Cell based therapies for ischemic stroke: From basic scie

Progress in Neurobiology 115, 92-115 DOI: 10.1016/j.pneurobio.2013.11.007

Citation Report

#	Article	IF	CITATIONS
1	Functional Improvement of Focal Cerebral Ischemia Injury by Subdural Transplantation of Induced Pluripotent Stem Cells with Fibrin Clue. Stem Cells and Development, 2010, 19, 1757-1767.	1.1	185
2	Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Progenitors via Small-Molecule Activation of WNT Signaling. Stem Cell Reports, 2014, 3, 804-816.	2.3	271
3	The next revolution in stroke care. Expert Review of Neurotherapeutics, 2014, 14, 1307-1314.	1.4	30
4	Stem cells for neonatal stroke- the future is here. Frontiers in Cellular Neuroscience, 2014, 8, 207.	1.8	24
5	Neurovascular Recovery via Cotransplanted Neural and Vascular Progenitors Leads to Improved Functional Restoration after Ischemic Stroke in Rats. Stem Cell Reports, 2014, 3, 101-114.	2.3	40
6	Regulatory Role of the JNK-STAT1/3 Signaling in Neuronal Differentiation of Cultured Mouse Embryonic Stem Cells. Cellular and Molecular Neurobiology, 2014, 34, 881-893.	1.7	37
7	Neurogenin 2 Converts Mesenchymal Stem Cells into a Neural Precursor Fate and Improves Functional Recovery after Experimental Stroke. Cellular Physiology and Biochemistry, 2014, 33, 847-858.	1.1	18
8	Neurorestorative Therapy for Stroke. Frontiers in Human Neuroscience, 2014, 8, 382.	1.0	143
9	Editorial for the Third Pangu Stroke Conference. Experimental Neurology, 2015, 272, 1-3.	2.0	2
10	Synthesis and Evaluation of 3â€{furo[2,3 <i>â€b</i>]pyridinâ€3â€yl)â€4â€(1Hâ€indolâ€3â€yl)â€maleimides as N <scp>GSK</scp> â€3 <i>β</i> Inhibitors and Antiâ€lschemic Agents. Chemical Biology and Drug Design, 2015, 86, 746-752.	ovel 1.5	7
11	9. Zelltherapien in der Regenerativen Medizin. , 2015, , 291-341.		1
12	Clinical neurorestorative progress in stroke. Journal of Neurorestoratology, 0, , 63.	1.1	9
13	Models and mechanisms of vascular dementia. Experimental Neurology, 2015, 272, 97-108.	2.0	225
14	Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Scientific Reports, 2015, 5, 9621.	1.6	45
15	Cell Tracking Technologies for Acute Ischemic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1090-1099.	2.4	16
17	Transplantation of Adipose-Derived Stem Cells in Stroke. , 2015, , 173-196.		0
18	Spatiotemporal PET Imaging of Dynamic Metabolic Changes After Therapeutic Approaches of Induced Pluripotent Stem Cells, Neuronal Stem Cells, and a Chinese Patent Medicine in Stroke. Journal of Nuclear Medicine, 2015, 56, 1774-1779.	2.8	18
19	MRI/SPECT/Fluorescent Triâ€Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. Advanced Functional Materials, 2015, 25, 1024-1034.	7.8	102

