CITATION REPORT List of articles citing

DOI: 10.1039/c3nr05462d Nanoscale, 2014, 6, 1134-43.

Source: https://exaly.com/paper-pdf/58982658/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
70	Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. <i>MBio</i> , 2014 , 5, e01363-14	7.8	109
69	The binding force of the staphylococcal adhesin SdrG is remarkably strong. <i>Molecular Microbiology</i> , 2014 , 93, 356-68	4.1	85
68	Inhibition of the adhesion of Escherichia coli to human epithelial cells by carbohydrates. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2014 , 4, 1-5	3.4	11
67	Nanoscale adhesion forces of Pseudomonas aeruginosa type IV Pili. ACS Nano, 2014 , 8, 10723-33	16.7	106
66	A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. <i>Advances in Colloid and Interface Science</i> , 2014 , 212, 45-63	14.3	42
65	Structural insights into bacterial recognition of intestinal mucins. <i>Current Opinion in Structural Biology</i> , 2014 , 28, 23-31	8.1	62
64	Differences in adhesion of A. thiooxidans and A. ferrooxidans on chalcopyrite as revealed by atomic force microscopy with bacterial probes. <i>Minerals Engineering</i> , 2014 , 61, 9-15	4.9	16
63	Nanotechnology in dentistry: prevention, diagnosis, and therapy. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6371-94	7.3	60
62	Binding forces of Streptococcus mutans P1 adhesin. <i>ACS Nano</i> , 2015 , 9, 1448-60	16.7	47
61	Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. <i>Nanotechnology</i> , 2015 , 26, 062001	3.4	19
60	Sticky microbes: forces in microbial cell adhesion. <i>Trends in Microbiology</i> , 2015 , 23, 376-82	12.4	118
59	Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces. <i>Journal of Dental Research</i> , 2015 , 94, 1078-84	8.1	18
58	Single-virus force spectroscopy unravels molecular details of virus infection. <i>Integrative Biology</i> (United Kingdom), 2015 , 7, 620-32	3.7	16
57	Stochastic binding of Staphylococcus aureus to hydrophobic surfaces. <i>Soft Matter</i> , 2015 , 11, 8913-9	3.6	26
56	Understanding forces in biofilms. <i>Nanomedicine</i> , 2015 , 10, 1219-21	5.6	5
55	Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy. <i>Nanoscale</i> , 2015 , 7, 20267-76	7.7	14
54	Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	22

(2018-2016)

53	Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 915, 129-56	3.6	6
52	Biophysics of Infection. Advances in Experimental Medicine and Biology, 2016,	3.6	3
51	Colonization of Polystyrene Microparticles by Vibrio crassostreae: Light and Electron Microscopic Investigation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	76
50	Oligomerized backbone pilin helps piliated Lactococcus lactis to withstand shear flow. <i>Biofouling</i> , 2016 , 32, 911-23	3.3	4
49	Force Sensitivity in Saccharomyces cerevisiae Flocculins. <i>MSphere</i> , 2016 , 1,	5	15
48	Mechanical Strength and Inhibition of the Staphylococcus aureus Collagen-Binding Protein Cna. <i>MBio</i> , 2016 , 7,	7.8	50
47	Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. <i>Scientific Reports</i> , 2016 , 6, 33909	4.9	41
46	Characterizing the effect of polymyxin B antibiotics to lipopolysaccharide on Escherichialtoli surface using atomic force microscopy. <i>Journal of Molecular Recognition</i> , 2017 , 30, e2605	2.6	15
45	Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. <i>Nanoscale</i> , 2017 , 9, 17643-17666	7.7	25
44	Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium. <i>Scientific Reports</i> , 2017 , 7, 10326	4.9	25
43	Recent advances in studying single bacteria and biofilm mechanics. <i>Advances in Colloid and Interface Science</i> , 2017 , 247, 573-588	14.3	30
42	Determination of the nano-scaled contact area of staphylococcal cells. <i>Nanoscale</i> , 2017 , 9, 10084-10093	37.7	19
41	Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. <i>Scientific Reports</i> , 2017 , 7, 4369	4.9	19
40	Cell-cycle-specific Cellular Responses to Sonoporation. <i>Theranostics</i> , 2017 , 7, 4894-4908	12.1	28
39	Novel Molecular Insights about Lactobacillar Sortase-Dependent Piliation. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	16
38	Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. <i>FEMS Microbiology Reviews</i> , 2018 , 42, 259-272	15.1	41
37	Single Molecule Force Spectroscopy Reveals Two-Domain Binding Mode of Pilus-1 Tip Protein RrgA of Streptococcus pneumoniae to Fibronectin. <i>ACS Nano</i> , 2018 , 12, 549-558	16.7	24
36	Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 167, 44-5	<u> </u>	20

