 1140.	1.6	410
737	Signatures of signaling pathways underlying plant-growth promotion by fungi. , 2021, , 321-346.		3
738	Plant Growth Promoting Rhizobacteria in Amelioration of Abiotic Stresses: A Functional Interplay and Prospective. , 2021, , 25-49.		1
739	Plant Growth-Promoting Bacteria as a Natural Resource for Sustainable Rice Production under the Soil Salinity, Wastewater, and Heavy Metal Stress. , 0, , .		0
740	Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Ralstonia solanacearum: Current and future prospects. , 2021, , 153-180.		7
741	Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium. Current Microbiology, 2021, 78, 679-687.	1.0	3
742	FUNCTIONING OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) AND THEIR MODE OF ACTIONS: AN OVERVIEW FROM CHEMISTRY POINT OF VIEW. Plant Archives, 2021, 21, 628-634.	0.1	2

#	Article	IF	CITATIONS
743	Role of Plant Growth Hormones During Soil Water Deficit: A Review. , 2021, , 489-583.		2
744	Precision Agriculture to Ensure Sustainable Land Use for the Future. Advances in Public Policy and Administration, 2021, , 210-230.	0.1	1
745	Microbes Associated with Crops: Functional Attributes for Crop Productivity. Sustainable Development and Biodiversity, 2021, , 31-54.	1.4	2
746	Manoeuvring Soil Microbiome and Their Interactions: A Resilient Technology for Conserving Soil and Plant Health. , 2021, , 405-433.		1
747	Tripartite interactions: plant-Pseudomonas putida-microRNAs in agricultural productivity. , 2021, , 509-540.		1
748	Diversity and biological activity of culturable endophytic bacteria associated with marigold (<i>Calendula officinalis</i> L.). AIMS Microbiology, 2021, 7, 336-353.	1.0	11
749	Harnessing the Rhizomicrobiome Interactions for Plant Growth Promotion and Sustainable Agriculture: Mechanisms, Applications and Recent Advances. , 2021, , 499-528.		0
750	Dual Microbial Inoculation, a Game Changer? – Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Frontiers in Microbiology, 2020, 11, 600576.	1.5	40
751	Application of molecular biotechnology to manage biotic stress affecting crop enhancement and sustainable agriculture. Advances in Agronomy, 2021, 168, 39-81.	2.4	19
752	Endophytic Rhizobacteria for Mineral Nutrients Acquisition in Plants: Possible Functions and Ecological Advantages. Sustainable Development and Biodiversity, 2021, , 267-291.	1.4	1
753	The Harsh Environment and Resilient Plants: An Overview. , 2021, , 1-23.		3
754	Plant-microbe interaction: Relevance for phytoremediation of heavy metals. , 2021, , 263-275.		3
755	Potential application of endophytes in bioremediation of heavy metals and organic pollutants and growth promotion: mechanism, challenges, and future prospects. , 2021, , 91-121.		2
756	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference Series in Phytochemistry, 2021, , 1-26.	0.2	0
757	Role of PGPR in Conferring Drought Stress Tolerance in Rice. , 2021, , 425-448.		1
758	Biochemistry and Molecular Biology of the Enzyme ACC Deaminase. Advances in Environmental Microbiology, 2021, , 365-390.	0.1	3
759	Non-symbiotic Bacteria for Soil Nitrogen Fortification. Sustainable Agriculture Reviews, 2021, , 417-435.	0.6	1
760	Impact of microbial biofilm on crop productivity and agricultural sustainability. , 2021, , 451-469.		3

#	Article	IF	CITATIONS
π	Participation and understanding of plant microbes interaction in plant health and growth by	п	CHAHONS
761	combating mercury stress: a sustainable approach towards agricultural practices. , 2021, , 285-299.		1
762	Biofortification of Plants by Using Microbes. , 2021, , 141-166.		0
763	CRISPR applications in plant bacteriology: today and future perspectives. , 2021, , 551-577.		0
764	Thermotolerant Soil Microbes and Their Role in Mitigation of Heat Stress in Plants. Sustainable Development and Biodiversity, 2021, , 203-242.	1.4	6
765	Prospects of PGPR-Mediated Antioxidants and S and P Metabolism in Plants Under Drought Stress. , 2021, , 499-549.		1
766	Amelioration of Drought Stress Through PGPR-Mediated Regulation of Antioxidant Defensive Machinery. , 2021, , 199-218.		1
767	Potential role of heavy metal-resistant plant growth-promoting rhizobacteria in the bioremediation of contaminated fields and enhancement of plant growth essential for sustainable agriculture. , 2021, , 357-385.		1
768	Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 2021, 44, 1993-2028.	0.9	40
769	A phosphocompost amendment enriched with PGPR consortium enhancing plants growth in deficient soil. Communications in Soil Science and Plant Analysis, 2021, 52, 1236-1247.	0.6	4
770	Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Current Microbiology, 2021, 78, 1069-1085.	1.0	40
771	Growth and yield improvement of maize by ACC deaminase producing bacteria under dry soil conditions. IOP Conference Series: Earth and Environmental Science, 2021, 648, 012135.	0.2	0
772	Diversity and plant growth-promoting potential of (un)culturable bacteria in the Hedera helix phylloplane. BMC Microbiology, 2021, 21, 66.	1.3	10
773	Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Frontiers in Microbiology, 2021, 12, 616828.	1.5	23
774	Diazotroph Paenibacillus triticisoli BJ-18 Drives the Variation in Bacterial, Diazotrophic and Fungal Communities in the Rhizosphere and Root/Shoot Endosphere of Maize. International Journal of Molecular Sciences, 2021, 22, 1460.	1.8	19
775	RSM based optimization of plant growth promoting rhizobacteria and nitrogen dosage for enhanced growth and yield of mustard (<i>Brassica campestris</i> L.). Journal of Plant Nutrition, 0, , 1-17.	0.9	5
776	Endophytic <i>Bacillus, Enterobacter</i> , and <i>Klebsiella</i> enhance the growth and yield of maize. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 237-246.	0.3	14
777	Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Scientific Reports, 2021, 11, 4260.	1.6	13
778	Comparative assessment of multi-trait plant growth-promoting endophytes associated with cultivated and wild Oryza germplasm of Assam, India. Archives of Microbiology, 2021, 203, 2007-2028.	1.0	19

#	Article	IF	CITATIONS
779	Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18—A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum. Frontiers in Microbiology, 2021, 12, 628376.	1.5	53
780	Isolation of halo-tolerant bacteria with plant growth-promoting traits. IOP Conference Series: Earth and Environmental Science, 2021, 709, 012078.	0.2	0
781	Shifts in bacterial community in response to conservation management practices within a soybean production system. Biology and Fertility of Soils, 2021, 57, 575-586.	2.3	5
782	ABA analogue produced by Bacillus marisflavi modulates the physiological response of Brassica juncea L. under drought stress. Applied Soil Ecology, 2021, 159, 103845.	2.1	14
783	Structural and Functional Shift in Soil Bacterial Community in Response to Long-Term Compost Amendment in Paddy Field. Applied Sciences (Switzerland), 2021, 11, 2183.	1.3	12
784	Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. International Journal of Molecular Sciences, 2021, 22, 3154.	1.8	101
785	Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms, 2021, 9, 682.	1.6	58
786	Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms, 2021, 9, 687.	1.6	54
787	Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. International Journal of Molecular Sciences, 2021, 22, 3319.	1.8	16
788	In vitro compatibility evaluation of agriusable nanochitosan on beneficial plant growth-promoting rhizobacteria and maize plant. The National Academy of Sciences, India, 2021, 44, 555-559.	0.8	32
789	Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere. Archives of Microbiology, 2021, 203, 2279-2290.	1.0	21
790	Effect of Bacillus megaterium var. phosphaticum Bacteria and L-Alpha Proline Amino Acid on Iron Content in Soil and Triticum aestivum L. Plants in Sustainable Agriculture System. Agronomy, 2021, 11, 511.	1.3	3
791	The multifaceted plant-beneficial rhizobacteria toward agricultural sustainability. Plant Protection Science, 2021, 57, 95-111.	0.7	7
792	Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Current Microbiology, 2021, 78, 1335-1343.	1.0	13
793	Efficacy of Biostimulants Formulated With Pseudomonas putida and Clay, Peat, Clay-Peat Binders on Maize Productivity in a Farming Environment in Southern Benin. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	7
794	Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Frontiers in Microbiology, 2021, 12, 645784.	1.5	1
795	Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiological Research, 2021, 245, 126691.	2.5	21
796	Minimizing the Adversely Impacts of Water Deficit and Soil Salinity on Maize Growth and Productivity in Response to the Application of Plant Growth-Promoting Rhizobacteria and Silica Nanoparticles. Agronomy, 2021, 11, 676.	1.3	66

#	Article	IF	CITATIONS
797	Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot. Plants, 2021, 10, 872.	1.6	30
798	Microbiome for sustainable agriculture: a review with special reference to the corn production system. Archives of Microbiology, 2021, 203, 2771-2793.	1.0	13
799	Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L) DC. in response to water deficit. Journal of Biotechnology, 2021, 331, 53-62.	1.9	26
800	Growth-Promoting Potential of Rhizobacteria Isolated From Sugarcane. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	3
801	Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 2021, 161, 74-85.	2.8	48
802	Daucus carota L. Seed Inoculation with a Consortium of Bacteria Improves Plant Growth, Soil Fertility Status and Microbial Community. Applied Sciences (Switzerland), 2021, 11, 3274.	1.3	8
803	Comparative Genomic Analysis of Arctic Permafrost Bacterium Nesterenkonia sp. PF2B19 to Gain Insights into Its Cold Adaptation Tactic and Diverse Biotechnological Potential. Sustainability, 2021, 13, 4590.	1.6	2
805	Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of <i>Pinus sylvestris</i> var. <i>mongolica</i> seedlings. Scandinavian Journal of Forest Research, 2021, 36, 249-262.	0.5	17
806	Plant Growth Promotion and Induction of Systemic Tolerance to Drought and Salt Stress of Plants by Quorum Sensing Auto-Inducers of the N-acyl-homoserine Lactone Type: Recent Developments. Frontiers in Plant Science, 2021, 12, 683546.	1.7	17
807	Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules, 2021, 11, 698.	1.8	75
808	Endophytic Bacterial Isolates From Halophytes Demonstrate Phytopathogen Biocontrol and Plant Growth Promotion Under High Salinity. Frontiers in Microbiology, 2021, 12, 681567.	1.5	25
809	Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes. Frontiers in Plant Science, 2021, 12, 669693.	1.7	52
810	Potential of Bacterial Strains Isolated from Ironstone Outcrops Bromeliads to Promote Plant Growth Under Drought Conditions. Current Microbiology, 2021, 78, 2741-2752.	1.0	4
811	Is phosphate solubilizing ability in plant growthâ€promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase?. Journal of Applied Microbiology, 2021, 131, 2416-2432.	1.4	13
812	Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. Plants, 2021, 10, 935.	1.6	100
813	Inoculation of Klebsiella variicola Alleviated Salt Stress and Improved Growth and Nutrients in Wheat and Maize. Agronomy, 2021, 11, 927.	1.3	56
814	Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech, 2021, 11, 267.	1.1	21
815	Development of an inexpensive matrix-assisted laser desorption—time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ, 2021, 9, e11359.	0.9	7

#	Article	IF	CITATIONS
816	Bazı Mikrobiyal Gübrelerin Şeker Pancarında (Beta vulgaris var. saccharifera L.) Verim, Klorofil İndeksi ve Şeker İçeriğine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 2021, 58, 163-170.	0.1	1
818	Roles of Plant Endosphere Microbes in Agriculture-A Review. Journal of Plant Growth Regulation, 2022, 41, 1411-1428.	2.8	22
819	Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiological Research, 2021, 247, 126729.	2.5	14
820	The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology, 2021, 10, 520.	1.3	115
821	Orchid Root Associated Bacteria: Linchpins or Accessories?. Frontiers in Plant Science, 2021, 12, 661966.	1.7	10
822	Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102057.	1.5	3
823	Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. Agronomy, 2021, 11, 1167.	1.3	67
824	Chitosan and salicylic acid regulate morpho-physiological and phytochemical parameters and improve water-deficit tolerance in milk thistle (Silybum marianum L.). Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	8
826	Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 2021, 18, 100332.	1.4	25
827	Large-scale screening of rhizobacteria to enhance the chickpea-Mesorhizobium symbiosis using a plant-based strategy. Rhizosphere, 2021, 18, 100361.	1.4	9
828	Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance. Scientific Reports, 2021, 11, 13307.	1.6	37
829	The fate of sulfonamides in the process of phytoremediation in hydroponics. Water Research, 2021, 198, 117145.	5.3	27
830	Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. Plant Physiology and Biochemistry, 2021, 163, 139-153.	2.8	31
831	Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	83
832	Establishment of protocol for genetic transformation of carnation with 1-aminocyclopropane-carboxylate deaminase (acdS) gene. Journal of Plant Biotechnology, 2021, 48, 93-99.	0.1	1
833	Evaluation of Indigenous Olive Biocontrol Rhizobacteria as Protectants against Drought and Salt Stress. Microorganisms, 2021, 9, 1209.	1.6	8
834	Salt and drought stress tolerance with increased biomass in transgenic Pelargonium graveolens through heterologous expression of ACC deaminase gene from Achromobacter xylosoxidans. Plant Cell, Tissue and Organ Culture, 2021, 147, 297-311.	1.2	9
835	Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. Environmental Pollution, 2021, 279, 116909.	3.7	16