#	Article	IF	CITATIONS
20	Protosappanin B protects PC12 cells against oxygen–glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation. European Journal of Pharmacology, 2015, 751, 13-23.	1.7	24
21	Opportunities and Challenges: Stem Cellâ€Based Therapy for the Treatment of Ischemic Stroke. CNS Neuroscience and Therapeutics, 2015, 21, 337-347.	1.9	66
22	CXCR4+CD45â ^{~,} BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain, Behavior, and Immunity, 2015, 45, 98-108.	2.0	33
23	G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Experimental Neurology, 2015, 272, 135-144.	2.0	77
24	Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells. American Journal of Neuroradiology, 2015, 36, 1063-1068.	1.2	4
25	Applications of the Keap1–Nrf2 system for gene and cell therapy. Free Radical Biology and Medicine, 2015, 88, 350-361.	1.3	41
26	Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Experimental Neurology, 2015, 272, 78-87.	2.0	107
28	Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Experimental Neurology, 2015, 272, 170-180.	2.0	44
29	Caveolae: molecular insights and therapeutic targets for stroke. Expert Opinion on Therapeutic Targets, 2015, 19, 633-650.	1.5	34
30	Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Translational Stroke Research, 2015, 6, 421-429.	2.3	31
31	Exploring the role of MKK7 in excitotoxicity and cerebral ischemia: a novel pharmacological strategy against brain injury. Cell Death and Disease, 2015, 6, e1854-e1854.	2.7	29
32	Effects of Postconditioning on Neurogenesis and Angiogenesis During the Recovery Phase After Focal Cerebral Ischemia. Stroke, 2015, 46, 2691-2694.	1.0	42
33	Perspective for Stroke and Brain Injury Research: Mechanisms and Potential Therapeutic Targets. CNS Neuroscience and Therapeutics, 2015, 21, 301-303.	1.9	16
34	Immune interventions in stroke. Nature Reviews Neurology, 2015, 11, 524-535.	4.9	296
35	Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Frontiers of Medicine, 2015, 9, 20-29.	1.5	15
36	Intra-arterial Infusion of Autologous Bone Marrow Mononuclear Stem Cells in Subacute Ischemic Stroke Patients. Frontiers in Neurology, 2016, 7, 228.	1.1	28
37	Stem Cell Therapy and Administration Routes After Stroke. Translational Stroke Research, 2016, 7, 378-387.	2.3	78
38	The Dose of Intravenously Transplanted Bone Marrow Stromal Cells Determines the Therapeutic Effect on Vascular Remodeling in a Rat Model of Ischemic Stroke. Cell Transplantation, 2016, 25,	1.2	18

#	Article	IF	CITATIONS
39	Cell therapy for cerebral hemorrhage: Five year follow-up report. Experimental and Therapeutic Medicine, 2016, 12, 3535-3540.	0.8	23
40	Anti-inflammatory Effect of Mesenchymal Stromal Cell Transplantation and Quercetin Treatment in a Rat Model of Experimental Cerebral Ischemia. Cellular and Molecular Neurobiology, 2016, 36, 1023-1034.	1.7	33
41	White matter injury in ischemic stroke. Progress in Neurobiology, 2016, 141, 45-60.	2.8	196
42	Safety and efficacy of cell therapies administered in the acute and subacute stages after stroke: a meta-analysis. Regenerative Medicine, 2016, 11, 725-741.	0.8	5
43	Safety and Therapeutic Potential of M2 Macrophages in Stroke Treatment. Cell Transplantation, 2016, 25, 1461-1471.	1.2	73
44	A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Translational Stroke Research, 2016, 7, 548-561.	2.3	70
45	Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Translational Stroke Research, 2016, 7, 521-534.	2.3	34
46	Dental Stem Cells: Their Potential in Neurogenesis and Angiogenesis. Pancreatic Islet Biology, 2016, , 217-241.	0.1	0
47	Dental Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	2
48	Inflammatory Disequilibrium in Stroke. Circulation Research, 2016, 119, 142-158.	2.0	190
49	Stem and Progenitor Cell-Based Therapy of the Central Nervous System: Hopes, Hype, and Wishful Thinking. Cell Stem Cell, 2016, 18, 174-188.	5.2	184
50	The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 2017, 157, 247-272.	2.8	529
51	Cholinergic Protection in Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2017, , 433-457.	0.1	1
52	Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?. Experimental Gerontology, 2017, 94, 73-77.	1.2	17
53	Stem Cell Recipes of Bone Marrow and Fish: Just What the Stroke Doctors Ordered. Stem Cell Reviews and Reports, 2017, 13, 192-197.	5.6	14
54	Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells and Development, 2017, 26, 554-565.	1.1	29
55	O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cellular and Molecular Neurobiology, 2017, 37, 1465-1475.	1.7	19
56	Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Scientific Reports, 2017, 7, 42582.	1.6	69