35	Bacterial Adhesion to Ultrafiltration Membranes: Role of Hydrophilicity, Natural Organic Matter, and Cell-Surface Macromolecules. <i>Environmental Science & Environmental Scien</i>	10.3	34
34	Adhesion of Lactobacillus rhamnosus GG surface biomolecules to milk proteins. <i>Food Hydrocolloids</i> , 2018 , 82, 296-303	10.6	12
33	Nanowire Arrays as Force Sensors with Super-Resolved Localization Position Detection: Application to Optical Measurement of Bacterial Adhesion Forces. <i>Small Methods</i> , 2018 , 2, 1700411	12.8	7
32	Single-molecule atomic force microscopy studies of microbial pathogens. <i>Current Opinion in Biomedical Engineering</i> , 2019 , 12, 1-7	4.4	14
31	Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. <i>Cell Surface</i> , 2019 , 5, 100031	4.8	7
30	Direct measurement of interaction forces between a yeast cell and a microbubble using atomic force microscopy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 583, 123963	5.1	4
29	Nanoprobe-based force spectroscopy as a versatile platform for probing the mechanical adhesion of bacteria. <i>Nanoscale</i> , 2019 , 11, 7648-7655	7.7	3
28	spectroscopic analysis of GG flow on an abiotic surface reveals a role for nutrients in biofilm development. <i>Biofouling</i> , 2019 , 35, 494-507	3.3	6
27	Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. <i>Frontiers in Microbiology</i> , 2019 , 10, 896	5.7	17
26	Experimental models to study intestinal microbes-mucus interactions in health and disease. <i>FEMS Microbiology Reviews</i> , 2019 , 43, 457-489	15.1	58
25	Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. <i>Journal of Colloid and Interface Science</i> , 2019 , 546, 192-210	9.3	69
24	In vivo adhesion force measurements of Chlamydomonas on model substrates. <i>Soft Matter</i> , 2019 , 15, 3027-3035	3.6	13
23	Surface Coatings Modulate the Differences in the Adhesion Forces of Eukaryotic and Prokaryotic Cells as Detected by Single Cell Force Microscopy. <i>International Journal of Biomaterials</i> , 2019 , 2019, 702	24259	2
22	What makes bacterial pathogens so sticky?. <i>Molecular Microbiology</i> , 2020 , 113, 683-690	4.1	10
21	Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. <i>Frontiers in Pharmacology</i> , 2020 , 11, 517165	5.6	3
20	The microbial adhesive arsenal deciphered by atomic force microscopy. <i>Nanoscale</i> , 2020 , 12, 23885-238	9 6 7	2
19	Switchable Adhesion of to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. <i>Langmuir</i> , 2020 , 36, 12555-12562	4	9
18	The importance of force in microbial cell adhesion. <i>Current Opinion in Colloid and Interface Science</i> , 2020 , 47, 111-117	7.6	8

CITATION REPORT

17	How Microbes Use Force To Control Adhesion. <i>Journal of Bacteriology</i> , 2020 , 202,	3.5	8
16	AFM in cellular and molecular microbiology. <i>Cellular Microbiology</i> , 2021 , 23, e13324	3.9	10
15	Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. Journal of Esthetic and Restorative Dentistry, 2021,	3.5	0
14	Bacterial adhesion to biomaterials: What regulates this attachment? A review. <i>Japanese Dental Science Review</i> , 2021 , 57, 85-96	6.8	8
13	The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. <i>Cell Surface</i> , 2021 , 7, 100048	4.8	2
12	Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. Journal of Materials Science and Technology, 2022 , 99, 82-100	9.1	10
11	Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. <i>PLoS ONE</i> , 2016 , 11, e0151824	3.7	40
10	The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin. <i>PLoS ONE</i> , 2016 , 11, e0152053	3.7	13
9	Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous AgO/SiO and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film <i>RSC Advances</i> , 2021 , 11, 32775-32791	3.7	6
8	FACTORS DETERMING THE ADHESIVE CAPACITY OF LACTOBACILLUS BACTERIA. <i>Postepy Mikrobiologii</i> , 2019 , 56, 196-204	0.4	1
7	Atomic Force Microscopy: A New Look at Microbes. 2020 , 1, 1-111		
6	Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review <i>Advances in Colloid and Interface Science</i> , 2022 , 304, 102665	14.3	1
5	Data_Sheet_2.zip. 2019 ,		
4	Data_Sheet_1.docx. 2019 ,		
3	DataSheet_1.pdf. 2020 ,		
2	AFM Force Spectroscopy of Living Bacteria. 2020 , 53-73		O
1	The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. 2022 , 14,		O