Multifunctional Mesoporous Silica Nanoparticles as a U Delivery

Chemistry of Materials 26, 435-451

DOI: 10.1021/cm402592t

Citation Report

#	Article	IF	CITATIONS
1	Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy. Beilstein Journal of Nanotechnology, 2014, 5, 1616-1624.	1.5	16
2	Dextran-Gated, Multifunctional Mesoporous Nanoparticle for Glucose-Responsive and Targeted Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22183-22191.	4.0	64
3	Facile Synthesis of Size Controllable Dendritic Mesoporous Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22655-22665.	4.0	138
4	5. Nanoparticles: Properties and applications. , 2014, , 101-120.		O
5	"Integrative sol–gel chemistry― a nanofoundry for materials science. Journal of Sol-Gel Science and Technology, 2014, 70, 216-226.	1.1	31
6	Perylene-Derived Single-Component Organic Nanoparticles with Tunable Emission: Efficient Anticancer Drug Carriers with Real-Time Monitoring of Drug Release. ACS Nano, 2014, 8, 5939-5952.	7. 3	102
7	Incredible pace of research on mesoporous silica nanoparticles. Inorganic Chemistry Frontiers, 2014, 1, 735-739.	3.0	36
8	Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Research, 2014, 7, 1439-1448.	5.8	24
9	A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids and Surfaces B: Biointerfaces, 2014, 123, 657-663.	2.5	102
10	Cathepsinâ€B Induced Controlled Release from Peptideâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2014, 20, 15309-15314.	1.7	50
11	pH-controlled delivery of curcumin from a compartmentalized solid lipid nanoparticle@mesostructured silica matrix. Journal of Materials Chemistry B, 2014, 2, 7910-7917.	2.9	56
12	Wrapping DNA-gated mesoporous silica nanoparticles for quantitative monitoring of telomerase activity with glucometer readout. Journal of Materials Chemistry B, 2014, 2, 5847-5853.	2.9	41
13	Novel Fe ₃ O ₄ @ZnO@mSiO ₂ Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation. Journal of Physical Chemistry C, 2014, 118, 14929-14937.	1.5	74
14	Synergetic Gating of Metal-Latching Ligands and Metal-Chelating Proteins for Mesoporous Silica Nanovehicles to Enhance Delivery Efficiency. ACS Applied Materials & Interfaces, 2014, 6, 15217-15223.	4.0	11
15	Dynamic Behavior of DNA Cages Anchored on Spherically Supported Lipid Bilayers. Journal of the American Chemical Society, 2014, 136, 12987-12997.	6.6	72
16	Incorporation of Ophiobolin A into Novel Chemoembolization Particles for Cancer Cell Treatment. Pharmaceutical Research, 2014, 31, 2904-2917.	1.7	18
17	Tumor-Marker-Mediated "on-Demand―Drug Release and Real-Time Monitoring System Based on Multifunctional Mesoporous Silica Nanoparticles. Analytical Chemistry, 2014, 86, 10239-10245.	3.2	38
18	Mechanical Downsizing of a Gadolinium(III)â€based Metal–Organic Framework for Anticancer Drug Delivery. Chemistry - A European Journal, 2014, 20, 10514-10518.	1.7	218

#	Article	IF	CITATIONS
19	Photo-triggered molecular release based on auto-degradable polymer-containing organic–inorganic hybrids. Bioorganic and Medicinal Chemistry, 2014, 22, 3435-3440.	1.4	18
22	Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical applications. Open Material Sciences, $2014,1,.$	0.8	38
23	In situ functionalization of hollow mesoporous hydroxyapatite with thermal-responsive on–off gates in supercritical CO ₂ . RSC Advances, 2015, 5, 70101-70108.	1.7	13
24	Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drugâ€Delivery and Antioxidant Properties. ChemPlusChem, 2015, 80, 1062-1062.	1.3	11
25	Stimuli-Responsive Nanostructured Silica Matrix Targeting Drug Delivery Applications., 2015,, 22-57.		7
26	Mesoporous Hybrid Materials by Simultaneous Pseudomorphic Transformation and Functionalization of Silica Microspheres. Particle and Particle Systems Characterization, 2015, 32, 243-250.	1.2	13
27	Differential Effects of Polymerâ€Surface Decoration on Drug Delivery, Cellular Retention, and Action Mechanisms of Functionalized Mesoporous Silica Nanoparticles. Chemistry - an Asian Journal, 2015, 10, 2744-2754.	1.7	35
28	Investigation of Hexagonal Mesoporous Silica-Supported Composites for Trace Moisture Adsorption. Nanoscale Research Letters, 2015, 10, 445.	3.1	5
29	The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. Journal of Nanobiotechnology, 2015, 13, 87.	4.2	48
30	Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities. Advanced Healthcare Materials, 2015, 4, 2688-2698.	3.9	14
31	Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells. Small, 2015, 11, 5687-5695.	5.2	121
32	Cancerâ€Cellâ€Specific Nuclearâ€Targeted Drug Delivery by Dualâ€Ligandâ€Modified Mesoporous Silica Nanoparticles. Small, 2015, 11, 5919-5926.	5.2	90
33	Nearâ€Infrared Light and pHâ€Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemoâ€Photothermal Cancer Therapy. Chemistry - A European Journal, 2015, 21, 16162-16171.	1.7	38
34	Monitoring the Hemolytic Effect of Mesoporous Silica Nanoparticles after Human Blood Protein Corona Formation. European Journal of Inorganic Chemistry, 2015, 2015, 4595-4602.	1.0	38
35	Multifunctional Hybrid Silica Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. European Journal of Inorganic Chemistry, 2015, 2015, 4579-4587.	1.0	29
36	Controlled postâ€synthesis grafting of thermoresponsive poly(<i>N</i> n≥â€isopropylacrylamide) on mesoporous silica nanoparticles. Polymers for Advanced Technologies, 2015, 26, 1070-1075.	1.6	30
37	Smart Mesoporous Nanomaterials for Antitumor Therapy. Nanomaterials, 2015, 5, 1906-1937.	1.9	79
38	Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery. Advances in Materials Science and Engineering, 2015, 2015, 1-6.	1.0	5

3

#	Article	IF	CITATIONS
39	Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers. Nanoscale, 2015, 7, 11444-11452.	2.8	36
40	Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications. Nanoscale Research Letters, 2015, 10, 217.	3.1	39
42	General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12914-12922.	4.0	87
43	Host–guest chemistry of mesoporous silicas: precise design of location, density and orientation of molecular guests in mesopores. Science and Technology of Advanced Materials, 2015, 16, 054201.	2.8	35
44	pH-Dependent Selective Protein Adsorption into Mesoporous Silica. Journal of Physical Chemistry C, 2015, 119, 27072-27079.	1.5	62
45	Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered Mesoporous Silica. Langmuir, 2015, 31, 12839-12844.	1.6	27
46	Light-responsive peptide [2]rotaxanes as gatekeepers of mechanised nanocontainers. Chemical Communications, 2015, 51, 14501-14504.	2.2	34
47	Molecular Dynamics Simulations of Hydrogen Bond Dynamics and Far-Infrared Spectra of Hydration Water Molecules around the Mixed Monolayer-Protected Au Nanoparticle. Journal of Physical Chemistry C, 2015, 119, 1768-1781.	1.5	46
48	Preparation and identification of multifunctional mesoporous silica nanoparticles for inÂvitro and inÂvivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials, 2015, 46, 149-158.	5.7	121
49	Structure determination of molecular nanocomposites by combining pair distribution function analysis and solid-state NMR. RSC Advances, 2015, 5, 8895-8902.	1.7	11
50	Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials, 2015, 51, 30-42.	5.7	129
51	Silica nanoparticles: Preparation, characterization and in vitro/in vivo biodistribution studies. European Journal of Pharmaceutical Sciences, 2015, 71, 46-55.	1.9	39
52	Protein Immobilization in Surface-Functionalized SBA-15: Predicting the Uptake Capacity from the Pore Structure. Journal of Physical Chemistry C, 2015, 119, 2438-2446.	1.5	24
53	Haemolytic activity and cellular toxicity of SBA-15-type silicas: elucidating the role of the mesostructure, surface functionality and linker length. Journal of Materials Chemistry B, 2015, 3, 2714-2724.	2.9	21
54	Tailoring the dissolution rate enhancement of aminoglutethimide by functionalization of MCM-41 silica: a hydrogen bonding propensity approach. RSC Advances, 2015, 5, 2592-2601.	1.7	16
55	Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chemical Engineering Journal, 2015, 266, 171-178.	6.6	56
56	Influence of structural, textural and surface properties of mesostructured silica and aluminosilicate carriers on aminoglycoside uptake and in vitro delivery. Microporous and Mesoporous Materials, 2015, 206, 150-160.	2.2	20
57	Synthesis of colloidal Janus nanoparticles by asymmetric capping of mesoporous silica with phenylsilsesquioxane. Chemical Communications, 2015, 51, 3211-3214.	2.2	27

#	ARTICLE	IF	CITATIONS
58	Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 2015, 80, 26-36.	1.3	53
59	Protease-Mediated Release of Chemotherapeutics from Mesoporous Silica Nanoparticles to <i>ex Vivo</i> Human and Mouse Lung Tumors. ACS Nano, 2015, 9, 2377-2389.	7.3	165
60	Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drugâ€Delivery and Antioxidant Properties. ChemPlusChem, 2015, 80, 1104-1112.	1.3	75
61	Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 2015, 51, 6050-6075.	2.2	149
62	Facile and Scalable Synthesis of Novel Spherical Au Nanocluster Assemblies@Polyacrylic Acid/Calcium Phosphate Nanoparticles for Dualâ€Modal Imagingâ€Guided Cancer Chemotherapy. Small, 2015, 11, 3162-3173.	5.2	65
63	Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18179-18187.	4.0	198
64	Hybrid smart mesoporous silica nanoparticles for theranostics. Nanomedicine, 2015, 10, 2311-2314.	1.7	26
65	Synthesis and functionalization of silica-based nanoparticles with fluorescent biocompounds extracted from Eysenhardtia polystachya for biological applications. Materials Science and Engineering C, 2015, 57, 49-57.	3.8	19
66	Noncovalent Surface Locking of Mesoporous Silica Nanoparticles for Exceptionally High Hydrophobic Drug Loading and Enhanced Colloidal Stability. Biomacromolecules, 2015, 16, 2701-2714.	2.6	55
67	Reduced graphene oxide gated mesoporous silica nanoparticles as a versatile chemo-photothermal therapy system through pH controllable release. Journal of Materials Chemistry B, 2015, 3, 6377-6384.	2.9	29
68	Redox-sensitive mesoporous silica nanoparticles functionalized with PEG through a disulfide bond linker for potential anticancer drug delivery. RSC Advances, 2015, 5, 59576-59582.	1.7	26
69	Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. Journal of Materials Chemistry B, 2015, 3, 6456-6461.	2.9	49
70	Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 11-21.	2.0	75
71	Energy Landscape of Water and Ethanol on Silica Surfaces. Journal of Physical Chemistry C, 2015, 119, 15428-15433.	1.5	32
72	Synthesis of 1D Fe3O4/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery. Journal of Colloid and Interface Science, 2015, 456, 145-154.	5.0	17
73	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacreâ€Like Structures. Advanced Engineering Materials, 2015, 17, 523-531.	1.6	15
74	Low ost Synthesis of Bimodal Mesoporous Silicaâ€Based Materials by Pseudomorphic Transformation. ChemPlusChem, 2015, 80, 1014-1028.	1.3	8
75	Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44, 3474-3504.	18.7	397

#	ARTICLE	IF	CITATIONS
76	Synthesis of hollow and rattle-type mesoporous silica spheres by treating layered mesoporous silica with a basic solution, and using the spheres as microreactors for two-phase reactions. Journal of Materials Chemistry A, 2015, 3, 11880-11890.	5.2	19
77	Influence of the synthetic method on the properties of two-photon-sensitive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2015, 3, 5182-5188.	2.9	20
78	Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice. ACS Nano, 2015, 9, 3540-3557.	7.3	367
79	Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine, 2015, 10, 1233-1246.	1.7	80
80	A General Method for Growing Large Area Mesoporous Silica Thin Films on Flat Substrates with Perpendicular Nanochannels. Journal of the American Chemical Society, 2015, 137, 3779-3782.	6.6	97
81	Hierarchically Functionalized Magnetic Core/Multishell Particles and Their Postsynthetic Conversion to Polymer Capsules. ACS Nano, 2015, 9, 4219-4226.	7.3	39
82	Esterase- and pH-responsive poly (\hat{l}^2 -amino ester)-capped mesoporous silica nanoparticles for drug delivery. Nanoscale, 2015, 7, 7178-7183.	2.8	75
83	Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted siRNA Delivery to HER2 ⁺ Breast Cancer. Advanced Functional Materials, 2015, 25, 2646-2659.	7.8	155
84	Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chemical Communications, 2015, 51, 8492-8495.	2.2	73
85	Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 2015, 7, 7953-7964.	2.8	134
86	Bimodal mesoporous silica with bottleneck pores. Dalton Transactions, 2015, 44, 17960-17967.	1.6	23
87	Thermoresponsive gold nanoshell@mesoporous silica nano-assemblies: an XPS/NMR survey. Physical Chemistry Chemical Physics, 2015, 17, 28719-28728.	1.3	18
88	Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Advances in Colloid and Interface Science, 2015, 226, 166-186.	7.0	54
89	Near-infrared light activated delivery platform for cancer therapy. Advances in Colloid and Interface Science, 2015, 226, 123-137.	7.0	42
90	Conformational Equilibria of Organic Adsorbates on Nanostructures in Aqueous Solution: MD Simulations. Journal of Physical Chemistry C, 2015, 119, 25566-25575.	1.5	18
91	pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid–Fe(<scp>iii</scp>) complex. RSC Advances, 2015, 5, 90550-90558.	1.7	71
92	A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Nanoscale, 2015, 7, 19557-19567.	2.8	34
93	Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia. ACS Nano, 2015, 9, 10778-10789.	7.3	109