#	ARTICLE	IF	CITATIONS
836	ACC deaminase positive Enterobacter-mediated mitigation of salinity stress, and plant growth promotion of Cajanus cajan: a lab to field study. Physiology and Molecular Biology of Plants, 2021, 27, 1547-1557.	1.4	9
837	Insights into the Endophytic Bacterial Microbiome of Crocus sativus: Functional Characterization Leads to Potential Agents that Enhance the Plant Growth, Productivity, and Key Metabolite Content. Microbial Ecology, 2022, 83, 669-688.	1.4	15
839	The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. 3 Biotech, 2021, 11, 382.	1.1	17
840	Recent Developments in the Study of Plant Microbiomes. Microorganisms, 2021, 9, 1533.	1.6	84
841	Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 2021, 31, 527-544.	1.3	18
842	Isolation of Endophytic Salt-Tolerant Plant Growth-Promoting Rhizobacteria From Oryza sativa and Evaluation of Their Plant Growth-Promoting Traits Under Salinity Stress Condition. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	18
843	Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants, 2021, 10, 1533.	1.6	61
844	Different Capability of Native and Non-native Plant Growth-Promoting Bacteria to Improve Snap Bean Tolerance to Ozone. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	1
845	Isolation and Characterization of Pseudomonas chlororaphis Strain ST9; Rhizomicrobiota and in Planta Studies. Plants, 2021, 10, 1466.	1.6	7
847	Efficacy of Plant Growth-Promoting Bacteria Bacillus cereus YN917 for Biocontrol of Rice Blast. Frontiers in Microbiology, 2021, 12, 684888.	1.5	29
848	Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites, 2021, 11, 457.	1.3	28
849	Plant Growth-Promoting Activity Characteristics of <i>Bacillus</i> Strains in the Rhizosphere. Microbiology and Biotechnology Letters, 2021, , .	0.2	Ο
850	Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276, 130038.	4.2	47
851	Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, 2021, 9, .	1.5	17
852	Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 2021, 249, 126771.	2.5	31
853	Microbial Ecology of Qatar, the Arabian Gulf: Possible Roles of Microorganisms. Frontiers in Marine Science, 2021, 8, .	1.2	3
854	Characterization of plant growth-promoting traits of Enterobacter sp. and its ability to promote cadmium/lead accumulation in Centella asiatica L Environmental Science and Pollution Research, 2022, 29, 4101-4115.	2.7	12
855	Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 2022, 45, 273-299.	0.9	24

ARTICLE IF CITATIONS Microbial enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: An elixir for plant under 856 1.3 10 stress. Physiological and Molecular Plant Pathology, 2021, 115, 101664. Potential of Halophilic/Halotolerant Bacteria in Enhancing Plant Growth Under Salt Stress. Current 1.0 9 Microbiology, 2021, 78, 3708-3719. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta, 2021, 859 1.6 19 254, 49. Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. 860 Chemosphere, 2021, 277, 130272. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic 861 2.5 38 phytotoxicity: A review. Microbiological Research, 2021, 250, 126809. Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. 1.5 Frontiers in Microbiology, 2021, 12, 752288. Eficiência de inoculante contendo Bacillus megaterium (B119) e Bacillus subitilis (B2084) para a cultura do milho, associado à fertilização fosfatada. Research, Society and Development, 2021, 10, 863 0.0 4 e431101220920. Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic 864 1.8 Pollutants Posing a Public Health Hazard. International Journal of Molecular Sciences, 2021, 22, 9557. A Consortium of Rhizosphere-Competent Actinobacteria Exhibiting Multiple Plant Growth-Promoting 865 Traits Improves the Growth of Avicennia marina in the United Arab Emirates. Frontiers in Marine 1.2 17 Science, 2021, 8, . Prospecting Endophytic Bacteria Endowed With Plant Growth Promoting Potential Isolated From 1.5 Camellia sinensis. Frontiers in Microbiology, 2021, 12, 738058. Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 2021, 867 1.7 58 12,741804. Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from 868 1.0 mercurý-contaminated soil. Bioremediation Journal, 2022, 26, 208-227. Genome analysis of a salinity adapted Achromobacter xylosoxidans rhizobacteria from the date palm. 869 1.4 9 Rhizosphere, 2021, 19, 100401. Inoculation of ACC Deaminase-Producing Brevibacterium linens RS16 Enhances Tolerance against 870 1.6 Combined UV-B Radiation and Heat Stresses in Rice (Oryza sativa L.). Sustainability, 2021, 13, 10013. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated 871 Sites: A Comprehensive Review of Effects and Mechanisms. International Journal of Molecular 149 1.8 Sciences, 2021, 22, 10529. Identification, evaluation and selection of a bacterial endophyte able to colonise tomato plants, enhance their growth and control Xanthomonas vesicatoria, the causal agent of the spot disease. Canadian Journal of Plant Pathology, 0, , . The <scp>ACC</scp> deaminaseâ€producing plant growthâ€promoting bacteria: Influences of bacterial strains and <scp>ACC</scp> deaminase activities in plant tolerance to abiotic stress. Physiologia 873 2.6 30 Plantarum, 2021, 173, 1992-2012. Halotolerant-Koccuria rhizophila (14asp)-Induced Amendment of Salt Stress in Pea Plants by Limiting 874 1.3 Na+ Uptake and Elevating Production of Antioxidants. Agronomy, 2021, 11, 1907.

#	Article	IF	CITATIONS
875	Interactive Effect of Organic and Inorganic Amendments along with Plant Growth Promoting Rhizobacteria on Ameliorating Salinity Stress in Maize. , 0, , .		0
876	Can Bacterial Endophytes Be Used as a Promising Bio-Inoculant for the Mitigation of Salinity Stress in Crop Plants?—A Global Meta-Analysis of the Last Decade (2011–2020). Microorganisms, 2021, 9, 1861.	1.6	23
877	Bio-prospecting of ACC deaminase producing Rhizobacteria towards sustainable agriculture: A special emphasis on abiotic stress in plants. Applied Soil Ecology, 2021, 168, 104142.	2.1	31
878	Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L South African Journal of Botany, 2021, 143, 238-247.	1.2	14
879	Ectopic expression of bacterial 1-aminocyclopropane 1-carboxylate deaminase in Chlamydomonas reinhardtii enhances algal biomass and lipid content under nitrogen deficit condition. Bioresource Technology, 2021, 341, 125830.	4.8	4
880	Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria Achromobacter sp Journal of Hazardous Materials, 2022, 423, 127036.	6.5	29
881	Microbial Endophytes: New Direction to Natural Sources. Sustainable Development and Biodiversity, 2021, , 123-155.	1.4	3
882	Approach Towards Sustainable Crop Production by Utilizing Potential Microbiome. Microorganisms for Sustainability, 2021, , 239-257.	0.4	0
883	Phytobiomes and bioremediation. , 2021, , 301-316.		0
884	Antioxidant defense systems in bioremediation of organic pollutants. , 2021, , 505-521.		3
885	Plant microbe interaction for changing endophytic colonization to improve plant productivity. , 2021, , 137-147.		5
886	Perspectives of future water sources in Qatar by phytoremediation: biodiversity at ponds and modern approach. International Journal of Phytoremediation, 2021, 23, 866-889.	1.7	6
887	Biofertilizer: An Eco-friendly Approach for Sustainable Crop Production. , 2021, , 647-669.		2
888	Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower. Frontiers in Plant Science, 2020, 11, 621740.	1.7	20
889	Plant–Rhizobacteria Interactions to Induce Biotic and Abiotic Stress Tolerance in Plants. Rhizosphere Biology, 2021, , 1-18.	0.4	1
890	Belowground dialogue between plant roots and beneficial microbes. , 2021, , 141-158.		1
891	Role of the endogenous fungal metabolites in the plant growth improvement and stress tolerance. , 2021, , 381-401.		8
893	Rhizobacters as Remedy of Stress Tolerance in Potato. , 2021, , 395-412.		0

#	Article	IF	CITATIONS
895	Molecular mechanism and signaling pathways interplay between plant hormones during plant-microbe crosstalk. , 2021, , 93-105.		3
896	Status of biofertilizer research, commercialization, and practical applications: A global perspective. , 2021, , 191-208.		2
897	Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Science Today, 2021, 8, 66-71.	0.4	26
898	Physiological and molecular mechanisms in improving salinity stress tolerance by beneficial microorganisms in plants. , 2021, , 13-43.		0
899	PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	129
900	Remediation of salt affected soils through microbes to promote organic farming. , 2021, , 75-92.		2
901	Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv.) Tj ETQq0 0 16, 3.	0 rgBT /C 2.2	overlock 10 T 20
902	Seed-inhabiting endophytes: Their role in plant development and disease protection. , 2021, , 35-44.		2
903	Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean (Glycine max (L.) Merr.) under Drought Stress. International Journal of Environmental Research and Public Health, 2021, 18, 931.	1.2	65
904	Fast Screening of Bacteria for Plant Growth Promoting Traits. Methods in Molecular Biology, 2021, 2232, 61-75.	0.4	9
905	Genomics and Post-genomics Approaches for Elucidating Molecular Mechanisms of Plant Growth-Promoting Bacilli. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 161-200.	0.6	6
906	Plant Growth Promotion by ACC Deaminase-Producing Bacilli Under Salt Stress Conditions. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 81-95.	0.6	7
907	Bacillus subtilis-Mediated Abiotic Stress Tolerance in Plants. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 97-133.	0.6	7
908	Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Sustainable Development and Biodiversity, 2019, , 11-44.	1.4	7
909	Utilization of Endophytic Bacteria Isolated from Legume Root Nodules for Plant Growth Promotion. Sustainable Development and Biodiversity, 2019, , 145-176.	1.4	5
910	The Role of Rhizobacterial Volatile Organic Compounds in a Second Green Revolution—The Story so Far. Sustainable Development and Biodiversity, 2019, , 191-220.	1.4	2
911	Plant Viral Diseases in Egypt and Their Control. , 2020, , 403-421.		5
912	Vermicomposting: An Eco-Friendly Approach for Recycling/Management of Organic Wastes. , 2020, , 167-187.		11

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
913	Plant Microbial Ecology as a Potential Option for Stress Management in Plants. , 2020,	, 331-360.		5
914	Plant Microbiome: Trends and Prospects for Sustainable Agriculture. , 2020, , 129-151.			10
915	Alleviation of Stress-Induced Ethylene-Mediated Negative Impact on Crop Plants by Bac Deaminase: Perspectives and Applications in Stressed Agriculture Management. Sustai Development and Biodiversity, 2020, , 287-315.	cterial ACC nable	1.4	12
916	Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Appl Plant Growth and Mitigation of Salt Stress. Sustainable Development and Biodiversity,	ication for 2020, , 317-349.	1.4	5
917	Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats. Development and Biodiversity, 2020, , 381-424.	Sustainable	1.4	12
918	Clobal Scenario of Plant–Microbiome for Sustainable Agriculture: Current Advancem Challenges. Sustainable Development and Biodiversity, 2020, , 425-443.	ents and Future	1.4	9
919	Plant Microbiome and Its Important in Stressful Agriculture. , 2020, , 13-48.			12
920	Bioremediation Strategies Employed by Pseudomonas Species. Sustainable Developme Biodiversity, 2015, , 351-383.	ent and	1.4	3
921	Azospirillum sp. as a Challenge for Agriculture. Sustainable Development and Biodivers	ity, 2015, , 29-51.	1.4	10
922	Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Trai Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. Sustain Development and Biodiversity, 2015, , 183-258.		1.4	52
923	Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Production Under Stress Conditions. , 2017, , 81-97.	e Crop		5
924	Perspectives of Plant Growth Promoting Rhizobacteria in Growth Enhancement and Su Production of Tomato. , 2017, , 125-149.	stainable		17
925	Nitrogenase (a Key Enzyme): Structure and Function. Soil Biology, 2017, , 293-307.		0.6	6
926	Rhizobium in Rice Yield and Growth Enhancement. Soil Biology, 2017, , 83-103.		0.6	6
927	A Thorough Comprehension of Host Endophytic Interaction Entailing the Biospherical I Metabolomic Perspective. Reference Series in Phytochemistry, 2019, , 657-675.	3enefits: A	0.2	2
928	Nano-biofertilizers: Harnessing Dual Benefits of Nano-nutrient and Bio-fertilizers for En Nutrient Use Efficiency and Sustainable Productivity. , 2019, , 51-73.	hanced		17
929	An Evolutionary Perspective on the Plant Hormone Ethylene. , 2015, , 109-134.			4
930	PGPR-Mediated Amelioration of Crops Under Salt Stress. , 2016, , 205-226.			26

