Selection of boron reagents for Suzuki–Miyaura coup

Chemical Society Reviews 43, 412-443 DOI: 10.1039/c3cs60197h

Citation Report

#	Article	IF	CITATIONS
2	Cu ^{II} and Cu ⁰ Catalyzed Mono Borylation of Unsaturated Hydrocarbons with B ₂ pin ₂ : Entering into the Water. ChemCatChem, 2014, 6, 2162-2174.	1.8	43
3	A Brief Overview of Recent Advances in the Applications of Boro nic Acids Relevant to Glycomics. Journal of Glycomics & Lipidomics, 2014, 04, .	0.4	2
4	Enantioselective palladium catalyzed conjugate additions of ortho-substituted arylboronic acids to β,β-disubstituted cyclic enones: total synthesis of herbertenediol, enokipodin A and enokipodin B. Organic and Biomolecular Chemistry, 2014, 12, 5883-5890.	1.5	48
5	Substituted 5,6,11,12-Tetradehydrodibenzo[<i>a</i> , <i>e</i>]cyclooctenes: Syntheses, Properties, and DFT Studies of Substituted Sondheimer–Wong Diynes. Journal of Organic Chemistry, 2014, 79, 11592-11608.	1.7	40
6	Efficient Cross oupling of Dioxazaborocanes with αâ€Phosphate Enamides. European Journal of Organic Chemistry, 2014, 2014, 7889-7894.	1.2	8
7	Accurate Prediction of Irï٤¿H Bond Dissociation Enthalpies by Density Functional Theory Methods. Chinese Journal of Chemistry, 2014, 32, 269-275.	2.6	12
8	A novel 4-aminoantipyrine-Pd(II) complex catalyzes Suzuki–Miyaura cross-coupling reactions of aryl halides. Beilstein Journal of Organic Chemistry, 2014, 10, 2821-2826.	1.3	14
9	Siteâ€Differentiated Polyboron Arenes Prepared by Direct CH Borylation and Their Highly Selective Suzuki–Miyaura Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2014, 53, 1822-1826.	7.2	61
10	Regio- and Stereocontrolled Access to γ-Boronated Unsaturated Amino Esters and Derivatives from (<i>Z</i>)-Alkenyl 1,2-Bis(boronates). Journal of Organic Chemistry, 2014, 79, 783-789.	1.7	21
11	Reactivity of (NHC) ₂ FeX ₂ Complexes toward Arylborane Lewis Acids and Arylboronates. Organometallics, 2014, 33, 370-377.	1.1	25
12	Heterogeneous Pd catalysts supported on silica matrices. RSC Advances, 2014, 4, 65137-65162.	1.7	137
13	Chemoselective Boronic Ester Synthesis by Controlled Speciation. Angewandte Chemie - International Edition, 2014, 53, 12077-12080.	7.2	50
14	A Planarâ€Chiral Phosphino(alkenyl)ferrocene for Suzuki–Miyaura C–C Coupling Reactions. European Journal of Organic Chemistry, 2014, 2014, 6676-6685.	1.2	32
15	Suzuki–Miyaura coupling of phosphinoyl-α-allenic alcohols with arylboronic acids catalyzed by a palladium complex "on waterâ€ŧ an efficient method to generate phosphinoyl 1,3-butadienes and derivatives. RSC Advances, 2014, 4, 61722-61726.	1.7	21
16	Progress in the Suzuki polycondensation of fluorene monomers. RSC Advances, 2014, 4, 57026-57034.	1.7	8
17	A combined experimental-computational study of benzoxaborole crystal structures. CrystEngComm, 2014, 16, 4999.	1.3	27
18	Mono-, Di-, and Triborylphosphine Analogues of Triarylphosphines. Inorganic Chemistry, 2014, 53, 7763-7769.	1.9	25
19	Sequential One-Pot Access to Molecular Diversity through Aniline Aqueous Borylation. Journal of Organic Chemistry, 2014, 79, 10568-10580.	1.7	33

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
20	Heteroarylboronates in Rhodium-Catalyzed 1,4-Addition to Enones. Organic Letters, 2014, 16, 5212-5215.	2.4	32
21	[Pd(Phbz)(X)(PPh3)] palladacycles promote the base-free homocoupling of arylboronic acids in air at room temperature. RSC Advances, 2014, 4, 55305-55312.	1.7	18
22	Microwave-mediated synthesis of N-methyliminodiacetic acid (MIDA) boronates. Tetrahedron, 2014, 70, 9125-9131.	1.0	20
23	A sequential synthesis of substituted furans from aryl alkynes and ketones involving a cerium(IV) ammonium nitrate (CAN)-mediated oxidative cyclization. Tetrahedron Letters, 2014, 55, 5667-5670.	0.7	18
24	The Transmetalation Process in Suzuki–Miyaura Reactions: Calculations Indicate Lower Barrier via Boronate Intermediate. ChemCatChem, 2014, 6, 3132-3138.	1.8	68
25	Nickel(II) Benzimidazolin-2-ylidene Complexes with Thioether-Functionalized Side Chains as Catalysts for Suzuki–Miyaura Cross-Coupling. Organometallics, 2014, 33, 5845-5851.	1.1	36
26	Simple base-free Miyaura-type borylation of triarylantimony diacetates with tetra(alkoxo)diborons under aerobic conditions. Journal of Organometallic Chemistry, 2014, 765, 80-85.	0.8	7
27	Base-Promoted Protodeboronation of 2,6-Disubstituted Arylboronic Acids. Journal of Organic Chemistry, 2014, 79, 5365-5368.	1.7	93
28	Suzuki–Miyaura Coupling of Halophenols and Phenol Boronic Acids: Systematic Investigation of Positional Isomer Effects and Conclusions for the Synthesis of Phytoalexins from Pyrinae. Journal of Organic Chemistry, 2014, 79, 4104-4118.	1.7	59
29	Melamine and Melamine-Formaldehyde Polymers as Ligands for Palladium and Application to Suzuki–Miyaura Cross-Coupling Reactions in Sustainable Solvents. Journal of Organic Chemistry, 2014, 79, 2094-2104.	1.7	54
33	Ynamide Carbopalladation: A Flexible Route to Monoâ€, Bi―and Tricyclic Azacycles. Chemistry - A European Journal, 2015, 21, 12627-12639.	1.7	43
34	Iron-catalyzed Suzuki–Miyaura Coupling Reaction of Unactivated Alkyl Halides with Lithium Alkynylborates. Chemistry Letters, 2015, 44, 486-488.	0.7	32
35	Pd(II)-catalyzed Chelation-assisted Cross Dehydrogenative Coupling between Unactivated C(sp ³)–H Bonds in Aliphatic Amides and Benzylic C–H Bonds in Toluene Derivatives. Chemistry Letters, 2015, 44, 1365-1367.	0.7	34
36	Pdâ€Catalyzed Synthesis of <i>α</i> â€Aryl Vinylphosphonates via Suzuki Arylation of <i>α</i> â€Phosphonovinyl Nonaflates. Chinese Journal of Chemistry, 2015, 33, 1119-1123.	2.6	13
37	Water-Soluble Palladium(II) Sulfonated Thiosemicarbazone Complexes: Facile Synthesis and Preliminary Catalytic Studies in the Suzuki-Miyaura Cross-Coupling Reaction in Water. European Journal of Inorganic Chemistry, 2015, 2015, 4088-4094.	1.0	21
38	Acetamidoarenediazonium Salts: Opportunities for Multiple Arene FunctionaliÂzation. European Journal of Organic Chemistry, 2015, 2015, 5826-5841.	1.2	22
39	Palladiumâ€Catalyzed Suzuki–Miyaura, Heck and Hydroarylation Reactions on (–)â€Levoglucosenone and Application to the Synthesis of Chiral γâ€Butyrolactones. European Journal of Organic Chemistry, 2015, 2015, 6999-7008.	1.2	25
40	Handy Protocols using Vinyl Nosylates in Suzuki–Miyaura Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2015, 357, 4093-4100.	2.1	11

#	Article	IF	CITATIONS
41	Oxidative homocoupling of arylboronic acids catalyzed by a 4â€aminoantipyrine–Pd(II)complex. Applied Organometallic Chemistry, 2015, 29, 439-442.	1.7	12
42	Synthesis of Benzimidazoleâ€Substituted Arylboronic Acids <i>via</i> Aerobic Oxidation of 1,2â€Arylenediamines and Formylâ€Substituted Aryl MIDA Boronates using Potassium Iodide as a Catalyst. Advanced Synthesis and Catalysis, 2015, 357, 2951-2956.	2.1	11
43	Synthesis of Magnaldehydes B and E and Dictyobiphenyl B by Microwaveâ€Promoted Cross oupling of Boronophenols. European Journal of Organic Chemistry, 2015, 2015, 3760-3766.	1.2	7
44	Tandem Chemoselective Suzuki–Miyaura Crossâ€Coupling Enabled by Nucleophile Speciation Control. Angewandte Chemie - International Edition, 2015, 54, 9976-9979.	7.2	50
45	Intramolecular Aminoboration of Unfunctionalized Olefins. Angewandte Chemie - International Edition, 2015, 54, 12636-12639.	7.2	51
46	Reaction Optimization, Scalability, and Mechanistic Insight on the Catalytic Enantioselective Desymmetrization of 1,1â€Diborylalkanes via Suzuki–Miyaura Crossâ€Coupling. Chemistry - A European Journal, 2015, 21, 19186-19194.	1.7	65
48	Suzuki–Miyaura Diversification of Amino Acids and Dipeptides in Aqueous Media. ChemCatChem, 2015, 7, 2055-2070.	1.8	31
49	From Minutes to Years: Predicting Organotrifluoroborate Solvolysis Rates. Chemistry - A European Journal, 2015, 21, 3924-3928.	1.7	45
50	An Efficient Total Synthesis of Mulberrofuran B and L. Bulletin of the Korean Chemical Society, 2015, 36, 2278-2283.	1.0	7
51	Speciation Control During Suzuki–Miyaura Cross oupling of Haloaryl and Haloalkenyl MIDA Boronic Esters. Chemistry - A European Journal, 2015, 21, 8951-8964.	1.7	47
52	Formal Dyotropic Rearrangements in Organometallic Transformations. European Journal of Organic Chemistry, 2015, 2015, 5897-5907.	1.2	39
54	Palladium complex containing two sterically hindered ligands as highly efficient catalyst for Suzuki–Miyaura reaction. Applied Organometallic Chemistry, 2015, 29, 829-833.	1.7	2
55	Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki–Miyaura reactions: relative reactivity of K[4-RC ₆ F ₄ BF ₃] and the role of silver-assistance in acceleration of transmetallation. Beilstein Journal of Organic Chemistry, 2015, 11, 608-616	1.3	17
56	Palladium-catalyzed ligand-free and efficient SuzukiMiyaura reaction of \$N\$-methyliminodiacetic acid boronates in water. Turkish Journal of Chemistry, 2015, 39, 1208-1215.	0.5	5
57	Recent Applications of Phosphane-based Palladium Catalysts in Suzuki-Miyaura Reactions Involved in Total Syntheses of Natural Products. Current Organic Chemistry, 2015, 19, 1302-1409.	0.9	29
58	Direct introduction of a naphthalene-1,8-diamino boryl [B(dan)] group by a Pd-catalysed selective boryl transfer reaction. Chemical Communications, 2015, 51, 5656-5659.	2.2	75
59	Palladium-Catalyzed Regioselective Decarboxylative Alkylation of Arenes and Heteroarenes with Aliphatic Carboxylic Acids. Organic Letters, 2015, 17, 2598-2601.	2.4	63
60	Radical Instability in Aid of Efficiency: A Powerful Route to Highly Functional MIDA Boronates. Journal of the American Chemical Society, 2015, 137, 6762-6765.	6.6	85

#	Article	IF	CITATIONS
61	Improving Transformations Through Organotrifluoroborates. Topics in Organometallic Chemistry, 2015, , 117-151.	0.7	12
62	Synthesis of B,O,N-Doped Adamantanes and Diamantanes by Condensation of Oximes with Boronic Acids. Journal of Organic Chemistry, 2015, 80, 6728-6736.	1.7	14
63	An Umpolung Approach to Alkene Carboamination: Palladium Catalyzed 1,2-Amino-Acylation, -Carboxylation, -Arylation, -Vinylation, and -Alkynylation. Journal of the American Chemical Society, 2015, 137, 7224-7230.	6.6	174
64	Magnetic nanoparticle-supported Pd(II)-cryptand 22 complex: An efficient and reusable heterogeneous precatalyst in the Suzuki–Miyaura coupling and the formation of aryl–sulfur bonds. Journal of Molecular Catalysis A, 2015, 401, 55-65.	4.8	37
65	Palladium-Catalyzed One-Pot Reaction of Hydrazones, Dihaloarenes, and Organoboron Reagents: Synthesis and Cytotoxic Activity of 1,1-Diarylethylene Derivatives. Journal of Organic Chemistry, 2015, 80, 6715-6727.	1.7	28
66	Catalytic activity of new PdII-complexes of bidentate PIII—N—PIII-ligands in Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2015, 64, 909-913.	0.4	10
67	Highly nucleophilic dipropanolamine chelated boron reagents for aryl-transmetallation to iron complexes. Dalton Transactions, 2015, 44, 20577-20583.	1.6	12
68	Through the Maze: Crossâ€Coupling Pathways to a Helical Hexaphenyl "Geläder―Molecule. European Journal of Organic Chemistry, 2015, 2015, 786-801.	1.2	9
70	Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki–Miyaura Cross-Coupling. Organic Letters, 2015, 17, 940-943.	2.4	45
71	Synthesis of C4C5 Cycloalkylâ€Fused and C6â€Modified Chromans via <i>ortho</i> â€Quinone Methides. Chemistry - an Asian Journal, 2015, 10, 1050-1064.	1.7	12
72	Ruâ€Catalysed CH Arylation of Indoles and Pyrroles with Boronic Acids: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 5380-5386.	1.7	77
73	Applications of α-Phosphonovinyl Tosylates in the Synthesis of α-Arylethenylphosphonates via Suzuki–Miyaura Cross-Coupling Reactions. Organic Letters, 2015, 17, 798-801.	2.4	24
74	A modular synthesis of functionalised phenols enabled by controlled boron speciation. Organic and Biomolecular Chemistry, 2015, 13, 3093-3102.	1.5	23
75	Practical and efficient ipso-iodination of arylboronic acids via KF/I2 system. Tetrahedron Letters, 2015, 56, 1122-1123.	0.7	17
76	Ligandâ€Promoted Oxidative Cross oupling of Aryl Boronic Acids and Aryl Silanes by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 4079-4082.	7.2	29
77	Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki–Miyaura reactions. Journal of Materials Chemistry A, 2015, 3, 3918-3927.	5.2	36
78	Copper-Catalyzed C(sp ³)–OH Cleavage with Concomitant C–C Coupling: Synthesis of 3-Substituted Isoindolinones. Journal of Organic Chemistry, 2015, 80, 1506-1516.	1.7	30
79	(Ferrocenylthienyl)phosphines for the Suzuki–Miyaura C,C coupling. Inorganic Chemistry Communication, 2015, 54, 96-99.	1.8	8

#	Article	IF	Citations
80	Dual Role of Acetanilides: Traceless Removal of a Directing Group through Deacetylation/Diazotation and Palladium-Catalyzed C–C-Coupling Reactions. Journal of Organic Chemistry, 2015, 80, 4223-4234.	1.7	27
81	Linchpin dienes: key building-blocks in the synthesis of polyenic frameworks. Organic and Biomolecular Chemistry, 2015, 13, 4129-4142.	1.5	25
82	Nickel-Catalyzed C-Br/C-H Bis-phenylation of Methyl 4-Bromocrotonate: A Stereoselective Entry to Methyl (<i>É</i>)-3,4-Diphenylbut-2-enoate. Synthetic Communications, 2015, 45, 1799-1806.	1.1	5
83	A mild carbon–boron bond formation from diaryliodonium salts. Chemical Communications, 2015, 51, 14068-14071.	2.2	59
84	Suzuki–Miyaura Coupling Reactions of Conjunctive Reagents: 2-Borylated Allylic Sulfones. Journal of Organic Chemistry, 2015, 80, 8168-8174.	1.7	8
85	Palladium(<scp>ii</scp>) complexes containing ONO tridentate hydrazone for Suzuki–Miyaura coupling of aryl chlorides in aqueous-organic media. RSC Advances, 2015, 5, 59428-59436.	1.7	44
86	Organotrifluoroborates: Another Branch of the Mighty Oak. Journal of Organic Chemistry, 2015, 80, 7837-7848.	1.7	177
87	Mono- and di-cationic hydrido boron compounds. Dalton Transactions, 2015, 44, 14359-14367.	1.6	29
88	Boronic Acids and Derivatives—Probing the Structure–Activity Relationships for Mutagenicity. Organic Process Research and Development, 2015, 19, 1507-1516.	1.3	61
89	Recent Advances in the Synthesis of Triarylmethanes by Transition Metal Catalysis. ACS Catalysis, 2015, 5, 4734-4742.	5.5	160
90	Palladium-catalyzed ligand-free and efficient Suzuki–Miyaura reaction of heteroaryl halides with MIDA boronates in water. RSC Advances, 2015, 5, 54312-54315.	1.7	14
91	Transmetalation from B to Rh in the course of the catalytic asymmetric 1,4-addition reaction of phenylboronic acid to enones: a computational comparison of diphosphane and diene ligands. Dalton Transactions, 2015, 44, 2737-2746.	1.6	15
92	A Concise and Atom-Economical Suzuki–Miyaura Coupling Reaction Using Unactivated Trialkyl- and Triarylboranes with Aryl Halides. Organic Letters, 2015, 17, 3616-3619.	2.4	30
93	Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron–Wittig Reaction. Organic Letters, 2015, 17, 1708-1711.	2.4	189
94	In situ-generated nano-palladium-catalyzed ligand-free Suzuki–Miyaura reaction of potassium aryltrifluoroborates at room temperature. Tetrahedron, 2015, 71, 3954-3959.	1.0	15
95	Palladium nanoparticles supported on graphene and reduced graphene oxide as efficient recyclable catalyst for the Suzuki–Miyaura reaction of potassium aryltrifluoroborates. Journal of Molecular Catalysis A, 2015, 404-405, 1-7.	4.8	45
96	Synthesis of arylboronates by boron-induced ipso-deantimonation of triarylstibanes with boron trihalides and its application in one-pot two-step transmetallation/cross-coupling reactions. Journal of Organometallic Chemistry, 2015, 788, 9-16.	0.8	7
97	Boronic Acid Functionalized Aza-Bodipy (azaBDPBA) based Fluorescence Optodes for the Analysis of Glucose in Whole Blood. ACS Applied Materials & amp; Interfaces, 2015, 7, 11141-11145.	4.0	44

\sim		
	ZEDO	DT
CITAL	NLF U	IV I

#	ARTICLE	IF	CITATIONS
98	A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets. Journal of the American Society for Mass Spectrometry, 2015, 26, 1221-1232.	1.2	5
99	Suzuki–Miyaura reaction by heterogeneously supported Pd in water: recent studies. RSC Advances, 2015, 5, 42193-42221.	1.7	123
100	A short, general, Suzuki–Miyaura coupling anchored approach to 3-alkenylbutenolides: total synthesis of akolactones A & B, hamabiwalactone B and ancepsenolide. Tetrahedron, 2015, 71, 3209-3215.	1.0	9
101	Facile synthesis of aryl-substituted pyridines via Suzuki–Miyaura approach. Tetrahedron, 2015, 71, 8943-8952.	1.0	27
102	Design of a BrÃ,nsted acid with two different acidic sites: synthesis and application of aryl phosphinic acid〓phosphoric acid as a BrÃ,nsted acid catalyst. Chemical Communications, 2015, 51, 16976-16979.	2.2	10
103	An efficient desulfitative C–C cross coupling of fused thiazolidine-2-thione with boronic acids and boronic acid pinacol esters: formation of fused thiazoles. RSC Advances, 2015, 5, 86832-86839.	1.7	12
104	Antimicrobial and antimycobacterial activities of aliphatic amines derived from vanillin. Canadian Journal of Chemistry, 2015, 93, 1305-1311.	0.6	11
105	Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chemical Society Reviews, 2015, 44, 8848-8858.	18.7	266
106	Palladium-catalyzed borylation of m-dibromobenzene derivative and its applications in one-pot tandem Suzuki–Miyaura arenes synthesis. Tetrahedron, 2015, 71, 8871-8875.	1.0	10
107	Ni-catalyzed reductive addition of alkyl halides to isocyanides. Organic and Biomolecular Chemistry, 2015, 13, 11418-11421.	1.5	24
108	Competing Mechanisms, Substituent Effects, and Regioselectivities of Nickel-Catalyzed [2 + 2 + 2] Cycloaddition between Carboryne and Alkynes: A DFT Study. Journal of Organic Chemistry, 2015, 80, 9108-9117.	1.7	16
109	Diastereoselective Oxidative Cï£įN/Cï£įO and Cï£įN/Cï£įN Bond Formation Tandems Initiated by Visible Light: Synthesis of Fused <i>N</i> â€Arylindolines. Advanced Synthesis and Catalysis, 2015, 357, 2311-2316.	2.1	33
110	Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nature Chemistry, 2015, 7, 935-939.	6.6	80
111	Sterically Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides. Organic Letters, 2015, 17, 4364-4367.	2.4	240
112	Gold-Catalyzed Proto- and Deuterodeboronation. Journal of Organic Chemistry, 2015, 80, 9807-9816.	1.7	28
113	Aza-Wittig Rearrangements of <i>N</i> -Benzyl and <i>N</i> -Allyl Glycine Methyl Esters. Discovery of a Surprising Cascade Aza-Wittig Rearrangement/Hydroboration Reaction. Journal of Organic Chemistry, 2015, 80, 9041-9056.	1.7	20
114	Unsymmetrical 1,1-diborated multisubstituted sp ³ -carbons formed via a metal-free concerted-asynchronous mechanism. Organic and Biomolecular Chemistry, 2015, 13, 9659-9664.	1.5	66
115	Sustainable Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science, 2015, 349, 1087-1091.	6.0	265