#	Article	IF	CITATIONS
94	Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano, 2015, 9, 11023-11033.	7.3	389
95	Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews, 2015, 115, 11669-11717.	23.0	566
96	Building solids inside nano-space: from confined amorphous through confined solvate to confined â€~metastable' polymorph. Physical Chemistry Chemical Physics, 2015, 17, 24761-24773.	1.3	26
97	Reversible sol–gel transitions of aqueous dispersions of silica nanoparticles grafted with diblock copolymer brushes composed of a thermosensitive inner block and a charged outer block. Soft Matter, 2015, 11, 6808-6820.	1.2	16
98	A highly dispersible silica pH nanosensor with expanded measurement ranges. New Journal of Chemistry, 2015, 39, 4568-4574.	1.4	13
99	Hybrid nanostructures: synthesis, morphology and functional properties. Russian Chemical Reviews, 2015, 84, 579-600.	2.5	33
100	Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process. Nanoscale, 2015, 7, 16442-16450.	2.8	18
101	A multifunctional nanocomposite of magnetic \hat{I}^3 -Fe2O3 and mesoporous fluorescent ZnO. Journal of Alloys and Compounds, 2015, 653, 187-194.	2.8	15
102	cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis. Journal of Controlled Release, 2015, 220, 783-791.	4.8	29
103	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B, 2015, 3, 1712-1721.	2.9	66
104	Molecular Dynamics Simulations of Ibuprofen Release from pH-Gated Silica Nanochannels. Journal of Physical Chemistry B, 2015, 119, 8868-8878.	1.2	3
105	Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms. Nanoscale, 2015, 7, 1067-1072.	2.8	41
106	Stimuli-Responsive Colloidal Assembly Driven by Surface-Grafted Supramolecular Moieties. Langmuir, 2015, 31, 57-64.	1.6	24
107	Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 319-337.	2.4	230
108	Multifunctional NaYF ₄ :Yb, Er@mSiO ₂ @Fe ₃ O ₄ -PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale, 2015, 7, 1839-1848.	2.8	88
109	Dendritic Silica Particles with Center-Radial Pore Channels: Promising Platforms for Catalysis and Biomedical Applications. Small, 2015, 11, 392-413.	5.2	261
110	Phosphate modulated permeability of mesoporous silica spheres: a biomimetic ion channel decorated compartment model. Journal of Materials Chemistry B, 2015, 3, 323-329.	2.9	4
111	Functional Nanovalves on Protein-Coated Nanoparticles for In vitro and In vivo Controlled Drug Delivery. Small, 2015, 11, 319-328.	5.2	65

#	Article	IF	CITATIONS
112	APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 2015, 262, 882-890.	6.6	139
113	Current advances in lanthanide ion (Ln ³⁺)-based upconversion nanomaterials for drug delivery. Chemical Society Reviews, 2015, 44, 1416-1448.	18.7	676
114	Effect of Multimodal Pore Channels on Cargo Release from Mesoporous Silica Nanoparticles. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	12
115	Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. International Journal of Nanomedicine, 2016, Volume 11, 6591-6608.	3.3	53
116	Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Frontiers in Molecular Biosciences, 2016, 3, 1.	1.6	68
117	Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering, 2016, 3, 35.	1.6	43
118	Coordination Networks Based on Boronate and Benzoxaborolate Ligands. Crystals, 2016, 6, 48.	1.0	8
119	Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release. Polymers, 2016, 8, 277.	2.0	41
120	$\label{lem:nanoarchitectured} \mbox{Mesoporous Silica-Based Drug-Delivery Systems: Toward Perfect Nanomedicine.}\ , 2016, , 345-377.$		1
121	Nanoparticle-based strategy for personalized B-cell lymphoma therapy. International Journal of Nanomedicine, 2016, Volume 11, 6089-6101.	3.3	35
122	Clickable Bifunctional and Vertically Aligned Mesoporous Silica Films. Advanced Materials Interfaces, 2016, 3, 1500440.	1.9	38
123	Bisâ€clickable Mesoporous Silica Nanoparticles: Straightforward Preparation of Lightâ€Actuated Nanomachines for Controlled Drug Delivery with Active Targeting. Chemistry - A European Journal, 2016, 22, 9624-9630.	1.7	24
124	Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, 14126-14130.	1.7	14
125	Breakable Hybrid Organosilica Nanocapsules for Protein Delivery. Angewandte Chemie, 2016, 128, 3384-3388.	1.6	16
126	Redoxâ€Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snapâ€Tops Enhances Efficacy Against Pneumonic Tularemia in Mice. Small, 2016, 12, 3690-3702.	5.2	80
127	Breakable Hybrid Organosilica Nanocapsules for Protein Delivery. Angewandte Chemie - International Edition, 2016, 55, 3323-3327.	7.2	126
128	Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. Nanotechnology, 2016, 27, 505605.	1.3	40
129	Synthesis and characterization of Eu3+:Gd2O3 hollow spheres for biomedical applications. AIP Conference Proceedings, 2016, , .	0.3	1

#	Article	IF	Citations
132	20-nm-sized mesoporous silica nanoparticles with porphyrin photosensitizers for in vitro photodynamic therapy. Journal of Sol-Gel Science and Technology, 2016, 79, 447-456.	1.1	7
133	Smart surface-enhanced Raman scattering traceable drug delivery systems. Nanoscale, 2016, 8, 12803-12811.	2.8	17
134	Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous and Mesoporous Materials, 2016, 231, 47-56.	2.2	15
135	Materials for Inorganic Controlled Release Technology. , 2016, , 1-16.		7
136	The application of mesoporous silica nanoparticle family in cancer theranostics. Coordination Chemistry Reviews, 2016, 319, 86-109.	9.5	132
137	Green Synthesis of Organophilic Clays; Solid-State Reaction of Acidic Clay with Organoamine. Industrial & Clays; Engineering Chemistry Research, 2016, 55, 6325-6330.	1.8	14
138	Selective topotecan delivery to cancer cells by targeted pH-sensitive mesoporous silica nanoparticles. RSC Advances, 2016, 6, 50923-50932.	1.7	46
139	Mesostructured SiO2-based nanocontainers synthesized on a functional template: Capacity and rate of unloading. Colloid Journal, 2016, 78, 52-64.	0.5	14
140	Simultaneous spectroscopic measurements of the interior temperature and induced cargo release from pore-restricted mesoporous silica nanoparticles. Nanoscale, 2016, 8, 10558-10563.	2.8	4
141	Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1951-1959.	1.7	51
142	Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chemical Engineering Journal, 2016, 300, 185-192.	6.6	40
143	Amine-functionalized mesoporous silica KIT-6 as a controlled release drug delivery carrier. Microporous and Mesoporous Materials, 2016, 229, 166-177.	2.2	62
144	A Versatile Theranostic Delivery Platform Integrating Magnetic Resonance Imaging/Computed Tomography, pH/ <i>cis</i> -Diol Controlled Release, and Targeted Therapy. ACS Nano, 2016, 10, 5809-5822.	7.3	49
145	Nanoparticle–dendrimer hybrid nanocapsules for therapeutic delivery. Nanomedicine, 2016, 11, 1571-1578.	1.7	24
146	Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environmental Science and Pollution Research, 2016, 23, 23134-23144.	2.7	24
147	Unprecedented "Allâ€inâ€One†Lanthanideâ€Doped Mesoporous Silica Frameworks for Fluorescence/MR Imaging and Combination of NIR Light Triggered Chemoâ€Photodynamic Therapy of Tumors. Advanced Functional Materials, 2016, 26, 7908-7920.	7.8	56
148	Extremophiles: Applications in Nanotechnology. , 2016, , .		20
149	Nanoparticles Synthesized by Microorganisms. , 2016, , 1-51.		5

#	Article	IF	CITATIONS
150	Effect of Pore Wall Charge and Probe Molecule Size on Molecular Motion inside Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 23780-23787.	1.5	7
151	Improvement of interfacial strength and thermal stability of carbon fiber composites by directly grafting unique particles: functionalized mesoporous silicas. RSC Advances, 2016, 6, 80485-80492.	1.7	8
152	Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection of <i>Mycoplasma</i> and Cocaine. Chemistry - A European Journal, 2016, 22, 13488-13495.	1.7	17
153	Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles. Journal of Physical Chemistry B, 2016, 120, 8036-8045.	1.2	18
154	Preparation of curcumin loaded mesoporous silica nanoparticles: Determining polarizability inside the mesopores. Materials Research Bulletin, 2016, 84, 267-272.	2.7	20
155	Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 2016, 11, 435-463.	6.2	149
156	Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery. Langmuir, 2016, 32, 8507-8515.	1.6	40
157	Nanostructured lead sulfide: synthesis, structure and properties. Russian Chemical Reviews, 2016, 85, 731-758.	2.5	49
158	Exploiting Noncovalent Interactions in an Imineâ€Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, 8749-8754.	11.1	302
159	Controlled Ion Release Property of Glass Ionomer Cement Containing Nanoporous Silica Particles. Key Engineering Materials, 2016, 720, 17-20.	0.4	0
160	Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery. Materials Science and Engineering C, 2016, 69, 292-300.	3.8	44
161	Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6, 70064-70071.	1.7	5
162	Multifunctional Redox-Responsive Mesoporous Silica Nanoparticles for Efficient Targeting Drug Delivery and Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33829-33841.	4.0	102
163	Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins. ACS Applied Materials & Description of the Encapsulation and Release of Proteins.	4.0	111
164	Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. Nanoscale, 2016, 8, 19945-19972.	2.8	136
165	Apoferritin Nanocage Delivers Combination of Microtubule and Nucleus Targeting Anticancer Drugs. ACS Applied Materials & Drugs, Interfaces, 2016, 8, 30824-30832.	4.0	36
166	Size and Fiber Density Controlled Synthesis of Fibrous Nanosilica Spheres (KCC-1). Scientific Reports, 2016, 6, 24888.	1.6	138
167	Externally Controlled Nanomachines on Mesoporous Silica Nanoparticles for Biomedical Applications. ChemPhysChem, 2016, 17, 1769-1779.	1.0	64

#	Article	IF	CITATIONS
168	Potential of nanoparticles for allergen-specific immunotherapy – use of silica nanoparticles as vaccination platform. Expert Opinion on Drug Delivery, 2016, 13, 1777-1788.	2.4	11
169	pH-Responsive sulphonated mesoporous silica: a comparative drug release study. RSC Advances, 2016, 6, 57929-57940.	1.7	19
170	The role of surface functionalization of silica nanoparticles for bioimaging. Journal of Innovative Optical Health Sciences, 2016, 09, 1630005.	0.5	29
171	Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomaterialia, 2016, 33, 275-282.	4.1	59
172	Engineering nanolayered particles for modular drug delivery. Journal of Controlled Release, 2016, 240, 364-386.	4.8	112
173	Highly efficient siRNA delivery from core–shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale, 2016, 8, 4007-4019.	2.8	97
174	Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 796, 8-22.	0.9	49
175	Double Functionalized Nanoporous Magnetic Gadolinium–Silica Composite for Doxorubicin Delivery. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 226-232.	1.9	13
176	Magnetic conducting polymer/mesoporous SiO ₂ yolk/shell nanomaterials: multifunctional nanocarriers for controlled release of doxorubicin. RSC Advances, 2016, 6, 8572-8579.	1.7	15
177	pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. International Journal of Biological Macromolecules, 2016, 85, 596-603.	3.6	45
178	Molecularly imprinted polymer microprobes for manipulating neurological function by regulating temperature-dependent molecular interactions. Process Biochemistry, 2016, 51, 142-157.	1.8	3
179	A simple three step method for selective placement of organic groups in mesoporous silica thin films. Materials Chemistry and Physics, 2016, 169, 82-88.	2.0	5
180	Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8, 938-948.	2.8	93
181	Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. Journal of Materials Chemistry B, 2016, 4, 212-219.	2.9	75
182	A molecular nanocap activated by superparamagnetic heating for externally stimulated cargo release. Chemical Communications, 2016, 52, 1843-1846.	2.2	39
183	Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers. Expert Opinion on Drug Delivery, 2016, 13, 171-181.	2.4	39
184	Dendronized mesoporous silica nanoparticles provide an internal endosomal escape mechanism for successful cytosolic drug release. Microporous and Mesoporous Materials, 2016, 227, 242-251.	2.2	16
185	Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle. Molecular Pharmaceutics, 2016, 13, 2172-2183.	2.3	75

