Supramolecular catalysis. Part 1: non-covalent interacti modifying homogeneous catalysts

Chemical Society Reviews 43, 1660-1733 DOI: 10.1039/c3cs60027k

Citation Report

#	Article	IF	CITATIONS
1	Metallacrown Ether Catalysts Containing Phosphine–Phosphite Polyether Ligands for Rhâ€Catalyzed Asymmetric Hydrogenation – Enhancements in Activity and Enantioselectivity. European Journal of Organic Chemistry, 2014, 2014, 6713-6719.	1.2	17
2	Hydrogen Bonding Behavior of Amide-Functionalized α-Diimine Palladium Complexes. Organometallics, 2014, 33, 7176-7192.	1.1	14
3	Designing Functional Metal–Organic Frameworks by Imparting a Hexanuclear Copper-Based Secondary Building Unit Specific Properties: Structural Correlation With Magnetic and Photocatalytic Activity. Crystal Growth and Design, 2014, 14, 6391-6398.	1.4	87
4	Supramolecular catalysis. Part 2: artificial enzyme mimics. Chemical Society Reviews, 2014, 43, 1734-1787.	18.7	775
5	Rotaxane Catalysts. ACS Catalysis, 2014, 4, 4490-4497.	5.5	164
6	Enantiotoposâ€Selective Cï£;H Oxygenation Catalyzed by a Supramolecular Ruthenium Complex. Angewandte Chemie - International Edition, 2015, 54, 691-695.	7.2	98
7	Supramolecular Phosphatases Formed by the Selfâ€Assembly of the Bis(Zn ²⁺ –Cyclen) Complex, Copper(II), and Barbital Derivatives in Water. Chemistry - an Asian Journal, 2014, 9, 2831-2841.	1.7	12
8	A Firstâ€Principles Examination of the Asymmetric Induction Model in the Binap/Rh ^I â€Catalysed 1,4â€Addition of Phenylboronic Acid to Cyclic Enones by Density Functional Theory Calculations. Chemistry - A European Journal, 2014, 20, 12982-12987.	1.7	16
9	Metal–ligand bifunctional reactivity and catalysis of protic N-heterocyclic carbene and pyrazole complexes featuring β-NH units. Chemical Communications, 2014, 50, 14290-14300.	2.2	145
10	Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem, 2014, 6, 3455-3463.	1.8	86
11	Delicate modulated assembly of a new kind of trinuclear copper(<scp>ii</scp>) motif governed by N-containing agents. CrystEngComm, 2014, 16, 9792-9799.	1.3	9
12	Ring-opening of enantiomerically pure oxa-containing heterocycles with phosphorus nucleophiles. RSC Advances, 2014, 4, 58440-58447.	1.7	9
13	General acid and base bifunctional graphene oxide for cooperative catalysis. Journal of Materials Chemistry A, 2014, 2, 10239-10243.	5.2	17
14	Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science and Technology, 2014, 4, 1899.	2.1	100
15	Mechanistic Insights on Cooperative Asymmetric Multicatalysis Using Chiral Counterions. Journal of Organic Chemistry, 2014, 79, 7600-7606.	1.7	44
16	"Backdoor Induction―of Chirality: Asymmetric Hydrogenation with Rhodium(I) Complexes of Triphenylphosphane-Substituted β-Turn Mimetics. Organometallics, 2014, 33, 4005-4015.	1.1	21
17	Enantioselective Construction of 2,3â€Dihydrofuro[2,3―b]quinolines through Supramolecular Hydrogen Bonding Interactions. Chemistry - A European Journal, 2014, 20, 13522-13526.	1.7	27
18	The structural landscape of heteroaryl-2-imidazoles: competing halogen- and hydrogen-bond interactions. CrystEngComm, 2014, 16, 7218.	1.3	66