#	Article	IF	CITATIONS
116	Ruthenium Catalyzed Selective Hydroboration of Carbonyl Compounds. Organic Letters, 2015, 17, 4790-4793.	2.4	96
117	Synthesis and Optoelectronic Properties of <i>Janus</i> -Dendrimer-Type Multivalent Donor–Acceptor Systems. Journal of Organic Chemistry, 2015, 80, 882-896.	1.7	43
118	Phosphine-stabilized Pd nanoparticles supported on silica as a highly active catalyst for the Suzuki–Miyaura cross-coupling reaction. RSC Advances, 2015, 5, 3512-3520.	1.7	25
119	Alkynylboranes: A Practical Approach by Zinc atalyzed Dehydrogenative Coupling of Terminal Alkynes with 1,8â€Naphthalenediaminatoborane. Advanced Synthesis and Catalysis, 2015, 357, 77-82.	2.1	72
120	Suzuki–Miyaura coupling of arylboronic acids to gold(<scp>iii</scp>). Chemical Science, 2015, 6, 981-986.	3.7	33
121	Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation. Beilstein Journal of Organic Chemistry, 2016, 12, 166-171.	1.3	19
122	Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH–Rate Profiles, Autocatalysis, and Disproportionation. Journal of the American Chemical Society, 2016, 138, 9145-9157.	6.6	262
123	Biaryl Ketones by Suzuki–Miyaura Cross oupling of Organotrifluoroborates and Acyl Chlorides. European Journal of Organic Chemistry, 2016, 2016, 2983-2987.	1.2	16
124	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie - International Edition, 2016, 55, 3091-3095.	7.2	130
125	Undeniable Confirmation of the <i>syn</i> â€Addition Mechanism for Metalâ€Free Diboration by Using the Crystalline Sponge Method. Chemistry - A European Journal, 2016, 22, 4723-4726.	1.7	52
127	Excellent Suzuki–Miyauracatalytic activity of a new Pd(II) complex with sulfonamide–Schiff base ligand. Applied Organometallic Chemistry, 2016, 30, 519-523.	1.7	14
128	Biaryl formation via Suzuki and Stille coupling reactions using palladium nanoparticle/polymeric Nâ€heterocyclic carbene grafted silica as recyclable and efficient catalyst. Applied Organometallic Chemistry, 2016, 30, 818-822.	1.7	8
129	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	1.6	23
130	The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Autoâ€amination for Chiral Amine Synthesis. Angewandte Chemie, 2016, 128, 7656-7659.	1.6	17
131	Di- and Polyboron Compounds: Preparation and Chemoselective Transformations. ACS Symposium Series, 2016, , 415-444.	0.5	2
132	Insight into Transmetalation Enables Cobalt-Catalyzed Suzuki–Miyaura Cross Coupling. ACS Central Science, 2016, 2, 935-942.	5.3	74
133	Current Developments in the Catalyzed Hydroboration Reaction. ACS Symposium Series, 2016, , 209-225.	0.5	39
134	Regioselective Copper-Catalyzed Boracarboxylation of Vinyl Arenes. Organic Letters, 2016, 18, 6428-6431.	2.4	83

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
135	Ionic Liquid-Based Microemulsions in Catalysis. Journal of Organic Chemistry, 2016, 81, 12332-12339.	1.7	36
136	Introduction, Interconversion and Removal of Boron Protecting Groups. ACS Symposium Series, 2016, , 357-377.	0.5	10
137	B-Protected Boronic Acids: Methodology Development and Strategic Application. ACS Symposium Series, 2016, , 379-413.	0.5	8
138	Development of Organic Transformations Based on Protodeboronation. ACS Symposium Series, 2016, , 483-523.	0.5	3
139	Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists' Bread and Butter. Journal of Medicinal Chemistry, 2016, 59, 4385-4402.	2.9	292
140	The N–B Interaction through a Water Bridge: Understanding the Chemoselectivity of a Fluorescent Protein Based Probe for Peroxynitrite. Journal of the American Chemical Society, 2016, 138, 4900-4907.	6.6	59
141	Computational and 31 P NMR studies of moisture-metastable cyclic diaminophosphine oxide preligands. Polyhedron, 2016, 105, 123-136.	1.0	3
142	Efficient Approach To Construct Unsymmetrical Biaryls through Oxidative Coupling Reactions of Aromatic Primary Alcohols and Arylboronic Acids with a Rhodium Catalyst. Organometallics, 2016, 35, 1876-1884.	1.1	8
143	Synthesis and evaluation of biphenyl derivatives as potential downregulators of VEGF protein secretion and telomerase-related gene expressions. Bioorganic and Medicinal Chemistry, 2016, 24, 3108-3115.	1.4	9
144	Metal-Free Reduction of Aromatic Nitro Compounds to Aromatic Amines with B ₂ pin ₂ in Isopropanol. Organic Letters, 2016, 18, 2774-2776.	2.4	92
145	(Ferrocenylthienyl)phosphines: Synthesis, electrochemistry and their use in Suzuki-Miyaura C,C coupling. Journal of Organometallic Chemistry, 2016, 813, 26-35.	0.8	11
146	The role of naked fluoride ion as base or catalyst in organic synthesis. Tetrahedron, 2016, 72, 2763-2812.	1.0	26
147	Superparamagnetic copper ferrite nanoparticles catalyzed aerobic, ligand-Free, regioselective hydroboration of alkynes: Influence of synergistic effect. Applied Catalysis A: General, 2016, 519, 78-84.	2.2	36
148	Chemo-, Regio-, and Stereoselective Copper(II)-Catalyzed Boron Addition to Acetylenic Esters and Amides in Aqueous Media. Journal of Organic Chemistry, 2016, 81, 4269-4279.	1.7	34
149	Nickelâ€Catalyzed Desulfitative C–C Cross Coupling: The Synthesis of 6â€Azaâ€Tetrahydroquinazolines and their Solvatochromism. ChemistrySelect, 2016, 1, 1729-1736.	0.7	5
150	Polyaniline coated on celite, a heterogeneous support for palladium: applications in catalytic Suzuki and one-pot Suzuki–aldol reactions. New Journal of Chemistry, 2016, 40, 8935-8945.	1.4	15
151	Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis. ACS Catalysis, 2016, 6, 7335-7339.	5.5	139
152	A simple, modular synthesis of C4-substituted tryptophan derivatives. Organic and Biomolecular Chemistry, 2016, 14, 10095-10100.	1.5	28

#	Article	IF	CITATIONS
153	Convergent Assembly of the Tetracyclic Meroterpenoid (â^) yclosmenospongine by a Nonâ€Biomimetic Polyene Cyclization. Angewandte Chemie - International Edition, 2016, 55, 14131-14135.	7.2	35
154	Opportune <i>gem</i> â€Silylborylation of Carbonyl Compounds: A Modular and Stereocontrolled Entry to Tetrasubstituted Olefins. Chemistry - A European Journal, 2016, 22, 18737-18741.	1.7	55
155	Building Block Approach for the Synthesis of Sulfoximines. Organic Letters, 2016, 18, 5348-5351.	2.4	18
156	Synthesis of meso-substituted tetrabenzoporphyrin via selective meso-bromination of bicycloporphyrin. Tetrahedron Letters, 2016, 57, 5079-5083.	0.7	7
157	Synthesis of a Polar Phosphinoferrocene Amidosulfonate Ligand and Its Application in Pd-Catalyzed Cross-Coupling Reactions of Aromatic Boronic Acids and Acyl Chlorides in an Aqueous Medium. Organometallics, 2016, 35, 3378-3387.	1.1	23
158	<i>N</i> -Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki–Miyaura Coupling via N–C Cleavage. Organic Letters, 2016, 18, 4194-4197.	2.4	103
159	The copper-catalysed Suzuki–Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation. Chemical Communications, 2016, 52, 11072-11075.	2.2	32
160	Direct Cross ouplings of Propargylic Diols. Angewandte Chemie - International Edition, 2016, 55, 9244-9248.	7.2	26
161	Charting the Chemical Reactivity Space of 2,3-Substituted Furo[2,3- <i>b</i>]pyridines Synthesized via the Heterocyclization of Pyridine- <i>N</i> -oxide Derivatives. Journal of Organic Chemistry, 2016, 81, 10339-10347.	1.7	24
162	Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions. Journal of Organic Chemistry, 2016, 81, 8520-8529.	1.7	14
163	An experimental and theoretical study into the facile, homogenous (N-heterocyclic) Tj ETQq0 0 0 rgBT /Overlock and Technology, 2016, 6, 7461-7467.	10 Tf 50 3 2.1	47 Td (carbe 20
164	Selective and Serial Suzuki–Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters. Organic Letters, 2016, 18, 4440-4443.	2.4	23
166	Synthesis of Dendrimers with a Bidentate Phosphine Core Ligand Having Carboxy Groups at the Peripheral Layer and Their Application to Aqueous Media Cross-Coupling Reactions. Chemical and Pharmaceutical Bulletin, 2016, 64, 1067-1072.	0.6	1
167	Dendritic bis- and tetrakis-iminodiacetic acid-boronate complexes in one-pot cross-coupling reactions. Journal of Organometallic Chemistry, 2016, 819, 138-146.	0.8	1
168	Synthesis of Biaryls <i>via</i> Ligandâ€Free Suzuki–Miyaura Crossâ€Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments. Advanced Synthesis and Catalysis, 2016, 358, 3320-3349.	2.1	149
169	Evolution of Solvents in Organic Chemistry. ACS Sustainable Chemistry and Engineering, 2016, 4, 5838-5849.	3.2	199
170	Direct Crossâ€Couplings of Propargylic Diols. Angewandte Chemie, 2016, 128, 9390-9394.	1.6	8
171	Versatile C(sp ²)â^'C(sp ³) Ligand Couplings of Sulfoxides for the Enantioselective Synthesis of Diarylalkanes. Angewandte Chemie, 2016, 128, 10167-10170.	1.6	6

#	Article	IF	CITATIONS
172	Versatile C(sp ²)â^'C(sp ³) Ligand Couplings of Sulfoxides for the Enantioselective Synthesis of Diarylalkanes. Angewandte Chemie - International Edition, 2016, 55, 10013-10016.	7.2	30
173	Synthesis of Asymmetricalâ€Terminally Bifunctionlized Alkanes by Sequential Suzuki–Miyaura Coupling Using <i>B</i> â€Thexylboracyclanes. European Journal of Organic Chemistry, 2016, 2016, 3478-3481.	1.2	7
174	Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chemical Reviews, 2016, 116, 9091-9161.	23.0	835
175	Convergent Assembly of the Tetracyclic Meroterpenoid (â^')â€Cyclosmenospongine by a Nonâ€Biomimetic Polyene Cyclization. Angewandte Chemie, 2016, 128, 14337-14341.	1.6	16
176	Suzuki–Miyaura cross-coupling optimization enabled by automated feedback. Reaction Chemistry and Engineering, 2016, 1, 658-666.	1.9	125
177	The Plug & Play Reactor: A Highly Flexible Device for Heterogeneous Reactions in Continuous Flow. Chemie-Ingenieur-Technik, 2016, 88, 1518-1523.	0.4	8
178	Miyaura Borylation and Oneâ€Pot Twoâ€Step Homocoupling of Aryl Chlorides and Bromides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 977-983.	2.1	49
179	Synthesis of Biaryls through Nickelâ€Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. Angewandte Chemie, 2016, 128, 7073-7077.	1.6	68
180	Baseâ€Free Palladium atalyzed Borylation of Aryl Chlorides with Diborons. ChemCatChem, 2016, 8, 2317-2320.	1.8	28
181	αâ€Phosphonovinyl Arylsulfonates: An Attractive Partner for the Synthesis of αâ€6ubstituted Vinylphosphonates through Palladium atalyzed Suzuki Reactions. European Journal of Organic Chemistry, 2016, 2016, 1577-1587.	1.2	19
182	Ruthenium(II)-Catalyzed Regioselective C–H Arylation of Cyclic and <i>N</i> , <i>N</i> -Dialkyl Benzamides with Boronic Acids by Weak Coordination. ACS Catalysis, 2016, 6, 4755-4759.	5.5	90
183	Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by Cu(<scp>i</scp>)/Pd(0)/Cu(<scp>ii</scp>) cascade catalysis of 2-iodoaniline/phenols. Chemical Communications, 2016, 52, 8703-8706.	2.2	24
184	Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling. Topics in Current Chemistry, 2016, 374, 39.	3.0	74
185	Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Organic Chemistry Frontiers, 2016, 3, 875-879.	2.3	87
186	Synthesis of Biaryls through Nickel atalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. Angewandte Chemie - International Edition, 2016, 55, 6959-6963.	7.2	279
187	The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Autoâ€amination for Chiral Amine Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7530-7533.	7.2	30
188	Palladium atalyzed Arylation of Arylboronic Acids with Yagupolskii–Umemoto Reagents. Chemistry - A European Journal, 2016, 22, 6542-6546.	1.7	57
189	Process Development of the HCV NS5B Site D Inhibitor MK-8876. Organic Process Research and Development, 2016, 20, 1227-1238.	1.3	8

#	Article	IF	CITATIONS
190	Synthesis of Benzothiadiazole Derivatives by Applying C–C Cross-Couplings. Journal of Organic Chemistry, 2016, 81, 1535-1546.	1.7	40
191	Suzuki–Miyaura reaction catalyzed by a dendritic phosphine–palladium complex. Tetrahedron, 2016, 72, 1485-1492.	1.0	6
192	Pd-Catalyzed Hydroborylation of Alkynes: A Ligand Controlled Regioselectivity Switch for the Synthesis of α- or β-Vinylboronates. Organic Letters, 2016, 18, 432-435.	2.4	86
193	Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?. Journal of Medicinal Chemistry, 2016, 59, 4443-4458.	2.9	1,187
194	Synthesis of Allenes by Catalytic Coupling of Propargyl Carbonates with Aryl lodides in the Presence of Diboron Species. Journal of Organic Chemistry, 2016, 81, 250-255.	1.7	20
195	Ruthenium-catalyzed direct arylations with aryl chlorides. RSC Advances, 2016, 6, 30875-30885.	1.7	49
196	Uncharged nucleoside inhibitors of β-1,4-galactosyltransferase with activity in cells. Chemical Communications, 2016, 52, 3955-3958.	2.2	15
197	Highly selective catalytic trans-hydroboration of alkynes mediated by borenium cations and B(C ₆ F ₅) ₃ . Chemical Science, 2016, 7, 3384-3389.	3.7	116
198	Palladium-catalyzed Suzuki–Miyaura coupling of amides by carbon–nitrogen cleavage: general strategy for amide N–C bond activation. Organic and Biomolecular Chemistry, 2016, 14, 5690-5707.	1.5	136
199	Palladium nanoparticles enzyme aggregate (PANEA) as efficient catalyst for Suzuki–Miyaura reaction in aqueous media. Enzyme and Microbial Technology, 2016, 95, 242-247.	1.6	26
200	Bench-stable frustrated Lewis pair chemistry: fluoroborate salts as precatalysts for the C–H borylation of heteroarenes. Chemical Communications, 2016, 52, 5387-5390.	2.2	84
201	Metal-free diimide reduction of alkenylphosphonates: simple and efficient protocol for the synthesis of α-substituted ethylphosphonates. Tetrahedron Letters, 2016, 57, 1368-1371.	0.7	7
202	A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin â€~in-chloride'. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1025-1028.	1.0	10
203	An efficient and straightforward route to terminal vinyl sulfones via palladium-catalyzed Suzuki reactions of α-bromo ethenylsulfones. Tetrahedron Letters, 2016, 57, 1460-1463.	0.7	15
204	Palladium-Catalyzed Arylboration of Bicyclic Alkenes. Journal of Organic Chemistry, 2016, 81, 1000-1005.	1.7	50
205	Bromopyrido-24-crown-8: a versatile building block for the construction of interlocked molecules. Tetrahedron Letters, 2016, 57, 513-516.	0.7	4
206	Nickel-catalysed Suzuki–Miyaura coupling of amides. Nature Chemistry, 2016, 8, 75-79.	6.6	343
207	Main-chain NHC-palladium polymers based on adamantane: Synthesis and application in Suzuki–Miyaura reactions. Journal of Molecular Catalysis A, 2016, 412, 93-100.	4.8	18

#	Article	IF	CITATIONS
208	Stimuli and shape responsive †boron-containing' luminescent organic materials. Journal of Materials Chemistry C, 2016, 4, 2647-2662.	2.7	154
209	Microwaveâ€Promoted Pdâ€Catalyzed Synthesis of Dibenzofurans from <i>Ortho</i> â€Arylphenols. Journal of Heterocyclic Chemistry, 2017, 54, 1287-1297.	1.4	12
210	A rational pre-catalyst design for bis-phosphine mono-oxide palladium catalyzed reactions. Chemical Science, 2017, 8, 2841-2851.	3.7	24
211	Breaking Amides using Nickel Catalysis. ACS Catalysis, 2017, 7, 1413-1423.	5.5	378
212	An Operationally Simple and Mild Oxidative Homocoupling of Aryl Boronic Esters To Access Conformationally Constrained Macrocycles. Journal of the American Chemical Society, 2017, 139, 3106-3114.	6.6	60
213	Tris(pentafluorophenyl)borane and Beyond: Modern Advances in Borylation Chemistry. Inorganic Chemistry, 2017, 56, 8627-8643.	1.9	183
214	Benzyltriboronates: Building Blocks for Diastereoselective Carbon–Carbon Bond Formation. Journal of the American Chemical Society, 2017, 139, 2589-2592.	6.6	99
215	Di– <i>tert–</i> butyl <i>N,N</i> â€diethylphosphoramidite as an Air Stable Ligand for Suzukiâ€Miyaura and Buchwaldâ€Hartwig Reactions. ChemistrySelect, 2017, 2, 1392-1397.	0.7	6
216	Mechanism of a Suzuki-Type Homocoupling Reaction Catalyzed by Palladium Nanocubes. ACS Catalysis, 2017, 7, 1462-1469.	5.5	37
217	Cobalt(II)-Catalyzed Oxidative C–H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599.	2.4	94
218	Porous Gold Nanoparticle-Decorated Nanoreactors Prepared from Smartly Designed Functional Polystyrene- <i>block</i> -Poly(<scp>d</scp> , <scp>l</scp> -Lactide) Diblock Copolymers: Toward Efficient Systems for Catalytic Cascade Reaction Processes. ACS Applied Materials & Interfaces, 2017, 9, 31279-31290.	4.0	22
219	Surfactantâ€Assisted Suzuki–Miyaura Coupling Reaction of Unreactive Chlorobenzene over Hydrotalciteâ€Supported Palladium Catalyst. Asian Journal of Organic Chemistry, 2017, 6, 274-277.	1.3	9
220	Mono- and dinuclear cyclopalladates as catalysts for Suzuki–Miyaura cross-coupling reactions in predominantly aqueous media. Tetrahedron Letters, 2017, 58, 1000-1005.	0.7	17
221	Smart polymeric nanoparticles for boron scavenging. Chemical Engineering Journal, 2017, 319, 31-38.	6.6	7
222	Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie - International Edition, 2017, 56, 6264-6267.	7.2	74
223	<i>trans</i> -Aminoboration across Internal Alkynes Catalyzed by B(C ₆ F ₅) ₃ for the Synthesis of Borylated Indoles. Organic Letters, 2017, 19, 1462-1465.	2.4	48
224	Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki–Miyaura Reaction. Journal of the American Chemical Society, 2017, 139, 3805-3821.	6.6	138
225	Poly(<i>N</i> -alkyl-3,6-carbazole)s via Suzuki–Miyaura Polymerization: From Macrocyclization toward End Functionalization. Macromolecules, 2017, 50, 1319-1330.	2.2	14

#	Article	IF	CITATIONS
226	General Method for the Suzuki–Miyaura Cross-Coupling of Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (NHC = <i>N</i> -Heterocyclic Carbene) Complexes. ACS Catalysis, 2017, 7, 1960-1965.	5.5	160
227	Effective Blâ€ÐIME Ligand for Suzuki–Miyaura Cross oupling Reactions in Water with 500â€ppm Palladiun Loading and Tritonâ€X. Asian Journal of Organic Chemistry, 2017, 6, 1285-1291.	¹ 1.3	14
228	Conjunctive functionalization of vinyl boronate complexes with electrophiles: a diastereoselective three-component coupling. Chemical Communications, 2017, 53, 4922-4925.	2.2	55
229	One-pot synthesis of four-coordinate boron(III) complexes by the ligand-promoted organic group migration between boronic acids. Scientific Reports, 2017, 7, 242.	1.6	20
230	An acetatopalladium(II) complex with 1â€benzyl―N â€(3,5â€di―tert â€butylsalicylidene)piperidinâ€4â€amine: structure and catalytic applications in Suzuki–Miyaura coupling of arylboronic acids with hydroxyaryl halides. Applied Organometallic Chemistry, 2017, 31, e3778.	Synthesis, 1.7	4
231	Palladium atalyzed Direct β â îH Arylation of Ketones with Arylboronic Acids in Water. Advanced Synthesis and Catalysis, 2017, 359, 2402-2406.	2.1	24
232	Palladium/Amine Complex Catalyzed Suzuki-Miyaura Reaction of Arylboron Compounds in Water. ChemistrySelect, 2017, 2, 4016-4020.	0.7	8
233	A Dual Palladium and Copper Hydride Catalyzed Approach for Alkyl–Aryl Crossâ€Coupling of Aryl Halides and Olefins. Angewandte Chemie - International Edition, 2017, 56, 7242-7246.	7.2	100
234	Mechanism of Nickelâ€Catalyzed Suzuki–Miyaura Coupling of Amides. Chemistry - an Asian Journal, 2017, 12, 1765-1772.	1.7	25
235	Radical Arylation of Anilines and Pyrroles via Aryldiazotates. Chemistry - A European Journal, 2017, 23, 9647-9656.	1.7	21
236	Effects of alkyl or alkyloxy side chains in poly[4,6-bis(3â€2-dodecylthien-2â€2-yl)thieno-[3,4- c][1,2,5]thiadiazole-5â€2,5â€2-diyl- alt -2,5-di(alkyl or alkyloxy)-1,4-phenylene]: Synthesis, photophysics, and spectroelectrochemical and photovoltaic properties. Polymer, 2017, 118, 180-191.	1.8	7
237	Probing the Influence of Phosphine Substituents on the Donor andÂCatalytic Properties of Phosphinoferrocene Carboxamides: AÂCombined Experimental and Theoretical Study. Organometallics, 2017, 36, 1828-1841.	1.1	13
238	Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex. Journal of Organic Chemistry, 2017, 82, 887-892.	1.7	32
239	Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck, and Sonogashira Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 6357-6376.	3.2	87
240	A Dual Palladium and Copper Hydride Catalyzed Approach for Alkyl–Aryl Cross oupling of Aryl Halides and Olefins. Angewandte Chemie, 2017, 129, 7348-7352.	1.6	36
241	Organocatalytic hydroborylation promoted by N-heterocyclic olefins. Dalton Transactions, 2017, 46, 7150-7153.	1.6	28
242	Synthesis and characterization of a new Pd(II)-Schiff base complex [Pd(APD) 2]: An efficient and recyclable catalyst for Heck-Mizoroki and Suzuki-Miyaura reactions. Journal of Organometallic Chemistry, 2017, 846, 105-112.	0.8	55
243	Synthesis of functionalized alkyl substituted benzoquinones by Rh-catalyzed additions of boronic acids. Organic and Biomolecular Chemistry, 2017, 15, 5386-5394.	1.5	6