#	Article	IF	CITATIONS
57	Expression of Circulating miR-17-92 Cluster and HDAC9 Gene in Atherosclerotic Patients with Unstable and Stable Carotid Plaques. Genetic Testing and Molecular Biomarkers, 2017, 21, 402-405.	0.3	5
58	Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats. Stem Cell Research and Therapy, 2017, 8, 112.	2.4	58
59	Repetitive and Prolonged Omega-3 Fatty Acid Treatment after Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery. Cell Transplantation, 2017, 26, 555-569.	1.2	30
60	Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Progress in Neurobiology, 2017, 157, 49-78.	2.8	127
61	Potential Mechanisms of Transplanted Cell-Mediated Recovery After Stroke. , 2017, , 273-288.		0
62	Cell therapies administered in the chronic phase after stroke: a meta-analysis examining safety and efficacy. Regenerative Medicine, 2017, 12, 91-108.	0.8	3
63	Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Progress in Neurobiology, 2017, 158, 94-131.	2.8	193
64	Mesenchymal Stem Cells Overexpressing Interleukin-10 Promote Neuroprotection in Experimental Acute Ischemic Stroke. Molecular Therapy - Methods and Clinical Development, 2017, 6, 102-111.	1.8	110
65	Mesenchymal stem cells attenuate MRIâ€identifiable injury, protect white matter, and improve longâ€term functional outcomes after neonatal focal stroke in rats. Journal of Neuroscience Research, 2017, 95, 1225-1236.	1.3	35
66	Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Research Reviews, 2017, 34, 39-50.	5.0	46
67	Stem Cell Therapy in Stroke. Translational Medicine Research, 2017, , 465-489.	0.0	0
68	Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. International Journal of Molecular Sciences, 2017, 18, 2135.	1.8	297
69	lmaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model. PLoS ONE, 2017, 12, e0184630.	1.1	8
70	Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Research and Therapy, 2017, 8, 163.	2.4	46
71	Strategies to Improve the Migration of Mesenchymal Stromal Cells in Cell Therapy. Translational Neuroscience and Clinics, 2017, 3, 159-175.	0.1	5
72	Cell-Based and Exosome Therapy in Diabetic Stroke. Stem Cells Translational Medicine, 2018, 7, 451-455.	1.6	42
73	Interleukin-1 receptor antagonist-mediated neuroprotection by umbilical cord-derived mesenchymal stromal cells following transplantation into a rodent stroke model. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	23
74	Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology, 2018, 134, 293-301.	2.0	15

#	Article	IF	CITATIONS
75	Stem Cell Transplants in the Aged Stroke Brain: Microenvironment Factors. Springer Series in Translational Stroke Research, 2018, , 47-71.	0.1	0
76	Mesenchymal Stromal Cell Therapy of Stroke. Springer Series in Translational Stroke Research, 2018, , 217-237.	0.1	3
77	Current Perspectives Regarding Stem Cell-based Therapy for Ischemic Stroke. Current Pharmaceutical Design, 2018, 24, 3332-3340.	0.9	12
78	Human UCB-MSCs treatment upon intraventricular hemorrhage contributes to attenuate hippocampal neuron loss and circuit damage through BDNF-CREB signaling. Stem Cell Research and Therapy, 2018, 9, 326.	2.4	58
79	Multiple Combination of <i>Angelica gigas</i> Extract and Mesenchymal Stem Cells Enhances Therapeutic Effect. Biological and Pharmaceutical Bulletin, 2018, 41, 1748-1756.	0.6	6
80	Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomedicine and Pharmacotherapy, 2018, 108, 1005-1014.	2.5	44
81	Wharton's Jelly-Derived Mesenchymal Stem Cell Transplantation in a Patient with Hypoxic-Ischemic Encephalopathy. Cell Transplantation, 2018, 27, 1425-1433.	1.2	17
82	Evaluation of ex vivo produced endothelial progenitor cells for autologous transplantation in primates. Stem Cell Research and Therapy, 2018, 9, 14.	2.4	15
83	Activated protein C, protease activated receptor 1, and neuroprotection. Blood, 2018, 132, 159-169.	0.6	94
84	Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2165-2178.	2.4	51
85	Intrathecal Injection of Allogenic Bone Marrow-Derived Mesenchymal Stromal Cells in Treatment of Patients with Severe Ischemic Stroke: Study Protocol for a Randomized Controlled Observer-Blinded Trial. Translational Stroke Research, 2019, 10, 170-177.	2.3	34
86	Drug-like delivery methods of stem cells as biologics for stroke. Expert Opinion on Drug Delivery, 2019, 16, 823-833.	2.4	13
87	Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Molecular Biology Reports, 2019, 46, 5257-5272.	1.0	48
88	Central Nervous System Drug Delivery After Ischemic or Hemorrhagic Stroke. , 2019, , 473-500.		2
89	Impact of Cholesterol on Ischemic Stroke in Different Human-Like Hamster Models: A New Animal Model for Ischemic Stroke Study. Cells, 2019, 8, 1028.	1.8	5
90	Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage. Frontiers in Neuroscience, 2019, 13, 462.	1.4	11
91	Overexpression of BRCA1 in Neural Stem Cells Enhances Cell Survival and Functional Recovery after Transplantation into Experimental Ischemic Stroke. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	14
92	Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet?. Stem Cells Translational Medicine, 2019, 8, 983-988.	1.6	99