	CITATION R	EPORT	
#	ARTICLE Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene	IF 6.6	CITATIONS
19	Polýmerization/Copolymerization. Journal of the American Chemical Society, 2014, 136, 10460-10469.	0.0	105
20	Pyridylâ€Decorated Selfâ€Folding Heptaamide Cavitands as Ligands in the Rhodiumâ€Catalyzed Hydrogenation of Norbornadiene. European Journal of Organic Chemistry, 2014, 2014, 4276-4282.	1.2	5
21	Stimuli-responsive Cooperative Catalysts Based on Dynamic Conformational Changes toward Spatiotemporal Control of Chemical Reactions. Chemistry Letters, 2014, 43, 1524-1531.	0.7	31
23	Palladium-catalyzed enantioselective allylation in the presence of phosphoramidites derived from (S) Tj ETQq1 1	0.784314 0.4	rgBT /Overlo
24	Stimuli-responsive Cooperative Catalysts Based on Dynamic Conformational Changes toward Spatiotemporal Control of Chemical Reactions. Chemistry Letters, 2015, 44, 223-223.	0.7	0
25	Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction. Journal of Chemical Physics, 2015, 143, 224107.	1.2	19
26	On the Transfer of Chirality, Thermodynamic Stability, and Folding Characteristics of Stereoisomeric Gated Baskets. European Journal of Organic Chemistry, 2015, 2015, 6832-6840.	1.2	5
27	Twisted Baskets. Chemistry - A European Journal, 2015, 21, 3550-3555.	1.7	9
28	Chiral Dawsonâ€Type Hybrid Polyoxometalate Catalyzes Enantioselective Diels–Alder Reactions. Chemistry - A European Journal, 2015, 21, 16512-16516.	1.7	21
29	Computational Investigation of the 1,4â€Rh Shift in the [(Ph ₂ PCH ₂ CH ₂ PPh ₂)Rh]â€Catalyzed Alkyne Arylation Reaction. European Journal of Organic Chemistry, 2015, 2015, 7114-7121.	1.2	8
30	Aromatic Interactions in Organocatalyst Design: Augmenting Selectivity Reversal in Iminium Ion Activation. Chemistry - A European Journal, 2015, 21, 10031-10038.	1.7	24
31	Supramolecularly Regulated Ligands for Asymmetric Hydroformylations and Hydrogenations. Chemistry - A European Journal, 2015, 21, 11417-11426.	1.7	46
32	Synergistic Stereocontrol in the Enantioselective Rutheniumâ€Catalyzed Sulfoxidation of Spirodithiolaneâ€Indolones. Chemistry - A European Journal, 2015, 21, 10310-10313.	1.7	12
34	Iron/BrÃ,nsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivityâ€Determining Interactions. Chemistry - A European Journal, 2015, 21, 10020-10030.	1.7	28
35	Unveiling the Importance of ï€â€Stacking in Borrowingâ€Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry - A European Journal, 2015, 21, 15263-15271.	1.7	64
36	Synthesis of a 4â€Vinyltetrahydrocarbazole by Palladiumâ€Catalyzed Asymmetric Allylic Alkylation of Indoleâ€Containing Allylic Carbonates. European Journal of Organic Chemistry, 2015, 2015, 6669-6678.	1.2	16
37	Towards Supramolecular Catalysis with Small Selfâ€assembled Peptides. Israel Journal of Chemistry, 2015, 55, 711-723.	1.0	45
38	Crystal structure of a mononuclear Ru ^{II} complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy–tpy)] ⁺ . Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1017-1021.	0.2	2

ARTICLE

39 Editorial (Thematic Issue: Supramolecular Catalysis: Non-Covalent Interactions in the Organic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742

40	Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities. Beilstein Journal of Organic Chemistry, 2015, 11, 2584-2590.	1.3	19
41	The Challenge of Linear (<i>E</i>)â€Enones in the Rhâ€Catalyzed, Asymmetric 1,4â€Addition Reaction of Phenylboronic Acid: A DFT Computational Analysis. Chemistry - A European Journal, 2015, 21, 3079-3086.	1.7	17
42	Self-assembly of a library of polyborate chiral anions for asymmetric catalytic quinoline reduction. Tetrahedron Letters, 2015, 56, 3481-3485.	0.7	6
43	Enantiopure bisphosphine ligands with appended crown ether groups as regulation sites for Rh-mediated hydrogenations. Tetrahedron, 2015, 71, 4490-4494.	1.0	24
44	Cooperative Catalysis: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Enecarbamates Using Ruthenium/Phosphoramide Hybrid Catalysts. Angewandte Chemie - International Edition, 2015, 54, 4060-4064.	7.2	51
46	Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs. Chemical Communications, 2015, 51, 3399-3402.	2.2	20
47	Remote Control of Helical Chirality: Thermodynamic Resolution of a Racemic Mixture of CTV Units by Remote Stereogenic Centers. Organic Letters, 2015, 17, 500-503.	2.4	16
48	Supramolecular Catalysis in the Synthesis of Substituted 1 <i>H</i> â€Tetrazoles from Isonitriles by a Selfâ€Assembled Hexameric Capsule. Asian Journal of Organic Chemistry, 2015, 4, 217-220.	1.3	35
49	A fluorescent heteroditopic hemicryptophane cage for the selective recognition of choline phosphate. Chemical Communications, 2015, 51, 2679-2682.	2.2	33
50	Nickelâ€Catalyzed Asymmetric Transfer Hydrogenation of Hydrazones and Other Ketimines. Angewandte Chemie - International Edition, 2015, 54, 5112-5116.	7.2	138
51	Double-Stereodifferentiation in Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair. Organic Letters, 2015, 17, 3754-3757.	2.4	45
52	Functionalization of Sn/S Clusters with Hetero- and Polyaromatics. Organometallics, 2015, 34, 3264-3271.	1.1	22
53	Cavitands with inwardly and outwardly directed functional groups. Tetrahedron Letters, 2015, 56, 4824-4828.	0.7	5
54	Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator. Chemical Communications, 2015, 51, 13213-13216.	2.2	74
55	NOBIN-based chiral phosphite-type ligands and their application in asymmetric catalysis. Tetrahedron Letters, 2015, 56, 4756-4761.	0.7	13
56	Nitro-Assisted BrÃ,nsted Acid Catalysis: Application to a Challenging Catalytic Azidation. Journal of the American Chemical Society, 2015, 137, 9555-9558.	6.6	69
57	Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis. Dalton Transactions, 2015, 44, 13504-13512.	1.6	11