#	Article	IF	CITATIONS
244	Palladium-catalyzed cross-coupling of aryl chlorides with O, N-chelate stabilized diarylborinates. Journal of Organometallic Chemistry, 2017, 842, 54-58.	0.8	8
245	Synthesis of zwitterionic palladium complexes and their application as catalysts in cross-coupling reactions of aryl, heteroaryl and benzyl bromides with organoboron reagents in neat water. Dalton Transactions, 2017, 46, 8598-8610.	1.6	26
246	Selective Pd Deposition on Au Nanobipyramids and Pd Siteâ€Dependent Plasmonic Photocatalytic Activity. Advanced Functional Materials, 2017, 27, 1700016.	7.8	94
247	Reversible Oxidative Addition at Carbon. Angewandte Chemie - International Edition, 2017, 56, 10209-10213.	7.2	60
248	Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chemical Communications, 2017, 53, 5481-5494.	2.2	458
249	Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions. Chinese Journal of Catalysis, 2017, 38, 589-596.	6.9	18
250	Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie, 2017, 129, 6360-6363.	1.6	32
251	Suzuki–Miyaura Crossâ€Coupling Reactions of Highly Fluorinated Arylboronic Esters: Catalytic Studies and Stoichiometric Model Reactions on the Transmetallation Step. Chemistry - A European Journal, 2017, 23, 12218-12232.	1.7	24
252	A Ligand-Dissociation-Involved Mechanism in Amide Formation of Monofluoroacylboronates with Hydroxylamines. Journal of Organic Chemistry, 2017, 82, 1064-1072.	1.7	13
253	Sequential and iterative Pd-catalyzed cross-coupling reactions in organic synthesis. Monatshefte Für Chemie, 2017, 148, 3-35.	0.9	54
254	A crosslinked bis(amino)-containing polymer as a remarkable support for heterogeneous palladium-catalyzed Suzuki-Miyaura reaction. Reactive and Functional Polymers, 2017, 110, 38-46.	2.0	19
255	Chemoselective Suzuki–Miyaura Cross oupling via Kinetic Transmetallation. Angewandte Chemie, 2017, 129, 1269-1273.	1.6	7
256	Chemoselective Suzuki–Miyaura Cross oupling via Kinetic Transmetallation. Angewandte Chemie - International Edition, 2017, 56, 1249-1253.	7.2	51
257	Arylation of <i>N</i> â€Methylâ€2â€oxindole with Arylboronic Acids in Water Catalyzed by Palladium(II) Pincer Complexes with a Low Catalyst Loading. ChemCatChem, 2017, 9, 910-914.	1.8	14
258	An efficient parts-per-million α-Fe ₂ O ₃ nanocluster/graphene oxide catalyst for Suzuki–Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution. Chemical Communications, 2017, 53, 644-646.	2.2	46
259	Impact of Precatalyst Activation on Suzuki-Miyaura Catalyst-Transfer Polymerizations: New Mechanistic Scenarios for Pre-transmetalation Events. ACS Macro Letters, 2017, 6, 1251-1256.	2.3	13
260	Iron Catalyzed Hydroboration of Aldehydes and Ketones. Journal of Organic Chemistry, 2017, 82, 12857-12862.	1.7	95
261	Synthesis of bicyclopyrroles with various substituents at the bridging positions. Tetrahedron Letters, 2017, 58, 4141-4144.	0.7	3

#	Article	IF	CITATIONS
262	Control of porphyrin interactions via structural changes of a peptoid scaffold. Organic and Biomolecular Chemistry, 2017, 15, 9670-9679.	1.5	11
263	Theoretical study on homolytic B–B cleavages of diboron(4) compounds. RSC Advances, 2017, 7, 49251-49272.	1.7	8
264	A Zwitterionic Palladium(II) Complex as a Precatalyst for Neatâ€Waterâ€Mediated Crossâ€Coupling Reactions of Heteroaryl, Benzyl, and Aryl Acid Chlorides with Organoboron Reagents. European Journal of Organic Chemistry, 2017, 2017, 7238-7255.	1.2	13
265	Pd-Catalysed Suzuki coupling of α-bromoethenylphosphonates with organotrifluoroborates: a general protocol for the synthesis of terminal α-substituted vinylphosphonates. Organic and Biomolecular Chemistry, 2017, 15, 8985-8989.	1.5	15
266	Stereoselective Direct Chlorination of Alkenyl MIDA Boronates: Divergent Synthesis of <i>E</i> and <i>Z</i> αâ€Chloroalkenyl Boronates. Angewandte Chemie, 2017, 129, 14899-14903.	1.6	38
267	Stereoselective Direct Chlorination of Alkenyl MIDA Boronates: Divergent Synthesis of <i>E</i> and <i>Z</i> αâ€Chloroalkenyl Boronates. Angewandte Chemie - International Edition, 2017, 56, 14707-14711.	7.2	45
268	Boronic Acid Accelerated Three-Component Reaction for the Synthesis of α-Sulfanyl-Substituted Indole-3-acetic Acids. Organic Letters, 2017, 19, 5794-5797.	2.4	18
269	Visibleâ€Lightâ€Induced, Catalystâ€Free Radical Arylations of Arenes and Heteroarenes with Aryldiazonium Salts. Chemistry - A European Journal, 2017, 23, 15312-15315.	1.7	41
270	Synthetic strategies towards mycolactone A/B, an exotoxin secreted by Mycobacterium ulcerans. Organic Chemistry Frontiers, 2017, 4, 2380-2386.	2.3	4
271	Base-Catalyzed Aryl-B(OH) ₂ Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. Journal of the American Chemical Society, 2017, 139, 13156-13165.	6.6	214
272	Modular total syntheses of mycolactone A/B and its [² H]-isotopologue. Organic and Biomolecular Chemistry, 2017, 15, 7518-7522.	1.5	12
273	BrÃnsted Baseâ€Mediated Regio―and Stereoselective <i>transâ€</i> Silaboration of Propargylamides: Access to 1,2â€Vinylborasilanes. Chemistry - A European Journal, 2017, 23, 15534-15537.	1.7	35
274	DFT Investigation of Suzuki–Miyaura Reactions with Aryl Sulfamates Using a Dialkylbiarylphosphine-Ligated Palladium Catalyst. Organometallics, 2017, 36, 3664-3675.	1.1	15
275	Synthesis, Structure, and Reactivity of a Terminal Magnesium Hydride Compound with a Carbatrane Motif, [Tism ^{PrⁱBenz}]MgH: A Multifunctional Catalyst for Hydrosilylation and Hydroboration. Journal of the American Chemical Society, 2017, 139, 13264-13267.	6.6	107
276	Regio―and (<i>E</i>)‣tereoselective Triborylation of Propargylic Carbonates. Chinese Journal of Chemistry, 2017, 35, 1251-1262.	2.6	18
277	Catalytic and catalyst-free diboration of alkynes. Organic Chemistry Frontiers, 2017, 4, 2235-2255.	2.3	56
278	Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. CheM, 2017, 3, 134-151.	5.8	34
279	Use of <i>N</i> â€methyliminodiacetic acid boronate esters in suzukiâ€miyaura crossâ€coupling polymerizations of triarylamine and fluorene monomers. Journal of Polymer Science Part A, 2017, 55, 2798-2806	2.5	6

#	Article	IF	CITATIONS
280	A Combined Experimental/Computational Study of the Mechanism of a Palladium atalyzed Boraâ€Negishi Reaction. Chemistry - A European Journal, 2017, 23, 12655-12667.	1.7	8
281	Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. CheM, 2017, 3, 31-55.	5.8	424
282	Palladium-catalyzed regio- and chemoselective direct desulfitative arylation of anilides with arylsulfonyl chlorides. Tetrahedron, 2017, 73, 5337-5343.	1.0	10
283	A convenient, efficient and reusable N-heterocyclic carbene-palladium(<scp>ii</scp>) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions. New Journal of Chemistry, 2017, 41, 9531-9545.	1.4	63
284	A one-pot tandem chemoselective allylation/cross-coupling via temperature control of a multi-nucleophile/electrophile system. Chemical Communications, 2017, 53, 9139-9142.	2.2	6
285	Alkyl-substituted spiropyrans: electronic effects, model compounds and synthesis of aliphatic main-chain copolymers. Polymer Chemistry, 2017, 8, 5407-5414.	1.9	18
286	One-pot borylation/Suzuki–Miyaura sp ² –sp ³ cross-coupling. Chemical Communications, 2017, 53, 9364-9367.	2.2	9
287	Interplay between structure and chiral properties of polyfluorene derivatives. Polymer, 2017, 132, 98-105.	1.8	8
288	Reversible oxidative Addition an Kohlenstoff. Angewandte Chemie, 2017, 129, 10343-10347.	1.6	20
289	Stereoselective Synthesis of Trisubstituted Alkenes via Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes. ACS Catalysis, 2017, 7, 6419-6425.	5.5	93
290	Synthesis of Polyflourinated Biphenyls; Pushing the Boundaries of Suzuki–Miyaura Cross Coupling with Electron-Poor Substrates. Journal of Organic Chemistry, 2017, 82, 13188-13203.	1.7	38
291	Autoâ€Tandem Catalysis: Pd ^{II} â€Catalysed Dehydrogenation/Oxidative Heck Reaction of Cyclopentaneâ€1,3â€diones. Chemistry - A European Journal, 2017, 23, 18282-18288.	1.7	20
292	A Micellar Catalysis Strategy for Suzuki–Miyaura Cross-Couplings of 2-Pyridyl MIDA Boronates: <i>No Copper</i> , in Water, Very Mild Conditions. ACS Catalysis, 2017, 7, 8331-8337.	5.5	52
293	Agroâ€Waste Extract Based Solvents: Emergence of Novel Green Solvent for the Design of Sustainable Processes in Catalysis and Organic Chemistry. ChemistrySelect, 2017, 2, 5180-5188.	0.7	54
294	Ecocatalyzed Suzuki cross coupling of heteroaryl compounds. Green Chemistry, 2017, 19, 4093-4103.	4.6	44
295	Immobilized boronic acid for Suzuki–Miyaura coupling: application to the generation of pharmacologically relevant molecules. RSC Advances, 2017, 7, 34994-35003.	1.7	6
296	<i>C</i> 1′-Azacycloalkyl Hexahydrocannabinols. Journal of Organic Chemistry, 2017, 82, 7839-7849.	1.7	7
297	Iron-Catalyzed <i>ortho</i> -Selective C–H Borylation of 2-Phenylpyridines and Their Analogs. Organic Letters, 2017, 19, 3450-3453.	2.4	44

\sim			~
(1)	ΤΔΤΙ	10 N	REDUBL
\sim			KLI OKI

#	Article	IF	CITATIONS
298	Palladium atalyzed Pyridineâ€Ðirected Regioselective Oxidative C–H Acylation of Carbazoles by Using Aldehydes as the Acyl Source. European Journal of Organic Chemistry, 2017, 2017, 332-340.	1.2	20
299	Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes and Pigments, 2017, 137, 468-479.	2.0	4
300	Suzuki-Miyaura coupling reactions using novel metal oxide supported ionic palladium catalysts. Journal of Molecular Catalysis A, 2017, 426, 39-51.	4.8	19
301	Synthesis, Palladium(II) Complexes, and Catalytic Use of a Phosphanylferrocene Ligand Bearing a Guanidinium Pendant. European Journal of Inorganic Chemistry, 2017, 2017, 489-495.	1.0	21
302	Evolution of a Polyene Cyclization Cascade for the Total Synthesis of (â^') yclosmenospongine. Chemistry - A European Journal, 2017, 23, 1157-1165.	1.7	31
303	The Arrangement of Two N-Heterocyclic Carbene Moieties in Palladium Pincer Complexes Affects Their Catalytic Activity towards Suzuki–Miyaura Cross-Coupling Reactions in Water. Bulletin of the Chemical Society of Japan, 2017, 90, 59-67.	2.0	16
304	Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase transfer. Chemical Science, 2017, 8, 1551-1559.	3.7	59
305	Site-selective Suzuki–Miyaura coupling of heteroaryl halides – understanding the trends for pharmaceutically important classes. Chemical Science, 2017, 8, 40-62.	3.7	138
306	Copper-catalyzed dehydrogenative borylation of terminal alkynes with pinacolborane. Chemical Science, 2017, 8, 165-168.	3.7	73
307	C(sp ³)–C(sp ²) cross-coupling of alkylsilicates with borylated aryl bromides – an iterative platform to alkylated aryl- and heteroaryl boronates. Chemical Science, 2017, 8, 530-535.	3.7	47
308	Synthesis and characterization of D-2PA-Pd(II)@SBA-15 catalyst via "click chemistry― highly active catalyst for Suzuki coupling reactions. Journal of Porous Materials, 2017, 24, 327-340.	1.3	20
309	(CAAC)CuX-catalyzed hydroboration of terminal alkynes with pinacolborane directed by the X-ligand. Journal of Organometallic Chemistry, 2017, 829, 11-13.	0.8	40
310	Iron/Zinc-Co-catalyzed Directed Arylation and Alkenylation of C(sp3)–H Bonds with Organoborates. ACS Catalysis, 2017, 7, 89-92.	5.5	44
311	Recent Advances of Oxidative Radical Crossâ€Coupling Reactions: Direct αâ€C(<i>sp</i> ³)–H Bond Functionalization of Ethers and Alcohols. Advanced Synthesis and Catalysis, 2017, 359, 2-25.	2.1	146
312	The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization. Catalysts, 2017, 7, 74.	1.6	58
313	Suzuki-Miyaura C-C Coupling Reactions Catalyzed by Supported Pd Nanoparticles for the Preparation of Fluorinated Biphenyl Derivatives. Catalysts, 2017, 7, 76.	1.6	18
314	Eco-Friendly Physical Activation Methods for Suzuki–Miyaura Reactions. Catalysts, 2017, 7, 98.	1.6	29
315	Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS ONE, 2017, 12, e0184936.	1.1	92

#	Article	IF	CITATIONS
316	Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nature Communications, 2017, 8, 345.	5.8	110
317	Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angewandte Chemie, 2018, 130, 11284-11297.	1.6	54
318	Alkylimidazoleâ€Based Phosphines as Efficient Ligands for Palladiumâ€Catalyzed Suzuki Reactions. Journal of Heterocyclic Chemistry, 2018, 55, 551-555.	1.4	5
319	Contraâ€Thermodynamic, Photocatalytic <i>E</i> → <i>Z</i> Isomerization of Styrenyl Boron Species: Vectors to Facilitate Exploration of Twoâ€Dimensional Chemical Space. Angewandte Chemie, 2018, 130, 3222-3226.	1.6	36
320	A Rational Design of Highly Controlled Suzuki–Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and Their Block Copolymers: Marriage of Palladacycle Precatalysts with MIDA-Boronates. Journal of the American Chemical Society, 2018, 140, 4335-4343.	6.6	79
321	Copper-Catalyzed Chan–Lam Cyclopropylation of Phenols and Azaheterocycles. Journal of Organic Chemistry, 2018, 83, 3417-3425.	1.7	31
322	Copper-facilitated Suzuki-Miyaura coupling for the preparation of 1,3-dioxolane-protected 5-arylthiophene-2-carboxaldehydes. Tetrahedron, 2018, 74, 2002-2008.	1.0	5
323	Palladium atalyzed Domino Dehydrogenation/Heckâ€Type Reactions of Carbonyl Compounds. Advanced Synthesis and Catalysis, 2018, 360, 2411-2428.	2.1	32
324	Stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2693-2696.	1.0	7
325	Suzuki–Miyaura Coupling Reactions Using Low Loading of Ligand-activated Palladium Catalyst by Cooperative Copper Catalysis. Chemistry Letters, 2018, 47, 780-783.	0.7	6
326	Ironâ€Catalyzed Crossâ€Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angewandte Chemie - International Edition, 2018, 57, 11116-11128.	7.2	214
327	Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect of OAcˉ, PPh3 and Clˉ ligands on catalytic activity. Journal of Solid State Chemistry, 2018, 260, 132-141.	1.4	16
328	Synthesis and structural analysis of dimethylaminophenyl-end-capped diketopyrrolopyrrole for highly stable electronic devices with polymeric gate dielectric. New Journal of Chemistry, 2018, 42, 4052-4060.	1.4	7
329	Mechanistic Exploration of the Transmetalation and Reductive Elimination Events Involving Pd ^{IV} –Abnormal NHC Complexes in Suzuki–Miyaura Coupling Reactions: A DFT Study. Chemistry - A European Journal, 2018, 24, 6155-6168.	1.7	26
330	Aluminum-Catalyzed Hydroboration of Alkenes. ACS Catalysis, 2018, 8, 2001-2005.	5.5	132
331	Synthesis of 2-aminopyridines <i>via</i> ruthenium-catalyzed [2+2+2] cycloaddition of 1,6- and 1,7-diynes with cyanamides: scope and limitations. New Journal of Chemistry, 2018, 42, 3222-3235.	1.4	22
332	Contraâ€Thermodynamic, Photocatalytic <i>E</i> → <i>Z</i> Isomerization of Styrenyl Boron Species: Vectors to Facilitate Exploration of Twoâ€Dimensional Chemical Space. Angewandte Chemie - International Edition, 2018, 57, 3168-3172.	7.2	109
333	Striking transformations of the hydroborylene ligand in a HB:→Ni ^{II} complex with isocyanides and CO. Chemical Science, 2018, 9, 2595-2600.	3.7	8

#	Article	IF	CITATIONS
334	Dehydration of <i>ortho</i> â€; <i>meta</i> ―and <i>para</i> â€Alkoxy Phenylboronic Acids to their Corresponding Boroxines. European Journal of Inorganic Chemistry, 2018, 2018, 1492-1498.	1.0	16
335	Transition-Metal-Free Suzuki-Type Cross-Coupling Reaction of Benzyl Halides and Boronic Acids via 1,2-Metalate Shift. Journal of the American Chemical Society, 2018, 140, 2693-2699.	6.6	85
336	A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science, 2018, 359, 429-434.	6.0	292
337	Nâ€Arylated Sulfoximines as Crossâ€Coupling Building Blocks. Advanced Synthesis and Catalysis, 2018, 360, 1088-1093.	2.1	13
338	Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. Journal of the American Chemical Society, 2018, 140, 126-130.	6.6	44
340	Highly active and reusable hydrotalcite-supported Pd(0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron, 2018, 74, 948-954.	1.0	21
341	Ruthenium-Catalyzed Deoxygenative Hydroboration of Carboxylic Acids. ACS Catalysis, 2018, 8, 4772-4776.	5.5	33
342	Lanthanide aryloxides catalyzed hydroboration of aldehydes and ketones. Catalysis Communications, 2018, 112, 26-30.	1.6	29
343	Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. New Journal of Chemistry, 2018, 42, 7392-7398.	1.4	8
344	Decarboxylative formylation of aryl halides with glyoxylic acid by merging organophotoredox with palladium catalysis. Organic Chemistry Frontiers, 2018, 5, 1782-1786.	2.3	38
345	Elucidating the Role of the Boronic Esters in the Suzuki–Miyaura Reaction: Structural, Kinetic, and Computational Investigations. Journal of the American Chemical Society, 2018, 140, 4401-4416.	6.6	109
346	Maximizing the symbiosis of static and dynamic bonds in self-healing boronic ester networks. Polymer Chemistry, 2018, 9, 2011-2020.	1.9	151
347	Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catalysis Communications, 2018, 111, 10-15.	1.6	47
348	Boric Ester and Thiourea as Coupling Partners in a Copper-Mediated Oxidative Dehydrosulfurative Carbon–Oxygen Cross-Coupling Reaction. Organic Letters, 2018, 20, 1961-1965.	2.4	14
349	Pronounced effect of pore dimension of silica support on Pd-catalyzed Suzuki coupling reaction under ambient conditions. New Journal of Chemistry, 2018, 42, 6416-6426.	1.4	24
350	Palladium(II) pyrazolyl–pyridyl complexes containing a sterically hindered N-heterocyclic carbene moiety for the Suzuki-Miyaura cross-coupling reaction. Inorganica Chimica Acta, 2018, 470, 100-105.	1.2	22
351	Modified Conditions for Copper-catalyzed <i>ipso</i> -Thiolation of Arylboronic Acid Esters with Thiosulfonates. Chemistry Letters, 2018, 47, 85-88.	0.7	28
352	Recent Advances in Palladiumâ€Catalyzed Crossâ€Coupling Reactions at ppm to ppb Molar Catalyst Loadings. Advanced Synthesis and Catalysis, 2018, 360, 602-625.	2.1	226

#	Article	IF	CITATIONS
353	Tetrahydrobenzo[<i>c</i>]thieno[2,1- <i>e</i>]isothiazole 4-Oxides: Three-Dimensional Heterocycles as Cross-Coupling Building Blocks. Organic Letters, 2018, 20, 116-118.	2.4	28
354	Development of Transitionâ€Metalâ€Free Carbon–Carbon and Carbonâ€Boron Bondâ€Forming Reactions by Utilizing 1,1â€Bis[(Pinacolato)Boryl]Alkanes. Bulletin of the Korean Chemical Society, 2018, 39, 5-7.	1.0	5
355	Recent Advances for Reaction Mechanisms of Metal-Catalyzed Activations of Carbon-Containing Bonds with the Aid of Density Functional Calculations. Bulletin of Japan Society of Coordination Chemistry, 2018, 72, 15-29.	0.1	0
356	Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 2018, 47, 8842-8880.	18.7	993
357	Pd/Gorlos-Phos-catalyzed cross-coupling between two different aryl chlorides in the presence of B ₂ Pin ₂ and cytotoxicity studies of the products. Organic Chemistry Frontiers, 2018, 5, 3319-3323.	2.3	5
358	Synthesis of 3,6-diaryl-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridines <i>via</i> one-pot sequential Suzuki–Miyaura coupling. RSC Advances, 2018, 8, 34883-34894.	1.7	7
359	Surface-Supported Boronic Acid Condensation. , 2018, , 424-435.		0
360	Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies. Molecules, 2018, 23, 3014.	1.7	7
361	Au Core–Pd Shell Bimetallic Nanoparticles Immobilized within Hyper-Cross-Linked Polystyrene for Mechanistic Study of Suzuki Cross-Coupling: Homogeneous or Heterogeneous Catalysis?. Organic Process Research and Development, 2018, 22, 1606-1613.	1.3	26
362	Process Development of a Suzuki Reaction Used in the Manufacture of Lanabecestat. Organic Process Research and Development, 2018, 22, 1801-1808.	1.3	23
363	Regioselective C–H and N–H functionalization of purine derivatives and analogues: a synthetic and mechanistic perspective. Catalysis Science and Technology, 2018, 8, 6029-6056.	2.1	14
364	Vinylidenation of Organoboronic Esters Enabled by a Pd atalyzed Metallate Shift. Angewandte Chemie, 2019, 131, 602-605.	1.6	11
365	Palladium-catalyzed borylation of aryl (pseudo)halides and its applications in biaryl synthesis. Chemistry Central Journal, 2018, 12, 136.	2.6	7
366	Lightâ€Induced Goldâ€Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angewandte Chemie - International Edition, 2018, 57, 16648-16653.	7.2	90
367	Electrophilic halogenation of hydrazones of CF ₃ -ynones. Regioselective synthesis of 4-halo-substituted 3-CF ₃ -pyrazoles. Organic and Biomolecular Chemistry, 2018, 16, 7935-7946.	1.5	19
368	Vinyltrifluoroborate Complexes of Silver Supported by N -Heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2018, 2018, 4142-4152.	1.0	11
369	Synergistic approach to polycycles through Suzuki–Miyaura cross coupling and metathesis as key steps. Beilstein Journal of Organic Chemistry, 2018, 14, 2468-2481.	1.3	12
370	Palladium-Catalyzed C3-Arylations of 1 <i>H</i> - and 2 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridines on Water. Journal of Organic Chemistry, 2018, 83, 12847-12854.	1.7	16