#	Article	IF	CITATIONS
186	Ultrasound-Controlled Nanosystems. , 2016, , 179-211.		1
187	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 2016, 91, 90-127.	5.7	224
188	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	4.8	149
189	Evaporation-induced Self-assembly Process Controlled for Obtaining Highly Ordered Mesoporous Materials with Demanded Morphologies. Chemical Record, 2016, 16, 445-457.	2.9	26
190	Lanthanideâ€Doped Upconversion Nanoparticles: Emerging Intelligent Lightâ€Activated Drug Delivery Systems. Advanced Science, 2016, 3, 1500437.	5.6	179
191	A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties. Macromolecular Bioscience, 2016, 16, 567-579.	2.1	28
192	High azobenzene functionalization enhances stability of the cis isomer: Periodic mesoporous organosilica network on the way to new light triggered applicable materials. Microporous and Mesoporous Materials, 2016, 228, 30-36.	2.2	8
193	Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. Nanoscale, 2016, 8, 8798-8809.	2.8	28
194	Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. Nanoscale, 2016, 8, 8101-8110.	2.8	23
195	Robust mesoporous silica compacts: multi-scale characterization of microstructural changes related to physical–mechanical properties. Journal of Materials Science, 2016, 51, 4470-4480.	1.7	10
196	Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 2016, 4, 803-813.	2.6	87
197	Modulation of the structural properties of mesoporous silica nanoparticles to enhance the T $<$ sub $>$ 1 $<$ /sub $>$ -weighted MR imaging capability. Journal of Materials Chemistry B, 2016, 4, 1720-1732.	2.9	13
198	Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano, 2016, 10, 2702-2715.	7.3	215
199	Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon, 2016, 101, 135-142.	5.4	70
200	High-frequency fabrication of discrete and dispersible hollow carbon spheres with hierarchical porous shells by using secondary-crosslinking pyrolysis. RSC Advances, 2016, 6, 16141-16149.	1.7	9
201	Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. Nanoscale, 2016, 8, 8058-8069.	2.8	36
202	Recent progress in hollow silica: Template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227, 121-136.	2.2	127
203	Polymeric Prodrug Grafted Hollow Mesoporous Silica Nanoparticles Encapsulating Near-Infrared Absorbing Dye for Potent Combined Photothermal-Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6869-6879.	4.0	70

#	Article	IF	CITATIONS
204	Confined space synthesis of mesoporous silica nanoparticles with a three dimensionally ordered close-packing structure. Materials and Design, 2016, 98, 41-46.	3.3	9
205	In-depth study on the gene silencing capability of silica nanoparticles with different pore sizes: degree and duration of RNA interference. RSC Advances, 2016, 6, 27143-27150.	1.7	19
206	Labeling the Structural Integrity of Nanoparticles for Advanced In Situ Tracking in Bionanotechnology. ACS Nano, 2016, 10, 4660-4671.	7.3	25
207	Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnology Reviews, 2016, 5, .	2.6	70
208	Cellular endocytosis and trafficking of cholera toxin B-modified mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4, 1254-1262.	2.9	40
209	Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles. Journal of Materials Chemistry A, 2016, 4, 1771-1783.	5.2	29
210	Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 2016, 116, 561-718.	23.0	420
211	pH-Sensitive nanogates based on poly(<scp>l</scp> -histidine) for controlled drug release from mesoporous silica nanoparticles. Polymer Chemistry, 2016, 7, 1475-1485.	1.9	103
212	Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale, 2016, 8, 4537-4546.	2.8	64
213	5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes. Nanoscale, 2016, 8, 2011-2021.	2.8	26
214	Design and application of a smart nanodevice by combining cationic drug delivery and hyperthermia for cancer apoptosis. Journal of Materials Chemistry B, 2016, 4, 785-792.	2.9	11
215	Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60, 569-578.	3.8	530
216	The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length <i>via</i> the disulfide bond linker and drug release in glutathione medium. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 55-68.	1.9	14
217	Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 2016, 196, 66-75.	4.2	38
218	Detection of protease activity in cells and animals. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 130-142.	1.1	37
219	A study on the role of polypropylene fibers and silica nanoparticles on the compression properties of silicone rubber composites as a material of finger joint implant. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 48-52.	1.8	9
220	Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem, 2017, 82, 631-637.	1.3	24
221	Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 2017, 248, 60-70.	4.8	31

#	Article	IF	CITATIONS
222	A Drugâ€Selfâ€Gated Mesoporous Antitumor Nanoplatform Based on pHâ€Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	7.8	255
223	Silica Xerogel Obtained by Ultrashort Laser Irradiation of Tetraethyl Orthosilicate. ChemPhysChem, 2017, 18, 1140-1145.	1.0	1
224	Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 2017, 29, 1604634.	11.1	565
225	The glycocalyx regulates the uptake of nanoparticles by human endothelial cells <i>in vitro</i> . Nanomedicine, 2017, 12, 207-217.	1.7	29
226	Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure. Nanoscale, 2017, 9, 2253-2261.	2.8	64
227	Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility. MRS Advances, 2017, 2, 1047-1058.	0.5	19
228	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221
229	Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Amp; Interfaces, 2017, 9, 11332-11336.	4.0	64
230	Enzymeâ€Controlled Nanodevice for Acetylcholineâ€Triggered Cargo Delivery Based on Janus Au–Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 4276-4281.	1.7	27
231	Morphology-Controlled Coating of Colloidal Particles with Silica: Influence of Particle Surface Functionalization. Langmuir, 2017, 33, 2235-2247.	1.6	9
232	Poly(NIPAM- co -MPS)-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system. Asian Journal of Pharmaceutical Sciences, 2017, 12, 279-284.	4.3	31
233	Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Applied Materials & Company (Naterials & Company) (Naterials & Company	4.0	111
234	Polymeric Microparticles and Inorganic Micro/Nanoparticulate Drug Carriers: An Overview and Pharmaceutical Application., 2017,, 31-67.		4
235	A facile supramolecular approach to fabricate multifunctional upconversion nanoparticles as a versatile platform for drug loading, in vivo delivery and tumor imaging. Journal of Materials Chemistry B, 2017, 5, 2425-2435.	2.9	21
236	One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. Journal of Materials Chemistry B, 2017, 5, 4455-4469.	2.9	46
237	Synthesis of mesoporous silica nanoparticles and nanorods: Application to doxorubicin delivery. Solid State Sciences, 2017, 68, 25-31.	1.5	32
238	Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids and Surfaces B: Biointerfaces, 2017, 155, 530-537.	2.5	79
239	A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2017, 139, 6663-6668.	6.6	57

#	Article	IF	CITATIONS
240	Locating Reactive Groups on Nanomaterials with Gold Nanoclusters: Toward a Surface Reactive Site Map. Langmuir, 2017, 33, 5086-5097.	1.6	2
241	Engineering and delivery of nanocolloids of hydrophobic drugs. Advances in Colloid and Interface Science, 2017, 249, 308-320.	7.0	42
242	Nanoparticle Size Control in Microemulsion Synthesis. Langmuir, 2017, 33, 4748-4757.	1.6	75
243	Nanosilica Schiff-Base Copper(II) Complexes with Sustainable Antimicrobial Activity against Bacteria and Reduced Risk of Harm to Plant and Environment. ACS Sustainable Chemistry and Engineering, 2017, 5, 502-509.	3.2	24
244	Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 21706-21714.	4.0	39
245	Enhancing internalization of silica particles in myocardial cells through surface modification. Materials Science and Engineering C, 2017, 79, 831-840.	3.8	16
246	Phosphonated Pillar[5]arene-Valved Mesoporous Silica Drug Delivery Systems. ACS Applied Materials & 2017, 9, 19638-19645.	4.0	72
247	Self-Assembled ZnO Nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. ACS Applied Materials & Delivering Isotretinoin to Cancer Cells.	4.0	38
248	Dendritic Mesoporous Silica Nanoparticles for pHâ€Stimuliâ€Responsive Drug Delivery of TNFâ€Alpha. Advanced Healthcare Materials, 2017, 6, 1700012.	3.9	46
249	Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Materials Chemistry Frontiers, 2017, 1, 1257-1272.	3.2	85
250	EpCAM antibody-conjugated mesoporous silica nanoparticles to enhance the anticancer efficacy of carboplatin in retinoblastoma. Materials Science and Engineering C, 2017, 76, 646-651.	3.8	33
251	<i>In Vivo</i> Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal–Organic Frameworks Nanomaterials. ACS Nano, 2017, 11, 4315-4327.	7.3	235
252	PLA–PEGâ€grafted hollow magnetic silica microspheres as the carrier of iodinated contrast media. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
253	Subcellularâ€Scale Drug Transport via Ultrasoundâ€Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance. Small, 2017, 13, 1604228.	5.2	25
254	Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. Nanotechnology, 2017, 28, 145101.	1.3	37
255	Self-immolative polymers as novel pH-responsive gate keepers for drug delivery. RSC Advances, 2017, 7, 132-136.	1.7	50
256	Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. Journal of Antibiotics, 2017, 70, 259-263.	1.0	10
257	Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. Journal of Photochemistry and Photobiology B: Biology, 2017, 167, 1-6.	1.7	39

#	Article	IF	CITATIONS
258	Polysaccharides/mesoporous silica nanoparticles hybrid composite hydrogel beads for sustained drug delivery. Journal of Materials Science, 2017, 52, 3095-3109.	1.7	28
259	Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B, 2017, 5, 1339-1352.	2.9	87
260	AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles. Materials Science and Engineering C, 2017, 73, 1-7.	3.8	29
261	Safe and Effective Reversal of Cancer Multidrug Resistance Using Sericinâ€Coated Mesoporous Silica Nanoparticles for Lysosomeâ€Targeting Delivery in Mice. Small, 2017, 13, 1602567.	5.2	50
262	Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS Applied Materials & Diterfaces, 2017, 9, 406-412.	4.0	46
263	Nanomedicine for cancer diagnosis and therapy: advancement, success and structure–activity relationship. Therapeutic Delivery, 2017, 8, 1003-1018.	1.2	49
264	Implementation of oligonucleotide-gated supports for the electrochemical detection of Ochratoxin A. Supramolecular Chemistry, 2017, 29, 776-783.	1.5	4
265	Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chemical Society Reviews, 2017, 46, 7021-7053.	18.7	556
266	Mixed shell mesoporous silica nanoparticles for controlled drug encapsulation and delivery. Nanomedicine, 2017, 12, 2699-2711.	1.7	7
267	Thermo-responsive mesoporous silica/lipid bilayer hybrid nanoparticles for doxorubicin on-demand delivery and reduced premature release. Colloids and Surfaces B: Biointerfaces, 2017, 160, 527-534.	2.5	28
268	Sandwichâ€Type Nanocomposite of Reduced Graphene Oxide and Periodic Mesoporous Silica with Vertically Aligned Mesochannels of Tunable Pore Depth and Size. Advanced Functional Materials, 2017, 27, 1704066.	7.8	14
269	Membrane Fusion Mediated Intracellular Delivery of Lipid Bilayer Coated Mesoporous Silica Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700759.	3.9	44
270	Probing the Eumelanin–Silica Interface in Chemically Engineered Bulk Hybrid Nanoparticles for Targeted Subcellular Antioxidant Protection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37615-37622.	4.0	41
271	Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polymer Chemistry, 2017, 8, 5852-5864.	1.9	73
272	Evaluation of mesoporous silica nanoparticles for oral drug delivery $\hat{a}\in$ "current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9, 15252-15277.	2.8	177
273	Magnetotactic Bacteria Powered Biohybrids Target <i>E. coli</i> Biofilms. ACS Nano, 2017, 11, 9968-9978.	7.3	154
274	A redox responsive controlled release system using mesoporous silica nanoparticles capped with Au nanoparticles. RSC Advances, 2017, 7, 35704-35710.	1.7	19
275	Silica nanospheres entrapped with ultra-small luminescent crystals for protein delivery. Chemical Engineering Journal, 2017, 330, 166-174.	6.6	9