#	Article	IF	CITATIONS
931	Biotechnological Strategies for Remediation of Toxic Metal(loid)s from Environment. , 2017, , 315-359.		8
932	Plant Growth-Promoting Rhizobacteria: Benign and Useful Substitute for Mitigation of Biotic and Abiotic Stresses. Microorganisms for Sustainability, 2019, , 81-101.	0.4	8
933	Rhizospheric Microflora: A Natural Alleviator of Drought Stress in Agricultural Crops. Microorganisms for Sustainability, 2019, , 103-115.	0.4	8
934	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1
935	Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. , 2020, , 215-245.		30
936	Potentiality of Plant Growth-Promoting Rhizobacteria in Easing of Soil Salinity and Environmental Sustainability. , 2019, , 21-58.		3
937	Field Application of Rhizobial Inoculants in Enhancing Faba Bean Production in Acidic Soils: An Innovative Strategy to Improve Crop Productivity. , 2019, , 147-180.		3
938	Biosynthesized Secondary Metabolites for Plant Growth Promotion. , 2020, , 217-250.		3
939	Climate Change Influences the Interactive Effects of Simultaneous Impact of Abiotic and Biotic Stresses on Plants. , 2020, , 1-50.		7
940	Plant-Microbe Interactions in Wastewater-Irrigated Soils. , 2020, , 673-699.		1
941	Halotolerant Microbes for Amelioration of Salt-Affected Soils for Sustainable Agriculture. Environmental and Microbial Biotechnology, 2020, , 323-343.	0.4	5
942	Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. Environmental and Microbial Biotechnology, 2020, , 147-203.	0.4	65
943	Impact of Nanoparticles on PGPR and Soil Nutrient Contents. , 2020, , 247-257.		3
944	Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress. Microorganisms for Sustainability, 2020, , 105-150.	0.4	1
945	Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress. Microorganisms for Sustainability, 2020, , 151-178.	0.4	1
946	Endophytic Microbiomes: Biodiversity, Current Status, and Potential Agricultural Applications. Microorganisms for Sustainability, 2020, , 61-82.	0.4	4
947	Culturable Plant-Associated Endophytic Microbial Communities from Leguminous and Nonleguminous Crops. Microorganisms for Sustainability, 2020, , 83-103.	0.4	2
948	Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. Rhizosphere Biology, 2021, , 1-49.	0.4	9

		CITATION REPORT	
#	Article	IF	CITATIONS
949	Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. Rhizosphere Biology, 2021, , 195-2	16. 0.4	15
950	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.	0.4	12
951	Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health. Environmental and Microbial Biotechnology, 2021, , 245-278.	0.4	8
952	Plant Growth-Promoting Rhizospheric Microbes for Remediation of Saline Soils. Microorganisms for Sustainability, 2019, , 121-146.	0.4	10
953	Plantâ \in "microbe interactions in plants and stress tolerance. , 2020, , 355-396.		14
954	The role of microbial signals in plant growth and development: Current status and future prospects. 2020, , 225-242.		5
955	Antagonistic activity of combined bacteria strains against southern blight pathogen of Dendrobium officinale. Biological Control, 2020, 151, 104291.	1.4	15
956	Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 2020, 178, 104124.	2.0	176
957	Ultraviolet B radiation-mediated stress ethylene emission from rice plants is regulated by 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria. Pedosphere, 2022, 32, 364-368.	2.1	7
958	Isolation and characterization of novel soil- and plant-associated bacteria with multiple phytohormone-degrading activities using a targeted methodology. Access Microbiology, 2019, 1, e000053.	0.2	24
962	Exploitation of PGPR Endophytic <i>Burkholderia</i> Isolates to Enha Organic Agriculture. American Journal of BioScience, 2020, 8, 57.	nce 0.3	4
963	Effects of Increased 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity in <i>Bradyrhizobium</i> sp. SUTN9-2 on Mung Bean Symbiosis under Water Deficit Condit Microbes and Environments, 2020, 35, n/a.	ions. 0.7	7
964	Maize Phyllosphere Microbial Community Niche Development Across Stages of Host Leaf Growth. F1000Research, 0, 6, 1698.	0.8	3
965	Maize Phyllosphere Microbial Community Niche Development Across Stages of Host Leaf Growth. F1000Research, 2017, 6, 1698.	0.8	15
966	Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste, 2015, 102, 465-478.	0.3	185
967	New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE, 2014, 9, e99168.	1.1	206
968	Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS ONE, 2016, 11, e0150322.	1.1	42
969	Amelioration of Salt Tolerance in Soybean (Glycine Max. L) by Plant-Growth Promoting Endophytic Bacteria Produce 1-Aminocyclopropane-1-Carboxylase Deaminase. Annales Bogorienses, 2018, 22, 8	31. 0.4	5

#	Article	IF	CITATIONS
970	Potential of Panamanian aromatic flora as a source of novel essential oils. Biodiversity International Journal, 2018, 2, 405-413.	0.6	4
971	Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Research, 2015, , .	0.0	4
972	The Rhizosphere Microbiome And Its Beneficial Effects On Plants – Current Knowledge And Perspectives. Postepy Mikrobiologii, 2019, 58, 59-69.	0.1	9
973	Endophytic Bacteria In The Phytodegradation Of Persistent Organic Pollutants. Postepy Mikrobiologii, 2019, 58, 70-79.	0.1	2
975	Plant Growth Promoting Rhizobacteria (PGPR) - Prospective and Mechanisms: A Review. Journal of Pure and Applied Microbiology, 2018, 12, 733-749.	0.3	31
976	Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. Journal of Pure and Applied Microbiology, 2020, 14, 73-92.	0.3	16
977	Characterization of Abiotic Stress Tolerant Rhizobia as PGPR of Mothbean, Clusterbean and Mungbean Grown in Hyper-arid Zone of Rajasthan. International Journal of Bio-resource and Stress Management, 2017, 8, 309-315.	0.1	7
978	PGPR-Induced Growth Stimulation and Nutrient Acquisition in Maize: Do Root Hairs Matter?. Scientia Agriculturae Bohemica, 2018, 49, 164-172.	0.3	12
979	The Protective Role of Silicon in Sugarcane Under Water Stress: Photosynthesis and Antioxidant Enzymes. Biomedical Journal of Scientific & Technical Research, 2019, 15, .	0.0	25
980	Biyotik Stres Altındaki Bitkilerde Endofit Bakterilerin Hastalık ve Bitki Gelişimi Üzerine Etkileri. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 200-208.	0.1	7
981	Bacillus amyloliquefaciens and Alcaligenes faecalis with biogas slurry improved maize growth and yield in saline-sodic field. Pakistan Journal of Botany, 2020, 52, .	0.2	4
982	Exploitation of endophytic Pseudomonas sp. for plant growth promotion and colonization in rice. Journal of Applied and Natural Science, 2017, 9, 1310-1316.	0.2	5
983	Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Frontiers in Microbiology, 2020, 11, 614194.	1.5	24
984	Bitki Probiyotik Bakteriler: Bitkiler Üzerindeki Rolleri ve Uygulamalar. International Journal of Life Sciences and Biotechnology, 2019, 2, 1-15.	0.2	5
985	Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiology, 2017, 3, 335-353.	1.0	24
986	Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiology, 2017, 3, 354-364.	1.0	18
987	Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 2017, 3, 502-524.	1.0	48
988	Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiology, 2017, 3, 629-648.	1.0	53

ARTICLE IF CITATIONS Identification of Endophytic Bacteria and their Characterization as Biocontrol Agents against Tomato 989 0.2 3 Southern Blight Disease. Applied Microbiology Open Access, 2016, 02, . Isolation and Identification of Bacterial Endophytes from Grasses along the Oregon Coast. American 990 0.3 Journal of Plant Sciences, 2017, 08, 574-601. Kinetic studies using a linear regression analysis for a sorption phenomenon of 991 17a-methyltestosterone by Salvinia cucullata in an active plant reactor. Environmental Engineering 1.5 8 Research, 2016, 21, 384-392. Halo-thermophilic bacteria and heterocyst cyanobacteria found adjacent to halophytes at Sabkhas, Qatar: Preliminary study and possible roles. Áfrican Journal of Microbiology Research, 2017, 11, 992 1346-1354. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease 994 2.8 81 management. ELife, 2017, 6, . COREMIC: a web-tool to search for a niche associated CORE MICrobiome. PeerJ, 2018, 6, e4395. 996 Phytobiomes are compositionally nested from the ground up. PeerJ, 2019, 7, e6609. 0.9 31 Transgenic<i>Arabidopsis</i>Expressing<i>acdS</i>Gene of<i>Pseudomonas veronii-</i>KJ Alleviate the 997 0.3 Adverse Effects of Salt and Water-Logging Stress. Plant Breeding and Biotechnology, 2018, 6, 221-232. Extremophiles in Saline Environment: Potential for Sustainable Agriculture. Microorganisms for 998 0.4 0 Sustainability, 2021, , 1-16. 999 Climate Changes in Soil Microorganismâ€"Plant Interactions. Soil Biology, 2021, , 187-198. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1000 1-Aminocyclopropane-1-Carboxylate Deaminase. International Journal of Molecular Sciences, 2021, 22, 17 1.8 11461. Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil 1.8 and Plant Health by Beneficial Rhizobacteria. Stresses, 2021, 1, 200-222 Application of Deep Learning in Plantâ€"Microbiota Association Analysis. Frontiers in Genetics, 2021, 12, 1003 1.1 17 697090. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease. Plants, 1004 1.6 2021, 10, 2125. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review 1005 4.2 133 of literature. Chemosphere, 2022, 288, 132555. Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their 23 Growth-Promoting Abilities. Microorganisms, 2021, 9, 2203. Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. 1007 1.6 76 Sustainability, 2021, 13, 10986. <scp>ACC</scp> deaminaseâ€producing <i>Brevibacterium linens</i><scp>RS16</scp> enhances heatâ€stress tolerance of rice (<i>Oryza sativa</i> L.). Physiologia Plantarum, 2022, 174, .