#	Article	IF	CITATIONS
58	Variation in crystalline architectures through supramolecular interactions in copper(II) complexes with tridentate N ₂ O donor Schiff bases. Journal of Coordination Chemistry, 2015, 68, 2520-2538.	0.8	8
59	Computational Study on the Mechanism of the Acceleration of 1,3-Dipolar Cycloaddition inside Cucurbit[6]uril. ACS Catalysis, 2015, 5, 2445-2451.	5.5	60
60	Substrate selective amide coupling driven by encapsulation of a coupling agent within a self-assembled hexameric capsule. Chemical Communications, 2015, 51, 1658-1661.	2.2	39
61	A Metal–Organic Tetrahedron as a Redox Vehicle to Encapsulate Organic Dyes for Photocatalytic Proton Reduction. Journal of the American Chemical Society, 2015, 137, 3967-3974.	6.6	193
62	Synthesis and Cavity Size Effect of Pd-Containing Macrocycle Catalyst for Efficient Intramolecular Hydroamination of Allylurethane. Organic Letters, 2015, 17, 1664-1667.	2.4	18
63	Highly Enantioselective SPINOLâ€Derived Phosphoric Acid Catalyzed Transfer Hydrogenation of Diverse C=N ontaining Heterocycles. European Journal of Organic Chemistry, 2015, 2015, 3344-3351.	1.2	46
64	Relative affinity of bambus[6]uril towards halide ions: A DFT/GIAO approach in the gas phase, and in the presence of the solvent employing discrete and discrete-continuum models. Computational and Theoretical Chemistry, 2015, 1064, 35-44.	1.1	6
65	Design of supramolecular chiral ligands for asymmetric metal catalysis. Tetrahedron Letters, 2015, 56, 2043-2048.	0.7	28
66	Chiral Gold Phosphate Catalyzed Tandem Hydroamination/Asymmetric Transfer Hydrogenation Enables Access to Chiral Tetrahydroquinolines. Journal of Organic Chemistry, 2015, 80, 4754-4759.	1.7	43
67	Self-Assembled Organometallic Nickel Complexes as Catalysts for Selective Dimerization of Ethylene into 1-Butene. Organometallics, 2015, 34, 1139-1142.	1.1	36
68	Structure-fluorescence relationship: interplay of non-covalent interactions in homologous 1,3,5-triaryl-2-pyrazolines. New Journal of Chemistry, 2015, 39, 4359-4367.	1.4	22
69	First ligand of phosphite nature based on 5,10,15,20-tetrakis(4-hydroxyphenyl)porphin. Russian Journal of Organic Chemistry, 2015, 51, 1202-1205.	0.3	2
70	Synthesis and structures of a chiral phosphine–phosphoric acid ligand and its rhodium(I) complexes. Tetrahedron: Asymmetry, 2015, 26, 1245-1250.	1.8	6
71	Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric aldol reaction. Chemical Communications, 2015, 51, 17386-17389.	2.2	26
72	Intermolecular C–H activation with an Ir-METAMORPhos piano-stool complex – multiple reaction steps at a reactive ligand. Chemical Communications, 2015, 51, 15200-15203.	2.2	14
73	Urea-containing metal-organic frameworks as heterogeneous organocatalysts. Journal of Materials Chemistry A, 2015, 3, 20408-20415.	5.2	54
74	Asymmetric Hydroformylation of Heterocyclic Olefins Mediated by Supramolecularly Regulated Rhodium-Bisphosphite Complexes. Journal of Organic Chemistry, 2015, 80, 10397-10403.	1.7	37
75	One-pot synthesis of tetrahydro-4H-chromenes by supramolecular catalysis in water. RSC Advances, 2015, 5, 79405-79412.	1.7	24