#	Article	IF	CITATIONS
371	Highly Selective Palladium-Catalyzed Hydroborylative Carbocyclization of Bisallenes to Seven-Membered Rings. Journal of the American Chemical Society, 2018, 140, 14324-14333.	6.6	38
372	Additive- and Photocatalyst-Free Borylation of Arylazo Sulfones under Visible Light. Journal of Organic Chemistry, 2018, 83, 12831-12837.	1.7	52
373	The β yclodextrin decorated with palladium nanoparticles without pretreatment: An efficient heterogeneous catalyst for biaryls synthesis. Applied Organometallic Chemistry, 2018, 32, e4608.	1.7	10
374	Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration. Organic Letters, 2018, 20, 6673-6677.	2.4	21
375	Ferroceneboronic Acid and Derivatives: Synthesis, Structure, Electronic Properties, and Reactivity in Directed C–H Bond Activation. Organometallics, 2018, 37, 3780-3790.	1.1	14
376	Lanthanide(III)-Catalyzed Synthesis of trans-Diaminocyclopentenones from Substituted Furfurals and Secondary Amines via a Domino Ring-Opening/4Ï€-Electrocyclization Pathway. Organic Letters, 2018, 20, 6668-6672.	2.4	20
377	Hyperbranched Polyurethane‣upported Pdâ€Ag@CQD Nanocomposite: A High Performing Heterogeneous Catalyst. ChemistrySelect, 2018, 3, 11210-11218.	0.7	8
378	Transition-Metal-Free Decarboxylative Arylation of 2-Picolinic Acids with Arenes under Air Conditions. Organic Letters, 2018, 20, 7095-7099.	2.4	16
379	Palladium/NHC (NHC = <i>N</i> -Heterocyclic Carbene)-Catalyzed B-Alkyl Suzuki Cross-Coupling of Amides by Selective N–C Bond Cleavage. Organic Letters, 2018, 20, 6789-6793.	2.4	53
380	Palladium atalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie - International Edition, 2018, 57, 16721-16726.	7.2	98
381	Lightâ€Induced Goldâ€Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angewandte Chemie, 2018, 130, 16890-16895.	1.6	35
382	Palladium atalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie, 2018, 130, 16963-16968.	1.6	71
383	The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. Journal of the American Chemical Society, 2018, 140, 15126-15139.	6.6	76
384	Palladium-Catalyzed Synthesis of 2,3-Diaryl- <i>N</i> -methylindoles from <i>ortho</i> -Alkynylanilines and Aryl Pinacol Boronic Esters. Organic Letters, 2018, 20, 6872-6876.	2.4	18
385	Alkene Isomerization–Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni) <i>N</i> -Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catalysis, 2018, 8, 9907-9925.	5.5	38
386	Retaining Alkyl Nucleophile Regiofidelity in Transition-Metal-Mediated Cross-Couplings to Aryl Electrophiles. Synthesis, 2018, 50, 3974-3996.	1.2	9
387	Silver-Mediated Fluorination for Preparing Aryl Fluorides. , 2018, , 1-10.		0
388	LiHMDS-Promoted Palladium or Iron-Catalyzed <i>ipso</i> -Defluoroborylation of Aryl Fluorides. Organic Letters, 2018, 20, 5564-5568.	2.4	32

#	Article	IF	CITATIONS
389	Temperature-controlled sequential Suzuki–Miyaura reactions for preparing unsymmetrical terphenyls. Organic and Biomolecular Chemistry, 2018, 16, 8719-8723.	1.5	8
390	An Accessible Method for DFT Calculation of ¹¹ B NMR Shifts of Organoboron Compounds. Journal of Organic Chemistry, 2018, 83, 8020-8025.	1.7	18
391	Nuances in Fundamental Suzuki–Miyaura Cross-Couplings Employing [Pd(PPh3)4]: Poor Reactivity of Aryl lodides at Lower Temperatures. Organometallics, 2018, 37, 1745-1750.	1.1	19
392	Chemical space screening around Phe3 in opioid peptides: Modulating µ versus δ agonism by Suzuki-Miyaura cross-couplings. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2320-2323.	1.0	4
393	Photoinduced Synthesis of Dibenzofurans: Intramolecular and Intermolecular Comparative Methodologies. Journal of Organic Chemistry, 2018, 83, 7867-7877.	1.7	28
394	A recyclable Ru(CO)Cl(H)(PPh ₃) ₃ /PEG catalytic system for regio―and stereoselective hydroboration of terminal and internal alkynes. Advanced Synthesis and Catalysis, 2018, 360, 2966-2974.	2.1	19
395	Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem, 2018, 13, 1395-1404.	1.6	10
396	Total Syntheses of Thailanstatins A–C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. Journal of the American Chemical Society, 2018, 140, 8303-8320	6.6	45
397	Switchable Selectivity in the Pd-Catalyzed Alkylative Cross-Coupling of Esters. Organic Letters, 2018, 20, 4094-4098.	2.4	65
398	Elucidating the Role of Diphosphine Ligand in Nickel-Mediated Suzuki–Miyaura Polycondensation. Macromolecules, 2018, 51, 5911-5917.	2.2	16
399	Amine hemilability enables boron to mechanistically resemble either hydride or proton. Nature Chemistry, 2018, 10, 1062-1070.	6.6	50
400	Tri(<i>o</i> -tolyl)phosphine for highly efficient Suzuki coupling of propargylic carbonates with boronic acids. Chemical Communications, 2018, 54, 10451-10454.	2.2	24
401	<i>n</i> -Butyllithium Catalyzed Selective Hydroboration of Aldehydes and Ketones. Journal of Organic Chemistry, 2018, 83, 10677-10683.	1.7	55
402	A Straightforward Substitution Strategy to Tune BODIPY Dyes Spanning the Near-Infrared Region via Suzuki–Miyaura Cross-Coupling. Materials, 2018, 11, 1297.	1.3	11
403	Direct arylation polycondensation for synthesis of optoelectronic materials. Polymer Journal, 2018, 50, 1099-1106.	1.3	16
404	Transition Metal-Free <i>Trans</i> Hydroboration of Alkynoic Acid Derivatives: Experimental and Theoretical Studies. Journal of Organic Chemistry, 2018, 83, 10436-10444.	1.7	54
405	Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles. Nanomaterials, 2018, 8, 326.	1.9	9
406	Enantioselective αâ€Allylation of Acyclic Esters Using B(pin)â€Substituted Electrophiles: Independent Regulation of Stereocontrol Elements through Cooperative Pd/Lewis Base Catalysis. Chemistry - A European Journal, 2018, 24, 14378-14381.	1.7	38

#	Article	IF	Citations
407	The design, synthesis, and evaluation of organic dithienopyrrole-based D-Ï€-A dyes for use as sensitizers in photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3099-3104.	1.0	3
408	Copper atalyzed Monoorganylation of Trialkyl Borates with Functionalized Organozinc Pivalates. ChemCatChem, 2018, 10, 4253-4257.	1.8	3
409	Development of a Scalable Synthesis of BMS-978587 Featuring a Stereospecific Suzuki Coupling of a Cyclopropane Carboxylic Acid. Organic Process Research and Development, 2018, 22, 888-897.	1.3	16
410	Unsymmetrical CNN-palladacycles with geometry-constrained iminopyridyl ligands: an efficient precatalyst in Suzuki coupling for accessing 1,1-diarylalkanes from secondary benzylic bromides. Organic Chemistry Frontiers, 2018, 5, 2484-2491.	2.3	15
411	Recyclable Hydroboration of Alkynes Using RuH@IL and RuH@IL/scCO ₂ Catalytic Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 10980-10988.	3.2	19
412	Rational Design and Facile Synthesis of a Highly Tunable Quinoline-Based Fluorescent Small-Molecule Scaffold for Live Cell Imaging. Journal of the American Chemical Society, 2018, 140, 9486-9493.	6.6	80
413	<i>B</i> -Alkyl sp ³ –sp ² Suzuki–Miyaura Couplings under Mild Aqueous Micellar Conditions. Organic Letters, 2018, 20, 2902-2905.	2.4	35
414	Boron reagents for divergent radiochemistry. Chemical Society Reviews, 2018, 47, 6990-7005.	18.7	37
415	Gold-Catalyzed Cascade Reaction of β-(2-Aminophenyl)-α,β-ynones with Ynamides: A Sequential Route to Polysubstituted 2-Aminoquinolines. Organic Letters, 2018, 20, 5103-5106.	2.4	46
416	Desulfurization of dibenzothiophene and dibenzothiophene sulfone via Suzuki–Miyaura type reaction: Direct access to o-terphenyls and polyphenyl derivatives. Polyhedron, 2018, 154, 373-381.	1.0	2
417	Ligandâ€Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents. ChemSusChem, 2018, 11, 3495-3501.	3.6	60
418	Stepwise trimethylsilyl and trimethylgermyl substitutions at tetraborylmethane. Journal of Organometallic Chemistry, 2018, 873, 50-56.	0.8	1
419	Allylic Arylation of 1,3-Dienes via Hydroboration/Migrative Suzuki–Miyaura Cross-Coupling Reactions. ACS Catalysis, 2018, 8, 6094-6099.	5.5	15
420	Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. Progress in Polymer Science, 2018, 83, 135-201.	11.8	114
421	Valdecoxib <i>vs</i> . borazavaldecoxib: isoxazole BN/CC isosterism as a case study in designing and stabilizing boron heterocycles. Organic and Biomolecular Chemistry, 2018, 16, 4849-4856.	1.5	6
422	Carboxyboronate: A Versatile C1 Building Block. Angewandte Chemie - International Edition, 2019, 58, 15148-15153.	7.2	36
423	Incorporation of PdCl ₂ P ₂ Complexes in Niâ€MOF for Catalyzing Heck Arylation of Functionalized Olefins. European Journal of Inorganic Chemistry, 2019, 2019, 4282-4288.	1.0	12
424	Carboxyboronate: A Versatile C1 Building Block. Angewandte Chemie, 2019, 131, 15292-15297.	1.6	25

#	Article	IF	CITATIONS
425	Rational Design of Poly(fluorene)- <i>b</i> -poly(thiophene) Block Copolymers to Obtain a Unique Aggregation Behavior. Macromolecules, 2019, 52, 6578-6584.	2.2	12
426	Chemoenzymatic conversion of amides to enantioenriched alcohols in aqueous medium. Communications Chemistry, 2019, 2, .	2.0	43
427	PEG-mediated recyclable borylative coupling of vinyl boronates with olefins. Journal of Catalysis, 2019, 376, 219-227.	3.1	8
428	Cyclization of RGD Peptides by Suzuki–Miyaura Cross-Coupling. Journal of Medicinal Chemistry, 2019, 62, 7417-7430.	2.9	29
429	Cyclopropanation of Terminal Alkenes through Sequential Atomâ€Transfer Radical Addition/1,3â€Elimination. Angewandte Chemie - International Edition, 2019, 58, 14240-14244.	7.2	23
430	Palladium-Catalyzed Chemoselective Negishi Cross-Coupling of Bis[(pinacolato)boryl]methylzinc Halides with Aryl (Pseudo)Halides. Organic Letters, 2019, 21, 5912-5916.	2.4	27
431	Solid-state Suzuki–Miyaura cross-coupling reactions: olefin-accelerated C–C coupling using mechanochemistry. Chemical Science, 2019, 10, 8202-8210.	3.7	97
432	Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium. Chemical Science, 2019, 10, 8331-8337.	3.7	8
433	Palladium-Catalyzed Decarbonylative Suzuki–Miyaura Coupling of Amides To Achieve Biaryls via C–N Bond Cleavage. Journal of Organic Chemistry, 2019, 84, 10559-10568.	1.7	33
434	Pd(II) Complexes with Chelating Phosphinoferrocene Diaminocarbene Ligands: Synthesis, Characterization, and Catalytic Use in Pd-Catalyzed Borylation of Aryl Bromides. Organometallics, 2019, 38, 3060-3073.	1.1	13
435	In Vivo Mutagenicity Testing of Arylboronic Acids and Esters. Environmental and Molecular Mutagenesis, 2019, 60, 766-777.	0.9	13
436	Pseudodiborenes: hydride-bridged diboranes(5) as two-electron reductants of chalcogens. Chemical Communications, 2019, 55, 9781-9784.	2.2	9
437	Design and Synthesis of WJ-Phos , and Application in Cu-Catalyzed Enantioselective Boroacylation of 1,1-Disubstituted Allenes. ACS Catalysis, 2019, 9, 6890-6895.	5.5	70
439	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. ACS Sustainable Chemistry and Engineering, 2019, 7, 13430-13436.	3.2	7
440	Mechanism and Scope of Nickel-Catalyzed Decarbonylative Borylation of Carboxylic Acid Fluorides. Journal of the American Chemical Society, 2019, 141, 17322-17330.	6.6	94
441	Multigram Synthesis and Câ^'C/Câ^'N Couplings of Functionalized 1,2â€Disubstituted Cyclopropyltrifluoroborates. Advanced Synthesis and Catalysis, 2019, 361, 5428-5439.	2.1	10
442	Boron-based polymers: opportunities and challenges. Materials Today Chemistry, 2019, 14, 100184.	1.7	31
443	Cyclopropanation of Terminal Alkenes through Sequential Atomâ€Transfer Radical Addition/1,3â€Elimination. Angewandte Chemie, 2019, 131, 14378-14382.	1.6	7

#	Article	IF	CITATIONS
444	Phenoxyâ€Dialkoxy Borates as a New Class of Readily Prepared Preactivated Reagents for Baseâ€Free Crossâ€Coupling. European Journal of Organic Chemistry, 2019, 2019, 6566-6570.	1.2	2
445	An approach for constructing the S-box using the CML system. Journal of Physics: Conference Series, 2019, 1303, 012090.	0.3	4
447	A new family of oxime palladacycles mixed with unsymmetrical phosphorus ylides; synthesis, structural, cytotoxicity and catalytic activity studies. Journal of Organometallic Chemistry, 2019, 900, 120927.	0.8	9
448	Stereocontrolled Synthesis of Arylomycin-Based Gram-Negative Antibiotic GDC-5338. Organic Letters, 2019, 21, 9099-9103.	2.4	12
449	Decarbonylative Phosphorylation of Carboxylic Acids via Redox-Neutral Palladium Catalysis. Organic Letters, 2019, 21, 9256-9261.	2.4	42
450	Glycoconjugated Phthalocyanines as Photosensitizers for PDT – Overcoming Aggregation in Solution. European Journal of Organic Chemistry, 2019, 2019, 7089-7116.	1.2	14
451	Selective Hydroboration of Carboxylic Acids with a Homogeneous Manganese Catalyst. Journal of Organic Chemistry, 2019, 84, 1570-1579.	1.7	33
452	Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3â€Metalate Rearrangement of Lithium Enolates. Angewandte Chemie, 2019, 131, 15960-15965.	1.6	10
453	Recent Advances in Acyl Suzuki Cross-Coupling. Catalysts, 2019, 9, 53.	1.6	143
454	Kinetics and Mechanism of the Arase-Hoshi R ₂ BH-Catalyzed Alkyne Hydroboration: Alkenylboronate Generation via B–H/C–B Metathesis. Journal of the American Chemical Society, 2019, 141, 18600-18611.	6.6	39
455	Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3â€Metalate Rearrangement of Lithium Enolates. Angewandte Chemie - International Edition, 2019, 58, 15813-15818.	7.2	38
456	Synthetic Studies toward Bazzanin K: Regioselective and Chemoselective Three-Component Suzuki Coupling. Journal of Organic Chemistry, 2019, 84, 12246-12252.	1.7	4
457	Nonsymmetrical Bis-Azine Biaryls from Chloroazines: A Strategy Using Phosphorus Ligand-Coupling. Journal of the American Chemical Society, 2019, 141, 15441-15449.	6.6	50
458	Palladium-catalyzed decarbonylative Suzuki–Miyaura cross-coupling of amides by carbon–nitrogen bond activation. Chemical Science, 2019, 10, 9865-9871.	3.7	67
459	Transition-metal-free decarboxylative halogenation of 2-picolinic acids with dihalomethane under oxygen conditions. Green Chemistry, 2019, 21, 5565-5570.	4.6	7
460	Development of a Gram-Scale Synthesis of PBRM, an Irreversible Inhibitor of 17β-Hydroxysteroid Dehydrogenase Type 1. Organic Process Research and Development, 2019, 23, 2323-2335.	1.3	7
461	Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids. IScience, 2019, 19, 749-759.	1.9	71
462	Ruthenium-Catalyzed (<i>Z</i>)-Selective Hydroboration of Terminal Alkynes with Naphthalene-1,8-diaminatoborane. Journal of the American Chemical Society, 2019, 141, 17042-17047.	6.6	60

#	Article	IF	CITATIONS
463	Telechelic poly(2-oxazoline)s. European Polymer Journal, 2019, 121, 109281.	2.6	38
464	An enantioselective synthesis of α-alkylated pyrroles <i>via</i> cooperative isothiourea/palladium catalysis. Organic and Biomolecular Chemistry, 2019, 17, 1787-1790.	1.5	33
465	Vinylogous acyl triflates as an entry point to α,β-disubstituted cyclic enones <i>via</i> Suzuki–Miyaura cross-coupling. Organic and Biomolecular Chemistry, 2019, 17, 1796-1799.	1.5	9
466	Strained boronates do the trick. Nature Chemistry, 2019, 11, 104-106.	6.6	1
467	Big insights from tiny crystals. Nature Chemistry, 2019, 11, 106-108.	6.6	5
468	The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coordination Chemistry Reviews, 2019, 384, 1-20.	9.5	142
469	Facile Synthesis of π-Conjugated Polymers via Direct Arylation Polycondensation. Bulletin of the Chemical Society of Japan, 2019, 92, 152-161.	2.0	34
470	Discovery of Polyoxo-Noble-Metalate-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3385-3389.	6.6	43
471	Facile reduction of carboxylic acids to primary alcohols under catalyst-free and solvent-free conditions. Chemical Communications, 2019, 55, 1386-1389.	2.2	50
472	Tetranuclear Palladacycles of 3-Acetyl-7-methoxy-2 <i>H</i> -chromen-2-one Derived Schiff Bases: Efficient Catalysts for Suzuki–Miyaura Coupling in an Aqueous Medium. Inorganic Chemistry, 2019, 58, 8045-8055.	1.9	28
473	New palladium(<scp>ii</scp>) complexes with 3-(2-pyridyl)-5-alkyl-1,2,4-triazole ligands as recyclable C–C coupling catalysts. New Journal of Chemistry, 2019, 43, 10973-10984.	1.4	14
474	Sulfonated salicylidene thiadiazole complexes with Co (II) and Ni (II) ions as sustainable corrosion inhibitors and catalysts for cross coupling reaction. Applied Organometallic Chemistry, 2019, 33, e4987.	1.7	16
475	Pd-Catalyzed Boroperfluoroalkylation of Alkynes Opens a Route to One-Pot Reductive Carboperfluoroalkylation of Alkynes with Perfluoroalkyl and Aryl Iodides. Organic Letters, 2019, 21, 5021-5025.	2.4	18
476	Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids. Bioorganic Chemistry, 2019, 91, 103081.	2.0	15
477	An efficient Pd(II)-(2-aminonicotinaldehyde) complex as complementary catalyst for the Suzuki-Miyaura coupling in water. Tetrahedron Letters, 2019, 60, 2046-2048.	0.7	13
478	Engineering of highly active Au/Pd supported on hydrogenated urchin-like yolk@shell TiO ₂ for visible light photocatalytic Suzuki coupling. Catalysis Science and Technology, 2019, 9, 3820-3827.	2.1	45
479	Palladium atalysed Cross oupling Reactions for the Synthesis of Chalcones. Asian Journal of Organic Chemistry, 2019, 8, 1174-1193.	1.3	10
480	Heterogeneous-phase Sonogashira cross-coupling reaction on COC surface for the grafting of biomolecules – Application to isatin. Colloids and Surfaces B: Biointerfaces, 2019, 181, 639-647.	2.5	4