#	Article	IF	CITATIONS
1009	Effectiveness of Augmentative Biological Control of Streptomyces griseorubens UAE2 Depends on 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity against Neoscytalidium dimidiatum. Journal of Fungi (Basel, Switzerland), 2021, 7, 885.	1.5	16
1010	Removal of lindane in liquid culture using soil bacteria and toxicity assessment in human skin fibroblast and HCT116 cell lines. Environmental Technology (United Kingdom), 2023, 44, 1213-1227.	1.2	3
1011	ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. Journal of Plant Physiology, 2021, 267, 153544.	1.6	27
1012	Potential advantage of rhizosheath microbiome, in contrast to rhizosphere microbiome, to improve drought tolerance in crops. Rhizosphere, 2021, 20, 100439.	1.4	14
1013	Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR- Bacillus amyloliquefaciens through Antioxidant defense system. Microbiological Research, 2021, 253, 126891.	2.5	39
1014	Isolation and Characterization of PGPR from Roots of Ficus religiosa growing on Concrete Walls and its Effect on Plant Growth in Drought Condition. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 583-593.	0.0	4
1015	Chapter 7 Rhizobacteria. , 2016, , 241-262.		1
1016	Growth Improvement Studies in BrassicaRapa. Journal of Bacteriology & Mycology Open Access, 2016, 3,	0.2	0
1017	DIFFERENCES IN NITROGEN AND PHOSPHORUS UPTAKE AND YIELD COMPONENTS BETWEEN BARLEY CULTIVARS GROWN UNDER ARBUSCULAR MYCORRHIZAL FUNGUS AND PSEUDOMONAS STRAINS CO-INOCULATION IN RAINFED CONDITION. Applied Ecology and Environmental Research, 2017, 15, 195-216.	0.2	4
1020	Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research, 2017, 6, 1698.	0.8	5
1021	HONGOS FITOPATÓGENOS MODULAN LA EXPRESIÓN DE LOS GENES ANTIMICROBIANOS phID Y hcnC DE LA RIZOBACTERIA Pseudomonas fluorescens UM270. Biotecnia, 2018, 20, 110-116.	0.1	2
1022	Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants. Korean Journal of Organic Agricultue, 2018, 26, 463-475.	0.0	5
1024	Cadmium Stress Tolerance in Plants and Role of Beneficial Soil Microorganisms. Microorganisms for Sustainability, 2019, , 213-234.	0.4	2
1025	Microbe-Mediated Abiotic Stress Alleviation: Molecular and Biochemical Basis. , 2019, , 263-281.		1
1026	Microbial Rhizobacteria-Mediated Signalling and Plant Growth Promotion. , 2019, , 35-58.		1
1027	Rhizobacteria–Plant Interaction, Alleviation of Abiotic Stresses. Microorganisms for Sustainability, 2019, , 345-353.	0.4	3
1028	Interaction of Rhizobacteria with Soil Microorganisms: An Agro-Beneficiary Aspect. Microorganisms for Sustainability, 2019, , 241-259.	0.4	1
1029	Identification of Plant Growth Promoting Rhizobacteria as Biofertilizer for Salt Stress Environment. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2633-2645.	0.0	0

#	Article	IF	CITATIONS
1030	Problem of Mercury Toxicity in Crop Plants: Can Plant Growth Promoting Microbes (PGPM) Be an Effective Solution?. Sustainable Development and Biodiversity, 2019, , 253-278.	1.4	24
1031	Intoxication of Mesotrione in Corn Inoculated with Azospirillum brasilense and with Application of Plant Growth Regulators. Planta Daninha, 0, 37, .	0.5	0
1033	In Sustainable Agriculture: Assessment of Plant Growth Promoting Rhizobacteria in Cucurbitaceous Vegetable Crops. Sustainable Development and Biodiversity, 2019, , 69-103.	1.4	1
1034	Microbial Diversity in Soil: Biological Tools for Abiotic Stress Management in Plants. , 2019, , 283-321.		2
1035	Role of Plant-Microbe Interaction in Phytoremediation. , 2019, , 83-118.		5
1036	Vpliv koristnih talnih mikroorganizmov in endofitov na rastlinsko obrambo pred žuželkami. Acta Agriculturae Slovenica, 2019, 113, 187.	0.2	0
1037	Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae). Revista De Biologia Tropical, 2019, 67, .	0.1	5
1038	bacterial species with plant-growth-promoting, biotic and abiotic stress tolerance properties. Journal of Science, 2020, 10, 21.	0.4	0
1040	FIELD EVALUATION OF RHIZOBACTERIAL INOCULANTS IN COMBINATION WITH HUMIC SUBSTANCES TO IMPROVE SEED AND OIL YIELDS OF SAFFLOWER (CARTHAMUS TINCTORIUS L.) UNDER IRRIGATED AND RAINFED CONDITIONS. Applied Ecology and Environmental Research, 2020, 18, 6377-6403.	0.2	1
1042	Detección de los genes phID y hcnC en bacterias antagonistas productoras de sideróforos asociadas a Rubus fruticosus L Nova Scientia, 2020, 12, .	0.0	0
1044	Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A review. Research, Society and Development, 2020, 9, .	0.0	7
1045	Isolation, Screening and Identification of Plant Growth-Promoting Endophytic Bacteria from Theobroma cacao. Biosaintifika: Journal of Biology & Biology Education, 2020, 12, 155-162.	0.1	4
1046	Inoculation Effects in the Rhizosphere: Diversity and Function. Rhizosphere Biology, 2021, , 339-356.	0.4	2
1047	Brassica Species in Phytoextractions: Real Potentials and Challenges. Plants, 2021, 10, 2340.	1.6	19
1048	The Effect of Rhizophagus irregularis, Bacillus subtilis and Water Regime on the Plant–Microbial Soil System: The Case of Lactuca sativa. Agronomy, 2021, 11, 2183.	1.3	4
1049	Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase (acdS) Gene in Petunia hybrida Improves Tolerance to Abiotic Stresses. Frontiers in Plant Science, 2021, 12, 737490.	1.7	11
1050	Microbe-Mediated Drought Tolerance in Plants: Current Developments and Future Challenges. Sustainable Development and Biodiversity, 2020, , 351-379.	1.4	9
1051	Isolation and Characterization of Plant Growth Promoting Rhizospheric Bacteria From Limonium stocksii. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
1052	Microbial ACC-Deaminase Attributes: Perspectives and Applications in Stress Agriculture. Microorganisms for Sustainability, 2020, , 65-83.	0.4	1
1053	Domateste Alternaria solani (Ell. & G. Martin) Sor.'ye Karşı Bazı Endofit Bakterilerin Etkisi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 0, , 469-477.	0.1	4
1054	Role of Endophytes in Plant Disease Management. , 2021, , 399-424.		2
1055	Efeito da co-inoculação de bactérias promotoras de crescimento na cultura da soja. Research, Society and Development, 2020, 9, e39291211360.	0.0	2
1056	Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects. Microbiology and Biotechnology Letters, 2020, 48, 399-421.	0.2	3
1058	Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiological Research, 2022, 254, 126901.	2.5	43
1059	Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiological Research, 2022, 254, 126896.	2.5	5
1060	Role of microorganism as new generation plant bio-stimulants: An assessment. , 2022, , 1-16.		1
1061	Bacterial inoculants improved the growth and nitrogen use efficiency of Pyrus betulifolia under nitrogen-limited conditions by affecting the native soil bacterial communities. Applied Soil Ecology, 2022, 170, 104285.	2.1	11
1062	Something old, something new: Conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Current Opinion in Plant Biology, 2022, 65, 102116.	3.5	28
1063	Role of Plant Growth Promoting Rhizosphere (PGPR) on Molecular Mechanisms Transporters Under Heavy Metal Stress. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 71-84.	0.3	0
1064	Modelo sostenible de producción de carne bovina en la región Caribe de Colombia. , 2019, , .		2
1065	Role of Beneficial Microbes in the Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences, 2020, , 227-262.	0.4	1
1066	Signaling in the Rhizosphere for Better Plant and Soil Health. Microorganisms for Sustainability, 2020, , 149-173.	0.4	4
1067	Metagenomics in Agriculture: State-of-the-Art. , 2020, , 167-187.		3
1068	Mighty Microbes: Plant Growth Promoting Microbes in Soil Health and Sustainable Agriculture. Soil Biology, 2020, , 243-264.	0.6	6
1069	Modulating Phytohormone Levels. , 2020, , 139-180.		1
1070	Plant-Microbe Interactions under Adverse Environment. , 2020, , 717-751.		1

#	Article	IF	Citations
1071	Metagenomic Insights Into Interactions Between Plant Nematodes and Endophytic Microbiome. , 2020, , 95-124.		1
1072	Portraying Microbial Beneficence for Ameliorating Soil Health and Plant Growth. Soil Biology, 2020, , 287-312.	0.6	0
1074	Microbial Bioagents in Agriculture: Current Status and Prospects. , 2020, , 331-368.		7
1075	In vitro Suppression Effects of Rhizobacteria against Pseudomonas syringae pv. tomato the Agent of Bacterial Speck Disease of Tomato. Turkish Journal of Agricultural and Natural Sciences, 2020, 7, 283-289.	0.1	0
1076	The influence of bacteria acdS-gene of Pseudomonas putida B-37 on Nicotiana tabacum transgenic plants under abiotic stress conditions. Journal of the Belarusian State University Biology, 2020, , 39-46.	0.2	0
1078	ALLEVIATION OF SOIL SALINITY ON PHYSIOLOGICAL AND AGRONOMIC TRAITS OF RICE CULTIVARS USING Arbuscular mycorrhizal fungi AND Pseudomonas STRAINS UNDER FIELD CONDITIONS. Revista De Agricultura Neotropical, 2020, 7, 25-42.	0.3	4
1079	Isolation, characterization and screening of PGPR capable of providing relief in salinity stress. Eurasian Journal of Soil Science, 2020, 9, 85-91.	0.2	8
1080	Tripartite interaction between <i>Striga</i> spp., cereals, and plant root-associated microorganisms: a review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	6
1082	Isolation of Pseudomonas Strains with Potential for Protection of Soybean Plants against Saline Stress. Agronomy, 2021, 11, 2236.	1.3	4
1084	Predictive comparative antibiotic resistance (AMR) profiles of rhizobacteria genes using CARD: a bioinformatics approach. Highlights in BioScience, 0, , .	0.0	1
1085	Characterization of Endophytic Bacteria Isolated from Various Cultivated Plants and Determination of their Antagonistic Effects on Plant Pathogenic Bacteria. Yuzuncu Yil University Journal of Agricultural Sciences, 2020, 30, 521-534.	0.1	6
1086	Plant–Microbe Interactions: An Insight into the Underlying Mechanisms to Mitigate Diverse Environmental Stresses. Rhizosphere Biology, 2021, , 127-150.	0.4	0
1087	Adaptation Mechanism of Methylotrophic Bacteria to Drought Condition and Its Strategies in Mitigating Plant Stress Caused by Climate Change. , 2021, , 145-158.		4
1088	Isolation and characterization of ACC Deaminase Producing Endophytic PRN2 from. Iranian Journal of Biotechnology, 2020, 18, e2308.	0.3	4
1089	Advances in Microbial Applications in Safeguarding of Plant Health: Challenges and Future Perspective. , 2021, , 547-562.		1
1090	Plant growth-promoting rhizobacteria-assisted bioremediation of toxic contaminant: recent advancements and applications. , 2022, , 327-341.		2
1091	Plant disease management through microbiome modulation. , 2022, , 117-136.		0
1092	Dry root rot disease, an emerging threat to citrus industry worldwide under climate change: A review. Physiological and Molecular Plant Pathology, 2022, 117, 101753.	1.3	12

		CITATION RE	PORT	
# 1093	ARTICLE Improved designing and development of endophytic bioformulations for plant diseases.	2022 137-166	IF	Citations
1093	improved designing and development of endophytic bioformulations for plant diseases.	, 2022, , 137 100.		1
1094	Antagonistic and plant growth promotion effects of Mucor moelleri, a potential biocont Microbiological Research, 2022, 255, 126922.	rol agent.	2.5	6
1095	Editorial: Rhizosphere Spatiotemporal Organisation. Frontiers in Plant Science, 2021, 12	, 795136.	1.7	0
1096	Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nature N 2021, 6, 1537-1548.	licrobiology,	5.9	68
1097	Wheat endophytes and their potential role in managing abiotic stress under changing cl of Applied Microbiology, 2022, 132, 2501-2520.	imate. Journal	1.4	14
1098	Molecular control to salt tolerance mechanisms of woody plants: recent achievements a perspectives. Annals of Forest Science, 2021, 78, .	nd	0.8	7
1099	Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Cr Production under Cold Environment. Microorganisms, 2021, 9, 2451.	эр	1.6	16
1100	Endophytic Community Composition and Genetic-Enzymatic Features of Cultivable Bact Vaccinium myrtillus L. in Forests of the Baltic-Nordic Region. Forests, 2021, 12, 1647.	eria in	0.9	7
1101	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Tri	icum) Tj ETQq0 0 0 rgBT.	/Overlock 1.3	10 Tf 50 422 14
1102	Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, an Optimization. Frontiers in Plant Science, 2021, 12, 746780.	nd Yield	1.7	6
1103	Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatemen Journal of Hazardous Materials, 2022, 425, 127965.	t in crops.	6.5	27
1104	Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiol Biochemistry, 2021, 169, 291-310.	ogy and	2.8	35
1107	Application of Plant Growth Promoting Rhizobacteria (PGPR) in Crop Productivity Impro- Sustainable Agriculture. , 2021, , 635-660.	vement and		2
1110	Microbes and Plant Mineral Nutrition. , 2021, , 111-132.			5
1111	Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strain Sterile Soil Conditions. Agriculture (Switzerland), 2022, 12, 50.	s under	1.4	45
1112	Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion growth in sustainable agriculture. Pedosphere, 2022, 32, 15-38.	of plant	2.1	58
1113	Difficult-to-culture bacteria in the rhizosphere: The underexplored signature microbial gr Pedosphere, 2022, 32, 75-89.	oups.	2.1	12
1114	Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt st sustainable agriculture: A review. Pedosphere, 2022, 32, 223-245.	ress for	2.1	55