#	Article	IF	CITATIONS
76	Ring Closure To Form Metal Chelates in 3D Fragment-Based de Novo Design. Journal of Chemical Information and Modeling, 2015, 55, 1844-1856.	2.5	18
77	New 2-methyl benzimidazole based zinc carboxylates: Supramolecular structures, biomimetic proton conductivities and luminescent properties. Inorganica Chimica Acta, 2015, 437, 167-176.	1.2	14
79	Mechanistic Insights on Cooperative Catalysis through Computational Quantum Chemical Methods. ACS Catalysis, 2015, 5, 480-503.	5.5	88
80	Supramolecular Encapsulation of Neutral Diazoacetate Esters and Catalyzed 1,3â€Dipolar Cycloaddition Reaction by a Selfâ€Assembled Hexameric Capsule. ChemCatChem, 2015, 7, 291-296.	1.8	34
81	Synthesis and physico-chemical properties of the first water soluble Cu(<scp>ii</scp>)@hemicryptophane complex. Organic and Biomolecular Chemistry, 2015, 13, 2157-2161.	1.5	11
82	Diastereoselective Nitroaldol Reaction Catalyzed by Binuclear Copper(II) Complexes in Aqueous Medium. ChemPlusChem, 2015, 80, 209-216.	1.3	12
83	Gated molecular baskets. Chemical Society Reviews, 2015, 44, 500-514.	18.7	80
84	Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand. Chemical Science, 2015, 6, 1027-1034.	3.7	75
85	Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent. Beilstein Journal of Organic Chemistry, 2016, 12, 2495-2502.	1.3	7
86	Tandem Catalysis of an Aldol-â€~Click' Reaction System within a Molecular Hydrogel. Molecules, 2016, 21, 744.	1.7	7
87	Die Kationâ€Ï€â€Wechselwirkung in der Katalyse mit niedermolekularen Verbindungen. Angewandte Chemie, 2016, 128, 12784-12814.	1.6	49
88	Gold Functionalized Platinum M ₁₂ L ₂₄ â€Nanospheres and Their Application in Cyclization Reactions. Advanced Synthesis and Catalysis, 2016, 358, 1509-1518.	2.1	36
89	Metal Recognition Driven by Weak Interactions: A Case Study in Solvent Extraction. ChemPhysChem, 2016, 17, 2112-2117.	1.0	35
90	The Cation–̀ Interaction in Smallâ€Molecule Catalysis. Angewandte Chemie - International Edition, 2016, 55, 12596-12624.	7.2	199
91	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie - International Edition, 2016, 55, 9017-9020.	7.2	106
92	Introverted Phosphorusâ€Au Cavitands for Catalytic Use. European Journal of Organic Chemistry, 2016, 2016, 813-820.	1.2	28
93	Chiral Phosphate in Rhodium atalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.	1.7	10
94	An Introverted Bisâ€Au Cavitand and Its Catalytic Dimerization of Terminal Alkynes. European Journal of Organic Chemistry, 2016, 2016, 2514-2521.	1.2	32