#	Article	IF	Citations
481	Cross-Coupling of Heteroatomic Electrophiles. Chemical Reviews, 2019, 119, 8192-8228.	23.0	151
482	Photochemical Organocatalytic Borylation of Alkyl Chlorides, Bromides, and Sulfonates. ACS Catalysis, 2019, 9, 5876-5880.	5.5	95
483	Process development and manufacture of potassium 2-fluoro-6-hydroxyphenyltrifluoroborate. Tetrahedron, 2019, 75, 4266-4270.	1.0	1
484	Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction of Naphthyl and Quinolyl Alcohols with Boronic Acids. Organic Letters, 2019, 21, 4782-4787.	2.4	22
485	Recent advances in the borylative transformation of carbonyl and carboxyl compounds. Organic and Biomolecular Chemistry, 2019, 17, 6099-6113.	1.5	37
486	Enantio- and Diastereoselective Synthesis of Functionalized Carbocycles by Cu-Catalyzed Borylative Cyclization of Alkynes with Ketones. Organic Letters, 2019, 21, 5172-5177.	2.4	36
487	Silver-Catalyzed anti-Markovnikov Hydroboration of C–C Multiple Bonds. Organic Letters, 2019, 21, 4035-4038.	2.4	54
488	Transition metal-catalyzed cross-coupling methodologies for the engineering of small molecules with applications in organic electronics and photovoltaics. Coordination Chemistry Reviews, 2019, 392, 177-236.	9.5	35
489	Pseudoâ€ S olidâ€State Suzuki–Miyaura Reaction and the Role of Water Formed by Dehydration of Arylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 4239-4247.	1.2	21
490	Solid-phase synthesis of biaryl bicyclic peptides containing a 3-aryltyrosine or a 4-arylphenylalanine moiety. Beilstein Journal of Organic Chemistry, 2019, 15, 761-768.	1.3	7
491	Electrochemical <i>ipso</i> â€Thiocyanation of Arylboron Compounds. Advanced Synthesis and Catalysis, 2019, 361, 3548-3553.	2.1	44
492	Solid-phase synthesis of biaryl cyclic peptides containing a histidine-tyrosine linkage. Tetrahedron, 2019, 75, 2625-2636.	1.0	10
493	Dual copper- and photoredox-catalysed C(sp ²)–C(sp ³) coupling. Chemical Communications, 2019, 55, 4238-4241.	2.2	14
494	Photocatalytic borylcyclopropanation of α-boryl styrenes. Organic Chemistry Frontiers, 2019, 6, 1734-1737.	2.3	20
495	Weinreb Amides as Directing Groups for Transition Metal-Catalyzed C-H Functionalizations. Molecules, 2019, 24, 830.	1.7	42
496	PEPPSI-Pd-NHC catalyzed Suzuki-Miyaura cross-coupling reactions in aqueous media. Tetrahedron, 2019, 75, 2306-2313.	1.0	34
497	Decarbonylative Borylation of Amides by Palladium Catalysis. ACS Omega, 2019, 4, 4901-4907.	1.6	30
498	Single-Pot Access to Bisorganoborinates: Applications in Zweifel Olefination. Organic Letters, 2019, 21, 2189-2193.	2.4	11

#	Article	IF	CITATIONS
499	Redox-Neutral ortho Functionalization of Aryl Boroxines via Palladium/Norbornene Cooperative Catalysis. CheM, 2019, 5, 929-939.	5.8	36
500	Fluoroalkenylation of boronic acids <i>via</i> an oxidative Heck reaction. Organic and Biomolecular Chemistry, 2019, 17, 4317-4325.	1.5	10
501	Stereoselective Desymmetrization of gem â€Điborylalkanes by "Trifluorination― Chemistry - A European Journal, 2019, 25, 8008-8012.	1.7	21
502	Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity. Chemistry - A European Journal, 2019, 25, 8612-8622.	1.7	23
503	Catalytic Strategies to Convert 2â€Halopyridines to 2â€Alkylpyridines. Asian Journal of Organic Chemistry, 2019, 8, 920-930.	1.3	16
504	Oneâ€Pot Sequential Kumada–Tamao–Corriu Couplings of (Hetero)Aryl Polyhalides in the Presence of Grignard‣ensitive Functional Groups Using Pdâ€PEPPSIâ€ŀPent ^{Cl} . Chemistry - A European Journal, 2019, 25, 6508-6512.	1.7	10
505	Transition-Metal-Free C–C, C–O, and C–N Cross-Couplings Enabled by Light. Journal of the American Chemical Society, 2019, 141, 6755-6764.	6.6	82
506	A highly efficient and recyclable NiCl ₂ (dppp)/PEG-400 system for Suzuki-Miyaura reaction of aryl chlorides with arylboronic acids. Synthetic Communications, 2019, 49, 1134-1142.	1.1	6
507	Unsymmetrical Diboron Reagents: Application in Borylation Reactions of Unsaturated Bonds. Molecules, 2019, 24, 1325.	1.7	23
508	Asymmetric Organocatalytic C Bond Forming Reactions with Organoboron Compounds: A Mechanistic Survey. European Journal of Organic Chemistry, 2019, 2019, 2956-2970.	1.2	17
509	Nickelâ€Catalyzed C(sp 2)â^'C(sp 3) Kumada Crossâ€Coupling of Aryl Tosylates with Alkyl Grignard Reagents. Advanced Synthesis and Catalysis, 2019, 361, 2329-2336.	2.1	15
510	Direct Transformation from Arylamines to Aryl Naphthalene-1,8-diamino Boronamides: A Metal-Free Sandmeyer-Type Process. Molecules, 2019, 24, 377.	1.7	4
511	Recent advances in tridentate iron and cobalt complexes for alkene and alkyne hydrofunctionalizations. Coordination Chemistry Reviews, 2019, 386, 138-153.	9.5	139
512	Semireduction of alkynoic acids via a transition metal-free α borylation-protodeborylation sequence. Tetrahedron, 2019, 75, 2113-2117.	1.0	5
513	9-Borabicyclo[3.3.1]nonane: a metal-free catalyst for the hydroboration of carbodiimides. Chemical Communications, 2019, 55, 3073-3076.	2.2	22
514	The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chemistry Reviews, 2019, 385, 137-173.	9.5	279
515	Facile Synthesis of Spiro[cyclohexane-1,3'-indoline]-2,2'-diones. Heterocyclic Communications, 2019, 25, 157-161.	0.6	2
516	Cu-Catalysed carboxylation of aryl boronic acids with CO ₂ . Organic Chemistry Frontiers, 2019, 6, 3673-3677.	2.3	16

#	Article	IF	CITATIONS
517	Organophotocatalytic Arene Functionalization: C–C and C–B Bond Formation. Organic Letters, 2019, 21, 9950-9953.	2.4	21
518	Process Economics and Atom Economy for Industrial Cross Coupling Applications via LnPd(0)-Based Catalysts. Topics in Organometallic Chemistry, 2019, , 161-198.	0.7	2
519	Dearomatization and Functionalization of Terpyridine Ligands Leading to Unprecedented Zwitterionic Meisenheimer Aluminum Complexes and Their Use in Catalytic Hydroboration. ACS Catalysis, 2019, 9, 874-884.	5.5	64
520	Cp*Rh ^{III} -Catalyzed Allyl–Aryl Coupling of Olefins and Arylboron Reagents Enabled by C(sp ³)–H Activation. ACS Catalysis, 2019, 9, 1253-1257.	5.5	40
521	Hydrierung borylierter Aromaten. Angewandte Chemie, 2019, 131, 6621-6625.	1.6	20
522	Vinylidenation of Organoboronic Esters Enabled by a Pdâ€Catalyzed Metallate Shift. Angewandte Chemie - International Edition, 2019, 58, 592-595.	7.2	31
523	Substituent effects on the Lewis acidity of 4,6-di-tert-butylchatechol boronate esters. Tetrahedron, 2019, 75, 31-35.	1.0	3
524	Alkynylâ~B(dan)s in Various Palladiumâ€Catalyzed Carbonâ~Carbon Bondâ€Forming Reactions Leading to Internal Alkynes, 1,4â€Enynes, Ynones, and Multiply Substituted Alkenes. Advanced Synthesis and Catalysis, 2019, 361, 1815-1834.	2.1	31
525	Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion. Synlett, 2019, 30, 378-382.	1.0	22
526	Total synthesis of carbazole alkaloids. Tetrahedron, 2019, 75, 874-887.	1.0	15
527	Process Design and Optimization in the Pharmaceutical Industry: A Suzuki–Miyaura Procedure for the Synthesis of Savolitinib. Journal of Organic Chemistry, 2019, 84, 4735-4747.	1.7	19
528	Hydrogenation of Borylated Arenes. Angewandte Chemie - International Edition, 2019, 58, 6549-6553.	7.2	59
529	1,2,3-Triazolylidene palladium complex with triazole ligand: Synthesis, characterization and application in Suzuki–Miyaura coupling reaction in water. Polyhedron, 2019, 157, 335-340.	1.0	14
530	Alkenyl Boronates: Synthesis and Applications. Chemistry - an Asian Journal, 2019, 14, 329-343.	1.7	159
531	Regioselective cycloaddition of potassium alkynyltrifluoroborates with 3-azetidinones and 3-oxetanone by nickel-catalysed C–C bond activation. Chemical Communications, 2019, 55, 497-500.	2.2	16
532	Copper-catalyzed synthesis of gem-difluoroallylboronates from α-trifluoromethyl alkenes and B2pin2. Tetrahedron Letters, 2019, 60, 129-132.	0.7	35
533	PEPPSI-type 2-methyl-2-propenyl-functionalized N-heterocyclic carbene-palladium complexes: Synthesis, structural characterization and catalytic activity on Suzuki–Miyaura reaction. Journal of Molecular Structure, 2019, 1177, 193-198.	1.8	18
534	Direct Suzuki–Miyaura Coupling with Naphthalene-1,8-diaminato (dan)-Substituted Organoborons. ACS Catalysis, 2020, 10, 346-351.	5.5	47

#	Article	IF	CITATIONS
535	Suzuki–Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-Protected Arylboronic Acids. ACS Catalysis, 2020, 10, 352-357.	5.5	56
536	Photocatalytic Isomerization of Styrenyl Halides: Stereodivergent Synthesis of Functionalized Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1472-1477.	1.2	24
537	1,2,3-Triazol-5-ylidene bearing a pyridine auxiliary based bidentate PEPPSI type palladium(II) complex: Synthesis, structure, and application in the direct arylation of pyridine N-oxide. Catalysis Communications, 2020, 135, 105889.	1.6	9
538	Gold atalyzed Cross oupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry - A European Journal, 2020, 26, 1442-1487.	1.7	128
539	Fluoroalkylselenolation of Alkyl Silanes/Trifluoroborates under Metal-Free Visible-Light Photoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 1559-1566.	1.2	31
540	Highly Chemoselective Hydroboration of Alkynes and Nitriles Catalyzed by Group 4 Metal Amidophosphine–Borane Complexes. ACS Omega, 2020, 5, 1595-1606.	1.6	38
541	Solvent- and metal-free hydroboration of alkynes under microwave irradiation. Tetrahedron Letters, 2020, 61, 151596.	0.7	9
542	Shuttling Catalyst: Facilitating Câ^'C Bond Formation via Crossâ€Couplings with a Thermoresponsive Polymeric Ligand. Israel Journal of Chemistry, 2020, 60, 419-423.	1.0	3
543	Toxicity assessment of palladium oxide nanoparticles derived from metallosurfactants using multi assay techniques in Allium sativum. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110752.	2.5	10
544	Synthesis of Tetrasubstituted Thiophenes via Direct Metalation. Journal of Organic Chemistry, 2020, 85, 788-797.	1.7	3
545	Copper catalyzed aryl amidation between N ^α -Fmoc-protected amino-acid azides and aryl boronic acids. Synthetic Communications, 2020, 50, 506-515.	1.1	1
546	Radicalâ€Induced 1,2â€Migrations of Boron Ate Complexes. Advanced Synthesis and Catalysis, 2020, 362, 2077-2087.	2.1	62
547	Homoleptic Zincâ€Catalyzed Hydroboration of Aldehydes and Ketones in the Presence of HBpin. European Journal of Inorganic Chemistry, 2020, 2020, 467-474.	1.0	23
548	Microwave-assisted One-pot Synthesis of 2-Substituted Quinolines by Using Palladium Nanoparticles as a Catalyst developed from Green Alga Botryococcus braunii. Current Organocatalysis, 2020, 7, 82-88.	0.3	5
549	General Access to <i>C</i> -Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catalysis, 2020, 10, 12727-12737.	5.5	47
550	Fit-for-purpose synthesis of dual leucine zipper kinase (DLK) inhibitor GNE-834. Tetrahedron Letters, 2020, 61, 152430.	0.7	1
551	Rhodium-Catalyzed Deoxygenation and Borylation of Ketones: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2020, 142, 18118-18127.	6.6	38
552	Palladium Supported on Silk Fibroin for Suzuki–Miyaura Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2020, 2020, 6992-6996.	1.2	21

#	ARTICLE	IF	CITATIONS
553	Palladium-Catalyzed Hydroxylation of Aryl Halides with Boric Acid. Organic Letters, 2020, 22, 8470-8474.	2.4	24
554	Cobalt-catalyzed deoxygenative triborylation of allylic ethers to access 1,1,3-triborylalkanes. Nature Communications, 2020, 11, 5193.	5.8	29
555	Transition metal-free synthesis of alkyl pinacol boronates. Organic and Biomolecular Chemistry, 2020, 18, 8939-8974.	1.5	37
556	General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis. Journal of the American Chemical Society, 2020, 142, 14125-14133.	6.6	29
557	Polyoxopalladate-Loaded Metal–Organic Framework (POP@MOF): Synthesis and Heterogeneous Catalysis. Inorganic Chemistry, 2020, 59, 10512-10521.	1.9	23
558	Ru-Catalyzed Geminal Hydroboration of Silyl Alkynes via a New <i>gem</i> -Addition Mechanism. Journal of the American Chemical Society, 2020, 142, 13867-13877.	6.6	46
559	Functionalization of Heterocycles through 1,2â€Metallate Rearrangement of Boronate Complexes. Chemistry - A European Journal, 2020, 26, 14270-14282.	1.7	26
560	Synthesis and Rh-catalyzed reductive cyclization of 1,6-enynes and 1,6-diynes containing alkynylboronate termini. Journal of Organometallic Chemistry, 2020, 912, 121143.	0.8	7
561	Borylative Heterocyclization without Air-Free Techniques. Journal of Organic Chemistry, 2020, 85, 10350-10368.	1.7	16
562	A General Kilogram Scale Protocol for Suzuki–Miyaura Cross-Coupling in Water with TPGS-750-M Surfactant. Organic Process Research and Development, 2020, 24, 1536-1542.	1.3	40
563	Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science, 2020, 369, 302-306.	6.0	121
564	Hydroboration of Enynes and Mechanistic Insights. Advanced Synthesis and Catalysis, 2020, 362, 4174-4188.	2.1	20
565	NHCâ€₽d complex heterogenized on graphene oxide for crossâ€coupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34, e5924.	1.7	16
566	Tailored quinones support high-turnover Pd catalysts for oxidative C–H arylation with O ₂ . Science, 2020, 370, 1454-1460.	6.0	42
567	Application of Green Solvents: PEG and scCO2 in the Mono- or Biphasic Catalytic Systems for the Repetitive Batch Coupling of Vinylsilanes with Vinyl Boronates toward 1-Boryl-1-silylethenes. Inorganic Chemistry, 2020, 59, 17555-17564.	1.9	2
568	Câ~'C Coupling Reactions for the Synthesis of Twoâ€Dimensional Conjugated Polymers. ChemPlusChem, 2020, 85, 2636-2651.	1.3	1
569	A 2-step synthesis of Combretastatin A-4 and derivatives as potent tubulin assembly inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115684.	1.4	8
570	The development of conjugated polymers as the cornerstone of organic electronics. Polymer, 2020, 207, 122874.	1.8	63

#	Article	IF	CITATIONS
571	Synthesis of Biquinolines via a Pd atalyzed Borylation Reaction. Asian Journal of Organic Chemistry, 2020, 9, 1581-1584.	1.3	5
572	Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective (Multi)Halogenations. Angewandte Chemie, 2020, 132, 18876-18881.	1.6	10
573	Wet carbonate-promoted radical arylation of vinyl pinacolboronates with diaryliodonium salts yields substituted olefins. Communications Chemistry, 2020, 3, .	2.0	8
574	Diboration of 3-substituted propargylic alcohols using a bimetallic catalyst system: access to (Z)-allyl, vinyldiboronates. Chemical Communications, 2020, 56, 10313-10316.	2.2	9
575	Diethanolamine Boronic Esters: Development of a Simple and Standard Process for Boronic Ester Synthesis. Organic Process Research and Development, 2020, 24, 1683-1689.	1.3	12
576	Synthesis and Basicity Studies of Quinolino[7,8- <i>h</i>]quinoline Derivatives. Journal of Organic Chemistry, 2020, 85, 11297-11308.	1.7	7
577	One-Pot Alkene Hydroboration/Palladium-Catalyzed Migratory Suzuki–Miyaura Cross-Coupling. ACS Catalysis, 2020, 10, 10508-10515.	5.5	20
578	Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. Journal of Organic Chemistry, 2020, 85, 15676-15685.	1.7	14
579	Stereoselective Construction of (<i>E,Z</i>)â€1,3â€Dienes and Its Application in Natural Product Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 5532-5575.	2.1	43
580	Solid-Phase Synthesis of Biaryl Cyclic Lipopeptides Derived from Arylomycins. ACS Omega, 2020, 5, 23401-23412.	1.6	6
581	P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate. Journal of the American Chemical Society, 2020, 142, 16205-16210.	6.6	43
582	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie, 2020, 132, 22589-22593.	1.6	7
583	A Mild Method for Making MIDA Boronates. Organic Letters, 2020, 22, 9408-9414.	2.4	15
584	How Big is the Pinacol Boronic Ester as a Substituent?. Angewandte Chemie - International Edition, 2020, 59, 22403-22407.	7.2	32
585	Atroposelective Total Syntheses of Naphthylisoquinoline Alkaloids with (<i>P</i>)-Configuration. Journal of Organic Chemistry, 2020, 85, 12770-12776.	1.7	5
586	Ligand Steric Effects of α-Diimine Nickel(II) and Palladium(II) Complexes in the Suzuki–Miyaura Cross-Coupling Reaction. ACS Omega, 2020, 5, 24018-24032.	1.6	13
587	Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chemical Reviews, 2020, 120, 10516-10543.	23.0	165
588	Methane Borylation Catalyzed by Ru, Rh, and Ir Complexes in Comparison with Cyclohexane Borylation: Theoretical Understanding and Prediction. Journal of the American Chemical Society, 2020, 142, 16732-16747.	6.6	21

#	Article	IF	CITATIONS
589	Synthesis of pentasubstituted 2-aryl pyrroles from boryl and stannyl alkynes <i>via</i> one-pot sequential Ti-catalyzed [2 + 2 + 1] pyrrole synthesis/cross coupling reactions. Chemical Science, 2020, 11, 10236-10242.	3.7	13
590	Copper-catalyzed tri- or tetrafunctionalization of alkenylboronic acids to prepare tetrahydrocarbazol-1-ones and indolo[2,3- <i>a</i>]carbazoles. Green Chemistry, 2020, 22, 5815-5821.	4.6	16
591	Study of Deactivation in Suzuki Reaction of Polymer-Stabilized Pd Nanocatalysts. Processes, 2020, 8, 1653.	1.3	11
592	Recent advances in transition metal-free catalytic hydroelementation (E = B, Si, Ge, and Sn) of alkynes. RSC Advances, 2020, 10, 43539-43565.	1.7	32
593	Vibrationally resolved valence and core photoionization and photoexcitation spectra of an electron-deficient trivalent boron compound: the case of catecholborane. Physical Chemistry Chemical Physics, 2020, 22, 25396-25407.	1.3	5
594	Copper-catalyzed boroacylation of allenes to access tetrasubstituted vinylboronates. Organic and Biomolecular Chemistry, 2020, 18, 9253-9260.	1.5	9
596	Photocyclization of diarylethylenes with a boronate moiety: a useful synthetic tool to soluble PAH building blocksf. Photochemical and Photobiological Sciences, 2020, 19, 722-725.	1.6	4
597	Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions. Journal of Polymer Research, 2020, 27, 1.	1.2	3
598	Elucidating Monomer Character of an Alkenyl Boronate through Radical Copolymerization Leads to Copolymer Synthesis beyond the Limitation of Copolymerizability by Side-Chain Replacement. ACS Macro Letters, 2020, 9, 788-793.	2.3	18
599	Computationally Guided Molecular Design to Minimize the LE/CT Gap in Dâ€ï€â€A Fluorinated Triarylboranes for Efficient TADF via D and ï€â€Bridge Tuning. Advanced Functional Materials, 2020, 30, 2002064.	7.8	39
600	Ligand-controlled copper-catalyzed 1,2 or 1,4-protoborylation of 2-trifluoromethyl-1,3-conjugated enynes. Organic Chemistry Frontiers, 2020, 7, 1495-1501.	2.3	17
601	Facile Synthesis of NH-Free 5-(Hetero)Aryl-Pyrrole-2-Carboxylates by Catalytic C–H Borylation and Suzuki Coupling. Molecules, 2020, 25, 2106.	1.7	5
602	The Dimeric Form of 1,3â€Diaminoisoquinoline Derivative Rescued the Misâ€splicing of <i>Atp2a1</i> and <i>Clcn1</i> Genes in Myotonic Dystrophy Typeâ€1 Mouse Model. Chemistry - A European Journal, 2020, 26, 14305-14309.	1.7	10
603	C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chemical Society Reviews, 2020, 49, 8036-8064.	18.7	132
604	1,8,10-Trisubstituted anthracenyl hydrocarbons: Towards versatile scaffolds for multiple-H-bonded recognition arrays. Tetrahedron, 2020, 76, 131299.	1.0	3
605	Synthesis of Stereodefined 1,1-Diborylalkenes via Copper-Catalyzed Diboration of Terminal Alkynes. Organic Letters, 2020, 22, 5235-5239.	2.4	29
606	Electronically Driven Regioselective Iridium atalyzed Câ^'H Borylation of Donorâ€Ï€â€Acceptor Chromophores Containing Triarylboron Acceptors. Chemistry - A European Journal, 2020, 26, 10626-10633.	1.7	11
607	Synthesis and characterization of novel conjugated copolymers for application in third generation photovoltaic solar cells. Journal of Materials Research and Technology, 2020, 9, 7975-7988.	2.6	5