#	Article	IF	CITATIONS
1115	Phytomicrobiome Studies for Combating the Abiotic Stress. Biointerface Research in Applied Chemistry, 2020, 11, 10493-10509.	1.0	1
1116	Biopriming of durum wheat seeds with Newly halotolerant PGPB bacterial isolates for improving their potential of plant growth under stressful conditions. , 0, , .		0
1118	Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. Environmental Science and Pollution Research, 2022, 29, 22843-22859.	2.7	36
1119	The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change-Associated Abiotic Stresses on Crops. Frontiers in Microbiology, 2021, 12, 829099.	1.5	44
1120	Orchid-Associated Bacteria and Their Plant Growth Promotion Capabilities. Reference Series in Phytochemistry, 2022, , 175-200.	0.2	4
1121	Biochemical Characterization and Potential of Bacillus safensis Strain SCAL1 to Mitigate Heat Stress in Solanum lycopersicum L. Journal of Plant Growth Regulation, 2023, 42, 523-538.	2.8	18
1122	Impact of climate change on microbial endophytes: novel nanoscale cell factories. , 2022, , 161-185.		0
1123	Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68.		3
1124	Biochar and microbes for sustainable soil quality management. , 2022, , 289-311.		5
1126	Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, 2022, 13, 791110.	1.5	6
1127	The use of plant growth promoting bacteria for biofertigation; effects on concentrations of nutrients in inoculated aqueous vermicompost extract and on the yield and quality of tomatoes. Biological Agriculture and Horticulture, 2022, 38, 145-161.	0.5	9
1128	Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.). Sustainability, 2022, 14, 673.	1.6	16
1129	Bacterial remediation to control pollution. , 2022, , 285-305.		0
1130	Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Applied Microbiology and Biotechnology, 2022, 106, 877-887.	1.7	30
1131	Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 2022, 3, 100094.	1.4	105
1132	The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant's Environmental Stresses. Applied Sciences (Switzerland), 2022, 12, 1231.	1.3	92
1133	Sphingobacterium faecale sp. nov., a 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from camel faeces. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	9
1134	Microbiology in agriculture: an introduction. , 2022, , 41-51.		0

#	Article	IF	CITATIONS
1135	Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress, 2022, 3, 100052.	2.7	42
1136	Utilization of beneficial fungal strain/bacterial strains in climate-resilient agriculture. , 2022, , 313-331.		0
1137	Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Applied Sciences, 2022, 4, 1.	1.5	15
1138	Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 760512.	1.5	8
1139	Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Frontiers in Microbiology, 2021, 12, 782135.	1.5	7
1141	Plant Growth-Promoting Rhizobacteria Enhance Defense of Strawberry Plants Against Spider Mites. Frontiers in Plant Science, 2021, 12, 783578.	1.7	5
1142	Assessing the Biofortification of Wheat Plants by Combining a Plant Growth-Promoting Rhizobacterium (PGPR) and Polymeric Fe-Nanoparticles: Allies or Enemies?. Agronomy, 2022, 12, 228.	1.3	10
1143	Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere, 2022, 295, 133823.	4.2	29
1144	Stenotrophomonas sp. SRS1 promotes growth ofÂArabidopsisÂand tomato plants under salt stress conditions. Plant and Soil, 2022, 473, 547-571.	1.8	7
1145	Role of rhizobacteria from plant growth promoter to bioremediator. , 2022, , 309-328.		1
1146	Mode of action of different microbial products in plant growth promotion. , 2022, , 85-120.		2
1147	Underlying forces of plant microbiome and their effect on plant development. , 2022, , 159-180.		0
1148	Phytoremediation of heavy metals, metalloids, and radionuclides: Prospects and challenges. , 2022, , 253-276.		2
1149	Role of Bacillus Species in Alleviating Biotic Stress in Crops. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 365-391.	0.6	4
1150	The potency of culturable fungi from tidal and non-tidal swamplands in Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 976, 012036.	0.2	0
1151	Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiology and Molecular Biology of Plants, 2022, 28, 347-361.	1.4	33
1152	Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech, 2022, 12, 57.	1.1	9
1153	Changes of Endophytic Bacterial Community in Mature Leaves of Prunus laurocerasus L. during the Seasonal Transition from Winter Dormancy to Vegetative Growth. Plants, 2022, 11, 417.	1.6	3

#	Article	IF	CITATIONS
1154	Isolation and Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth. Scientia Horticulturae, 2022, 297, 110956.	1.7	16
1156	Rhizosphere engineering for crop improvement. , 2022, , 417-444.		1
1157	Bacterial induced alleviation of cadmium and arsenic toxicity stress in plants: Mechanisms and future prospects. , 2022, , 445-469.		3
1158	Microbial community in soil-plant systems: Role in heavy metal(loid) detoxification and sustainable agriculture. , 2022, , 471-498.		1
1161	Pseudomonas bijieensis Strain XL17 within the P. corrugata Subgroup Producing 2,4-Diacetylphloroglucinol and Lipopeptides Controls Bacterial Canker and Gray Mold Pathogens of Kiwifruit. Microorganisms, 2022, 10, 425.	1.6	15
1162	Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal of Molecular Sciences, 2022, 23, 2329.	1.8	138
1163	The Mechanisms of Sodium Chloride Stress Mitigation by Salt-Tolerant Plant Growth Promoting Rhizobacteria in Wheat. Agronomy, 2022, 12, 543.	1.3	13
1164	Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research, 2022, 42, 189-204.	4.4	12
1165	Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. Sustainability, 2022, 14, 2253.	1.6	23
1166	Enzymatic Processing of Pigeon Pea Seed Increased their Techno-Functional Properties. , 0, , .		0
1167	Isolation, Characterization, and Tea Growth-Promoting Analysis of JW-CZ2, a Bacterium With 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity Isolated From the Rhizosphere Soils of Tea Plants. Frontiers in Microbiology, 2022, 13, 792876.	1.5	4
1168	Current Studies of the Effects of Drought Stress on Root Exudates and Rhizosphere Microbiomes of Crop Plant Species. International Journal of Molecular Sciences, 2022, 23, 2374.	1.8	37
1169	A fruitful decade of bacterial ACC deaminase biotechnology: a pragmatic approach towards abiotic stress relief in plants. Theoretical and Experimental Plant Physiology, 2022, 34, 109-129.	1.1	13
1170	Comparative Response of Phosphate Solubilizing Indigenous <i>Bacillus licheniformis, Pantoea dispersa</i> and <i>Staphylococcus</i> sp. From Rice Rhizosphere for Their Multifarious Growth Promoting Characteristics. Geomicrobiology Journal, 2022, 39, 445-452.	1.0	3
1171	Isolation and identification of multi-trait plant growth–promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Folia Microbiologica, 2022, 67, 523-533.	1.1	18
1172	Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules, 2022, 27, 1407.	1.7	29
1173	Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. Frontiers in Plant Science, 2022, 13, 773815.	1.7	77
1174	Plant salt tolerance: <scp>ACC</scp> deaminaseâ€producing endophytes change plant proteomic profiles. Environmental Microbiology, 2022, , .	1.8	1

#	Article	IF	CITATIONS
1175	Revealing the underlying mechanisms mediated by endophytic actinobacteria to enhance the rhizobia - chickpea (Cicer arietinum L.) symbiosis. Plant and Soil, 2022, 474, 299-318.	1.8	7
1176	Synthetic Communities of Bacterial Endophytes to Improve the Quality and Yield of Legume Crops. , 0, ,		3
1177	Labelâ€free proteomics approach reveals candidate proteins in rice (<i>Oryza sativa</i> L.) important for <scp>ACC</scp> deaminase producing bacteriaâ€mediated tolerance against salt stress. Environmental Microbiology, 2022, 24, 3612-3624.	1.8	21
1178	Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Frontiers in Microbiology, 2022, 13, 797444.	1.5	8
1179	Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms, 2022, 10, 657.	1.6	10
1180	Microbial Community and Function-Based Synthetic Bioinoculants: A Perspective for Sustainable Agriculture. Frontiers in Microbiology, 2021, 12, 805498.	1.5	12
1181	Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. Biology, 2022, 11, 437.	1.3	70
1182	In-Depth Characterization of Plant Growth Promotion Potentials of Selected Alkanes-Degrading Plant Growth-Promoting Bacterial Isolates. Frontiers in Microbiology, 2022, 13, 863702.	1.5	16
1183	Plant-Microbiota Interactions in Abiotic Stress Environments. Molecular Plant-Microbe Interactions, 2022, 35, 511-526.	1.4	26
1184	Auxins-Interkingdom Signaling Molecules. , 0, , .		3
1185	Alleviation of salt stress and promotion of growth in peanut by Tsukamurella tyrosinosolvens and Burkholderia pyrrocinia. , 0, , 1.		5
1186	Effects of Multi-Species Microbial Inoculants on Early Wheat Growth and Litterbag Microbial Activity. Agronomy, 2022, 12, 899.	1.3	9
1187	Cowpea Root Growth under Water Availability and Co-inoculation with Growth Promoting Rhizobacteria. Communications in Soil Science and Plant Analysis, 2022, 53, 1756-1766.	0.6	4
1187 1188		0.6	4 32
	Rhizobacteria. Communications in Soil Science and Plant Analysis, 2022, 53, 1756-1766. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for		
1188	 Rhizobacteria. Communications in Soil Science and Plant Analysis, 2022, 53, 1756-1766. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress, 2022, 4, 100073. Soybean abiotic stress tolerance is improved by beneficial rhizobacteria in biosolids-amended soil. 	2.7	32
1188 1189	 Rhizobacteria. Communications in Soil Science and Plant Analysis, 2022, 53, 1756-1766. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress, 2022, 4, 100073. Soybean abiotic stress tolerance is improved by beneficial rhizobacteria in biosolids-amended soil. Applied Soil Ecology, 2022, 174, 104425. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. 	2.7 2.1	32 0

#	Article	IF	CITATIONS
1193	Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. Biology, 2022, 11, 41.	1.3	23
1194	Evaluation of Symbiotic Association between Various Rhizobia, Capable of Producing Plant-Growth-Promoting Biomolecules, and Mung Bean for Sustainable Production. Sustainability, 2021, 13, 13832.	1.6	4
1195	Plant Growth Promoting Microorganism Selection and Activity Test for Reforestation of Topsoil Restoration Site. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 719-730.	0.4	0
1196	Root-Derived Endophytic Diazotrophic Bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Frontiers in Microbiology, 2021, 12, 774707.	1.5	17
1197	Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms, 2022, 10, 51.	1.6	40
1199	Endophytic Actinobacteria in Biosynthesis of Bioactive Metabolites and Their Application in Improving Crop Yield and Sustainable Agriculture. , 2022, , 119-150.		3
1200	Diversity and predicted functional roles of cultivable bacteria in vermicompost: bioprospecting for potential inoculum. Archives of Microbiology, 2022, 204, 261.	1.0	5
1201	Phytoremediatiation of Metal and Metalloid Pollutants from Farmland: An <i>In-Situ</i> Soil Conservation. , 0, , .		1
1202	Differences of rhizospheric and endophytic bacteria are recruited by different watermelon phenotypes relating to rind colors formation. Scientific Reports, 2022, 12, 6360.	1.6	8
1265	Preharvest and postharvest application of microbial inoculants influencing postharvest storage technology in horticultural crops. , 2022, , 399-436.		0
1266	The role of bacterial ACC deaminase and trehalose in increasing salt and drought tolerance in plants. , 2022, , 41-52.		4
1267	Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. , 2022, , 257-272.		3
1268	Soil salinization and bioremediation using halophiles and halotolerant microorganisms. , 2022, , 231-256.		2
1270	Role of Plant Growth-Promoting Rhizobacteria in Combating Abiotic and Biotic Stresses in Plants. Microorganisms for Sustainability, 2022, , 43-104.	0.4	1
1271	Precision Agriculture to Ensure Sustainable Land Use for the Future. , 2022, , 1295-1315.		0
1272	Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. Journal of Fungi (Basel, Switzerland), 2022, 8, 453.	1.5	14
1273	Potassium Deficiency in Rice Aggravates Sarocladium oryzae Infection and Ultimately Leads to Alterations in Endophyte Communities and Suppression of Nutrient Uptake. Frontiers in Plant Science, 2022, 13, 882359.	1.7	1
1274	Recent advances on organic biofertilizer production from anaerobic fermentation of food waste: Overview. International Journal of Food Microbiology, 2022, 374, 109719.	2.1	6