#	Article	IF	Citations
276	Construction of Silicaâ€Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700646.	3.9	51
277	Rationally Turning the Interface Activity of Mesoporous Silicas for Preparing Pickering Foam and "Dry Water― Langmuir, 2017, 33, 9025-9033.	1.6	15
278	Controlled Zn ²⁺ -Triggered Drug Release by Preferred Coordination of Open Active Sites within Functionalization Indium Metal Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28939-28948.	4.0	61
279	In vitro delivery of calcium ions by nanogated mesoporous silica nanoparticles to induce cancer cellular apoptosis. Molecular Systems Design and Engineering, 2017, 2, 384-392.	1.7	12
280	Au–Mesoporous silica nanoparticles gated with disulfide-linked oligo(ethylene glycol) chains for tunable cargo delivery mediated by an integrated enzymatic control unit. Journal of Materials Chemistry B, 2017, 5, 6734-6739.	2.9	17
281	Synthesis of pH-Responsive Biodegradable Mesoporous Silica–Calcium Phosphate Hybrid Nanoparticles as a High Potential Drug Carrier. ACS Applied Materials & Drug Carrier.	4.0	57
282	Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma. ACS Nano, 2017, 11, 12732-12741.	7.3	136
283	Thermosensitive block copolymer [(PNIPAM)-b-(Glycine)] thin film as protective layer for drug loaded mesoporous silica nanoparticles. Materials Research Express, 2017, 4, 105306.	0.8	17
284	<i>In Vitro</i> Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2017, 14, 4431-4441.	2.3	82
285	Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis. Applied Nanoscience (Switzerland), 2017, 7, 633-643.	1.6	6
286	Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme. Tetrahedron, 2017, 73, 4883-4886.	1.0	56
287	Cytosine-functionalized SBA-15 mesoporous nanomaterials: Synthesis, characterization and catalytic applications. Microporous and Mesoporous Materials, 2017, 253, 64-70.	2.2	31
288	Surface Engineered Ho3+ Incorporated Fluorescent Dye-Doped Bifunctional Silica Nanoparticles for Receptor Targeted Fluorescence Imaging and Potential Magnetic Resonance Imaging. Journal of Fluorescence, 2017, 27, 1897-1908.	1.3	6
289	Talented Mesoporous Silica Nanoparticles. Chemistry of Materials, 2017, 29, 371-388.	3.2	181
290	Selfâ€Regulated Glucoseâ€Sensitive Neoglycoenzymeâ€Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 2017, 23, 1353-1360.	1.7	55
291	A surface-grafted ligand functionalization strategy for coordinate binding of doxorubicin at surface of PEGylated mesoporous silica nanoparticles: Toward pH-responsive drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 149, 138-145.	2.5	24
292	Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH-sensitive controlled release of doxorubicin. Materials Science and Engineering C, 2017, 70, 132-140.	3.8	44
293	Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opinion on Drug Delivery, 2017, 14, 783-796.	2.4	121

#	ARTICLE	IF	CITATIONS
294	Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opinion on Drug Delivery, 2017, 14, 229-243.	2.4	152
295	Cyanineâ€Anchored Silica Nanochannels for Lightâ€Driven Synergistic Thermoâ€Chemotherapy. Small, 2017, 13, 1602747.	5.2	55
297	Mesoporous materials and technologies for development of oral medicine., 2017,, 699-749.		4
298	Mesoporous Silica Nanoparticles as Carriers for Intracellular Delivery of Nucleic Acids and Subsequent Therapeutic Applications. Molecules, 2017, 22, 782.	1.7	53
299	Biodegradable mesoporous delivery system for biomineralization precursors. International Journal of Nanomedicine, 2017, Volume 12, 839-854.	3.3	23
300	Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions. Beilstein Journal of Nanotechnology, 2017, 8, 334-347.	1.5	19
301	Multifunctional mesoporous silica nanoparticles as efficient transporters of doxorubicin and chlorin e6 for chemo-photodynamic combinatorial cancer therapy. Journal of Biomaterials Applications, 2018, 32, 1253-1264.	1.2	28
302	Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy. Pharmaceutical Research, 2018, 35, 63.	1.7	18
303	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352
304	Brighter, More Stable, and Less Toxic: A Host–Guest Interaction-Aided Strategy for Fabricating Fluorescent Silica Nanoparticles and Applying Them in Bioimaging and Biosensing at the Cellular Level. ACS Applied Materials & Interfaces, 2018, 10, 16291-16298.	4.0	13
305	Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles. Advanced Materials, 2018, 30, e1704290.	11.1	97
306	Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry - A European Journal, 2018, 24, 15706-15724.	1.7	54
307	From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2785-2794.	2.9	32
308	Evaluation of novel platinum(<scp>ii</scp>) based AIE compound-encapsulated mesoporous silica nanoparticles for cancer theranostic application. Dalton Transactions, 2018, 47, 4613-4624.	1.6	22
309	Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials, 2018, 161, 292-305.	5.7	127
310	ATP-Decorated Mesoporous Silica for Biomineralization of Calcium Carbonate and P2 Purinergic Receptor-Mediated Antitumor Activity against Aggressive Lymphoma. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 6917-6929.	4.0	30
311	Pendant/bridged/mesoporous silsesquioxane nanoparticles: Versatile and biocompatible platforms for smart delivery of therapeutics. Chemical Engineering Journal, 2018, 340, 125-147.	6.6	32
312	Synthesis of Hierarchical Silica/Titania Hollow Nanoparticles and Their Enhanced Electroresponsive Activity. ACS Applied Materials & Interfaces, 2018, 10, 6570-6579.	4.0	26

#	ARTICLE	IF	CITATIONS
313	Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Scientific Reports, 2018, 8, 895.	1.6	56
314	Monodispersed mesoporous silica nanospheres based on pyridinium ionic liquids. Journal of Porous Materials, 2018, 25, 1439-1446.	1.3	19
315	One-pot synthesis of wormhole-like mesostructured silica with a high amine loading for enhanced adsorption of clofibric acid. Journal of Porous Materials, 2018, 25, 1611-1623.	1.3	8
316	Fabrication of mesoporous La ₃ Ga ₅ GeO ₁₄ :Cr ³⁺ ,Zn ²⁺ persistent luminescence nanocarriers with super-long afterglow for bioimaging-guided <i>in vivo</i> drug delivery to the gut, lournal of Materials Chemistry B. 2018, 6, 1479-1488.	2.9	17
317	Theranostic Nanoplatform: Triple-Modal Imaging-Guided Synergistic Cancer Therapy Based on Liposome-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & Diterfaces, 2018, 10, 1963-1975.	4.0	93
318	Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjugate Chemistry, 2018, 29, 1510-1518.	1.8	40
319	Clickable Multifunctional Large-Pore Mesoporous Silica Nanoparticles as Nanocarriers. Chemistry of Materials, 2018, 30, 644-654.	3.2	34
320	Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification. Materials and Design, 2018, 141, 407-413.	3.3	24
321	Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. Materials Science and Engineering C, 2018, 89, 175-181.	3.8	12
322	Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing. Sensors and Actuators A: Physical, 2018, 276, 267-277.	2.0	25
323	On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Microporous and Mesoporous Materials, 2018, 270, 109-119.	2.2	50
324	Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: InÂvitro assessment, pharmacokinetics and biodistribution. Biomaterials, 2018, 178, 570-582.	5.7	47
325	Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	1
326	Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart―drug release. Acta Biomaterialia, 2018, 72, 55-69.	4.1	331
327	A highly organic functionalized three-connected periodic mesoporous silica by Co-condensation with hydridosilica. Microporous and Mesoporous Materials, 2018, 266, 177-182.	2.2	5
328	Sonochemistryâ€Assembled Stimuliâ€Responsive Polymer Microcapsules for Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1701326.	3.9	31
329	Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. ACS Nano, 2018, 12, 2094-2105.	7.3	210
330	Sequestration of CO 2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica. Journal of Saudi Chemical Society, 2018, 22, 343-351.	2.4	28

#	Article	IF	CITATIONS
331	Functionalization of mesoporous organosilica nanocarrier for pH/glutathione dual-responsive drug delivery and imaging of cancer therapy process. Talanta, 2018, 177, 203-211.	2.9	22
332	Coâ€Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Advanced Healthcare Materials, 2018, 7, 1700886.	3.9	96
333	<i>Ĭµ</i> â€Polylysineâ€Capped Mesoporous Silica Nanoparticles as Carrier of the <i>C</i> 9 <i>h</i> Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 2018, 24, 1890-1897.	1.7	29
334	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
335	Study of the controlled assembly of DNA gated PEI/Chitosan/SiO ₂ fluorescent sensor. Luminescence, 2018, 33, 399-409.	1.5	3
336	Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 428-439.	2.9	63
337	Fine-tuning the release of molecular guests from mesoporous silicas by controlling the orientation and mobility of surface phenyl substituents. Chemical Engineering Journal, 2018, 340, 73-80.	6.6	13
338	A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin. Applied Surface Science, 2018, 434, 204-210.	3.1	27
339	Dendritic and Core–Shell–Corona Mesoporous Sister Nanospheres from Polymer–Surfactant–Silica Selfâ€Entanglement. Chemistry - A European Journal, 2018, 24, 478-486.	1.7	19
340	Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65, 393-404.	4.1	161
341	pH-Sensitive mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids and Surfaces B: Biointerfaces, 2018, 161, 442-448.	2.5	42
342	Self-Assembled Hybrid Nanostructures: Versatile Multifunctional Nanoplatforms for Cancer Diagnosis and Therapy. Chemistry of Materials, 2018, 30, 25-53.	3.2	83
343	Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. Nanoscale, 2018, 10, 239-249.	2.8	23
344	Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 2018, 19, 1249-1297.	1.0	60
345	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	7.8	150
346	Integrating <i>in situ</i> formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy. Nanoscale, 2018, 10, 22937-22945.	2.8	51
347	Identification and computational characterization of isomers with <i>cis</i> and <i>trans</i> amide bonds in folate and its analogues. Physical Chemistry Chemical Physics, 2018, 20, 28818-28831.	1.3	4
348	Gdâ€Based Mesoporous Silica Nanoparticles as MRI Probes. European Journal of Inorganic Chemistry, 2018, 2018, 4936-4954.	1.0	41

#	Article	IF	CITATIONS
349	Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 7669-7680.	3.3	61
350	Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency <i>in Vitro</i> . ACS Nano, 2018, 12, 12062-12079.	7.3	29
351	A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. ACS Omega, 2018, 3, 17496-17510.	1.6	48
352	Bacterial Resistance and Prostate Cancer Susceptibility Toward Metal-Ion-doped DNA Complexes. ACS Applied Materials & Dr. Interfaces, 2018, 10, 44290-44300.	4.0	5
353	Composite of AuNPs@SiO $\$ 2}\$\$ 2 NPs@[(NIPAM)- \$\${varvec{b}}\$\$ b. Bulletin of Materials Science, 2018, 41, 1.	0.8	4
354	ZnO-functionalized mesoporous inner-empty nanotheranostic platform: upconversion imaging guided chemotherapy with pH-triggered drug delivery. Nanotechnology, 2018, 29, 505101.	1.3	3
355	Influence of Chain Length and Branching on the Structure of Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26739-26747.	1.5	19
356	Core–Shell Interface-Oriented Synthesis of Bowl-Structured Hollow Silica Nanospheres Using Self-Assembled ABC Triblock Copolymeric Micelles. Langmuir, 2018, 34, 13584-13596.	1.6	9
357	Preparation and Controllability of Mesoporous Silica Nanoparticles. The Enzymes, 2018, 44, 1-10.	0.7	11
358	Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer. Inorganic Chemistry, 2018, 57, 13364-13379.	1.9	122
359	Synthesis and characterization of superparamagnetic nanohybrid Fe ₃ O ₄ /NH ₂ â€Ag as an effective carrier for the delivery of acyclovir. Applied Organometallic Chemistry, 2018, 32, e4565.	1.7	12
360	Stimuli-Responsive Nanomachines and Caps for Drug Delivery. The Enzymes, 2018, 43, 31-65.	0.7	15
361	Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53, 769-797.	8.2	260
362	Mesoporous Colloidal Photonic Crystal Particles for Intelligent Drug Delivery. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 33936-33944.	4.0	38
363	Mesoporous Bioactive Glasses Equipped with Stimuliâ€Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry - A European Journal, 2018, 24, 18944-18951.	1.7	19
364	Facile Strategy Enabling Both High Loading and High Release Amounts of the Water-Insoluble Drug Clofazimine Using Mesoporous Silica Nanoparticles. ACS Applied Materials & Diterfaces, 2018, 10, 31870-31881.	4.0	51
365	Preparation of a mesoporous silica-based nano-vehicle for dual DOX/CPT pH-triggered delivery. Drug Delivery, 2018, 25, 1137-1146.	2.5	58
366	New Method to Determine the Effect of Surface PEGylation on Cellular Uptake Efficiency of Mesoporous Silica Nanoparticles with AlEgens. Macromolecular Chemistry and Physics, 2018, 219, 1800034.	1.1	4