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
93	Cell-Based Therapies for Stroke: Promising Solution or Dead End? Mesenchymal Stem Cells and Comorbidities in Preclinical Stroke Research. Frontiers in Neurology, 2019, 10, 332.	1.1	18
94	Combining Human Umbilical Cord Blood Cells With Erythropoietin Enhances Angiogenesis/Neurogenesis and Behavioral Recovery After Stroke. Frontiers in Neurology, 2019, 10, 357.	1.1	22
95	Comparative Analysis of the Effects of Intravenous Administration of Placental Mesenchymal Stromal Cells and Neural Progenitor Cells Derived from Induced Pluripotent Cells on the Course of Acute Ischemic Stroke in Rats. Bulletin of Experimental Biology and Medicine, 2019, 166, 558-566.	0.3	3
96	A novel therapeutic approach using peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation. Scientific Reports, 2019, 9, 16819.	1.6	13
97	Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. European Journal of Medicinal Chemistry, 2019, 162, 132-146.	2.6	49
98	Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Reviews and Reports, 2019, 15, 176-193.	5.6	17
99	Ultrasoundâ€ŧargeted microbubble enhances migration and therapeutic efficacy of marrow mesenchymal stem cell on rat middle cerebral artery occlusion stroke model. Journal of Cellular Biochemistry, 2019, 120, 3315-3322.	1.2	10
100	Role of tollâ€like receptors 2 and 4 in the neuroprotective effects of bone marrow–derived mesenchymal stem cells in an experimental model of ischemic stroke. Journal of Cellular Biochemistry, 2019, 120, 8053-8060.	1.2	8
101	Stem cellâ€based cell therapy for neuroprotection in stroke: A review. Journal of Cellular Biochemistry, 2019, 120, 8849-8862.	1.2	33
102	Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders. Molecular Neurobiology, 2019, 56, 307-318.	1.9	10
103	Oligodendrocyte precursor cells transplantation protects blood–brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death and Disease, 2020, 11, 9.	2.7	64
104	Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: Behavioral and histological readouts and mechanistic insights into stem cell therapy. Stem Cells Translational Medicine, 2020, 9, 203-220.	1.6	17
105	Exosomes from miRNAâ€126â€modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neuroscience and Therapeutics, 2020, 26, 1255-1265.	1.9	74
106	Protosappanin A Maintains Neuronal Mitochondrial Homeostasis through Promoting Autophagic Degradation of Bax. ACS Chemical Neuroscience, 2020, 11, 4223-4230.	1.7	6
107	Intracerebral transplantation of HLAâ€homozygous human iPSCâ€derived neural precursors ameliorates the behavioural and pathological deficits in a rodent model of ischaemic stroke. Cell Proliferation, 2020, 53, e12884.	2.4	8
108	Enhancing Brain Plasticity to Promote Stroke Recovery. Frontiers in Neurology, 2020, 11, 554089.	1.1	42
109	Intracerebral Transplants of GMP-Grade Human Umbilical Cord-Derived Mesenchymal Stromal Cells Effectively Treat Subacute-Phase Ischemic Stroke in a Rodent Model. Frontiers in Cellular Neuroscience, 2020, 14, 546659.	1.8	14
110	Cell Therapies under Clinical Trials and Polarized Cell Therapies in Pre-Clinical Studies to Treat Ischemic Stroke and Neurological Diseases: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 6194.	1.8	21