#	Article	IF	CITATIONS
1275	Endophytism: A Multidimensional Approach to Plant–Prokaryotic Microbe Interaction. Frontiers in Microbiology, 2022, 13, .	1.5	9
1276	Phytobeneficial traits of rhizobacteria under the control of multiple molecular dialogues. Microbial Biotechnology, 2022, 15, 2083-2096.	2.0	4
1277	Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils. International Journal of Phytoremediation, 2023, 25, 240-251.	1.7	6
1278	Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Ecotoxicology and Environmental Safety, 2022, 237, 113541.	2.9	15
1279	A critical analysis on the roles of exopolysaccharides and ACC deaminase in salinity stress tolerance in crop plants. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102372.	1.5	3
1280	Isolation and Characterization of Phosphate Solubilizing Pseudomonas Species and Their Effect on Plant Growth Promotion. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2019, 52, 438-447.	0.1	1
1281	Rhizosphere microbiome engineering. , 2022, , 377-396.		1
1282	Role of microorganisms in climate-smart agriculture. , 2022, , 29-43.		1
1283	Bacterial biofertilizers for bioremediation: A priority for future research. , 2022, , 565-612.		1
1284	Microbes as biocontrol agent: From crop protection till food security. , 2022, , 215-237.		1
1285	Perspective of ACC-deaminase producing bacteria in stress agriculture. Journal of Biotechnology, 2022, 352, 36-46.	1.9	21
1286	Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere. Agronomy, 2022, 12, 1277.	1.3	10
1287	Influence of Trichoderma harzianum and Bacillus thuringiensis with reducing rates of NPK on growth, physiology, and fruit quality of Citrus aurantifolia. Brazilian Journal of Biology, 0, 82, .	0.4	2
1288	Modification of Rhizosphere Microbial Communities: A Possible Mechanism of Plant Growth Promoting Rhizobacteria Enhancing Plant Growth and Fitness. Frontiers in Plant Science, 2022, 13, .	1.7	39
1290	Floating Treatment Wetlands (FTWs) is an Innovative Approach for the Remediation of Petroleum Hydrocarbons-Contaminated Water. Journal of Plant Growth Regulation, 2023, 42, 1402-1420.	2.8	10
1291	Harnessing rhizobacteria to fulfil interâ€linked nutrient dependency on soil and alleviate stresses in plants. Journal of Applied Microbiology, 0, , .	1.4	5
1292	Endophytes and Halophytes to Remediate Industrial Wastewater and Saline Soils: Perspectives from Qatar. Plants, 2022, 11, 1497.	1.6	8
1293	Unique extremophilic Bacillus: their application in plant growth promotion and sustainable agriculture. , 2022, , 287-304.		0

#	Article	IF	CITATIONS
1294	Role of beneficial microbial gene pool in mitigating salt/nutrient stress of plants in saline soils through underground phytostimulating signalling molecules. Pedosphere, 2023, 33, 153-171.	2.1	10
1295	From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. Plants, 2022, 11, 1654.	1.6	1
1296	Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. Journal of Plant Interactions, 2022, 17, 705-718.	1.0	50
1297	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13, .	1.5	6
1298	Biofertilizer: The Future of Food Security and Food Safety. Microorganisms, 2022, 10, 1220.	1.6	68
1299	Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. Science of the Total Environment, 2022, 842, 156641.	3.9	13
1301	Routing microbial biosurfactants to agriculture for revitalization of soil and plant growth. , 2022, , 313-338.		2
1302	Halotolerant native bacteria <i>Enterobacter</i> 64S1 and <i>Pseudomonas</i> 42P4 alleviate saline stress in tomato plants. Physiologia Plantarum, 2022, 174, .	2.6	12
1303	Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. International Journal of Molecular Sciences, 2022, 23, 7036.	1.8	19
1304	Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express, 2022, 12, .	1.4	6
1305	Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiological Research, 2022, 263, 127137.	2.5	45
1306	Flavonoid-attracted <i>Aeromonas</i> sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME Journal, 2022, 16, 2622-2632.	4.4	44
1307	The rhizosphere microbial complex in plant health: A review of interaction dynamics. Journal of Integrative Agriculture, 2022, 21, 2168-2182.	1.7	11
1308	Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. Science of the Total Environment, 2022, 844, 157132.	3.9	15
1309	Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere, 2022, 306, 135581.	4.2	13
1310	Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 2022, 214, 113821.	3.7	81
1311	Role of plant growth-promoting Rhizobacterium in adventitious root formation. , 2023, , 159-181.		0
1312	The 1-aminocyclopropane-1-carboxylic acid deaminase-producing Streptomyces violaceoruber UAE1 can provide protection from sudden decline syndrome on date palm. Frontiers in Plant Science, 0, 13, .	1.7	9

#	Article	IF	CITATIONS
1314	The bacterial world inside the plant. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	5
1317	Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 0, 13, .	1.5	50
1318	Alleviation of salt stress in rapeseed (<i>Brassica napus</i> L.) plants by biochar-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Archives of Agronomy and Soil Science, 2023, 69, 1548-1565.	1.3	8
1319	Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Frontiers in Plant Science, 0, 13, .	1.7	54
1320	Effects of multiple halotolerant rhizobacteria on the tolerance, growth, and yield of rice plants under salt stress. Folia Microbiologica, 2023, 68, 55-72.	1.1	5
1321	Overexpression of acdS gene encoding 1-aminocyclopropane-1-carboxylic acid deaminase enzyme in petunia negatively affects seed germination. Plant Cell Reports, 0, , .	2.8	0
1322	Characterization of an Endophytic Antagonistic Bacterial Strain Bacillus halotolerans LBG-1-13 with Multiple Plant Growth-Promoting Traits, Stress Tolerance, and Its Effects on Lily Growth. BioMed Research International, 2022, 2022, 1-12.	0.9	7
1323	Streptomyces can be an excellent plant growth manager. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	19
1324	Endophytic Klebsiella aerogenes HGG15 stimulates mulberry growth in hydro-fluctuation belt and the potential mechanisms as revealed by microbiome and metabolomics. Frontiers in Microbiology, 0, 13, .	1.5	1
1325	Effects of Heavy Metal-Tolerant Microorganisms on the Growth of "Narra―Seedlings. Sustainability, 2022, 14, 9665.	1.6	2
1326	A Comparison of Rhizospheric and Endophytic Bacteria in Early and Late-Maturing Pumpkin Varieties. Microorganisms, 2022, 10, 1667.	1.6	3
1327	Glomus sp. and Bacillus sp. strains mitigate the adverse effects of drought on maize (Zea mays L.). Frontiers in Plant Science, 0, 13, .	1.7	1
1328	Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil. Plants, 2022, 11, 2026.	1.6	14
1329	Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express, 2022, 12, .	1.4	3
1330	The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agricultural Water Management, 2022, 272, 107831.	2.4	10
1331	Salt-tolerant genotypes and halotolerant rhizobacteria: A potential synergistic alliance to endure high salinity conditions in wheat. Environmental and Experimental Botany, 2022, 202, 105033.	2.0	3
1332	Bio-removal of emerging pollutants by advanced bioremediation techniques. Environmental Research, 2022, 214, 113936.	3.7	28
1333	Plant Growth-Promoting Rhizobacteria Promote Growth of Seedlings, Regulate Soil Microbial Community, and Alleviate Damping-Off Disease Caused by <i>Rhizoctonia solani</i> on <i>Pinus sylvestris</i> var. <i>mongolica</i> . Plant Disease, 2022, 106, 2730-2740.	0.7	4

#	Article	IF	CITATIONS
1334	Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiological Research, 2022, 265, 127180.	2.5	11
1335	Role of Beneficial Microbes in Alleviating Stresses in Plants. , 2022, , 371-395.		1
1336	Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils. Ecological Studies, 2022, , 205-233.	0.4	0
1337	Plant Growth-Promoting Rhizobacteria for Sustainable Agriculture. , 2022, , 1-27.		0
1338	Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants. , 2022, , 231-270.		0
1339	Role of Cd-resistant plant growth-promoting rhizobacteria in plant growth promotion and alleviation of the phytotoxic effects under Cd-stress. , 2022, , 271-300.		0
1340	Rhizobacterial Biostimulants: Efficacy in Enhanced Productivity and Sustainable Agriculture. , 2022, , 61-80.		0
1341	The Potential of Plant Growth-Promoting Rhizobacteria (PGPR) as Biological Tools in Enhancing Agricultural Sustainability. Fungal Biology, 2022, , 295-309.	0.3	0
1342	Development of ACCd producer A. brasilense mutant and the effect of inoculation on red pepper plants. 3 Biotech, 2022, 12, .	1.1	2
1343	A photosynthetic bacterial inoculant exerts beneficial effects on the yield and quality of tomato and affects bacterial community structure in an organic field. Frontiers in Microbiology, 0, 13, .	1.5	14
1344	Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants, 2022, 11, 1763.	2.2	39
1345	Bacterial bioinoculants adapted for sustainable plant health and soil fertility enhancement in Namibia. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	1
1346	Dual Inoculation of Plant Growth-Promoting <i>Bacillus endophyticus</i> and <i>Funneliformis mosseae</i> Improves Plant Growth and Soil Properties in Ginger. ACS Omega, 2022, 7, 34779-34788.	1.6	5
1347	Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta, 2022, 256, .	1.6	32
1348	Endophytes as Potential Biostimulants to Enhance Plant Growth for Promoting Sustainable Agriculture. , 2022, , 414-428.		1
1349	Co-Inoculation of Plant-Growth-Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants, 2022, 11, 2543.	1.6	2
1350	Bioremediation techniques for heavy metal and metalloid removal from polluted lands: a review. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1351	Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Frontiers in Microbiology, 0, 13, .	1.5	16

#	Article	IF	CITATIONS
1352	Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, 0, 13, .	1.5	11
1353	Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica = БІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2022, 16, 101-128.	0.1	0
1354	Morphophysiological and Nutritional Responses of Canola and Wheat to Water Deficit Stress by the Application of Plant Growth-Promoting Bacteria, Nano-Silicon, and Silicon. Journal of Plant Growth Regulation, 2023, 42, 3615-3631.	2.8	7
1355	Interactions of Nitrogen-Fixing Bacteria and Cereal Crops: An Important Dimension. Microorganisms for Sustainability, 2022, , 169-194.	0.4	2
1356	Realizing Food Security in Saline Environments in a Changing Climate: Mitigation Technologies. , 2022, , 383-403.		1
1357	Effect of Volatile Organic Compounds (VOCs) and Secondary Metabolites Produced by Plant Growth-Promoting Rhizobacteria (PGPR) on Seed Quality. , 2022, , 59-75.		1
1358	Antifungal Antibiotics Biosynthesized byÂMajor PGPR. , 2022, , 199-247.		0
1359	Microbes-Mediated Rhizospheric Engineering for Salinity Stress Mitigation. Rhizosphere Biology, 2022, , 461-489.	0.4	0
1360	Role of Actinomycetes in Mitigating the Impact of Climate Change: Mechanisms of Action and Perspectives. , 2022, , 153-171.		0
1361	Exploring the Rhizosphere Microbiome for Sustainable Agriculture Production. Rhizosphere Biology, 2022, , 63-87.	0.4	0
1362	Molecular characterization of Deciphering Fungal Community structure in Zea mays L. and Triticum Aestivum L. International Journal of Innovations in Science and Technology, 2022, 4, 727-737.	0.1	1
1363	Whole genome analysis of Enterobacter cloacae Rs-2 and screening of genes related to plant-growth promotion. Environmental Science and Pollution Research, 2023, 30, 21548-21564.	2.7	2
1364	Bioremediation of Cadmium Toxicity in Wheat (Triticum aestivum L.) Plants Primed with L-Proline, Bacillus subtilis and Aspergillus niger. International Journal of Environmental Research and Public Health, 2022, 19, 12683.	1.2	5
1365	Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. Environmental Science & Technology, 2022, 56, 16546-16566.	4.6	85
1366	Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Frontiers in Microbiology, 0, 13, .	1.5	7
1367	Deciphering the role of non-Frankia nodular endophytes in alder through in vitro and genomic characterization. Canadian Journal of Microbiology, 0, , .	0.8	1
1368	16S ribosomal RNA geneâ€based identification and plant growthâ€promoting potential of cultivable endophytic bacteria colonising vegetable crops. Agronomy Journal, 0, , .	0.9	2
1369	Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L Microorganisms, 2022, 10, 2164.	1.6	5