#	Article	IF	CITATIONS
367	Gold-core silica shell nanoparticles application in imaging and therapy: A review. Microporous and Mesoporous Materials, 2018, 270, 168-179.	2.2	67
368	Development of endogenous enzyme-responsive nanomaterials for theranostics. Chemical Society Reviews, 2018, 47, 5554-5573.	18.7	260
369	NIR stimulus-responsive core–shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy. Nanotechnology, 2018, 29, 285302.	1.3	18
370	Sequence-Dependent Peptide Surface Functionalization of Metal–Organic Frameworks. ACS Applied Materials & Company (1998) amp; Interfaces, 2018, 10, 18601-18609.	4.0	35
371	Silica Nanoparticle Applications in the Biomedical Field. , 2018, , 115-129.		8
372	Functional polymeric dialdehyde dextrin network capped mesoporous silica nanoparticles for pH/GSH dual-controlled drug release. RSC Advances, 2018, 8, 20862-20871.	1.7	16
373	Responsive block copolymers for drug delivery applications. Part 1: Endogenous stimuli-responsive drug-release systems., 2018,, 171-220.		4
374	Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells International, 2018, 2018, 1-32.	1.2	6
375	Preparation and characterization of nanosilica copper (II) complexes of amino acids. Journal of Hazardous Materials, 2018, 358, 207-215.	6.5	16
376	Porous silicon. , 2018, , 93-135.		2
377	Applications of mesoporous silica in biosensing and controlled release of insulin. International Journal of Pharmaceutics, 2018, 549, 179-200.	2.6	28
378	Self-assembled block copolymer [(BenzA)-b-(PCL)] micelles to orient randomly distributed AuNPs into hollow core-shell morphology and its role as payload for nanomedicines. Materials Science and Engineering C, 2018, 92, 790-799.	3.8	13
379	A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions. Theranostics, 2018, 8, 518-532.	4.6	48
380	Evolution and present scenario of multifunctionalized mesoporous nanosilica platform: A mini review. Materials Science and Engineering C, 2018, 91, 912-928.	3.8	24
381	Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochemical and Photobiological Sciences, 2018, 17, 1651-1674.	1.6	47
382	Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 2018, 23, 47.	1.7	338
383	Thermoresponsive Polymer Grafted Porous Silicas as Smart Nanocarriers. Australian Journal of Chemistry, 2018, 71, 477.	0.5	12
384	Amino-Functionalized Mesoporous Silica Particles for Ocular Delivery of Brimonidine. Molecular Pharmaceutics, 2018, 15, 3143-3152.	2.3	22

#	Article	IF	CITATIONS
385	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	11.1	96
386	Synthesis of Fe ₅ C ₂ @SiO ₂ core@shell nanoparticles as a potential candidate for biomedical application. Materials Research Express, 2018, 5, 055038.	0.8	14
387	Importance of surface modification of \hat{I}^3 -alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. Journal of Colloid and Interface Science, 2018, 526, 497-504.	5.0	31
388	Biocompatible crosslinked \hat{i}^2 -cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale, 2018, 10, 16284-16292.	2.8	25
389	Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 2018, 5, 180873.	1.1	6
390	Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules, 2018, 23, 2021.	1.7	106
391	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
392	Gentamicin-Releasing Mesoporous ZnO Structures. Materials, 2018, 11, 314.	1.3	26
393	Seeing, Targeting and Delivering with Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 10923-10931.	6.6	110
394	Kinetically Controlled Dendritic Mesoporous Silica Nanoparticles: From Dahlia- to Pomegranate-like Structures by Micelle Filling. Chemistry of Materials, 2018, 30, 5770-5776.	3.2	45
395	Ag decorated silica nanostructures for surface plasmon enhanced photocatalysis. RSC Advances, 2018, 8, 20287-20294.	1.7	18
396	Synthesis and characterization of MCM-48/hydroxyapatite composites for drug delivery: Ibuprofen incorporation, location and release studies. Materials Science and Engineering C, 2018, 91, 734-742.	3.8	45
397	Importance of Encapsulation Stability of Nanocarriers with High Drug Loading Capacity for Increasing in Vivo Therapeutic Efficacy. Biomacromolecules, 2018, 19, 3030-3039.	2.6	22
398	The first report of the synthesis of organo-functionalized triethoxysilanes via a Knoevenagel condensation approach. New Journal of Chemistry, 2018, 42, 12467-12471.	1.4	3
399	Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer Chemotherapy. ACS Applied Materials & Diterfaces, 2018, 10, 26473-26484.	4.0	34
400	Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Advanced Functional Materials, 2019, 29, 1902652.	7.8	104
401	The chronic effect of amorphous silica nanoparticles and benzo[a]pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells. Toxicology Research, 2019, 8, 731-740.	0.9	11
402	Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. Advanced Science, 2019, 6, 1900133.	5.6	54

#	Article	IF	CITATIONS
403	Building Single-Layer Titania Mesopores One by One. Matter, 2019, 1, 306-308.	5.0	1
404	Upper critical solution temperature polymer-grafted hollow mesoporous silica nanoparticles for near-infrared-irradiated drug release. Journal of Materials Chemistry B, 2019, 7, 5789-5796.	2.9	28
405	A DRIFTS study of moisture adsorption on hexagonal mesoporous (HMS) silica supported composites. Vibrational Spectroscopy, 2019, 103, 102937.	1.2	1
406	The fabrication of hybrid micelles with enhanced permeability for drug delivery <i>via</i> a diethoxymethylsilyl-based crosslinking strategy. Polymer Chemistry, 2019, 10, 4529-4536.	1.9	4
407	The rapeutic nanoproducts: from biology to innovative technology. European Journal of Histochemistry, 2019, , .	0.6	0
408	Fabrication of a silica nanocarrier with large-pore core and mesoporous shell for pH-responsive drug delivery. Journal of Sol-Gel Science and Technology, 2019, 92, 146-153.	1.1	3
409	A Responsive Mesoporous Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. Journal of the American Chemical Society, 2019, 141, 17670-17684.	6.6	71
410	A Multiâ€Functional Silicon Nanoparticle Designed for Enhanced Osteoblast Calcification and Related Combination Therapy. Macromolecular Bioscience, 2019, 19, e1900255.	2.1	4
411	Extraction-Induced Fabrication of Yolk–Shell-Structured Nanoparticles with Deformable Micellar Cores and Mesoporous Silica Shells for Multidrug Delivery. ACS Applied Bio Materials, 2019, 2, 5707-5716.	2.3	9
412	Magnetically Stimulated Drug Release Using Nanoparticles Capped by Self-Assembling Peptides. ACS Applied Materials & Drug Release, 2019, 11, 43835-43842.	4.0	29
413	Temperature-sensitive polypeptide brushes-coated mesoporous silica nanoparticles for dual-responsive drug release. Chinese Chemical Letters, 2019, 30, 2291-2294.	4.8	26
414	Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 1095-1112.	2.4	67
415	Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food and Chemical Toxicology, 2019, 133, 110787.	1.8	63
416	Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal of Controlled Release, 2019, 311-312, 301-318.	4.8	105
417	Solubilization as a Method for Creating Hybrid Micellar Templates for the Synthesis of Multifunctional Mesoporous Containers. Colloid Journal, 2019, 81, 416-424.	0.5	7
418	Co-Exposure to SiO2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. International Journal of Environmental Research and Public Health, 2019, 16, 3199.	1.2	36
419	Interfacial charge shielding directs the synthesis of dendritic mesoporous silica nanospheres by a dual-templating approach. New Journal of Chemistry, 2019, 43, 15777-15784.	1.4	11
420	Spatially Localized Synthesis of Metal Nanoclusters on Clay Nanotubes and Their Catalytic Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 18350-18358.	3.2	16

#	Article	IF	CITATIONS
421	Mesoporous silica as nanocarrier of antioxidant for highly anti-aging elastomer composites. Polymer Degradation and Stability, 2019, 169, 108987.	2.7	11
422	Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochemical and Photobiological Sciences, 2019, 18, 155-165.	1.6	5
423	Tuning and controlling the shape of mesoporous silica particles with CTAB/sodium deoxycholate catanionic mixtures. Microporous and Mesoporous Materials, 2019, 279, 423-431.	2.2	20
424	Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 2019, 55, 2731-2740.	2.2	68
425	⁶⁸ Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications. Radiochimica Acta, 2019, 107, 157-164.	0.5	5
426	Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chemical Engineering Journal, 2019, 364, 361-369.	6.6	122
427	Ultrasound Reversible Response Nanocarrier Based on Sodium Alginate Modified Mesoporous Silica Nanoparticles. Frontiers in Chemistry, 2019, 7, 59.	1.8	28
428	Large Pore Mesoporous Silica and Organosilica Nanoparticles for Pepstatin A Delivery in Breast Cancer Cells. Molecules, 2019, 24, 332.	1.7	24
429	Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomaterialia, 2019, 86, 441-449.	4.1	46
430	Cell adherence and drug delivery from particle based mesoporous silica films. RSC Advances, 2019, 9, 17745-17753.	1.7	9
431	Rod-shape MSN@MoS ₂ Nanoplatform for FL/MSOT/CT Imaging-Guided Photothermal and Photodynamic Therapy. Theranostics, 2019, 9, 3992-4005.	4.6	55
432	Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics. , 2019, , 179-216.		5
433	Assembly of Multicomponent Nano-Bioconjugates Composed of Mesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles. ACS Omega, 2019, 4, 11044-11052.	1.6	11
434	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	2.8	3
435	Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules., 2019,, 89-152.		6
436	Approaches to the Development of Implantable Therapeutic Systems. , 2019, , 191-224.		1
437	Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Theranostics, 2019, 9, 3341-3364.	4.6	86
438	Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Analytical Chemistry, 2019, 91, 8827-8834.	3.2	6

#	Article	IF	CITATIONS
439	Template-Free Synthesis of Chemically Asymmetric Silica Nanotubes for Selective Cargo Loading and Sustained Drug Release. Chemistry of Materials, 2019, 31, 4291-4298.	3.2	18
440	Rhodiola rosea extract mediated green synthesis of silver nanoparticles supported by nanosilica carrier. Materials Chemistry and Physics, 2019, 234, 390-402.	2.0	19
441	New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. International Journal of Pharmaceutics, 2019, 564, 379-409.	2.6	90
442	The evolution of dendrimers to composite dendrimers: a review of the state of the art., 2019,, 217-249.		6
443	Hierarchical silica monolithic tablets as novel carriers for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 12-20.	2.0	4
444	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	5.2	125
445	Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 2019, 31, 4364-4378.	3.2	95
446	Comparison of highâ€'performance liquid chromatography and ultravioletâ€'visible spectrophotometry to determine the best method to assess Levofloxacin released from mesoporous silica microspheres/nanoâ€'hydroxyapatite composite scaffolds. Experimental and Therapeutic Medicine, 2019, 17. 2694-2702.	0.8	1
447	Sulfur Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications, 2019, 40, e1800650.	2.0	204
448	Immobilization of Protein A on Monodisperse Magnetic Nanoparticles for Biomedical Applications. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	20
449	Toxicity of innovative anti-fouling nano-based solutions to marine species. Environmental Science: Nano, 2019, 6, 1418-1429.	2.2	34
450	<p>A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems</p> . International Journal of Nanomedicine, 2019, Volume 14, 1707-1723.	3.3	86
451	Smart Mesoporous Silica Nanoparticles for Protein Delivery. Nanomaterials, 2019, 9, 511.	1.9	53
452	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119
453	Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. Journal of Nanobiotechnology, 2019, 17, 24.	4.2	54
454	Plasmonic carbon nanohybrids from laser-induced deposition: controlled synthesis and SERS properties. Journal of Materials Science, 2019, 54, 8177-8186.	1.7	13
455	Strategies to Regulate the Degradability of Mesoporous Silica-based Nanoparticles for Biomedical Applications. Nano, 2019, 14, 1930008.	0.5	6
456	Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems. , 2019, , 191-240.		9

#	Article	IF	CITATIONS
457	Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications. Inorganics, 2019, 7, 134.	1.2	5
458	A glucose-depleting silica nanosystem for increasing reactive oxygen species and scavenging glutathione in cancer therapy. Chemical Communications, 2019, 55, 13374-13377.	2.2	5
459	The effect of blob size in polymer networks on nanoparticle-mediated adhesion of hydrogels. Soft Matter, 2019, 15, 9942-9948.	1.2	4
460	Inhibitor-conjugated harmonic nanoparticles targeting fibroblast activation protein. RSC Advances, 2019, 9, 31659-31669.	1.7	6
461	Influence of serum concentration and surface functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC Advances, 2019, 9, 33912-33921.	1.7	20
462	Facile determination of the degree of modification of ordered mesoporous silica by liquid phase NMR. Microporous and Mesoporous Materials, 2019, 274, 342-346.	2.2	8
463	pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids and Surfaces B: Biointerfaces, 2019, 176, 394-403.	2.5	46
464	Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. ACS Nano, 2019, 13, 1292-1308.	7.3	88
465	Preparation and drug release application of pH and light dual-stimuli- responsive nanocarrier based on mesoporous silica nanoparticles. Journal of Dispersion Science and Technology, 2019, 40, 1725-1735.	1.3	8
466	Stimuli-Responsive Nanomaterials for Drug Delivery. , 2019, , 375-424.		4
467	Bioresponsive nanogated ensemble based on structure-switchable aptamer directed assembly and disassembly of gold nanoparticles from mesoporous silica supports. Chinese Chemical Letters, 2019, 30, 779-782.	4.8	27
468	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	7.3	87
469	Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. Materials Science and Engineering C, 2019, 96, 915-940.	3.8	107
470	Antifouling zwitterionic <scp>pSBMA</scp> â€ <scp>MSN</scp> particles for biomedical applications. Polymers for Advanced Technologies, 2019, 30, 688-697.	1.6	9
471	Monodisperse silica nanoparticle suspension for developing latent blood fingermarks. Forensic Sciences Research, 2020, 5, 38-46.	0.9	9
472	A new approach to developing diagnostics and therapeutics: Aggregationâ€induced emissionâ€based fluorescence turnâ€on. Medicinal Research Reviews, 2020, 40, 27-53.	5.0	25
473	Study on the dissolution of hollow mesoporous silica nanosphere-supported nanosized platinum oxide in biorelevant media for evaluating its potential as chemotherapeutics. Journal of Colloid and Interface Science, 2020, 558, 137-144.	5.0	3
474	Mesoporous Silica Nanoparticles for Drug Delivery. Advanced Functional Materials, 2020, 30, 1902634.	7.8	571