#	Article	IF	CITATIONS
111	Recent Advances in Cell-Based Therapies for Ischemic Stroke. International Journal of Molecular Sciences, 2020, 21, 6718.	1.8	45
112	Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neuroscience and Therapeutics, 2020, 26, 603-615.	1.9	49
113	Stageâ€specific regulation of Gremlin1 on the differentiation and expansion of human urinary induced pluripotent stem cells into endothelial progenitors. Journal of Cellular and Molecular Medicine, 2020, 24, 8018-8030.	1.6	2
114	Multimodal Therapeutic Effects of Neural Precursor Cells Derived from Human-Induced Pluripotent Stem Cells through Episomal Plasmid-Based Reprogramming in a Rodent Model of Ischemic Stroke. Stem Cells International, 2020, 2020, 1-17.	1.2	16
115	Dedifferentiated human umbilical cord mesenchymal stem cell reprogramming of endogenous hSDF-1α expression participates in neural restoration in hypoxic-ischemic brain damage rats. Genes and Diseases, 2021, 8, 331-343.	1.5	0
116	The Impact of Aging and Age-Related Comorbidities on Stroke Outcome in Animal Models and Humans. Contemporary Clinical Neuroscience, 2021, , 261-282.	0.3	Ο
117	Combined transplantation of neural stem cells and bone marrow mesenchymal stem cells promotes neuronal cell survival to alleviate brain damage after cardiac arrest via microRNA-133b incorporated in extracellular vesicles. Aging, 2021, 13, 262-278.	1.4	11
118	Major histocompatibility complex Class II-based therapy for stroke. Brain Circulation, 2021, 7, 37.	0.7	3
119	Phase I study on the safety and preliminary efficacy of allogeneic mesenchymal stem cells in hypoxic-ischemic encephalopathy. World Journal of Experimental Medicine, 2021, 11, 17-29.	0.9	2
120	Conversion of Reactive Astrocytes to Induced Neurons Enhances Neuronal Repair and Functional Recovery After Ischemic Stroke. Frontiers in Aging Neuroscience, 2021, 13, 612856.	1.7	22
121	Stem cell treatment improves post stroke neurological outcomes: a comparative study in male and female rats. Stroke and Vascular Neurology, 2021, 6, 519-527.	1.5	6
122	New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics, 2021, 13, 757.	2.0	19
123	Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells International, 2021, 2021, 1-24.	1.2	29
124	Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Current Stem Cell Research and Therapy, 2022, 17, 113-125.	0.6	9
125	Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases?. Cells, 2021, 10, 1992.	1.8	18
126	Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury. Cell Transplantation, 2021, 30, 096368972110357.	1.2	19
127	Bone marrow-derived NCS-01 cells for ischemic stroke. Brain Circulation, 2021, 7, 44.	0.7	2
128	The unsolved mystery of hippocampal cholinergic neurostimulating peptide: A potent cholinergic regulator. Brain Circulation, 2021, 7, 29.	0.7	1