#	Article	IF	CITATIONS
1370	Effects of Plant Growth-Promoting Rhizobacteria on the Growth and Soil Microbial Community of Carya illinoinensis. Current Microbiology, 2022, 79, .	1.0	7
1371	Role of biostimulants in mitigating the effects of climate change on crop performance. Frontiers in Plant Science, 0, 13, .	1.7	35
1373	Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms, 2022, 10, 2008.	1.6	28
1374	Overexpression of acdS in Petunia hybrida Improved Flower Longevity and Cadmium-Stress Tolerance by Reducing Ethylene Production in Floral and Vegetative Tissues. Cells, 2022, 11, 3197.	1.8	5
1375	Impact of Soil Fertilized with Biomass Ash on Depth-Related Variability of Culturable Bacterial Diversity and Selected Physicochemical Parameters in Spring Barley Cultivation. International Journal of Environmental Research and Public Health, 2022, 19, 13721.	1.2	1
1376	Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon, 2022, 8, e11269.	1.4	6
1377	Potential use of endophytic and rhizosheath bacteria from the desert plant Stipagrostis pennata as biostimulant against drought in wheat cultivars. Rhizosphere, 2022, 24, 100617.	1.4	3
1378	Perspectives of using plant growth-promoting rhizobacteria under salinity stress for sustainable crop production. , 2023, , 231-247.		1
1379	<i>AcdS</i> gene of <i>Bacillus cereus</i> enhances salt tolerance of seedlings in tobacco (<i>Nicotiana tabacum</i> L.). Biotechnology and Biotechnological Equipment, 2022, 36, 902-913.	0.5	1
1380	Soilborne bacterium <i>Klebsiella pneumoniae</i> promotes cluster root formation in white lupin through ethylene mediation. New Phytologist, 2023, 237, 1320-1332.	3.5	4
1381	Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement. Applied Sciences (Switzerland), 2022, 12, 11567.	1.3	3
1382	Beneficial Effects of Supplementation Silicon on the Plant Under Abiotic and Biotic Stress. Silicon, 0, ,	1.8	2
1383	Enhanced Degradation of Ciprofloxacin in Floating Treatment Wetlands Augmented with Bacterial Cells Immobilized on Iron Oxide Nanoparticles. Sustainability, 2022, 14, 14997.	1.6	4
1384	Endophytes from Halotolerant Plants Aimed to Overcome Salinity and Draught. Plants, 2022, 11, 2992.	1.6	7
1385	The involvement of organic acids in soil fertility, plant health and environment sustainability. Archives of Microbiology, 2022, 204, .	1.0	16
1386	Saffron, Bacteria and Mycorrhiza. Compendium of Plant Genomes, 2022, , 137-151.	0.3	0
1387	Endophyte mediated plant health via phytohormones and biomolecules. , 2023, , 151-166.		1
1388	Plant growth promoting bacteria drive food security. Brazilian Journal of Biology, 0, 82, .	0.4	4

#	Article	IF	CITATIONS
1389	Synthesis of controlled release hydrogels from dimethylacrylamide/maleic acid/starch and its application in lettuce cultivation. Journal of Polymer Research, 2022, 29, .	1.2	4
1390	Pseudomonas cultivated from Andropogon gerardii rhizosphere show functional potential for promoting plant host growth and drought resilience. BMC Genomics, 2022, 23, .	1.2	3
1391	Aluminum Toxicity in Plants: Present and Future. Journal of Plant Growth Regulation, 2023, 42, 3967-3999.	2.8	13
1392	Bacillus subtilis and Bacillus licheniformis promote tomato growth. Brazilian Journal of Microbiology, 2023, 54, 397-406.	0.8	3
1393	Screening of Endophytes for Plant Growth-Promoting Metabolites. Springer Protocols, 2023, , 179-187.	0.1	0
1394	Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells, 2023, 12, 31.	1.8	14
1395	Biological control of pre- and post-harvest microbial diseases in Citrus by using beneficial microorganisms. BioControl, 2023, 68, 75-86.	0.9	5
1396	Identification of endophytic fungi with ACC deaminase-producing isolated from halophyte <i>Kosteletzkya Virginica</i> . Plant Signaling and Behavior, 2022, 17, .	1.2	3
1397	Microbacterium oxydans Regulates Physio-Hormonal and Molecular Attributes of Solanum lycopersicum under Drought Stress. Agronomy, 2022, 12, 3224.	1.3	7
1398	Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. Plant, Cell and Environment, 2023, 46, 1018-1032.	2.8	2
1399	AÂComparative Analysis of Co-inoculation of Microbial Biostimulants at Different Irrigation Levels Under Field Conditions on the Cucumber Growth. Gesunde Pflanzen, 0, , .	1.7	1
1400	Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Scientific Reports, 2022, 12, .	1.6	8
1401	Genomic Analysis of Pseudomonas asiatica JP233: An Efficient Phosphate-Solubilizing Bacterium. Genes, 2022, 13, 2290.	1.0	1
1402	ACC Deaminase Produced by PGPR Mitigates the Adverse Effect of Osmotic and Salinity Stresses in Pisum sativum through Modulating the Antioxidants Activities. Plants, 2022, 11, 3419.	1.6	8
1403	Harnessing the Rhizosphere Soil Microbiome of Organically Amended Soil for Plant Productivity. Agronomy, 2022, 12, 3179.	1.3	6
1404	The Metabolic Interaction of Potassium Salt of Active Phosphorus (PSAP) and Its Stimulatory Effects on the Growth and Productivity of Sugarcane Under Stressful Environment. , 2022, , 403-426.		0
1405	Role of Halotolerant Plant Growth-Promoting Rhizobacteria in Mitigating Salinity Stress: Recent Advances and Possibilities. Agriculture (Switzerland), 2023, 13, 168.	1.4	8
1406	Secondary Metabolites, Osmolytes and Antioxidant Activity as the Main Attributes Enhanced by Biostimulants for Growth and Resilience of Lettuce to Drought Stress. Gesunde Pflanzen, 2023, 75, 1737-1753.	1.7	9

#	Article	IF	CITATIONS
1407	Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants, 2023, 12, 400.	1.6	14
1408	Effects of Pseudomonas sp. OBA 2.4.1 on Growth and Tolerance to Cadmium Stress in Pisum sativum L BioTech, 2023, 12, 5.	1.3	2
1409	Soil Salinity and Climate Change: Microbiome-Based Strategies for Mitigation of Salt Stress to Sustainable Agriculture. Climate Change Management, 2023, , 191-243.	0.6	4
1410	Microbiome of Plants: The Diversity, Distribution, and Their Potential for Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 211-226.	0.4	0
1411	Omic Route to Utilize Endophytes and Their Functional Potentials in Plant Growth Advancement. Microorganisms for Sustainability, 2023, , 289-311.	0.4	1
1412	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Maize. , 2023, , 235-263.		0
1413	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Wheat. , 2023, , 287-320.		3
1414	The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens. Plants, 2023, 12, 196.	1.6	3
1415	Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiological Research, 2023, 268, 127295.	2.5	2
1416	Biocontrol strategies: an eco-smart tool for integrated pest and diseases management. BMC Microbiology, 2022, 22, .	1.3	13
1417	The effect of salinity-resistant biofilm-forming Azotobacter spp. on salt tolerance in maize growth. Zemdirbyste, 2022, 109, 349-358.	0.3	6
1418	Bacteria Associated with the Roots of Common Bean (Phaseolus vulgaris L.) at Different Development Stages: Diversity and Plant Growth Promotion. Microorganisms, 2023, 11, 57.	1.6	3
1419	Enterobacter sp. J49: A Native Plant Growth-Promoting Bacteria as Alternative to the Application of Chemical Fertilizers on Peanut and Maize Crops. Current Microbiology, 2023, 80, .	1.0	3
1420	Soil microbial inocula: an eco-friendly and sustainable solution for mitigating salinity stress in plants. , 2023, , 341-357.		3
1421	Biocontrol: a novel eco-friendly mitigation strategy to manage plant diseases. , 2023, , 27-56.		1
1422	Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress. Water (Switzerland), 2023, 15, 418.	1.2	21
1423	Mechanism of biological control of plant diseases by endophytes. , 2023, , 181-199.		0
1424	Promoção de crescimento e solubilização de fósforo, por Bacillus megaterium e B. subitilis, via inoculação de sementes, associado à fertilização fostatada, na cultura da soja. Research, Society and Development, 2023, 12, e9812240062.	0.0	0

_			_
C 1^{-}		ON	REPORT
	IAL		KLPORT

#	Article	IF	CITATIONS
1425	The use of microbes as a combative strategy for alleviation of abiotic and biotic stresses. , 2023, , 175-193.		1
1426	Sphingomonas sediminicola Is an Endosymbiotic Bacterium Able to Induce the Formation of Root Nodules in Pea (Pisum sativum L.) and to Enhance Plant Biomass Production. Microorganisms, 2023, 11, 199.	1.6	9
1427	Plant growth promoting Rhizobacteria and their biofilms in promoting sustainable agriculture and soil health. , 2023, , 629-647.		1
1428	Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC Plant Biology, 2023, 23, .	1.6	5
1429	Hormonal signaling molecules triggered by plant growth-promoting bacteria. , 2023, , 187-196.		0
1430	Designing Tailored Bioinoculants for Sustainable Agrobiology in Multi-stressed Environments. Microorganisms for Sustainability, 2023, , 359-397.	0.4	0
1431	Rhizosphere Mycobiome: Roles, Diversity, and Dynamics. , 2023, , 47-61.		0
1432	Harnessing Beneficial Rhizospheric Microorganisms for Biotic Stress Management in Medicinal and Aromatic Plants. , 2023, , 283-308.		0
1433	Interplay Impact of Exogenous Application of Abscisic Acid (ABA) and Brassinosteroids (BRs) in Rice Growth, Physiology, and Resistance under Sodium Chloride Stress. Life, 2023, 13, 498.	1.1	6
1434	Fungal Root Rots of Sugar Beets: AÂReview of Common Causal Agents and Management Strategies. Gesunde Pflanzen, 0, , .	1.7	1
1435	Removal, fate, and bioavailability of fluoroquinolone antibiotics in a phytoremediation system with four wetland plants: Combing dynamic DGT and traditional methods. Science of the Total Environment, 2023, 881, 163464.	3.9	3
1436	Stress-buster Enterobacter sp. alleviates salinity stress in Cajanus cajan together with impacting its rhizospheric microbiome. South African Journal of Botany, 2023, 156, 202-212.	1.2	3
1437	Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. Science of the Total Environment, 2023, 874, 162327.	3.9	18
1438	Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture. Microbiological Research, 2023, 271, 127352.	2.5	4
1439	Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiological Research, 2023, 271, 127368.	2.5	17
1440	Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon, 2023, 9, e13825.	1.4	16
1441	Interaction of Plant Growth-Promoting Rhizobacteria with Sugarcane Plants for Alleviating Abiotic Stresses and Improving Crop Yields. , 2022, , 123-137.		0
1442	Biomolecules in modern and sustainable agriculture. 3 Biotech, 2023, 13, .	1.1	2