#	Article	IF	CITATIONS
608	g-C ₃ N ₄ /γ-Fe ₂ O ₃ /TiO ₂ /Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki–Miyaura cross-coupling reactions at room temperature. New Journal of Chemistry, 2020, 44, 11513-11526.	1.4	17
609	Energetics of Dynamic Kinetic Asymmetric Transformation in Suzuki–Miyaura Coupling. ACS Catalysis, 2020, 10, 4349-4360.	5.5	6
610	Boronic, diboronic and boric acid esters of 1,8-naphthalenediol – synthesis, structure and formation of boronium salts. Dalton Transactions, 2020, 49, 4834-4842.	1.6	12
611	Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts, 2020, 10, 296.	1.6	39
612	Hybrid organicâ€inorganic Cu(II) iminoisonicotine@TiO ₂ @Fe ₃ O ₄ heterostructure as efficient catalyst for crossâ€couplings. Journal of the American Ceramic Society, 2020, 103, 4632-4653.	1.9	19
613	Efficient synthesis of alkylboronic esters <i>via</i> magnetically recoverable copper nanoparticle-catalyzed borylation of alkyl chlorides and bromides. Green Chemistry, 2020, 22, 2799-2803.	4.6	16
614	Suzuki-Miyaura Coupling Enabled by Aryl to Vinyl 1,4-Palladium Migration. IScience, 2020, 23, 100966.	1.9	26
615	Chemoselective Hydroboration of Propargylic Alcohols and Amines Using a Manganese(II) Catalyst. Organic Letters, 2020, 22, 3765-3769.	2.4	33
616	Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 4841-4877.	1.2	34
617	Rapid Access to Borylated Thiophenes Enabled by Visible Light. Organic Letters, 2020, 22, 3273-3278.	2.4	10
618	Enantioselective Assembly of Cycloenones with a Nitrile-Containing All-Carbon Quaternary Center from Malononitriles Enabled by Ni Catalysis. Journal of the American Chemical Society, 2020, 142, 7328-7333.	6.6	49
619	Short and modular synthesis of tetraarylsalicylaldehydes. Chemical Communications, 2020, 56, 4019-4022.	2.2	2
620	The influence of ortho-substituents on the properties of phenylboronic acids. Journal of Organometallic Chemistry, 2020, 913, 121202.	0.8	14
621	Palladium-Catalyzed Decarbonylative Alkylation of Acyl Fluorides. Organic Letters, 2020, 22, 2350-2353.	2.4	25
622	Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes. Chemical Communications, 2020, 56, 4188-4191.	2.2	16
623	Formyl MIDA Boronate: C ₁ Building Block Enables Straightforward Access to αâ€Functionalized Organoboron Derivatives. Angewandte Chemie - International Edition, 2020, 59, 18016-18022.	7.2	21
624	A concise method for fully automated radiosyntheses of [¹⁸ F]JNJ-46356479 and [¹⁸ F]FITM <i>via</i> Cu-mediated ¹⁸ F-fluorination of organoboranes. RSC Advances, 2020, 10, 25223-25227.	1.7	14
625	Suzuki–Miyaura Cross oupling of Bromotryptophan Derivatives at Ambient Temperature. Chemistry - A European Journal, 2020, 26, 16357-16364.	1.7	21

ARTICLE IF CITATIONS Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to αâ€Functionalized 626 1.6 5 Organoboron Derivatives. Angewandte Chemie, 2020, 132, 18172-18178. High Reactivity of α-Boryl Radical of Potassium Alkyltrifluoroborate in Atom-Transfer Radical Addition. 2.4 Organic Letters, 2020, 22, 6234-6238. Photoinduced catalyst-free deborylation–deuteration of arylboronic acids with D₂0. 628 26 4.6 Green Chemistry, 2020, 22, 6323-6327. Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective 44 (Multi)Halogenations. Angewandte Chemie - International Edition, 2020, 59, 18717-18722. Solubility of Phenylboronic Acid and its Cyclic Esters in Organic Solvents. Journal of Solution 630 0.6 10 Chemistry, 2020, 49, 814-824. Copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents to generate alkenyl 1.5 boronic esters. Organic and Biomolecular Chemistry, 2020, 18, 5567-5570. Optimizing chemical reaction conditions using deep learning: a case study for the Suzuki–Miyaura 632 2.3 21 cross-coupling reaction. Organic Chemistry Frontiers, 2020, 7, 2269-2277. Unsymmetrical 1,1-Bisboryl Species: Valuable Building Blocks in Synthesis. Molecules, 2020, 25, 959. 1.7 Experimental and Theoretical Investigation of an S_N2-type Pathway for Borateâ€"Fluorine 634 Bond Cleavage by Electron-Rich Late-Transition Metal Complexes. Inorganic Chemistry, 2020, 59, 1.9 6 4282-4291. Iridiumâ€Catalyzed Silylation of Fiveâ€Membered Heteroarenes: High Sterically Derived Selectivity from a 1.6 Pyridylâ€Imidazoline Ligand. Angewandte Chemie, 2020, 132, 6130-6137. BOX A-type monopyrrolic heterocycles modified <i>via</i> the <i>Suzuki-Miyaura</i> cross-coupling 636 0 0.3 reaction. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 51-62. A Combination of Biocompatible Room Temperature Ionic Liquid and Palladium Catalyst for Base―and 1.3 Ligandâ€Free Suzuki Coupling Reactions. Asian Journal of Organic Chemistry, 2020, 9, 584-587. Cobalt(I)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides. Organic Letters, 2020, 22, 638 2.4 23 1431-1436. Coreâ€"shell structured magnetic mesoporous silica supported Schiff-base/Pd: an efficacious and 1.4 reusable nanocatalyst. New Journal of Chemistry, 2020, 44, 3445-3454. Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. 640 3.6 25 ChemSusChem, 2020, 13, 1715-1719. Cu-Catalyzed Generation of Alkyl Radicals from Alkylsilyl Peroxides and Subsequent C(sp³)–C(sp²) Cross-Coupling with Arylboronic Acids. Journal of Organic 641 Chemistry, 2020, 85, 3973-3980. Diborane(6) and Its Analogues Stabilized by Mono-, Bi-, and Trinuclear Group 7 Templates: Combined 642 1.9 16 Experimental and Theoretical Studies. Inorganic Chemistry, 2020, 59, 1917-1927. 643 Facile Access to Substituted 1,4â€Diazaâ€2,3â€Diborinines. Chemistry - A European Journal, 2020, 26, 2967-2972.1.7

#	Article	IF	CITATIONS
644	Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9â€Borafluorenes. Chemistry - A European Journal, 2020, 26, 12794-12808.	1.7	35
645	Straightforward convergent access to 2-arylated polysubstituted benzothiazoles. Tetrahedron, 2020, 76, 130982.	1.0	5
646	Mild and Efficient Synthesis of Diverse Organoâ€Au I ‣ Complexes in Green Solvents. ChemSusChem, 2020, 13, 2032-2037.	3.6	8
647	Iridium atalyzed Silylation of Fiveâ€Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridylâ€Imidazoline Ligand. Angewandte Chemie - International Edition, 2020, 59, 6074-6081.	7.2	42
648	Suzuki-Miyaura coupling catalyzed by a Ni(II) PNP pincer complex: Scope and mechanistic insights. Inorganica Chimica Acta, 2020, 504, 119457.	1.2	17
649	Enantio- and Diastereoselective Double Mannich Reaction between Ketones and Imines Catalyzed by Zn-ProPhenol. Organic Letters, 2020, 22, 1675-1680.	2.4	17
650	Catalytic Asymmetric Conjugate Protosilylation and Protoborylation of 2-Trifluoromethyl Enynes for Synthesis of Functionalized Allenes. Organic Letters, 2020, 22, 1360-1367.	2.4	62
651	Aliphatic αâ€Borylâ€Î±â€bromoketones: Synthesis and Reactivity. European Journal of Organic Chemistry, 2020, 2020, 3367-3377.	1.2	11
652	RuPhos Pd Precatalyst and MIDA Boronate as an Effective Combination for the Precision Synthesis of Poly(3-hexylthiophene): Systematic Investigation of the Effects of Boronates, Halides, and Ligands. Macromolecules, 2020, 53, 3306-3314.	2.2	26
653	Palladiumâ€Catalyzed Selective Reduction of Carbonyl Compounds. European Journal of Inorganic Chemistry, 2020, 2020, 2295-2301.	1.0	13
654	A one-pot protocol for the fluorosulfonation and Suzuki coupling of phenols and bromophenols, streamlined access to biaryls and terphenyls. Organic and Biomolecular Chemistry, 2020, 18, 4748-4753.	1.5	5
655	Earth-Abundant and Precious Metal Nanoparticle Catalysis. Topics in Organometallic Chemistry, 2020, , 77-129.	0.7	2
656	Development of an Unsymmetrical Cyclopropenimineâ€Guanidine Platform for Accessing Strongly Basic Proton Sponges and Boronâ€Difluoride Diaminonaphthalene Fluorophores. Chemistry - A European Journal, 2020, 26, 8608-8620.	1.7	9
657	Practical Solventâ€Free Microwaveâ€Assisted Hydroboration of Alkynes. European Journal of Organic Chemistry, 2020, 2020, 3024-3029.	1.2	9
658	Cobalt- or copper-catalyzed synthesis of gem-difluoroallyl MIDA boronates from α-trifluoromethyl alkenes. Tetrahedron Letters, 2020, 61, 151940.	0.7	17
659	Chemoselective Rhodium-Catalyzed Borylation of Bromoiodoarenes Under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 6770-6777.	1.7	8
660	Tetraethylphosphorodiamidate-Directed Metalation Group: Directed <i>Ortho</i> and Remote Metalation, Cross Coupling, and Remote Phospha Anionic Fries Rearrangement Reactions. Organic Letters, 2020, 22, 3860-3864.	2.4	5
661	A Self-Assembling NHC-Pd-Loaded Calixarene as a Potent Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction in Water. Molecules, 2020, 25, 1459.	1.7	12

#	Article	IF	CITATIONS
662	Recent advances in the synthesis and transformation of <i>gem</i> -borylsilylalkanes. New Journal of Chemistry, 2021, 45, 14847-14854.	1.4	13
663	Copper(<scp>ii</scp>)-catalyzed protoboration of allenes in aqueous media and open air. New Journal of Chemistry, 2021, 45, 14925-14931.	1.4	3
664	A Structureâ^'Activity Relationship Study of Novel Hydroxamic Acid Inhibitors around the S1 Subsite of Human Aminopeptidase N. ChemMedChem, 2021, 16, 234-249.	1.6	0
665	Chromiumâ€Catalyzed Selective Dimerization/Hydroboration of Allenes to Access Borylâ€Functionalized Skipped (<i>E</i> , <i>Z</i>)â€Dienes. Angewandte Chemie - International Edition, 2021, 60, 2149-2154.	7.2	23
666	The 2â€Pyridyl Problem: Challenging Nucleophiles in Crossâ€Coupling Arylations. Angewandte Chemie, 2021, 133, 11168-11191.	1.6	11
667	Total Synthesis of the Ambigols: A Cyanobacterial Class of Polyhalogenated Natural Products. Organic Letters, 2021, 23, 102-106.	2.4	6
668	Direct Synthesis of Multi(boronate) Esters from Alkenes and Alkynes via Hydroboration and Boration Reactions. ACS Catalysis, 2021, 11, 1-18.	5.5	80
669	Dynamic Ion Speciation during the Hydrolysis of Aryltrifluoroborates**. Chemistry - A European Journal, 2021, 27, 3812-3816.	1.7	4
671	Zwitterionâ€Initiated Hydroboration of Alkynes and Styrene. Advanced Synthesis and Catalysis, 2021, 363, 2382-2385.	2.1	20
672	Chromiumâ€Catalyzed Selective Dimerization/Hydroboration of Allenes to Access Borylâ€Functionalized Skipped (E , Z)â€Dienes. Angewandte Chemie, 2021, 133, 2177-2182.	1.6	6
673	Origin of stereocontrol in the Matteson reaction: Importance of attractive electrostatic interactions. Tetrahedron, 2021, 78, 131810.	1.0	9
674	Stepwise Suzukiâ^'Miyaura Crossâ€Coupling of Triborylalkenes Derived from Alkynylâ^'B(dan)s: Regioselective and Flexible Synthesis of Tetrasubstituted Alkenes. Advanced Synthesis and Catalysis, 2021, 363, 2427-2442.	2.1	10
675	Nanomagnetic reusable catalysts in organic synthesis. Synthetic Communications, 2021, 51, 647-669.	1.1	27
676	The 2â€Pyridyl Problem: Challenging Nucleophiles in Crossâ€Coupling Arylations. Angewandte Chemie - International Edition, 2021, 60, 11068-11091.	7.2	81
677	Haloboration: scope, mechanism and utility. New Journal of Chemistry, 2021, 45, 14855-14868.	1.4	19
678	Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polymer Chemistry, 2021, 12, 4439-4450.	1.9	9
679	Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chemical Communications, 2021, 57, 4071-4088.	2.2	40
680	CeO2–nanocubes as efficient and selective catalysts for the hydroboration of carbonyl groups. New Journal of Chemistry, 2021, 45, 15028-15034.	1.4	5

#	Article	IF	CITATIONS
681	Electrochemical oxidative cyclization of alkenes, boronic acids, and dichalcogenides to access chalcogenated boronic esters and 1,3-diols. Organic Chemistry Frontiers, 2021, 9, 12-18.	2.3	11
682	Suzuki-Miyaura Cross Coupling Reaction in Various Green Media. Asian Journal of Chemistry, 2021, 33, 1976-1984.	0.1	3
683	Pairing Suzuki–Miyaura cross-coupling and catalyst transfer polymerization. Polymer Chemistry, 2021, 12, 1404-1414.	1.9	12
684	Evaluation of the role of graphene-based Cu(<scp>i</scp>) catalysts in borylation reactions. Catalysis Science and Technology, 2021, 11, 3501-3513.	2.1	8
685	Light-induced borylation: developments and mechanistic insights. Organic and Biomolecular Chemistry, 2021, 19, 4397-4428.	1.5	39
686	Mechanically induced single-molecule white-light emission of excited-state intramolecular proton transfer (ESIPT) materials. Materials Horizons, 2021, 8, 1499-1508.	6.4	27
687	Pd-Catalysed Suzuki–Miyaura cross-coupling of aryl chlorides at low catalyst loadings in water for the synthesis of industrially important fungicides. Green Chemistry, 2021, 23, 8169-8180.	4.6	18
688	Efficient microwave-assisted Suzuki–Miyaura cross-coupling reaction of 3-bromo pyrazolo[1,5- <i>a</i>]pyrimidin-5(4 <i>H</i>)-one: towards a new access to 3,5-diarylated 7-(trifluoromethyl)pyrazolo[1,5- <i>a</i>]pyrimidine derivatives. RSC Advances, 2021, 11, 1287-1302.	1.7	17
689	Palladium-catalysed cyclisation of ynamides and propargyl tethered iodosulfonamides with boronic acids leading to benzosultams. Organic and Biomolecular Chemistry, 2021, 19, 6871-6882.	1.5	3
690	Controllable regio- and stereo-selective coupling reactions of homoallenylboronates. Organic Chemistry Frontiers, 0, , .	2.3	4
691	Dissecting transmetalation reactions at the molecular level: C–B <i>versus</i> F–B bond activation in phenyltrifluoroborate silver complexes. Dalton Transactions, 2021, 50, 1496-1506.	1.6	4
692	Synthesis and reactivity of alkynyl boron compounds. Organic and Biomolecular Chemistry, 2021, 19, 7276-7297.	1.5	23
693	Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry, 2021, 12, 321-329.	1.7	35
694	Synthesis of Arylethylamines <i>via</i> C(sp ³)–C(sp ³) Palladium-Catalyzed Cross-Coupling. Journal of Organic Chemistry, 2021, 86, 3583-3604.	1.7	6
695	Prospects and Applications of Palladium Nanoparticles in the Cross oupling of (hetero)aryl Halides and Related Analogues. ChemistryOpen, 2021, 10, 430-450.	0.9	7
696	Radical Borylative Cyclization of Isocyanoarenes with N-Heterocyclic Carbene Borane: Synthesis of Borylated Aza-arenes. Organic Letters, 2021, 23, 1891-1897.	2.4	29
697	Merging Boron with Nitrogen–Oxygen Bonds: A Review on BON Heterocycles. Topics in Current Chemistry, 2021, 379, 8.	3.0	9
698	Recent Advances in Crossâ€Dehydrogenative Couplings (CDC) of Câ^'H Bond in Aqueous Media. Advanced Synthesis and Catalysis, 2021, 363, 1185-1201.	2.1	60

#	Article	IF	CITATIONS
699	Excitation of aryl cations as the key to catalyst-free radical arylations. Cell Reports Physical Science, 2021, 2, 100325.	2.8	13
700	Metalâ€Free Directed Câ^'H Borylation of Pyrroles. Angewandte Chemie, 2021, 133, 8581-8585.	1.6	12
701	Synthesis and Reactivity of Allenylboron Compounds. Advanced Synthesis and Catalysis, 2021, 363, 2444-2463.	2.1	27
702	Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. Journal of Organic Chemistry, 2021, 86, 4616-4624.	1.7	10
703	Sustainable and recyclable magnetic nanocatalyst of 1,10-phenanthroline Pd(0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates. Molecular Catalysis, 2021, 504, 111489.	1.0	3
704	Cross-Coupled Phenyl- and Alkynyl-Based Phenanthrolines and Their Effect on the Photophysical and Electrochemical Properties of Heteroleptic Cu(I) Photosensitizers. Inorganic Chemistry, 2021, 60, 5391-5401.	1.9	26
705	Catalyst-Free Organic Transformations under Visible-Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 4296-4323.	3.2	62
706	Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. Journal of the American Chemical Society, 2021, 143, 6165-6175.	6.6	105
707	Metalâ€Free Directed Câ^'H Borylation of Pyrroles. Angewandte Chemie - International Edition, 2021, 60, 8500-8504.	7.2	40
708	Transitionâ€Metalâ€Free Câ^'S, Câ^'Se, and Câ^'Te Bond Formation from Organoboron Compounds. Chemical Record, 2021, 21, 2855-2879.	2.9	12
709	Recyclable Copper Nanoparticles atalyzed Hydroboration of Alkenes and βâ€Borylation of α,βâ€Unsaturated Carbonyl Compounds with Bis(Pinacolato)Diboron. Advanced Synthesis and Catalysis, 2021, 363, 2408-2416.	2.1	11
710	Enantioselective Allylation of Alkenyl Boronates Promotes a 1,2-Metalate Rearrangement with 1,3-Diastereocontrol. Journal of the American Chemical Society, 2021, 143, 4921-4927.	6.6	45
711	Cellulosic Cul Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of α,β-Unsaturated Acceptors in Aqueous Media. Catalysis Letters, 2021, 151, 3220-3229.	1.4	7
712	Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters. Organic Letters, 2021, 23, 3496-3501.	2.4	29
713	Hollow-Shell-Structured Mesoporous Silica-Supported Palladium Catalyst for an Efficient Suzuki-Miyaura Cross-Coupling Reaction. Catalysts, 2021, 11, 582.	1.6	6
714	Comparative DFT Study on Dehydrogenative C(sp)–H Elementation (E = Si, Ge, and Sn) of Terminal Alkynes Catalyzed by a Cationic Ruthenium(II) Thiolate Complex. Inorganic Chemistry, 2021, 60, 6228-6238.	1.9	4
715	The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 807-808.	0.1	1
716	The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 821-822.	0.1	0

#	Article	IF	Citations
717	Synthesis and Solvatochromic Behavior of Zwitterionic Donor–Bridge–Acceptor Systems with Oligo(p-phenylene) Spacers. Organic Materials, 2021, 03, 103-118.	1.0	5
718	The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 737-739.	0.1	1
719	Modular Synthesis of Pentagonal and Hexagonal Ring-Fused NBN-Phenalenes Leading to an Excited-State Aromatization-Induced Structural Planarization Molecular Library. Journal of the American Chemical Society, 2021, 143, 5903-5916.	6.6	41
720	(Z)â€Selective Hydrosilylation and Hydroboration of Terminal Alkynes Enabled by Ruthenium Complexes with an Nâ€Heterocyclic Carbene Ligand. Chemical Record, 2021, , .	2.9	9
721	Light-Mediated Cross-Coupling of Anomeric Trifluoroborates. Organic Letters, 2021, 23, 4289-4293.	2.4	30
722	The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 845-846.	0.1	Ο
723	Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. Journal of Natural Products, 2021, 84, 1681-1706.	1.5	13
724	Efficient synthesis of seven-membered Aza-sultams: Heterofused amino-1,2,4-thiadiazepine dioxides. Tetrahedron, 2021, 88, 132149.	1.0	5
725	Enantioselective Copperâ€Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angewandte Chemie - International Edition, 2021, 60, 14355-14359.	7.2	21
726	Ni atalyzed Borylation of Aryl Sulfoxides. Chemistry - A European Journal, 2021, 27, 8149-8158.	1.7	17
727	Direct Synthesis of Ketones from Methyl Esters by Nickel atalyzed Suzuki–Miyaura Coupling. Angewandte Chemie, 2021, 133, 13588-13595.	1.6	7
728	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie - International Edition, 2021, 60, 14498-14503.	7.2	60
729	Oneâ€₽ot Synthesis of Xanthone by Carbonylative Suzuki Coupling Reaction. ChemistrySelect, 2021, 6, 4511-4514.	0.7	3
730	Direct Synthesis of Ketones from Methyl Esters by Nickelâ€Catalyzed Suzuki–Miyaura Coupling. Angewandte Chemie - International Edition, 2021, 60, 13476-13483.	7.2	22
731	Catalytic Synthesis of Atropisomeric <i>o</i> -Terphenyls with 1,2-Diaxes via Axial-to-Axial Diastereoinduction. Journal of the American Chemical Society, 2021, 143, 7253-7260.	6.6	49
732	Synthesis of Arylpalladium(II) Boronates: Confirming the Structure and Chemical Competence of Preâ€transmetalation Intermediates in the Suzuki–Miyaura Reaction. Angewandte Chemie - International Edition, 2021, 60, 14897-14901.	7.2	7
733	Synthesis of Arylpalladium(II) Boronates: Confirming the Structure and Chemical Competence of Preâ€ŧransmetalation Intermediates in the Suzuki–Miyaura Reaction. Angewandte Chemie, 2021, 133, 15023-15027.	1.6	0
734	Ferroelectric nematic phase at and below room temperature. Liquid Crystals, 2021, 48, 1079-1086.	0.9	68

#	Article	IF	CITATIONS
735	Enantioselective Copper atalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angewandte Chemie, 2021, 133, 14476-14480.	1.6	4
736	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie, 2021, 133, 14619-14624.	1.6	13
737	Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy. ACS Nano, 2021, 15, 8621-8637.	7.3	15
738	Importance of some factors on the Suzukiâ€Miyaura crossâ€coupling reaction. Journal of the Chinese Chemical Society, 2021, 68, 942-951.	0.8	8
739	Electrochemical Hydroboration of Alkynes. Chemistry - A European Journal, 2021, 27, 8277-8282.	1.7	30
740	Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Benchâ€Stable Boron Precursors. Chemistry - A European Journal, 2021, 27, 9094-9101.	1.7	10
741	Crystal structure of methyl		