#	Article	IF	CITATIONS
129	Neural Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1201, 79-91.	0.8	32
130	NGF and TERT Co-Transfected BMSCs Improve the Restoration of Cognitive Impairment in Vascular Dementia Rats. PLoS ONE, 2014, 9, e98774.	1.1	17
131	Transplantation of Induced Pluripotent Stem Cells Alleviates Cerebral Inflammation and Neural Damage in Hemorrhagic Stroke. PLoS ONE, 2015, 10, e0129881.	1.1	56
132	Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study. Molecules and Cells, 2016, 39, 337-344.	1.0	5
133	Transplantation of bFGF-expressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke. Oncotarget, 2017, 8, 102067-102077.	0.8	30
134	Intrahippocampal Transplantation of Undifferentiated Human Chorionic- Derived Mesenchymal Stem Cells Does Not Improve Learning and Memory in the Rat Model of Sporadic Alzheimer Disease. Current Stem Cell Research and Therapy, 2019, 14, 184-190.	0.6	6
135	Electroacupuncture induces acute changes in cerebral cortical miRNA profile, improves cerebral blood flow and alleviates neurological deficits in a rat model of stroke. Neural Regeneration Research, 2016, 11, 1940.	1.6	22
136	Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Medical Gas Research, 2016, 6, 194.	1.2	21
137	Regeneration after stroke: Stem cell transplantation and trophic factors. Brain Circulation, 2016, 2, 86.	0.7	15
138	Intra-arterial delivery of mesenchymal stem cells. Brain Circulation, 2016, 2, 114.	0.7	25
139	Endothelial Progenitor Cell Therapy in Stroke. , 2015, , 125-161.		0
140	Tracking of Administered Progenitor Cells in Brain Injury and Stroke by Magnetic Resonance Imaging. , 2015, , 187-212.		1
141	Is the Cerebral Intra-Arterial Heparin Flushing (IAHF), Beneficial for the Treatment of Ischemic Stroke?. , 2016, 2, .		0
142	Modification of Bone Marrow Stem Cells for Homing and Survival During Cerebral Ischemia. , 2017, , 201-239.		0
143	Co-transplantation Strategies and Combination Therapies for Stroke. , 2017, , 167-200.		0
144	Strategies to improve the migration of mesenchymal stromal cells in cell therapy. Translational Neuroscience and Clinics, 2017, 3, 159-175.	0.1	0
145	Review article: DOES INTRA-ARTERIAL HEPARIN FLUSHING (IAHF) CAN ACTUALLY INCREASE MANUAL MUSCLE TEST (MMT) SCORE IN CHRONIC ISCHEMIC STROKE PATIENTS?. Folia Medica Indonesiana, 2017, 52, 148.	0.1	0
146	The place of neurotrophic therapy in the concept of stimulation of secondary angiogenesis in acute focal cerebral ischemia. Medicina Sʹogodnì ì Zavtra, 2019, 85, 18-26.	0.0	0

#	Article	IF	CITATIONS
147	miR‑210 enhances mesenchymal stem cell‑modulated neural precursor cell migration. Molecular Medicine Reports, 2020, 21, 2405-2414.	1.1	0
148	Nanoengineering of stem cells for neural regenerative medicine. , 2020, , 159-211.		0
150	MEMBRANE-RECEPTOR COMPLEX DYSFUNCTION AS A NEW TARGET FOR THE NEUROTROPHIC THERAPY OF ISCHEMIC STROKE. ScienceRise, 2020, , 40-45.	0.1	0
151	Transplantation of bone marrow stromal cells enhances infiltration and survival of CNP and Schwann cells to promote axonal sprouting following complete transection of spinal cord in adult rats. American Journal of Translational Research (discontinued), 2014, 6, 224-35.	0.0	3
152	Neuroprotective effects of systemic cerebral endothelial cell transplantation in a rat model of cerebral ischemia. American Journal of Translational Research (discontinued), 2016, 8, 2343-53.	0.0	2
154	Stem Cell Therapy for Neuroprotection in the Growth-Restricted Newborn. Stem Cells Translational Medicine, 2022, 11, 372-382.	1.6	4
155	Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. Biology, 2022, 11, 147.	1.3	36
156	Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines, 2022, 10, 737.	1.4	6
157	Transplantation of Human Umbilical Cord Mesenchymal Stem Cells-Derived Neural Stem Cells Pretreated with Neuregulin1β Ameliorate Cerebral Ischemic Reperfusion Injury in Rats. Biomolecules, 2022, 12, 428.	1.8	16
161	Bone Marrow-derived Mesenchymal Stem Cells Promote Microglia/Macrophage M2 Polarization and Enhance Neurogenesis in the Acute and Chronic Stages after Ischemic Stroke. Clinical Complementary Medicine and Pharmacology, 2022, , 100040.	0.9	Ο
162	Neuroprotective effects of neural stem cells pretreated with neuregulin1Î ² on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation. Neural Regeneration Research, 2023, 18, 618.	1.6	3
163	Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells, 2022, 11, 4129.	1.8	2
164	The factors affecting neurogenesis after stroke and the role of acupuncture. Frontiers in Neurology, 0, 14, .	1.1	5
165	Research hotspots and frotiers of stem cells in stroke: A bibliometric analysis from 2004 to 2022. Frontiers in Pharmacology, 0, 14, .	1.6	4
166	Biomaterial-Based bFGF Delivery for Nerve Repair. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-13.	1.9	0
170	Current Stem Cell-Based Clinical Trials and Protective Phenotypic Conversion Cell Therapies Against Ischemic stroke. , 2024, , .		0