#	Article	IF	CITATIONS
1443	Combined application of allantoin and strain JIT1 synergistically or additively promotes the growth of rice under 2, 4-DCP stress by enhancing the phosphate solubility, improving soil enzyme activities and photosynthesis. Journal of Plant Physiology, 2023, 282, 153941.	1.6	0
1444	Agroecological Management of the Grey Mould Fungus Botrytis cinerea by Plant Growth-Promoting Bacteria. Plants, 2023, 12, 637.	1.6	6
1445	Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae, 2023, 9, 193.	1.2	18
1446	Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opinion in Environmental Science and Health, 2023, 32, 100451.	2.1	7
1447	Palliating Salt Stress in Mustard through Plant-Growth-Promoting Rhizobacteria: Regulation of Secondary Metabolites, Osmolytes, Antioxidative Enzymes and Stress Ethylene. Plants, 2023, 12, 705.	1.6	12
1448	Potential of desiccation-tolerant plant growth-promoting rhizobacteria in growth augmentation of wheat (Triticum aestivum L.) under drought stress. Frontiers in Microbiology, 0, 14, .	1.5	2
1449	Plant Growth Promoting Bacteria and Arbuscular Mycorrhizae Improve the Growth of Persea americana var. Zutano under Salt Stress Conditions. Journal of Fungi (Basel, Switzerland), 2023, 9, 233.	1.5	4
1450	Promoting Strawberry (Fragaria × ananassa) Stress Resistance, Growth, and Yield Using Native Bacterial Biostimulants. Agronomy, 2023, 13, 529.	1.3	4
1451	Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science, 0, 10, .	1.5	8
1452	Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L Frontiers in Microbiology, 0, 14, .	1.5	2
1453	Plant–Microbe Dynamics as a Nature-Based Solution for Sustainable Agriculture. Anthropocene Science, 2022, 1, 428-443.	1.6	2
1454	Reduction and control of air pollution: based on plant-microbe interactions. Environmental Pollutants and Bioavailability, 2023, 35, .	1.3	2
1455	Microbial Mitigation of Abiotic Stress in Crops. Sustainable Agriculture Reviews, 2023, , 197-241.	0.6	0
1456	Plant Growth Promoting Rhizobacteria to Mitigate Biotic and Abiotic Stress in Plants. Sustainable Agriculture Reviews, 2023, , 47-68.	0.6	5
1457	Strategies and implications of plant growth promoting rhizobacteria in sustainable agriculture. , 2023, , 21-55.		0
1458	Emerging trends in plant metabolomics and hormonomics to study abiotic stress tolerance associated with rhizospheric probiotics. , 2023, , 283-306.		3
1459	Plant Growth-Promoting Microbes: Key Players in Organic Agriculture. , 2023, , 139-160.		0
1460	Partnering crops with root-associated microbes for soil health and agricultural sustainability. Pedosphere, 2024, 34, 26-29.	2.1	0

#	Article	IF	CITATIONS
1461	Emerging Pathways for Engineering the Rhizosphere Microbiome for Optimal Plant Health. Journal of Agricultural and Food Chemistry, 2023, 71, 4441-4449.	2.4	19
1462	Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection. Journal of Plant Interactions, 2023, 18, .	1.0	5
1463	Microbial Drivers of Plant Performance during Drought Depend upon Community Composition and the Greater Soil Environment. Microbiology Spectrum, 2023, 11, .	1.2	4
1465	Assessment of the influence of soil inoculation on changes in the adaptability of maize hybrids. Cereal Research Communications, 0, , .	0.8	1
1466	Molecular Mechanisms of <i>Pseudomonas</i> -Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture. Molecular Plant-Microbe Interactions, 2023, 36, 536-548.	1.4	2
1467	Biodegradation of monocrotophos by Brucella intermedia Msd2 isolated from cotton plant. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	2
1468	Endophytic Fungi as Sources of Novel Natural Compounds. , 2023, , 339-373.		0
1469	The combination of multiple plant growth promotion and hydrolytic enzyme producing rhizobacteria and their effect on Jerusalem artichoke growth improvement. Scientific Reports, 2023, 13, .	1.6	6
1470	Deciphering the Impact of Acinetobacter sp. SG-5 Strain on Two Contrasting Zea mays L. Cultivars for Root Exudations and Distinct Physio-Biochemical Attributes Under Cadmium Stress. Journal of Plant Growth Regulation, 2023, 42, 6951-6968.	2.8	10
1471	Adaption of PseudomonasÂogarae F113 to the Rhizosphere Environment—The AmrZ-FleQ Hub. Microorganisms, 2023, 11, 1037.	1.6	2
1472	Physiological Response of Shallots (Allium ascalonicum L.) to Inoculation of Diazotrophic Bacteria. , 2023, , 70-78.		0
1473	Harnessing Root Associated Traits and Rhizosphere Efficiency for Crop Improvement. , 2023, , 257-290.		1
1474	Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Current Research in Biotechnology, 2023, 5, 100128.	1.9	22
1475	lsolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science, 0, 14, .	1.7	10
1476	Metapangenomics of wild and cultivated banana microbiome reveals a plethora of host-associated protective functions. Environmental Microbiomes, 2023, 18, .	2.2	3
1477	Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. , 2023, , 279-296.		0
1478	Sustainable agricultural approach to study interaction of plants and microbes. , 2023, , 331-361.		0
1479	Diversity of methylobacterium species in the plant phytosphere and their different strategies to mitigate biotic and abiotic stress responses. , 2023, , 389-410.		0

#	Article	IF	CITATIONS
1487	Endophytic Microbes and Their Role in Land Remediation. Environmental Contamination Remediation and Management, 2023, , 133-164.	0.5	0
1488	Unfolding the Role of Beneficial Microbes and Microbial Techniques on Improvement of Sustainable Agriculture Under Climatic Challenges. Rhizosphere Biology, 2023, , 75-108.	0.4	0
1491	Microbial products and their applications toward sustainable development. , 2023, , 481-505.		0
1506	Association of Silicon and Soil Microorganisms Induces Stress Mitigation, Increasing Plant Productivity. , 2023, , 299-328.		0
1515	An Overview of the Multifaceted Role of Plant Growth-Promoting Microorganisms and Endophytes in Sustainable Agriculture: Developments and Prospects. Rhizosphere Biology, 2023, , 179-208.	0.4	0
1516	Emerging Roles of Plant Growth Promoting Rhizobacteria in Salt Stress Alleviation: Applications in Sustainable Agriculture. Rhizosphere Biology, 2023, , 397-437.	0.4	0
1518	Bacillus Species as Potential Plant Growth Promoting Rhizobacteria for Drought Stress Resilience. Russian Journal of Plant Physiology, 2023, 70, .	0.5	4
1522	Recent Advances in PGPRs and Their Application in Imparting Biotic and Abiotic Stress Tolerance in Plants. , 2023, , 431-472.		Ο
1525	Microbial Inoculants in the Climate Change Scenario: An Overview. , 2023, , 1-21.		1
1526	Climate Change, Its Effects on Soil Health, and Role of Bioinoculants in Mitigating Climate Change. , 2023, , 23-55.		Ο
1527	Alleviation of Drought Stress and Amelioration of Tomato Plant Growth by Bacterial Inoculants for Mitigating Climate Change. , 2023, , 201-215.		0
1528	Insights into the mechanisms of plant growth promotion by halotolerant rhizobacteria in saline-stressed plants. , 2023, , 245-270.		Ο
1529	Microbe-assisted heavy metal phytoremediation. , 2023, , 187-197.		0
1531	Phytoremediation of Lead: A Review. Environmental Science and Engineering, 2023, , 145-174.	0.1	Ο
1532	Harnessing Phyllosphere Microbiome for Improving Soil Fertility, Crop Production, and Environmental Sustainability. Journal of Soil Science and Plant Nutrition, 2023, 23, 4719-4764.	1.7	0
1533	Plant growth promoting rhizobacteria (PGPR): an overview for sustainable agriculture and development. , 2023, , 95-125.		Ο
1537	Water relations in plants treated with growth promoting rhizosphere bacteria. Plant and Soil, 2024, 494, 51-72.	1.8	3
1542	Biostimulants in the Soil–Plant Interface: Agro-environmental Implications—A Review. Earth Systems and Environment, 2023, 7, 583-600.	3.0	5

#	Article	IF	CITATIONS
1553	Ecological and structural attributes of soil rhizobiome improving plant growth under environmental stress. , 2023, , 403-420.		0
1558	Metabolic engineering of fungal secondary metabolism in plants for stress tolerance. , 2024, , 439-455.		1
1562	Secondary metabolites and biological compounds of actinomycetes and their applications. , 2024, , 123-145.		0
1563	Role of Pseudomonas fluorescens secondary metabolites in agroecosystem applications. , 2024, , 211-220.		0
1565	Regulation of PGPR-Related Genes in Medicinal Plants in Adverse Conditions. , 2023, , 243-273.		0
1568	Phytohormones and Biomolecules Produced by Trichoderma Strains as Eco-Friendly Alternative for Stimulation of Plant Growth. , 0, , .		0
1571	Poplar as a woody model for the phytomanagement of trace element contaminated soils. Advances in Botanical Research, 2024, , 63-103.	0.5	2
1573	Prospects for the Use of Metabolomics Engineering in Exploring and Harnessing Chemical Signaling in Root Galls. , 2023, , 309-338.		0
1580	Microbial Consortia: An Approach to Enhance the Effectiveness of Beneficial Soil Microbes. , 2023, , 133-166.		0
1581	Beneficial Role of Microbial Diversity for Sustainable Agriculture. , 2023, , 587-613.		1
1587	Biological control of soil-borne pathogens in arid lands: a review. Journal of Plant Diseases and Protection, 2024, 131, 293-313.	1.6	0
1588	Alleviation of Salinity Stress by Microbes. , 2023, , 145-174.		0
1591	Plant Associated Endophytes as Potential Agents for the Protection of Crops from Phytopathogens. Microorganisms for Sustainability, 2023, , 89-115.	0.4	0
1600	Microbial Biostimulants: Bioformulations for Enhanced Biofertilizer Efficacy and Sustainable Crop Management. , 2023, , 237-264.		0
1601	Challenges in the Compatibility of Microbial Inoculants with Agrochemicals. , 2023, , 139-155.		0
1605	Induction of Stress Tolerance in Plants by Metabolic Secretions of Endophytes for Sustainable Development. , 2023, , 225-248.		0
1606	Oxidative Stress in Lead Toxicity in Plants and Its Amelioration. Environmental Contamination Remediation and Management, 2024, , 299-333.	0.5	1
1607	Endophytes: role in maintaining plant health under stress conditions. , 2024, , 105-132.		0

#	Article	IF	CITATIONS
1608	Role of soil microbes in modulating the physiological attributes of plants under extreme environmental conditions. , 2024, , 15-34.		0
1617	Cultivation of sweet sorghum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanol. , 2024, , 337-366.		0
1619	Technological intervention in rhizosphere of tomato plants: a case study. , 2024, , 91-121.		0
1620	Physiological adaptation of plants to abiotic stresses. , 2024, , 1-14.		0
1621	Plant growth-promoting rhizobacteria for sustainable agriculture: recent progress and challenges. , 2024, , 333-342.		0
1622	Microbial consortium as promising biostimulants for plant health: a future perspective for agriculture. , 2024, , 123-143.		0
1623	Influence of endophytes on plant growth and abiotic stress. , 2024, , 159-174.		0
1624	Application of halophyte microbiome for development of salt tolerance in crops. , 2024, , 143-164.		0
1625	Crop microbiome dynamics in stress management and green agriculture. , 2024, , 341-366.		0
1626	Exploitation of microbial consortia for formulating biofungicides, biopesticides, and biofertilizers for plant growth promotion. , 2024, , 227-257.		0
1627	Rhizobacteria that boost plant growth while lowering abiotic stress—A profitable solution. , 2024, , 45-59.		0
1629	Biotechnological Potential of Galophytes and Their Microbiomes for Agriculture in Russia and Kazakhstan. Russian Journal of Plant Physiology, 2023, 70, .	0.5	0
1631	Phytohormone-Producing Rhizobacteria and Their Role in Plant Growth. , O, , .		0
1632	Microbiome-mediated remediation of heavy metals. , 2024, , 257-312.		0
1637	Nematicidal Activity of Secondary Metabolites from Soil Microbes. Sustainability in Plant and Crop Protection, 2024, , 297-324.	0.2	0
1640	Hydroponics: A Significant Method for Phytoremediation. Springer Water, 2024, , 1-25.	0.2	0
1641	Plant growth-promoting bacteria in food security and plant disease management. , 2024, , 275-292.		0
1649	Plant growth–promoting rhizobacteria: their potential as biological control agents in sustainable agriculture. , 2024, , 145-159.		0

#	Article	IF	CITATIONS
1650	Bacillus antagonists: from rhizosphere to industry. , 2024, , 443-465.		0
1651	Plant growth-promoting fungi: a tool for agriculturally important industrial production. , 2024, , 393-418.		0
1653	Strategies of cold-adapted PGPB to elicit cold-stress acclimatory responses in plants. , 2024, , 241-261.		0
1654	Plant–microbe interactions for enhanced plant tolerance to stress. , 2024, , 1-24.		0
1655	Prospects of plant growth–promoting bacteria against aggravated change in global climate. , 2024, , 71-79.		0
1660	Microbe-mediated UV stress tolerance in terrestrial plants. , 2024, , 445-468.		0