#	Article	IF	CITATIONS
753	Cyclic (Alkyl)(amino)carbene Ligands Enable Cu atalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angewandte Chemie - International Edition, 2021, 60, 19871-19878.	7.2	35
754	Decatungstateâ€Mediated C(sp ³)–H Heteroarylation via Radicalâ€Polar Crossover in Batch and Flow. Angewandte Chemie - International Edition, 2021, 60, 17893-17897.	7.2	56
755	Mechanistic Study of Metal–Ligand Cooperativity in Mn(II)-Catalyzed Hydroborations: Hemilabile SNS Ligand Enables Metal Hydride-Free Reaction Pathway. ACS Catalysis, 2021, 11, 9043-9051.	5.5	17
756	Universal Suzuki–Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Strong Donor/Acceptor-Based Conjugated Polymers and Their Sequence Engineering. Journal of the American Chemical Society, 2021, 143, 11180-11190.	6.6	40
757	Decatungstateâ€Mediated C(sp 3)–H Heteroarylation via Radicalâ€Polar Crossover in Batch and Flow. Angewandte Chemie, 2021, 133, 18037-18041.	1.6	5
758	Cyclic (Alkyl)(amino)carbene Ligands Enable Cu atalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angewandte Chemie, 2021, 133, 20024-20031.	1.6	1
759	Mechanistic Aspects of the Palladiumâ€Catalyzed Suzukiâ€Miyaura Crossâ€Coupling Reaction. Chemistry - A European Journal, 2021, 27, 13481-13493.	1.7	97
760	Electrochemical borylation of carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
761	Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=Nâ€Heterocyclic Carbene) Complexes. Chemistry - A European Journal, 2021, 27, 13342-13345.	1.7	11
762	Heteroaryl–Heteroaryl, Suzuki–Miyaura, Anhydrous Cross-Coupling Reactions Enabled by Trimethyl Borate. Journal of the American Chemical Society, 2021, 143, 13845-13853.	6.6	36
763	Synthesis of Boroxine and Dioxaborole Covalent Organic Frameworks via Transesterification and Metathesis of Pinacol Boronates. Journal of the American Chemical Society, 2021, 143, 13274-13280.	6.6	17
764	Developing Efficient Suzuki Cross-Coupling Catalysts by Doping Palladium Clusters with Silver. ACS Catalysis, 2021, 11, 11459-11468.	5.5	9
765	Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. Journal of the American Chemical Society, 2021, 143, 14814-14826.	6.6	29
766	Asymmetric Synthesis of Chiral Bicyclo[2.2.1]hepta-2,5-diene Ligands through Rhodium-Catalyzed Asymmetric Arylative Bis-cyclization of a 1,6-Enyne. Organic Letters, 2021, 23, 6311-6315.	2.4	4
767	Photocatalyzed <i>E</i> → <i>Z</i> Contraâ€ŧhermodynamic Isomerization of Vinyl Boronates with Binaphthol. Chemistry - A European Journal, 2021, 27, 13966-13970.	1.7	21
768	Main-group metalated heterocycles through Lewis acid cyclization. Trends in Chemistry, 2021, 3, 645-659.	4.4	3
769	Hydrogean Peroxide Inducible Acidâ€Activatable Prodrug for Targeted Cancer Treatment. ChemMedChem, 2021, 16, 3231-3235.	1.6	2
770	Advances in the <i>E → Z</i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	23.0	184

#	Article	IF	CITATIONS
771	Synthesis of Carboxylic Acids, Esters, and Amides from 1,1â€Dibromoalkenes via Oxidation of Alkynyl Boronate Intermediates. ChemistrySelect, 2021, 6, 8532-8536.	0.7	2
772	Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coordination Chemistry Reviews, 2021, 442, 214012.	9.5	16
773	Equilibria in the 3-(trifluoromethyl)phenylboronic acid - boroxine system. Solubility of the acid and its cyclic esters in organic solvents. Journal of Organometallic Chemistry, 2021, 949, 121947.	0.8	4
774	Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry - A European Journal, 2021, 27, 15277-15326.	1.7	45
775	Siteâ€Fixed Hydroboration of Terminal and Internal Alkenes using BX ₃ / ^{<i>i</i>} Pr ₂ NEt**. Angewandte Chemie, 2021, 133, 26442-26449.	1.6	4
776	Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European Journal of Organic Chemistry, 2021, 2021, 6478-6510.	1.2	57
777	Chromanâ€4â€oneâ€Based Amino Bidentate Ligand: An Efficient Ligand for Suzukiâ€Miyaura and Mizorokiâ€Hecl Coupling Reactions in Aqueous Medium. European Journal of Organic Chemistry, 2021, 2021, 4946-4957.	² 1.2	9
778	Baseâ€Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium atalyzed Crossâ€Coupling Reactions. Angewandte Chemie, 2021, 133, 22635-22642.	1.6	2
779	Baseâ€Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium atalyzed Cross oupling Reactions. Angewandte Chemie - International Edition, 2021, 60, 22461-22468.	7.2	18
780	Reaction rate differences between organotrifluoroborates and boronic acids in BINOL-catalyzed conjugate addition to enones. Tetrahedron Letters, 2021, 83, 153412.	0.7	5
781	Halogenâ€verbrückte Methylnaphthylpalladiumâ€Dimere als vielseitig einsetzbare Katalysatorvorstufen in Kreuzkupplungen. Angewandte Chemie, 2021, 133, 25355-25364.	1.6	2
782	[Pd(4-RSi-IPr)(allyl)Cl]/KCO/EtOH: A highly effective catalytic system for the Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Chemistry, 2021, 954-955, 122096.	0.8	5
783	Halogenâ€Bridged Methylnaphthyl Palladium Dimers as Versatile Catalyst Precursors in Coupling Reactions. Angewandte Chemie - International Edition, 2021, 60, 25151-25160.	7.2	16
784	Siteâ€Fixed Hydroboration of Terminal and Internal Alkenes using BX ₃ / ^{<i>i>i</i>} Pr ₂ NEt**. Angewandte Chemie - International Edition, 2021, 60, 26238-26245.	7.2	23
785	Phosphonate functionalized N-heterocyclic carbene Pd(II) complexes as efficient catalysts for Suzuki-Miyaura cross coupling reaction. Journal of Organometallic Chemistry, 2021, 953, 122067.	0.8	6
786	Cobalt-Catalyzed Protodeboronation of Aryl and Vinyl Boronates. Journal of Organic Chemistry, 2021, 86, 1972-1979.	1.7	7
787	Palladium-catalyzed selective B(3)–H arylation of <i>o</i> carboranes with arylboronic acids at room temperature. Chemical Communications, 2021, 57, 1655-1658.	2.2	14
788	Zeolite Immobilized Copper Catalyzed Conjugate Borylation of <i>î±</i> , <i>î²</i> -Unsaturated Compounds in Aqueous Media. Chinese Journal of Organic Chemistry, 2021, , 2074.	0.6	2

ARTICLE IF CITATIONS # Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles. 789 2.1 12 Catalysis Science and Technology, 2021, 11, 5962-5972. An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers. Chemistry - A European Journal, 2020, 26, 12951-12963. 790 1.7 Main-chain diphosphine-Pd polymers: Efficient self-supported heterogeneous catalysts for 791 1.0 5 Suzuki-Miyaura reaction. Molecular Catalysis, 2017, 437, 89-94. Improved synthesis of SV2A targeting radiotracer [11C]UCB-J. EJNMMI Radiopharmacy and Chemistry, 792 1.8 2019, 4, 30. The crystal structre of 2-(4-bromophenyl)-2,3-dihydro-1<i>H</i>-naphtho[1,8-<i>de</i>][1,3,2]diazaborinine, 793 0.1 7 C₁₆H₁₂BBrN₂. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 383-384. Design of Carbon-carbon and Carbon-heteroatom Bond Formation Reactions under Green Conditions. 794 Current Organic Chemistry, 2020, 23, 3154-3190. A Green Approach for Organic Transformations Using Microwave Reactor. Current Organic Synthesis, 795 0.7 12 2019, 16, 730-764. Name reactions: strategies in the design of chemodosimeters for analyte detection. New Journal of 796 1.4 Chemistry, 2021, 45, 20046-20074. Advances in silylation and borylation of fluoroarenes and <i>gem</i>-difluoroalkenes <i>via</i> 797 2.2 27 bond cleavage. Chemical Communications, 2021, 57, 11922-11934. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rodium atalyzed Carbene Insertion into 798 7.2 Siâ€H bonds. Angewandte Chemie - International Edition, 2021, , . Copperâ€Catalyzed Preparation of Alkenylboronates and Arylboronates. European Journal of Organic 799 17 1.2 Chemistry, 2021, 2021, 6115-6160. Catalytic Chemo- and Enantioselective Transformations of <i>gem</i>-Diborylalkanes and (Diborylmethyl)metallic Species. Accounts of Chemical Research, 2021, 54, 3917-3929. Process Development, Manufacture, and Understanding of the Atropisomerism and Polymorphism of 801 1.3 5 Verinurad. Organic Process Research and Development, 2022, 26, 936-948. Application of Allylzinc Reagents as Nucleophiles in Matteson Homologations. Organic Letters, 2021, 2.4 16 23, 8439-8444. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rodium atalyzed Carbene Insertion into 803 0 1.6 Siâ€H bonds. Angewandte Chemie, 0, , . A generic liquid chromatography-mass spectrometry method for monitoring bis(pinacolato)diboron 804 mutagenic impurity in pharmacéutical compounds. Journal of Chromatography Öpen, 2021, 1, 100009. Ligand Assessment for the Suzuki-Miyaura Cross Coupling Reaction of Aryl and Heteroaryl Bromides 806 0.4 1 with n-Butylboronic Acid. The Advantages of Buchwalda€ Ms S-Phos. Heterocycles, 2020, 101, 631. Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to 808 6.6 Catalysis. Journal of the American Chemical Society, 2021, 143, 18617-18625.

#	Article	IF	Citations
809	Pd-catalyst Anchored on Schiff Base-modified Chitosan-CNT Nanohybrid for the Suzuki–Miyaura Coupling Reaction. Current Organic Chemistry, 2020, 24, 2383-2390.	0.9	1
811	Chemically robust and readily available quinoline-based PNN iron complexes: application in C–H borylation of arenes. Chemical Communications, 2021, 57, 13246-13258.	2.2	8
812	Silver-Mediated Fluorination for Preparing Aryl Fluorides. , 2020, , 579-589.		0
813	Trimethyl 4,4′,4′′-(ethene-1,1,2-triyl)tribenzoate. IUCrData, 2020, 5, .	0.1	1
814	Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides. Journal of Organic Chemistry, 2021, 86, 17445-17452.	1.7	7
815	Stereoconvergent and -divergent Synthesis of Tetrasubstituted Alkenes by Nickel-Catalyzed Cross-Couplings. Journal of the American Chemical Society, 2021, 143, 19078-19090.	6.6	39
816	Water-Dispersible Pd–N-Heterocyclic Carbene Complex Immobilized on Magnetic Nanoparticles as a New Heterogeneous Catalyst for Fluoride-Free Hiyama, Suzuki–Miyaura and Cyanation Reactions in Aqueous Media. Catalysis Letters, 2022, 152, 2650-2668.	1.4	6
817	ZnBr ₂ -Catalyzed Dehydrogenative Borylation of Terminal Alkynes. Journal of Organic Chemistry, 2021, 86, 16666-16674.	1.7	9
818	An Olefinic 1, <scp>2â€<i>α</i>â€Boryl</scp> Migration Enables 1, <scp>2â€Bis</scp> (boronic esters) via <scp>Radicalâ€Polar</scp> Crossover Reaction. Chinese Journal of Chemistry, 2022, 40, 582-588.	2.6	18
819	The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. Journal of Organic Chemistry, 2022, 87, 1880-1897.	1.7	28
820	Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Advanced Synthesis and Catalysis, 2022, 364, 234-267.	2.1	84
821	Identifying palladium culprits in amine catalysis. Nature Catalysis, 2021, 4, 994-998.	16.1	22
822	Rhodium-Catalyzed β-Dehydroborylation of Silyl Enol Ethers: Access to Highly Functionalized Enolates. Organic Letters, 2021, 23, 9580-9585.	2.4	4
823	Electrochemical Cleavage of the Carbon–Boron Bond in <i>p</i> -Acetamidophenylboronic Acid at Neutral pH Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 1206-1208.	0.6	0
824	Drug Discovery Automation and Library Synthesis in Flow. Topics in Medicinal Chemistry, 2021, , 421-479.	0.4	1
825	Hydroboration and Diboration of Internal Alkynes under Iridium Catalysis. Journal of Organic Chemistry, 2022, 87, 1526-1536.	1.7	10
826	Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
827	Highly selective Suzuki reaction catalysed by a molecular Pd–P-MOF catalyst under mild conditions: role of ligands and palladium speciation. Catalysis Science and Technology, 2022, 12, 954-961.	2.1	13

#	Article	IF	CITATIONS
828	Transmetalation of boronic acids and their derivatives: mechanistic elucidation and relevance to catalysis. Dalton Transactions, 2022, 51, 777-796.	1.6	13
829	Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron, 2022, 104, 132605.	1.0	8
830	Dienylation of <i>N</i> -benzoylhydrazones with CF ₃ -substituted homoallenylboronates in water. Organic and Biomolecular Chemistry, 2022, 20, 1386-1390.	1.5	0
831	Electrochemistry and Electrochromic Performance of a Metallopolymer Formed by Electropolymerization of a Fe(II) Complex with a Triphenylamineâ€Hydrazone Ligand. ChemPhysChem, 2022, 23, .	1.0	2
832	Recent developments in the asymmetric synthesis and functionalization of symmetrical and unsymmetrical <i>gem</i> -diborylalkanes. Organic Chemistry Frontiers, 2022, 9, 838-852.	2.3	28
833	Visible light photocatalytic one pot synthesis of <i>Z</i> -arylvinyl halides from <i>E</i> -arylvinyl acids with <i>N</i> -halosuccinimide. RSC Advances, 2022, 12, 3931-3934.	1.7	1
835	Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted <i>N</i> -tosylhydrazones: synthesis of <i>trans</i> -alkenyl MIDA boronates. Chemical Communications, 2022, 58, 399-402.	2.2	5
836	Insight into the Reactivity Profile of Solid-State Aryl Bromides in Suzuki–Miyaura Cross-Coupling Reactions Using Ball Milling. Synlett, 2022, 33, 898-902.	1.0	9
837	Synthesis of a boron-containing amidoxime reagent and its application to synthesize functionalized oxadiazole and quinazolinone derivatives. Tetrahedron Letters, 2022, 92, 153657.	0.7	5
838	Nickel atalyzed Arylative Cyclizations of Alkyne―and Alleneâ€Tethered Electrophiles using Arylboron Reagents. Chemistry - A European Journal, 2022, 28, .	1.7	22
839	Primary trifluoroborate-iminiums enable facile access to chiral α-aminoboronic acids <i>via</i> Ru-catalyzed asymmetric hydrogenation and simple hydrolysis of the trifluoroborate moiety. Chemical Science, 2022, 13, 2946-2953.	3.7	6
840	Hydroboration and reductive amination of ketones and aldehydes with HBpin by a bench stable Pd(<scp>ii</scp>)-catalyst. Organic and Biomolecular Chemistry, 2022, 20, 1103-1111.	1.5	12
841	Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents. Chemistry - A European Journal, 2022, 28, .	1.7	8
842	A simple generic method for analyzing water sensitive pinacol boronate compounds by hydrophilic interaction liquid chromatography. Journal of Chromatography Open, 2022, 2, 100036.	0.8	1
843	Automated iterative Csp3–C bond formation. Nature, 2022, 604, 92-97.	13.7	62
844	Transition Metal Catalyst Free Synthesis of Olefins from Organoboron Derivatives**. Chemistry - A European Journal, 2022, 28, .	1.7	5
845	Catalytic Hydroboration of Esters by Versatile Thorium and Uranium Amide Complexes. ACS Catalysis, 2022, 12, 273-284.	5.5	19
847	Thienoviologen anolytes for aqueous organic redox flow batteries with simultaneously enhanced capacity utilization and capacity retention. Journal of Materials Chemistry A, 2022, 10, 9830-9836.	5.2	12

#	Article	IF	CITATIONS
848	Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. Journal of Organic Chemistry, 2022, 87, 3555-3566.	1.7	10
849	Merging Late-Stage Diversification with Solid-Phase Peptide Synthesis Enabled by High-Throughput On-Resin Reaction Screening. ACS Catalysis, 2022, 12, 3201-3210.	5.5	4
850	Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light. Nano Research, 2022, 15, 9967-9975.	5.8	17
851	Syntheses of three 8-methoxyisoflavans from newly developed 7-benzyloxy-3-chloro-8-methoxy-2H-chromene as the precursor. Tetrahedron, 2022, 113, 132714.	1.0	3
852	Orchestrating a β-Hydride Elimination Pathway in Palladium(II)-Catalyzed Arylation/Alkenylation of Cyclopropanols Using Organoboron Reagents. Journal of Organic Chemistry, 2022, 87, 4508-4523.	1.7	6
853	Selective, Transition Metalâ€free 1,2â€Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry - A European Journal, 2022, 28, .	1.7	9
854	An "Onâ€Ðemandâ€; Selective Dehydrogenative Borylation or Hydroboration of Terminal Alkynes Using Zn ²⁺ â€based Catalyst. ChemCatChem, 2022, 14, .	1.8	9
855	Palladium atalyzed Chemoselective Borylation of (Poly)halogenated Aryl Triflates and Their Application in Consecutive Reactions. Advanced Synthesis and Catalysis, 2022, 364, 1596-1601.	2.1	10
856	1,2 arboboration of Arylallenes by In Situ Generated Alkenylboranes for the Synthesis of 1,4â€Dienes. Chemistry - A European Journal, 2022, , .	1.7	7
857	Ability of Boron to Act as a Nucleophile and an Electrophile in Boryl Shift Reactions Unveiled by Electron Density Distribution Analysis. Journal of Organic Chemistry, 2022, 87, 4680-4691.	1.7	3
858	Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society, 2022, 144, 4819-4827.	6.6	64
859	Copper-Catalyzed <i>anti</i> -Selective Radical 1,2-Alkylarylation of Terminal Alkynes. Organic Letters, 2022, 24, 2536-2540.	2.4	10
860	Transfer C–H borylation of alkenes under Rh(I) catalysis: Insight into the synthetic capacity, mechanism, and selectivity control. Chem Catalysis, 2022, 2, 762-778.	2.9	6
861	Nickel atalyzed Hydroborylative Polycyclization of Allenynes: an Atomâ€Economical and Diastereoselective Synthesis of Bicyclic 5â€5 Fused Rings. Advanced Synthesis and Catalysis, 2022, 364, 1716-1723.	2.1	11
862	Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis. Journal of the American Chemical Society, 2022, 144, 6163-6172.	6.6	53
863	Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters. Journal of the American Chemical Society, 2022, 144, 6442-6452.	6.6	25
864	<i>trans</i> -Dichlorobis(XPhos)palladium(II) Precatalyst for Suzuki–Miyaura Cross-Coupling Reactions of Aryl/Vinyl Sulfonates/Halides: Scope, Mechanistic Study, and Synthetic Applications. ACS Omega, 2022, 7, 1186-1196.	1.6	7
865	Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction. Nature Catalysis, 2021, 4, 1080-1088.	16.1	19

#	Article	IF	CITATIONS
866	Micellar Suzuki Cross-Coupling between Thiophene and Aniline in Water and under Air. Organics, 2021, 2, 415-423.	0.6	1
867	Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines. Organic Letters, 2022, 24, 3048-3052.	2.4	8
868	Modulating the Rate of Controlled Suzuki–Miyaura Catalyst-Transfer Polymerization by Boronate Tuning. Macromolecules, 2022, 55, 3476-3483.	2.2	8
869	<i>In Situ</i> Studies of Arylboronic Acids/Esters and R ₃ SiCF ₃ Reagents: Kinetics, Speciation, and Dysfunction at the Carbanion–Ate Interface. Accounts of Chemical Research, 2022, 55, 1324-1336.	7.6	8
870	Repurposing pinacol esters of boronic acids for tuning viscoelastic properties of glucose-responsive polymer hydrogels: effects on insulin release kinetics. Journal of Materials Chemistry B, 2022, 10, 7591-7599.	2.9	9
871	Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates. Chinese Journal of Organic Chemistry, 2022, 42, 1013.	0.6	13
872	Phosphine-catalyzed hydroboration of propiolonitriles: access to (<i>E</i>)-1,2-vinylcyanotrifluoroborate derivatives. Chemical Communications, 2022, 58, 5984-5987.	2.2	11
873	Vanadium-Catalyzed Stereo- and Regioselective Hydroboration of Alkynes to Vinyl Boronates. ACS Catalysis, 2022, 12, 5425-5429.	5.5	12
874	Antiinflammation Derived Suzuki-Coupled Fenbufens as COX-2 Inhibitors: Minilibrary Construction and Bioassay. Molecules, 2022, 27, 2850.	1.7	1
875	Dearomatization of Heteroarenium Salts with ArBpin Reagents. Application to the Total Synthesis of a Nuphar Alkaloid. Organic Letters, 2022, 24, 3445-3449.	2.4	8
876	Metalâ€Free Temperatureâ€Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl3â€Promoted Skeletal Rearrangement. Angewandte Chemie, 0, , .	1.6	0
877	Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Organic Letters, 2022, 24, 3510-3514.	2.4	28
878	Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Advanced Synthesis and Catalysis, 2022, 364, 1643-1665.	2.1	28
879	Synthesis of linear unsubstituted poly(4,4′â€ŧriphenylamine) via <scp>Suzukiâ€Miyaura</scp> coupling of an asymmetric <scp>AB</scp> monomer. Journal of Polymer Science, 0, , .	2.0	0
880	Metalâ€Free Temperature ontrolled Regiodivergent Borylative Cyclizations of Enynes: BCl ₃ â€Promoted Skeletal Rearrangement. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
881	Aluminum-catalyzed selective hydroboration of carbonyls and dehydrocoupling of alcohols, phenols, amines, thiol, selenol, silanols with HBpin. Polyhedron, 2022, 222, 115902.	1.0	5
882	A Uranium(<scp>IV</scp>) Alkyl Complex: Synthesis and Catalytic Property in Carbonyl Hydroboration. Chinese Journal of Chemistry, 2022, 40, 2047-2053.	2.6	11
883	Suzuki Miyaura cross-coupling of 2-chloropyrazine with arylboronic acids catalyzed by novel palladium(II) ONO pincer complexes. Inorganica Chimica Acta, 2022, , 121028.	1.2	1