#	Article	IF	CITATIONS
475	Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chemical Engineering Journal, 2020, 383, 123138.	6.6	114
476	Exploration of accessibility of internal pore surface by using rigid nanoparticles as a probe for constructing the integrated nanocomposites. Journal of Alloys and Compounds, 2020, 815, 152641.	2.8	6
477	Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. Journal of Inorganic Biochemistry, 2020, 202, 110887.	1.5	24
478	Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 1-9.	2.0	28
479	Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. Journal of Colloid and Interface Science, 2020, 561, 609-619.	5.0	25
480	Influence of textural characteristics on biomineralization behavior of mesoporous SiO2-P2O5-CaO bioactive glass and glass-ceramics. Materials Chemistry and Physics, 2020, 242, 122511.	2.0	14
481	New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 2020, 16, e1902242.	5.2	101
482	Mesoporous silica nanoparticles: synthesis, properties, and biomedical applications. , 2020, , 267-281.		11
483	Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment. International Journal of Pharmaceutics, 2020, 590, 119930.	2.6	15
484	Galactose Functionalized Mesoporous Silica Nanoparticles As Delivery Vehicle in the Treatment of Hepatitis C Infection. ACS Applied Bio Materials, 2020, 3, 7598-7610.	2.3	17
485	Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Materials Chemistry B, 2020, 8, 9863-9876.	2.9	45
486	Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 2020, 589, 119882.	2.6	65
487	Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Engineered Regeneration, 2020, 1, 35-50.	3.0	35
488	Remote Activation of Hollow Nanoreactors for Heterogeneous Photocatalysis in Biorelevant Media. Nano Letters, 2020, 20, 7068-7076.	4.5	34
489	Solventâ€Assisted [(Glycine)â€(MPâ€SiO ₂ NPs)] Aggregate for Drug Loading and Cancer Therapy. ChemistrySelect, 2020, 5, 8221-8232.	0.7	12
490	Targeted Stimuli-Responsive Mesoporous Silica Nanoparticles for Bacterial Infection Treatment. International Journal of Molecular Sciences, 2020, 21, 8605.	1.8	58
491	Lipid-Encapsulated Silica Nanobowls as an Efficient and Versatile DNA Delivery System. Bioconjugate Chemistry, 2020, 31, 2697-2711.	1.8	3
492	Surface functionalized porous nanomaterials for theranostics. AIP Conference Proceedings, 2020, , .	0.3	1

#	Article	IF	CITATIONS
493	Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	15
494	Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Scientific Reports, 2020, 10, 19318.	1.6	27
495	Mesoporous silica nanoparticles for cancer theranostic applications. , 2020, , 577-604.		1
496	Modification of Mesoporous Silica Surface by Immobilization of Functional Groups for Controlled Drug Release. Journal of Chemistry, 2020, 2020, 1-9.	0.9	15
497	Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo. Advanced Functional Materials, 2020, 30, 2002043.	7.8	29
498	Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B, 2020, 8, 8992-9027.	2.9	127
499	Pore Size and Porosity Dependent Zeta Potentials of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 19579-19587.	1.5	17
500	Porous structure of PEG-mediated silica controlled by solution pH. Microporous and Mesoporous Materials, 2020, 307, 110468.	2.2	6
501	Targeted Delivery of Antibiotic Therapy to Inhibit <i>Pseudomonas aeruginosa</i> li> Using Lipid-Coated Mesoporous Silica Core–Shell Nanoassembly. ACS Applied Bio Materials, 2020, 3, 6708-6721.	2.3	34
502	MUC1 Aptamerâ€Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Tripleâ€Negative Breast Cancer. Chemistry - A European Journal, 2020, 26, 16318-16327.	1.7	16
503	A fluorous biphase drug delivery system triggered by low frequency ultrasound: controlled release from perfluorous discoidal porous silicon particles. Nanoscale Advances, 2020, 2, 3561-3569.	2.2	6
504	Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity. Antioxidants, 2020, 9, 696.	2.2	20
505	Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review. Frontiers of Materials Science, 2020, 14, 373-386.	1.1	8
506	Facile methods for the preparation of micro- and mesoporous amorphous silica from rice husk. Biomass Conversion and Biorefinery, 2020, , $1.$	2.9	10
507	Biomineralized Biohybrid Algae for Tumor Hypoxia Modulation and Cascade Radio-Photodynamic Therapy. ACS Applied Materials & District Sciences, 2020, 12, 44541-44553.	4.0	40
508	Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials, 2020, 5, 886-909.	23.3	212
509	Synthesis and X-ray characterization of antipyrine-tethered organosilanes and their magnetic nanoparticles: potent anti-oxidants and receptors for Sn(<scp>ii</scp>) ions. New Journal of Chemistry, 2020, 44, 15157-15168.	1.4	9
510	Mesoporous Silica Nanoparticles in Bioimaging. Materials, 2020, 13, 3795.	1.3	37

#	Article	IF	CITATIONS
511	Dual-responsive mesoporous silica nanoparticles coated with carbon dots and polymers for drug encapsulation and delivery. Nanomedicine, 2020, 15, 2447-2458.	1.7	14
512	Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR. Physical Chemistry Chemical Physics, 2020, 22, 20349-20361.	1.3	12
513	A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion. Journal of Materials Chemistry B, 2020, 8, 9251-9257.	2.9	10
514	Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. International Journal of Molecular Sciences, 2020, 21, 9696.	1.8	32
515	Porous Carbon Microparticles as Vehicles for the Intracellular Delivery of Molecules. Frontiers in Chemistry, 2020, 8, 576175.	1.8	5
516	An Intelligent Biomimetic Nanoplatform for Holistic Treatment of Metastatic Triple-Negative Breast Cancer <i>via</i> Photothermal Ablation and Immune Remodeling. ACS Nano, 2020, 14, 15161-15181.	7. 3	102
517	Production of MCM-41 Nanoparticles with Control of Particle Size and Structural Properties: Optimizing Operational Conditions during Scale-Up. International Journal of Molecular Sciences, 2020, 21, 7899.	1.8	26
518	Nanoarchitecting Hierarchical Mesoporous Siliceous Frameworks: A New Way Forward. IScience, 2020, 23, 101687.	1.9	29
519	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 5070-5078.	2.4	35
520	Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer. Journal of Controlled Release, 2020, 323, 421-430.	4.8	20
521	Organâ€Restricted Vascular Delivery of Nanoparticles for Lung Cancer Therapy. Advanced Therapeutics, 2020, 3, 2000017.	1.6	7
522	Safety Considerations of Cancer Nanomedicine—A Key Step toward Translation. Small, 2020, 16, e2000673.	5.2	41
523	Anti-inflammatory Cotton Fabrics and Silica Nanoparticles with Potential Topical Medical Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25658-25675.	4.0	20
524	Thioether-bridged mesoporous organosilica nanocapsules with weak acid-triggered charge reversal for drug delivery. Microporous and Mesoporous Materials, 2020, 302, 110242.	2.2	13
525	Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29641-29649.	4.0	5
526	A lysozyme corona complex for the controlled pharmacokinetic release of probucol from mesoporous silica particles. Biomaterials Science, 2020, 8, 3800-3803.	2.6	4
527	Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics, 2020, 12, 527.	2.0	40
528	Noninvasive Preclinical Evaluation of Targeted Nanoparticles for the Delivery of Curcumin in Treating Pancreatic Cancer. ACS Applied Bio Materials, 2020, 3, 4643-4654.	2.3	25

#	Article	IF	CITATIONS
529	Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics, 2020, 12, 526.	2.0	65
530	Design of Dendritic Large-Pore Mesoporous Silica Nanoparticles with Controlled Structure and Formation Mechanism in Dual-Templating Strategy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18823-18832.	4.0	36
531	Mechanical reinforcement of polymer colloidal crystals by supercritical fluids. Journal of Colloid and Interface Science, 2020, 579, 786-793.	5.0	11
532	Albumin-gated zwitterion-stabilized mesoporous silica nanorod as a pH-responsive drug delivery system. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111107.	2.5	9
533	Hollow Silica Cubes with Customizable Porosity. Materials, 2020, 13, 2474.	1.3	4
534	Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery. Materials Science and Engineering C, 2020, 116, 111250.	3.8	5
535	Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Composites Part B: Engineering, 2020, 200, 108208.	5.9	101
536	pH-Triggered Drug Release Controlled by Poly(Styrene Sulfonate) Growth Hollow Mesoporous Silica Nanoparticles. ACS Omega, 2020, 5, 4261-4269.	1.6	43
537	Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 7274-7286.	1.5	38
538	Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opinion on Drug Delivery, 2020, 17, 341-356.	2.4	35
539	Smart drug delivery: Capping strategies for mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2020, 299, 110115.	2.2	85
540	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13598-13612.	4.0	25
541	Chemically modified nucleic acid biopolymers used in biosensing. Materials Chemistry Frontiers, 2020, 4, 1315-1327.	3.2	12
542	One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications. Journal of Materials Science and Technology, 2020, 50, 139-146.	5.6	8
543	The role of antibody delivery formation in cancer therapy. Journal of Drug Targeting, 2020, 28, 574-584.	2.1	5
544	Aerosol-Assisted Synthesis of Tailor-Made Hollow Mesoporous Silica Microspheres for Controlled Release of Antibacterial and Anticancer Agents. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6885-6898.	4.0	42
545	Mesoporous Silica Nanoparticles for the Treatment of Complex Bone Diseases: Bone Cancer, Bone Infection and Osteoporosis. Pharmaceutics, 2020, 12, 83.	2.0	89
546	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363

#	Article	IF	Citations
547	Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 2020, 32, e1907035.	11.1	336
548	Adhesive Nanocomposite for Prolonging Foliar Retention and Synergistic Weeding and Nourishing. Advanced Sustainable Systems, 2020, 4, 2000010.	2.7	12
549	Novel hybrid materials based on heteroleptic Ru(III) complexes immobilized on SBA-15 mesoporous silica as highly potent antimicrobial and cytotoxic agents. Applied Surface Science, 2020, 520, 146379.	3.1	14
550	Engineered Interactions with Mesoporous Silica Facilitate Intracellular Delivery of Proteins and Gene Editing. Nano Letters, 2020, 20, 4014-4021.	4.5	45
551	Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. Nanoscale Advances, 2020, 2, 1792-1810.	2.2	47
552	A glutathione-depleted prodrug platform of MnO ₂ -coated hollow polydopamine nanospheres for effective cancer diagnosis and therapy. New Journal of Chemistry, 2020, 44, 7838-7848.	1.4	9
553	Entropy in multiple equilibria. Argon and nitrogen adsorption isotherms of nonporous, microporous, and mesoporous materials. Microporous and Mesoporous Materials, 2021, 312, 110744.	2.2	11
554	Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125773.	2.3	20
555	Reducing particle size of biodegradable nanomaterial for efficient curcumin loading. Journal of Materials Science, 2021, 56, 3713-3722.	1.7	9
556	Disulfiram-loaded functionalized magnetic nanoparticles combined with copper and sodium nitroprusside in breast cancer cells. Materials Science and Engineering C, 2021, 119, 111452.	3.8	22
557	In vivo nano-biosensing element of red blood cell-mediated delivery. Biosensors and Bioelectronics, 2021, 175, 112845.	5.3	20
558	Tailoring patchy nanoparticle design to modulate serum albumin adsorption and membrane interaction. Soft Matter, 2021, 17, 2071-2080.	1.2	5
559	Dual stimuli-responsive silver nanoparticles decorated SBAâ€'15 hybrid catalyst for selective oxidation of alcohols under â€mild†conditions. Microporous and Mesoporous Materials, 2021, 311, 110697.	2.2	7
560	Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. Journal of Drug Targeting, 2021, 29, 131-154.	2.1	60
561	Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Seminars in Cancer Biology, 2021, 69, 365-375.	4.3	63
562	Multifunctional silica nanoparticle as a promising cancer theranostics. , 2021, , 91-97.		2
563	A Review of Phosphate and Borate Sol–Gel Glasses for Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000055.	1.7	23
564	Novel nanoparticle-based treatment approaches. , 2021, , 281-343.		0