#	Article	IF	CITATIONS
884	Rutheniumâ \in Catalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie, 0, , .	1.6	2
885	Organobase-catalyzed 1,1-diborylation of terminal alkynes under metal-free conditions. RSC Advances, 2022, 12, 16530-16534.	1.7	3
886	The Direct Mechanocatalytic Suzuki–Miyaura Reaction of Small Organic Molecules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
887	Die direkte mechanokatalytische Suzuki–Miyauraâ€Kupplung kleiner organischer Moleküle. Angewandte Chemie, 2022, 134, .	1.6	6
888	Ruthenium atalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
889	Tandem Reactions involving 1,4â€Palladium Migrations. Chemistry - an Asian Journal, 2022, 17, .	1.7	28
890	Organoboron Derivatives of 1,8-Bis(dimethylamino)naphthalene: Synthesis, Structure, Stability, and Reactivity. Organometallics, 2022, 41, 1501-1508.	1.1	4
891	(CAAC)Copper Catalysis Enables Regioselective Three-Component Carboboration of Terminal Alkynes. ACS Catalysis, 2022, 12, 7243-7247.	5.5	21
892	Advancing Base Metal Catalysis through Data Science: Insight and Predictive Models for Ni-Catalyzed Borylation through Supervised Machine Learning. Organometallics, 2022, 41, 1847-1864.	1.1	7
893	Cell-permeable fluorescent indicator for imaging formaldehyde activity in living systems. Analytical Biochemistry, 2022, 652, 114749.	1.1	3
894	The impact of the physical state and the reaction phase in the direct mechanocatalytic Suzuki–Miyaura coupling reaction. Faraday Discussions, 0, 241, 206-216.	1.6	4
895	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
896	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie, 0, , .	1.6	2
897	Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes. Organometallics, 2022, 41, 1649-1658.	1.1	0
898	Solvent-free hydroboration of alkynes catalyzed by an NHC–cobalt complex. RSC Advances, 2022, 12, 18572-18577.	1.7	3
899	Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chemical Society Reviews, 2022, 51, 6442-6474.	18.7	34
900	Solid-state cross-coupling reactions of insoluble aryl halides under polymer-assisted grinding conditions. Faraday Discussions, 0, , .	1.6	8
901	A novel electromagnetic mill promoted mechanochemical solid-state Suzuki–Miyaura cross-coupling reaction using ultra-low catalyst loading. Green Chemistry, 2022, 24, 6026-6035.	4.6	8

#	Article	IF	CITATIONS
902	Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes. Chemical Communications, 2022, 58, 8380-8383.	2.2	15
903	An efficient catalytic method for the borohydride reaction of esters using diethylzinc as precatalyst. New Journal of Chemistry, 2022, 46, 14635-14641.	1.4	6
904	Total Synthesis of Resveratrone and <i>iso</i> â€Resveratrone. ChemistryOpen, 2022, 11, .	0.9	3
905	Boron-containing Phthalonitrile Resin: Synthesis, Curing Behavior, and Thermal Properties. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	3
906	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie, 0, , .	1.6	2
907	Triple Regioselective Functionalization of Cationic [4]Helicenes via Iridiumâ€Catalyzed Borylation and Suzuki Crossâ€Coupling Reactivity. Chemistry - A European Journal, 2022, 28, .	1.7	5
908	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
909	Enantioselective Organocatalytic Conjugate Addition in a Tandem Synthesis of δ-Substituted Cyclohexenones and Four-Step Total Synthesis of Penienone. Organic Letters, 2022, 24, 5334-5338.	2.4	3
910	Matteson Homologation of Arylboronic Esters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
911	Practical Synthesis of Chiral Allylboronates by Asymmetric 1,1â€Difunctionalization of Terminal Alkenes. Angewandte Chemie, 2022, 134, .	1.6	3
912	Transition Metal atalyzed Reactions and Solidâ€Phase Synthesis: A Convenient Blend. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
913	Practical Synthesis of Chiral Allylboronates by Asymmetric 1,1â€Difunctionalization of Terminal Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
914	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
915	Nickel/Tio2-Catalyzed Suzuki–Miyaura Cross-Coupling (Smr) of Aryl Boronic Acids with Aryl Halides in Meoh/H2o. SSRN Electronic Journal, 0, , .	0.4	0
916	Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Letters, 2022, 11, 1034-1040.	2.3	7
917	Solvent Anions Enable Photoinduced Borylation and Phosphonation of Aryl Halides via EDA Complexes. Organic Letters, 2022, 24, 6466-6471.	2.4	16
918	Regioselective Transitionâ€Metalâ€Free C(sp ²)â^'H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
919	Lewis base promoted photoredox catalyzed addition of allylic radicals to Michael acceptors. Tetrahedron Letters, 2022, 105, 154057.	0.7	2

#	Article	IF	CITATIONS
920	In situ biosynthesis of palladium nanoparticles on banana leaves extract-coated graphitic carbon nitride: An efficient and reusable heterogeneous catalyst for organic transformations and antimicrobial agent. Biomass Conversion and Biorefinery, 0, , .	2.9	7
921	Regioselective Transitionâ€Metalâ€Free C(sp ²)â^'H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angewandte Chemie, 2022, 134, .	1.6	7
922	Organophotocatalytic N–O Bond Cleavage of Weinreb Amides: Mechanism-Guided Evolution of a PET to ConPET Platform. ACS Catalysis, 2022, 12, 10047-10056.	5.5	15
923	Implanted mixed ligand Ni complex of phenolic Schiff base and 2, 2' bipyridine on MCM-41 as an efficient catalyst for Suzuki–Miyaura cross-coupling reactions: a greener approach. Research on Chemical Intermediates, 2022, 48, 3701-3719.	1.3	1
924	Ligand-controlled Cobalt-Catalyzed formation of Carbon–Boron bonds: Hydroboration vs C H/B–H dehydrocoupling. Journal of Catalysis, 2022, 413, 728-734.	3.1	11
925	Porous aromatic frameworks with high Pd nanoparticles loading as efficient catalysts for the Suzuki coupling reaction. Journal of Colloid and Interface Science, 2022, 628, 1023-1032.	5.0	4
926	Ambiphilic singlet carbenes: Electron donors and acceptors. Bulletin of the Korean Chemical Society, 2022, 43, 1328-1341.	1.0	15
927	Organoaluminum derived from Schiff bases: Synthesis, characterization and catalytic performance in hydroboration. Inorganica Chimica Acta, 2022, 543, 121199.	1.2	1
928	Synthesis of low oxidation state zinc(<scp>i</scp>) complexes and their catalytic studies in the dehydroborylation of terminal alkynes. Dalton Transactions, 2022, 51, 16009-16016.	1.6	8
929	Regioselective Catalytic Carbonylation and Borylation of Alkynes with Aryldiazonium Salts Toward α-Unsubstituted β-Boryl Ketones. Chemical Science, 0, , .	3.7	6
930	Mechanistic Basis for the Iridium-Catalyzed Enantioselective Allylation of Alkenyl Boronates. Journal of the American Chemical Society, 2022, 144, 16118-16130.	6.6	8
931	Metalâ€Free Allylic Câ^'H Amination of Vinylsilanes and Vinylboronates using Silicon or Boron as a Regioselectivity Switch. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
932	Metalâ€free Allylic Câ€H Amination of Vinylsilanes and Vinylboronates using Silicon or Boron as a Regioselectivity Switch. Angewandte Chemie, 0, , .	1.6	0
933	Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect, 2022, 7, .	0.7	6
935	Silver-catalyzed synthesis of symmetrical diaryl tellurides from arylboronic acids and tellurium. New Journal of Chemistry, 0, , .	1.4	0
936	Challenges and recent advancements in the transformation of CO ₂ into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51, 9371-9423.	18.7	38
937	Enabling Suzuki–Miyaura coupling of Lewis-basic arylboronic esters with a nonprecious metal catalyst. Chemical Science, 2022, 13, 12906-12912.	3.7	5
938	Regioselective synthesis of branched alkenylborons via copper-catalyzed protoborylation of 1,4-diynes. , 2022, 52, 3.		0

#	Article	IF	CITATIONS
939	Organosulphur, organoselenium and organotellurium compounds for the development of heterogeneous and nanocatalytic systems for Suzuki coupling. Dalton Transactions, 0, , .	1.6	4
940	Recent advances in the synthesis and reactivity of MIDA boronates. Chemical Communications, 2022, 58, 13298-13316.	2.2	8
941	Anthranilamide-protected vinylboronic acid: rational monomer design for improved polymerization/transformation ability providing access to conventionally inaccessible copolymers. Chemical Science, 2022, 13, 12703-12712.	3.7	8
942	Synthesis and stereochemistry of chiral aza-boraspirobifluorenes with tetrahedral boron-stereogenic centers. Dalton Transactions, 2022, 51, 17035-17039.	1.6	4
943	Aluminiumâ€Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: Câ^'O Bond Activation. Chemistry - A European Journal, 2023, 29, .	1.7	7
944	Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
945	Development of a Commercial Manufacturing Process for Sotorasib, a First-in-Class KRAS ^{G12C} Inhibitor. Organic Process Research and Development, 2022, 26, 3115-3125.	1.3	14
946	Preparation of Dienyl Boronates by Tandem Ene–Yne Metathesis/Dienyl Isomerization: Ready Access to Diene Building Blocks for the Synthesis of Polyenes. Journal of Organic Chemistry, 2022, 87, 14078-14092.	1.7	0
947	Deaminative Arylation or Alkenylation of Aliphatic Tertiary Amines with Aryl or Alkenylboronic Acids via Nitrogen Ylides. Angewandte Chemie, 0, , .	1.6	0
949	Synthesis of Novel Key Chromophoric Intermediates via C-C Coupling Reactions. Catalysts, 2022, 12, 1292.	1.6	2
950	N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS Polymers Au, 2023, 3, 5-27.	1.7	9
951	Iron Catalysis: A New Horizon Towards Organoboronâ€mediated Câ^'C Crossâ€coupling. Chemistry - an Asian Journal, 0, , .	1.7	2
952	Facile synthesis of alkyl and aryl boronate esters enabled by carbon nanotubes supported copper catalyst. Catalysis Science and Technology, 0, , .	2.1	5
953	A dynamic reversible phenylboronic acid sensor for real-time determination of protein–carbohydrate interactions on living cancer cells. Chemical Communications, 2022, 58, 13731-13734.	2.2	3
954	Direct Suzukiâ€Miyaura Coupling of Naphthaleneâ€1,8â€diaminato (dan)â€Substituted Cyclopropylboron Compounds. Advanced Synthesis and Catalysis, 2023, 365, 682-686.	2.1	4
955	Functionalized Chromans from <i>ortho</i> -Quinone Methides and Arylallenes. Journal of Organic Chemistry, 2022, 87, 15863-15887.	1.7	3
956	Metalâ€Organic Frameworks for Catalytic Construction of Câ^'B Bond and Related Reactions. ChemCatChem, 2023, 15, .	1.8	4
957	Metal–Organic Frameworks Based on a Janus-Head Biquinoline Ligand as Catalysts in the Transformation of Carbonyl Compounds into Cyanohydrins and Alcohols. Crystal Growth and Design, 2022, 22, 7395-7404.	1.4	2

#	Article	IF	CITATIONS
958	<i>peri</i> -Acenoacene Ribbons with Zigzag BN-Doped Peripheries. Journal of the American Chemical Society, 2022, 144, 21470-21484.	6.6	20
959	Design and synthesis of astatinated benzothiazole compounds for their potential use in Targeted Alpha Therapy (TAT) strategies to treat Alzheimer's disease-associated amyloid plaques. Applied Radiation and Isotopes, 2023, 191, 110555.	0.7	0
960	Diboron Reagents in the Deoxygenation of Nitrones. Organic and Biomolecular Chemistry, 0, , .	1.5	0
961	Mapping boron catalysis onto a phosphorus cluster platform. Dalton Transactions, 2022, 51, 18329-18336.	1.6	4
962	Palladiumâ€Catalyzed Cyclizative Borylation of Allenyl Ketones through Carbene Boryl Migratory Insertion: Access to Densely Substituted Furyl Boronates. Chemistry - A European Journal, 2023, 29, .	1.7	4
963	Cu ^I Catalyzed Regio―and Stereoâ€selective Hydroboration of Ynamides: α―and βâ€Borylation vi Hydroâ€Cupration and Borylation. Asian Journal of Organic Chemistry, 2023, 12, .	^a 1.3	3
964	Hydroboration of a Diolate Complex Obtained by Carbon Dioxide Capture with Acenaphthenediimine Aluminum Hydride. Organometallics, 2023, 42, 123-131.	1.1	6
965	Mechanochemical Radical Boronation of Aryl Diazonium Salts Promoted by Sodium Chloride. European Journal of Organic Chemistry, 2023, 26, .	1.2	6
966	Interrogating Redox and Lewis Base Activations of Aminoboranes. Organometallics, 2022, 41, 3845-3851.	1.1	0
968	Synthesis of axially chiral alkenylboronates through combined copper- and palladium-catalysed atroposelective arylboration of alkynes. , 2023, 2, 140-151.		23
969	Thiopheneâ€Based Ligands for Histological Multiplex Spectral Detection of Distinct Protein Aggregates in Alzheimer's Disease. Chemistry - A European Journal, 2023, 29, .	1.7	4
970	VSe _{2–<i>x</i>} O _{<i>x</i>} @Pd Sensor for Operando Self-Monitoring of Palladium-Catalyzed Reactions. Jacs Au, 2023, 3, 468-475.	3.6	4
971	Coupling Reactions on Secondary Allylic, Propargylic, and Alkyl Carbons Using Organoborates/Ni and RMgX/Cu Reagents. Catalysts, 2023, 13, 132.	1.6	1
972	Atroposelectivity with two catalysts. , 0, , .		0
973	Comparison of Two Zinc Hydride Precatalysts for Selective Dehydrogenative Borylation of Terminal Alkynes: A Detailed Mechanistic Study. ACS Omega, 2023, 8, 3452-3460.	1.6	4
974	Research-Focused Approach for Introducing Undergraduate Students to Aromatic Organic Synthesis at a Community College. Journal of Chemical Education, 2023, 100, 572-580.	1.1	22
975	Protection of Boronic Acids Using a Tridentate Aminophenol ONO Ligand for Selective Suzuki–Miyaura Coupling. Journal of Organic Chemistry, 2023, 88, 1590-1599.	1.7	0
976	Organocatalyzed Visible Light-Mediated <i>gem</i> Borosilylcyclopropanation. Journal of Organic Chemistry, 2023, 88, 1515-1521.	1.7	2

#	Article	IF	CITATIONS
977	Aryl Boronic Acids in Columnar Stacked Coâ€crystalline Materials: Keyâ€Factors Governing the Assembly with Quinones. ChemPhysChem, 0, , .	1.0	0
978	Salt Metathesis: Tetrafluoroborate Anion Rapidly Fluoridates Organoboronic Acids to give Organotrifluoroborates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
979	Micelle-Derived Palladium Nanoparticles for Suzuki–Miyaura Coupling Reactions in Water at Room Temperature. ACS Applied Nano Materials, 2023, 6, 1592-1602.	2.4	3
980	Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. , 2023, , 733-754.		2
981	Salt Metathesis: Tetrafluoroborate Anion Rapidly Fluoridates Organoboronic Acids to give Organotrifluoroborates. Angewandte Chemie, 2023, 135, .	1.6	0
982	Recent progress on end-group chemistry of conjugated polymers based on Suzuki-Miyaura catalyst-transfer polymerization. Giant, 2023, 14, 100152.	2.5	5
983	Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant, 2023, 14, 100154.	2.5	7
984	Direct Amination of Benzylic Pinacol Boronates by an Aminoazanium. Synlett, 0, , .	1.0	Ο
985	CeO ₂ â€Nanorods atalyzed Protoboration of Alkenes and Alkynes with Bis(pinacolato)diboron. Advanced Synthesis and Catalysis, 2023, 365, 584-593.	2.1	3
986	Synthesis of 2‑Boryl Allylboronates by a Bimetallic Platinum/Zinc-Promoted Diborylation of Propargylic Amines. Synlett, 0, , .	1.0	1
987	DFT mechanistic studies of boron–silicon exchange reactions between silyl-substituted arenes and boron bromides. Physical Chemistry Chemical Physics, 2023, 25, 6714-6725.	1.3	0
988	Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. Journal of the Institute of Science and Technology, 2023, 13, 494-503.	0.3	1
989	Pretransmetalation Intermediates in Suzuki–Miyaura C–C and Carbonylative Cross-Couplings: Synthesis and Structural Authentication of Aryl- and Aroylnickel(II) Boronates. ACS Catalysis, 2023, 13, 3153-3157.	5.5	7
990	GreenMedChem: the challenge in the next decade toward eco-friendly compounds and processes in drug design. Green Chemistry, 2023, 25, 2109-2169.	4.6	11
991	Unexplored Vinylic-Substituted 5-Benzylidenethiazolidine-2,4-diones: Synthesis and DFT/NMR Stereochemical Assignment. Journal of Organic Chemistry, 2023, 88, 3724-3739.	1.7	0
992	Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. Journal of the American Chemical Society, 2023, 145, 7075-7083.	6.6	11
993	Lithium Aryltrifluoroborate as a Catalyst for Halogen Transfer. ACS Catalysis, 2023, 13, 3788-3793.	5.5	3
994	New Ligandless Câ^'H Activation Procedure for The Decoration of Câ€3 Position of 1Hâ€Indazole Derivatives. ChemistrySelect, 2023, 8, .	0.7	0

#	Article	IF	CITATIONS
995	Electrochemical Borylation of Electronâ€Deficient Alkenes and Allenoates. European Journal of Organic Chemistry, 2023, 26, .	1.2	5
996	Distal scaffold flexibility accelerates ligand substitution kinetics in manganese(<scp>i</scp>) tricarbonyls: flexible thianthrene <i>versus</i> rigid anthracene scaffolds. Dalton Transactions, 2023, 52, 4028-4037.	1.6	0
997	DFT Studies on Ligand Controlled Highly Selective Copper atalyzed Borylations of Allenes. Asian Journal of Organic Chemistry, 0, , .	1.3	0
998	Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 6823-6837.	6.6	22
999	DYNAMIC REVERSIBLE NETWORKS AND DEVELOPMENT OF SELF-HEALING RUBBERS: A CRITICAL REVIEW. Rubber Chemistry and Technology, 2023, 96, 175-195.	0.6	2
1000	Rh atalyzed Direct Decarbonylative Borylation of Carboxylic Acids. Chemistry - A European Journal, 2023, 29, .	1.7	1
1001	Recent Development in the Catalytic Applications of Pdâ€NHC (NHC=Nâ€Heterocyclic Carbene) Compounds in Amide Câ^'N Activation Reactions. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	2
1002	A PPh ₃ modified-chitosan supported Pd nanocatalyst for heterogeneous Suzuki–Miyaura cross coupling reactions. New Journal of Chemistry, 2023, 47, 7410-7415.	1.4	2
1003	Photocatalytic Alkyl Radical Addition Tandem Oxidation of Alkenyl Borates. Journal of Organic Chemistry, 2023, 88, 4325-4333.	1.7	2
1004	α-Arylsulfonyloxyacrylates: attractive <i>O</i> -centered electrophiles for synthesis of α-substituted acrylates <i>via</i> Pd-catalysed Suzuki reactions. RSC Advances, 2023, 13, 9180-9185.	1.7	1
1005	Research Progress in <i>Ortho</i> -C—H Bond Functionalization of Rylene Diimides. Chinese Journal of Organic Chemistry, 2023, 43, 1000.	0.6	0
1006	A highly efficient and facile one pot synthesis of novel 1-glycopyranosyl-4-biaryl butenone derivatives. Synthetic Communications, 2023, 53, 640-647.	1.1	0
1007	Selective Electroreductive Hydroboration of Olefins with B ₂ pin ₂ . Journal of Organic Chemistry, 2023, 88, 4569-4580.	1.7	4
1008	Pretransmetalation Intermediates in Suzuki–Miyaura Cross-Couplings: Synthesis of C _{sp³} -, C _{sp²- and C_{sp}-Organopalladium(II) Boronates. Inorganic Chemistry, 2023, 62, 5054-5057.}	1.9	3
1009	Copper-Catalyzed Borylation of Styrenes by 1,8-Diaminonaphthalene-Protected Diboronic Acid. Organic Letters, 2023, 25, 2093-2097.	2.4	1
1010	Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects. Synthesis, 2024, 56, 611-638.	1.2	2
1011	Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O. Monatshefte F¼r Chemie, 2023, 154, 397-405.	0.9	1
1012	Facile Access to Cyclopropylboronates via Stereospecific Deborylative Cyclization: A Leaving Groupâ€Assisted Activation of Geminal Diborons. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9

#	Article	IF	CITATIONS
1013	Facile Access to Cyclopropylboronates via Stereospecific Deborylative Cyclization: A Leaving Groupâ€Assisted Activation of Geminal Diborons. Angewandte Chemie, 2023, 135, .	1.6	0
1014	Synthesis of α-Haloboronates by the Halogenation of <i>gem</i> -Diborylalkanes via Tetracoordinate Boron Species. Organic Letters, 2023, 25, 2928-2933.	2.4	4
1015	Recent Progress in Arylmetalative Cyclization/Annulation of Functionalized Alkynes with Organoboranes. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	2
1016	Automated, Capsule-Based Suzuki–Miyaura Cross Couplings. Organic Letters, 2024, 26, 2708-2712.	2.4	1
1018	How to Develop Organometallic Catalytic Reactions in the Pharmaceutical Industry. Organic Process Research and Development, 2023, 27, 831-846.	1.3	5
1024	Palladium-Catalyzed Stereoselective Defluoroborylation of <i>gem</i> -Difluoroalkenes with Unsymmetrical Diboron: Access to Tetrasubstituted Monofluorinated Vinyl–B(dan) Derivatives. Organic Letters, 2023, 25, 4406-4410.	2.4	1
1026	Solvent-switchable regioselective 1,2- or 1,6-addition of quinones with boronic acids. Chemical Communications, 0, , .	2.2	0
1030	Übergangsmetallkatalysierte Kupplungsreaktionen. , 2023, , 615-751.		0
1034	7.2. Reactivity Studies for the Synthesis of 5-Phenylthiophene-2-carbaldehyde by a Suzuki–Miyaura Coupling. , 2016, , 554-558.		0
1037	Allylcopper(I) Isomerization-Enabled Copper(I)-Catalyzed Intramolecular Alkylboration of Terminal Allenes. Springer Theses, 2023, , 113-137.	0.0	0
1041	Metal-catalysed C–C bond formation at cyclopropanes. Nature Reviews Chemistry, 2023, 7, 548-560.	13.8	4
1042	Electrochemical synthesis and transformation of organoboron compounds. Organic Chemistry Frontiers, 2023, 10, 3361-3377.	2.3	3
1043	Synthesis of complex aryl MIDA boronates by Rh-catalyzed [2+2+2] cycloaddition. Chemical Communications, 2023, 59, 7759-7762.	2.2	3
1060	Aromatization of cyclic hydrocarbons <i>via</i> thioether elimination reaction. Chemical Communications, 2023, 59, 11232-11235.	2.2	1
1069	Advances in Organoboron Chemistry. , 2023, , .		0
1103	Arylazo sulfones: multifaceted photochemical reagents and beyond. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1108	Recent advances on palladium incorporated clay-based heterogeneous catalyst for carbon–carbon coupling reactions. Monatshefte FÃ1⁄4r Chemie, 2024, 155, 1-15.	0.9	0
1114	Saponin: a green and efficient natural surfactant for Suzuki–Miyaura cross-couplings of heteroaryl substrates in aqueous media at ambient conditions. Green Chemistry, 2024, 26, 1393-1398.	4.6	0

ARTICLE

IF CITATIONS