#	Article	IF	CITATIONS
565	Chapter 14. Smart Porous Silica–Polymer Nanomaterials for Theranostics. RSC Soft Matter, 2021, , 363-391.	0.2	0
566	Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021, 13, 143.	2.0	30
567	Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Advanced Therapeutics, 2021, 4, 2000218.	1.6	10
568	Nanoparticle-infused-biodegradable-microneedles as drug-delivery systems: preparation and characterisation. Materials Advances, 2021, 2, 5432-5442.	2.6	5
569	Current Strategies in Peptide Conjugated Nanoparticles. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 206-218.	0.3	0
570	Smart Mesoporous Nanomaterials With Improved Therapeutic Applications. , 2021, , 357-372.		0
571	Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomaterials Science, 2021, 9, 3603-3620.	2.6	23
572	Metal oxide-based ceramics. , 2021, , 301-331.		0
573	Unified mechanistic interpretation of amine-assisted silica synthesis methods to enable design of more complex materials. Molecular Systems Design and Engineering, 2021, 6, 170-196.	1.7	14
574	Low-Temperature Molten Salts Synthesis: CsPbBr ₃ Nanocrystals with High Photoluminescence Emission Buried in Mesoporous SiO ₂ . ACS Energy Letters, 2021, 6, 900-907.	8.8	68
575	Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS Applied Materials & Interfaces, 2021, 13, 9656-9666.	4.0	39
576	Nanoarchitectonics through Organic Modification of Oxide Based Layered Materials; Concepts, Methods and Functions. Bulletin of the Chemical Society of Japan, 2021, 94, 678-693.	2.0	44
577	Mesoporous silica particles based on complex micelles of poorly water-soluble compounds. One simple step to multidrug carriers. Microporous and Mesoporous Materials, 2021, 316, 110911.	2.2	9
578	Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano, 2021, 15, 3900-3926.	7.3	28
579	Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS Applied Bio Materials, 2021, 4, 4105-4118.	2.3	7
580	Large-scale synthesis of fractal silica nanoparticles: understanding the impact of solvents. Microporous and Mesoporous Materials, 2021, 316, 110976.	2.2	3
581	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Advanced Science, 2021, 8, e2004586.	5.6	28
582	Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS Nano, 2021, 15, 4450-4466.	7.3	94

#	Article	IF	CITATIONS
583	Recent Advances in Heterosilica-Based Micro/Nanomotors: Designs, Biomedical Applications, and Future Perspectives. Chemistry of Materials, 2021, 33, 3022-3046.	3.2	30
584	Effect of humic acid on CO2-wettability in sandstone formation. Journal of Colloid and Interface Science, 2021, 588, 315-325.	5.0	63
585	Profiling the Neoplasm Microenvironment of Silica Nanomaterial-Derived Scaffolds of Single, 2-, and 3-Composite Systems. Assay and Drug Development Technologies, 2021, 19, 191-203.	0.6	1
586	A bolt-like-blocking nanovalve on mesoporous silica nanoparticles for controlled release. Microporous and Mesoporous Materials, 2021, 317, 111007.	2.2	6
587	Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. Journal of the American Chemical Society, 2021, 143, 6025-6036.	6.6	52
588	Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials, 2021, 319, 110967.	2.2	23
589	Formation of Closed Pores in Mesoporous Silica Nanoparticles by Hydrothermal Treatment. Bulletin of the Chemical Society of Japan, 2021, 94, 1625-1630.	2.0	3
590	Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126258.	2.3	28
591	Theranostic Mesoporous Silica Nanoparticles Loaded With a Curcumin-Naphthoquinone Conjugate for Potential Cancer Intervention. Frontiers in Molecular Biosciences, 2021, 8, 670792.	1.6	17
592	New advances in gated materials of mesoporous silica for drug controlled release. Chinese Chemical Letters, 2021, 32, 3696-3704.	4.8	59
593	Stellate porous silica based surface-enhanced Raman scattering system for traceable gene delivery. Chinese Chemical Letters, 2021, 32, 1942-1946.	4.8	8
594	In Vivo Tracking of the Degradation of Mesoporous Silica through ⁸⁹ Zr Radio‣abeled Core–Shell Nanoparticles. Small, 2021, 17, e2101519.	5.2	22
595	Tailoring mesoporous silica nanomaterials from molecular simulation: Modelling the interplay of condensation reactions, surfactants and space-fillers during self assembly. Microporous and Mesoporous Materials, 2021, 320, 111114.	2.2	4
596	Influence of Adsorption State and Molecular Interaction on Physical Stability of Confined Amorphous Vortioxetine. Molecular Pharmaceutics, 2021, 18, 2754-2763.	2.3	2
597	Nanoengineering Branched Star Polymerâ€Based Formulations: Scope, Strategies, and Advances. Macromolecular Bioscience, 2021, 21, e2100105.	2.1	15
598	Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. Journal of Colloid and Interface Science, 2021, 592, 227-236.	5.0	44
599	Protective effect of lipoic acid modification on brain dysfunctions of mice induced by mesoporous silica nanoparticles. Chemical Engineering Journal, 2021, 415, 128957.	6.6	8
600	Spiropyran-Based Drug Delivery Systems. Frontiers in Chemistry, 2021, 9, 720087.	1.8	32

#	Article	IF	CITATIONS
601	Durable and long-lasting transparent anticorrosive films for copper substrates using mesoporous silica nanocontainers loaded with corrosion inhibitor. Molecular Crystals and Liquid Crystals, 0 , , 1 - 9 .	0.4	0
602	Supramolecular Structures Generated <i>via</i> Self-Assembly of a Cell Penetrating Tetrapeptide Facilitate Intracellular Delivery of a Pro-apoptotic Chemotherapeutic Drug. ACS Applied Bio Materials, 2021, 4, 6807-6820.	2.3	10
603	Tailoring chemical compositions of biodegradable mesoporous organosilica nanoparticles for controlled slow release of chemotherapeutic drug. Materials Science and Engineering C, 2021, 127, 112232.	3.8	10
604	Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. Materials Science and Engineering C, 2021, 127, 112199.	3.8	27
605	Advanced nanomedicine approaches applied for treatment of skin carcinoma. Journal of Controlled Release, 2021, 337, 589-611.	4.8	41
606	Multiple pathways of alveolar macrophage death contribute to pulmonary inflammation induced by silica nanoparticles. Nanotoxicology, 2021, 15, 1087-1101.	1.6	12
607	Electro-Mechanochemical Gating of a Metal–Phenolic Nanocage for Controlled Guest-Release Self-Powered Patches and Injectable Gels. ACS Nano, 2021, 15, 14580-14586.	7.3	16
608	Biomimetic mesoporous vectors enabling the efficient inhibition of wild-type isocitrate dehydrogenase in multiple myeloma cells. Microporous and Mesoporous Materials, 2021, 325, 111320.	2.2	5
609	Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 9-37.	2.0	11
610	Mesoporous silica enriched PbS quantum dots for optical fiber amplifiers. Optics Communications, 2021, 499, 127310.	1.0	1
611	Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112119.	2.5	6
612	Biomedical applications., 2022,, 277-323.		0
613	Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. Nanoscale Advances, 2021, 3, 3332-3352.	2.2	27
614	Optimization of Mesoporous Silica Nanoparticles through Statistical Design of Experiment and the Application for the Anticancer Drug. Pharmaceutics, 2021, 13, 184.	2.0	27
616	Nanomaterials: A Promising Tool for Drug Delivery. Environmental Chemistry for A Sustainable World, 2020, , 1-49.	0.3	4
617	Nanostructured Lead Sulfide PbS. Springer Series in Materials Science, 2018, , 31-126.	0.4	1
618	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. , 2020, , 611-714.		11
619	Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydrate Polymers, 2017, 173, 223-232.	5.1	61

#	Article	IF	Citations
620	Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 2017, 22, 1336-1350.	3.2	103
621	A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced <i>in vivo</i> antitumor therapy. Journal of Materials Chemistry B, 2020, 8, 1660-1671.	2.9	21
622	Mesoporous Silica Nanoparticle–Based Combination of NQO1 Inhibitor and 5-Fluorouracil for Potent Antitumor Effect Against Head and Neck Squamous Cell Carcinoma (HNSCC). Nanoscale Research Letters, 2019, 14, 387.	3.1	4
623	Mesoporous Silica Nanoparticles (MSN): A Nanonetwork and Hierarchical Structure in Drug Delivery. Journal of Nanomedicine Research, 2015, 2, .	1.8	10
624	Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Current Medicinal Chemistry, 2019, 26, 6107-6131.	1.2	23
625	Macroporous materials by self-assembly of linear oligo(phenylsilsesquioxanes) EXPRESS Polymer Letters, 2015, 9, 984-1000.	1.1	7
626	Variably Sized and Multi-Colored Silica-Nanoparticles Characterized by Fluorescence Correlation Methods for Cellular Dynamics. Materials, 2021, 14, 19.	1.3	5
627	Our contributions to applications of mesoporous silica nanoparticles. Acta Biomaterialia, 2022, 137, 44-52.	4.1	49
628	Coreâ€Shell Structured Microâ€Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small, 2022, 18, e2102887.	5.2	16
629	lon Capture and Release Ability of Glass Ionomer Cement Containing Nanoporous Silica Particles with Different Pore and Particle Size. Materials, 2021, 14, 5742.	1.3	2
630	Stimuli-Responsive Nanostructured Silica Matrix Targeting Drug Delivery Applications., 2015,, 3-38.		0
631	Construction and Biological Evaluation of Nanoparticle-Based Tumor Targeting Drug Delivery System. , 0, , .		0
632	Smart Mesoporous Nanomaterials With Improved Therapeutic Applications. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 431-447.	0.3	1
633	Silicaâ€Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. Chemical Record, 2021, 21, 1535-1568.	2.9	12
634	Flow-Driven Release of Molecules from a Porous Surface Explored Using Dynamical Density Functional Theory. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 26-38.	2.7	4
636	Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews, 2022, 452, 214309.	9.5	81
637	Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications. Progress in Materials Science, 2022, 125, 100896.	16.0	39
638	On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. Journal of Colloid and Interface Science, 2022, 612, 467-478.	5.0	6

#	Article	IF	CITATIONS
639	Promoting high T2 contrast in Dy-doped MSNs through Curie effects. Journal of Materials Chemistry B, 2022, 10, 302-305.	2.9	0
640	Triple Surfactant Assisted Synthesis of Novel Core-Shell Mesoporous Silica Nanoparticles with High Surface Area for Drug Delivery for Prostate Cancer. Bulletin of the Chemical Society of Japan, 2022, 95, 331-340.	2.0	11
641	Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery. Brain Research, 2022, 1781, 147786.	1.1	14
642	Recent advance in functionalized mesoporous silica nanoparticles with stimuli-responsive polymer brush for controlled drug delivery. Soft Materials, 2022, 20, 364-378.	0.8	9
643	Novel gasâ€based nanomedicines for cancer therapy. View, 2022, 3, .	2.7	29
644	Controllable signal molecule release from Au NP-gated MSNs for photocathodic detection of ultralow level Al ² O. Chemical Communications, 2022, 58, 839-842.	2.2	6
645	Multifunctional Mesoporous Silica Nanoparticles for pH-Response and Photothermy Enhanced Tumor Tumor Therapy. SSRN Electronic Journal, 0, , .	0.4	0
646	Evaluating Biological Activity of Folic Acid-Modified and 10-Hydroxycamptothecin-Loaded Mesoporous Silica Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
647	Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules, 2022, 27, 1133.	1.7	6
648	In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on \hat{I}^3 -Fe2O3@SiO2 as new nanoparticles. Journal of Biomolecular Structure and Dynamics, 2022, , 1-21.	2.0	2
649	Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release, 2022, 343, 564-583.	4.8	21
650	Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation. Scientific Reports, 2022, 12, 2381.	1.6	18
651	Core $\langle i \rangle vs. \langle i \rangle$ surface labelling of mesoporous silica nanoparticles: advancing the understanding of nanoparticle fate and design of labelling strategies. Nanoscale Advances, $0,$	2.2	1
652	Cell Membrane-Cloaked Nanotherapeutics for Targeted Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 2223.	1.8	27
653	Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel. ACS Omega, 2022, 7, 7638-7647.	1.6	8
654	SBA-15 Mesoporous Silica as Delivery Vehicle for rhBMP-2 Bone Morphogenic Protein for Dental Applications. Nanomaterials, 2022, 12, 822.	1.9	11
655	Single-step acid-catalyzed synthesis of luminescent colloidal organosilica nanobeads. Nano Convergence, 2022, 9, 12.	6.3	3
656	Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. Journal of Nanobiotechnology, 2022, 20, 126.	4.2	51

#	Article	IF	CITATIONS
657	Fibrous nanosilica spheres KCC-1@NH2 as highly effective and easily retrievable catalyst for the synthesis of chromenes. Research on Chemical Intermediates, 2022, 48, 2069-2085.	1.3	7
658	Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells. ACS Applied Nano Materials, 2022, 5, 3237-3251.	2.4	8
659	Mesoporous Biodegradable Magnesium Phosphate-Citrate Nanocarriers Amplify Methotrexate Anticancer Activity in HeLa Cells. Bioconjugate Chemistry, 2022, 33, 566-575.	1.8	2
660	The emergence of nanoporous materials in lung cancer therapy. Science and Technology of Advanced Materials, 2022, 23, 225-274.	2.8	15
661	Highly Efficient and Rapid Removal of Methylene Blue from Aqueous Solution Using Folic Acid-Conjugated Dendritic Mesoporous Silica Nanoparticles. Processes, 2022, 10, 705.	1.3	13
662	"Smart―nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms. Environmental Pollution, 2022, 302, 118973.	3.7	7
663	Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioactive Materials, 2022, 15, 392-408.	8.6	20
664	Preparation of Dendritic Mesoporous Silica/Phenylboronic Acid-Modified Hydroxypropyl Chitosan and Its Glucose-Responsive Performance. Polymer Science - Series A, 2021, 63, 757-768.	0.4	1
665	Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomaterials Science and Engineering, 2022, 8, 109-118.	2.6	13
666	Nanoscience versus Viruses: The SARSâ€CoVâ€2 Case. Advanced Functional Materials, 2022, 32, 2107826.	7.8	8
667	Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Current Drug Delivery, 2022, 19, 560-586.	0.8	3
668	Hollow mesoporous silica nanoparticles: Effective silica etching using tri-di- and mono-valent cations. Materials Science and Engineering C, 2022, 133, 112621.	3.8	6
669	From inert silica carrier derivatives to a source of bioavailable silicium in the field of cosmetic, pharmaceutical, luxury, and food industries., 2022,, 525-544.		0
671	A dual-signal electrochemical immunosensor for the detection of HPV16 E6 oncoprotein based on PdBP dendritic ternary nanospheres and MBSi-Chi nanocomposites. Analyst, The, 2022, 147, 2272-2279.	1.7	3
672	Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomaterials Science and Engineering, 2022, 8, 1763-1790.	2.6	37
673	Real-Time and <i>In Situ</i> Monitoring of the Synthesis of Silica Nanoparticles. ACS Sensors, 2022, 7, 1045-1057.	4.0	11
674	Multifunctional mesoporous silica-based nanocomposites: Synthesis and biomedical applications. Materials Chemistry and Physics, 2022, 285, 126132.	2.0	11
679	Uptake and Translocation of a Silica Nanocarrier and an Encapsulated Organic Pesticide Following Foliar Application in Tomato Plants. Environmental Science & Environmental Sc	4.6	16

#	Article	IF	CITATIONS
680	In vitro and Bioimaging Studies of Mesoporous Silica Nanocomposites Encapsulated Iron-oxide and Loaded Doxorubicin Drug (DOX/IO@Silica) as Magnetically Guided Drug Delivery System. Current Pharmaceutical Biotechnology, 2023, 24, 1297-1306.	0.9	1
681	One-Pot Bifunctionalization of Silica Nanoparticles Conjugated with Bioorthogonal Linkers: Application in Dual-modal Imaging. Biomaterials Science, 0, , .	2.6	2
682	Chitosan–organosilica hybrid decorated with silver nanoparticles for antimicrobial wearable cotton fabrics. Polymer Bulletin, 2023, 80, 4229-4243.	1.7	4
683	Fabrication of hybrid rod-like mesoporous silica nanocarriers for responsive drug release and combined photo-chemotherapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129227.	2.3	1
684	Molecular Level Characterisation of the Surface of Carbohydrate-Functionalised Mesoporous silica Nanoparticles (MSN) as a Potential Targeted Drug Delivery System via High Resolution Magic Angle Spinning (HR-MAS) NMR Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 5906.	1.8	0
685	Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chemical Society Reviews, 2022, 51, 5365-5451.	18.7	138
686	Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion in Hydrogel Nanocomposites. Journal of Physical Chemistry B, 2022, 126, 4132-4142.	1.2	14
687	Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling. Food Reviews International, 2023, 39, 5528-5562.	4.3	3
688	Catalytic decomposition of H2O2 over Nb/KIT-6 catalyst for environmental applications. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	0.8	1
689	Effect of (3-aminopropyl)triethoxysilane on dissolution of silica nanoparticles synthesized <i>via</i> reverse micro emulsion. Nanoscale, 2022, 14, 9021-9030.	2.8	4
690	Nanoâ€Drug Carriers: A Potential Approach towards Drug Delivery Methods. ChemistrySelect, 2022, 7, .	0.7	5
691	Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: a review. Royal Society Open Science, 2022, 9, .	1.1	14
692	Multifunctional mesoporous silica nanoparticles for pH-response and photothermy enhanced osteosarcoma therapy. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112615.	2.5	8
693	Water Dynamics in Competitive Solvation Assisted Loading of Colloidal Curcumin Nanoparticles onto Mesoporous Silica Nanostructures. Particle and Particle Systems Characterization, 0, , 2200062.	1.2	1
694	Functionalized Periodic Mesoporous Organosilica Nanoparticles for Combinational Chemo-Photothermal Antitumor Therapy. ACS Applied Nano Materials, 2022, 5, 9646-9656.	2.4	3
695	Nanodevices for the Efficient Codelivery of CRISPR-Cas9 Editing Machinery and an Entrapped Cargo: A Proposal for Dual Anti-Inflammatory Therapy. Pharmaceutics, 2022, 14, 1495.	2.0	9
696	Crystallization of Flexible Chains of Tangent Hard Spheres under Full Confinement. Journal of Physical Chemistry B, 2022, 126, 5931-5947.	1.2	5
697	One Hundredâ€Nanometerâ€Sized CsPbBr ₃ /mâ€SiO ₂ Composites Prepared via Moltenâ€Salts Synthesis are Optimal Green Phosphors for LCD Display Devices. Advanced Energy Materials, 2022, 12, .	10.2	18

#	Article	IF	CITATIONS
698	Impact of PEGylation on the degradation and pore organization in mesoporous silica nanoparticles: A study of the inner mesoporous structure in physiologically relevant ionic conditions. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112797.	2.5	5
699	Intelligent poly(I-histidine)-based nanovehicles for controlled drug delivery. Journal of Controlled Release, 2022, 349, 963-982.	4.8	41
700	Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. International Journal of Pharmaceutics, 2022, 626, 122156.	2.6	3
701	Protein sustained release from isobutyramide-grafted stellate mesoporous silica nanoparticles. International Journal of Pharmaceutics: X, 2022, 4, 100130.	1.2	0
702	Folate receptor-mediated targeted breast cancer nanomedicine. , 2022, , 153-169.		0
703	pH-Responsive Release of Anesthetic Lidocaine Derivative QX-OH from Mesoporous Silica Nanoparticles Mediated by Ester Bonds. SSRN Electronic Journal, 0, , .	0.4	0
704	Doxorubicin-loaded Mn-doped SiO ₂ nanospheres coated with carboxymethyl chitosan: fabrication, characterization, and in vitro evaluation. Journal of Chemical Research, 2022, 46, 174751982211146.	0.6	1
705	Freeâ€Blockage Mesoporous Silica Nanoparticles Loaded with Cerium Oxide as ROSâ€Responsive and ROSâ€Scavenging Nanomedicine. Advanced Functional Materials, 2022, 32, .	7.8	12
706	Silica Nanoparticles Modified with Fluorescent Dyes as Probes for <i>in Situ</i> Characterization of Natural Rubber Coatings. ACS Applied Nano Materials, 2022, 5, 14492-14506.	2.4	2
707	Chitosan conjugated-ordered mesoporous silica: a biocompatible dissolution enhancer for promoting the antidiabetic effect of a poorly water-soluble drug of repaglinide. Journal of Nanostructure in Chemistry, 0, , .	5.3	0
708	pH-responsive sustained delivery of doxorubicin using aminated and PEGylated mesoporous silica nanoparticles leads to enhanced antitumor efficacy in pre-clinical orthotopic breast cancer model. Journal of Drug Delivery Science and Technology, 2022, 77, 103800.	1.4	4
710	Potential of βC-Loaded Silica Nanoparticles in the Management of L-NAME –Induced Hypertension in Experimental Rats. BioNanoScience, 0, , .	1.5	0
711	Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Molecular Pharmaceutics, 2022, 19, 4428-4452.	2.3	13
712	Evaluating biological activity of folic acid-modified and 10-hydroxycamptothecin-loaded mesoporous silica nanoparticles. Materials Chemistry and Physics, 2022, 292, 126756.	2.0	0
713	Rational Design of Inhibitor-Encapsulated Bio-MOF-1 for Dual Corrosion Protection. Inorganic Chemistry, 2022, 61, 18285-18292.	1.9	3
714	A Comparative Study of Mesoporous Silica and Mesoporous Bioactive Glass Nanoparticles as Non-Viral MicroRNA Vectors for Osteogenesis. Pharmaceutics, 2022, 14, 2302.	2.0	6
715	Inhibition of IL- $1\hat{l}^2$ release from macrophages targeted with necrosulfonamide-loaded porous nanoparticles. Journal of Controlled Release, 2022, 351, 989-1002.	4.8	4
716	Near-Infrared Light-Activated Dual Targeting with Peptide-Conjugated Mesoporous Silica Nanoparticles for Multimodal Anticancer Therapy. ACS Applied Nano Materials, 2022, 5, 17105-17122.	2.4	7

#	Article	IF	Citations
717	Facile Synthesis of the Dual Pesticide-Loaded Metal–Organic Framework Hybrid for pH-Responsive Release. ACS Agricultural Science and Technology, 2022, 2, 1267-1275.	1.0	4
718	Preparation of rutin-loaded mesoporous silica nanoparticles and evaluation of its physicochemical, anticancer, and antibacterial properties. Molecular Biology Reports, 0, , .	1.0	1
719	pH-responsive release of anesthetic lidocaine derivative QX-OH from mesoporous silica nanoparticles mediated by ester bonds. Journal of Drug Delivery Science and Technology, 2022, 78, 103977.	1.4	1
720	Corrosion protection performance of a coating with 2-aminino-5-mercato-1,3,4-thiadizole-loaded hollow mesoporous silica on copper. Progress in Organic Coatings, 2023, 175, 107331.	1.9	5
721	Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics, 2022, 14, 2703.	2.0	17
723	Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Current Drug Metabolism, 2022, 23, 1027-1053.	0.7	O
724	Cu (II)-coordinated silica based mesoporous inorganic-organic hybrid material: synthesis, characterization and evaluation for drug delivery, antibacterial, antioxidant and anticancer activities. Journal of Polymer Research, 2023, 30, .	1.2	4
725	Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers, 2023, 15, 525.	2.0	3
726	High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery. International Journal of Molecular Sciences, 2023, 24, 2753.	1.8	4
727	Development of Autopolymerizing Resin Material with Antimicrobial Properties Using Montmorillonite and Nanoporous Silica. Pharmaceutics, 2023, 15, 544.	2.0	0
728	Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using <i>in Vivo</i> and <i>ex Vivo</i> Monitoring. Molecular Pharmaceutics, 2023, 20, 1531-1548.	2.3	7
729	Neutrophil Membrane-Coated Mesoporous Silica Nanoparticles Loaded with Hydrocortisone Alleviate DSS-Induced Colitis in Mice. ACS Applied Nano Materials, 2023, 6, 2403-2412.	2.4	0
730	Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers, 2023, 15, 1145.	1.7	6
731	Electrosynthesis of Silica Reservoir Incorporated Dual Stimuli Responsive Conducting Polymer-Based Self-Healing Coatings. Industrial & Engineering Chemistry Research, 2023, 62, 3942-3951.	1.8	2
732	Tetraalkoxysilane-Assisted Self-Emulsification Templating for Controlled Mesostructured Silica Nanoparticles. Langmuir, 2023, 39, 3610-3618.	1.6	0
733	Engineered Design of a Mesoporous Silica Nanoparticle-Based Nanocarrier for Efficient mRNA Delivery <i>in Vivo</i> . Nano Letters, 2023, 23, 2137-2147.	4.5	12
734	Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. Frontiers of Materials Science, 2023, 17, .	1.1	3
735	Eugenol-loaded mesoporous silica nanoparticles enhance the sensitivity of cisplatin against AGS human gastric adenocarcinoma cell line. Journal of Nanoparticle Research, 2023, 25, .	0.8	3

#	ARTICLE	IF	CITATIONS
736	Synthesis of silica oxide nanoparticles and their medical applications., 2023,, 79-105.		0
737	Co-Delivery of Cisplatin and Curcumin Using Mesoporous Silica Nanoparticles to Improve their Anticancer Effects. Pharmaceutical Nanotechnology, 2023, 11, 364-372.	0.6	1
738	Co-Encapsulation of Hydrophilic and Hydrophobic Drugs into Human H Chain Ferritin Nanocarrier Enhances Antitumor Efficacy. ACS Biomaterials Science and Engineering, 2023, 9, 2572-2583.	2.6	5
739	Recent Advances in Antimicrobial Peptide Hydrogels. International Journal of Molecular Sciences, 2023, 24, 7563.	1.8	6
740	Radio wave/microwave-involved methods for cancer diagnosis. , 2023, , 1-64.		0
745	Theranostic Applications of Upconversion Nanoparticle-Based Drug-Delivery Systems. , 2023, , 239-268.		0
774	Fabrication of Mesoporous Silica Nanoparticles and Its Applications in Drug Delivery. , 0, , .		0
778	Mesoporous core-shell-structured functionalized magnetic nanosystems for diagnostic tools and devices. , 2024, , 645-669.		O