#	Article	IF	CITATIONS
96	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie, 2016, 128, 9163-9166.	1.6	20
97	Chiral amido- and diamidophosphites with a peripheral pyridine ring in Pd-catalyzed asymmetric allylation. Russian Chemical Bulletin, 2016, 65, 2278-2285.	0.4	6
98	A supramolecularly tunable chiral diphosphine ligand: application to Rh and Ir-catalyzed enantioselective hydrogenation. Chemical Science, 2016, 7, 4594-4599.	3.7	28
99	Computational and 31 P NMR studies of moisture-metastable cyclic diaminophosphine oxide preligands. Polyhedron, 2016, 105, 123-136.	1.0	3
100	Cofactor-Controlled Chirality of Tropoisomeric Ligand. Organometallics, 2016, 35, 1956-1963.	1.1	26
101	Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 2016, 52, 5777-5787.	2.2	72
102	"Pnicogen bonds―or "chalcogen bonds― exploiting the effect of substitution on the formation of Pâ∢ Se noncovalent bonds. Physical Chemistry Chemical Physics, 2016, 18, 13820-13829.	1.3	56
103	Deciphering Selectivity in Organic Reactions: A Multifaceted Problem. Accounts of Chemical Research, 2016, 49, 1070-1078.	7.6	31
104	Tandem reactions in self-sorted catalytic molecular hydrogels. Chemical Science, 2016, 7, 5568-5572.	3.7	81
105	Synthesis of Diphenyl Pyridazinone-based flexible system for conformational studies through weak noncovalent interactions: Application in DNA binding. Journal of Chemical Sciences, 2016, 128, 555-564.	0.7	8
106	Hydration of aromatic alkynes catalyzed by a self-assembled hexameric organic capsule. Catalysis Science and Technology, 2016, 6, 6031-6036.	2.1	34
107	Metal–organic redox vehicles to encapsulate organic dyes for photocatalytic protons and carbon dioxide reduction. Inorganic Chemistry Frontiers, 2016, 3, 1256-1263.	3.0	9
108	Characterization of Nâ⊄O non-covalent interactions involving σ-holes: "electrostatics―or "dispersion― Physical Chemistry Chemical Physics, 2016, 18, 29946-29954.	1.3	14
109	Redoxâ€Active M ₈ L ₆ Cubic Hosts with Tetraphenylethylene Faces Encapsulate Organic Dyes for Lightâ€Driven H ₂ Production. Chemistry - A European Journal, 2016, 22, 18107-18114.	1.7	47
110	Cooperative Iron–Oxygen–Copper Catalysis in the Reduction of Benzaldehyde under Water-Gas Shift Reaction Conditions. ACS Catalysis, 2016, 6, 7855-7864.	5.5	14
111	Hemi bonds and noncovalent interactions in the cational systems (XH2P: SHY)+. Chemical Physics Letters, 2016, 659, 126-132.	1.2	2
112	Synthesis of Cr(III) Salen Complexes as Supramolecular Catalytic Systems for Ringâ€Opening Reactions of Epoxides. ChemistrySelect, 2016, 1, 1789-1794.	0.7	4
113	A concerted two-prong approach to the <i>in situ</i> allosteric regulation of bifunctional catalysis. Chemical Science, 2016, 7, 6674-6683.	3.7	15

#	Article	IF	CITATIONS
114	Two-Dimensional Supramolecular Polymers Embodying Large Unilamellar Vesicles in Water. Journal of the American Chemical Society, 2016, 138, 11312-11317.	6.6	18
115	Supramolecularly fine-regulated enantioselective catalysts. Chemical Communications, 2016, 52, 11038-11051.	2.2	38
116	Efficient epoxide isomerization within a self-assembled hexameric organic capsule. RSC Advances, 2016, 6, 83505-83509.	1.7	37
117	Correlating the Activity of Rhodium(I)-Phosphite-Lariat Ether Styrene Hydroformylation Catalysts with Alkali Metal Cation Binding through NMR Spectroscopic Titration Methods. Organometallics, 2016, 35, 2609-2620.	1.1	7
118	Mono and dimetallic pyrene-imidazolylidene complexes of iridium(<scp>iii</scp>) for the deuteration of organic substrates and the C–C coupling of alcohols. Dalton Transactions, 2016, 45, 14154-14159.	1.6	20
119	Helix–helix inversion of an optically-inactive π-conjugated foldamer triggered by concentration changes of a single enantiomeric guest leading to a change in the helical stability. Chemical Communications, 2016, 52, 11752-11755.	2.2	23
120	Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn ²⁺ -cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane). Chemical and Pharmaceutical Bulletin, 2016, 64, 451-464.	0.6	10
121	Supramolecular Activation of Hydrogen Peroxide in the Selective Sulfoxidation of Thioethers by a Selfâ€Assembled Hexameric Capsule. Advanced Synthesis and Catalysis, 2016, 358, 3443-3449.	2.1	33
122	Effect of Directional Hydrogen Bonding on the Self-Assembly of Anisotropically-Shaped Macroions. ChemistrySelect, 2016, 1, 4345-4349.	0.7	12
123	Catalysis Within the Self-Assembled Resorcin[4]arene Hexamer. , 2016, , 203-234.		17
123 124	Catalysis Within the Self-Assembled Resorcin [4] arene Hexamer. , 2016, , 203-234. Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967.	1.0	17 2
	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage.	1.0 0.8	
124	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967. An alliance between chiral phosphite-type compounds and porphyrins in asymmetric palladium		2
124 125	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967. An alliance between chiral phosphite-type compounds and porphyrins in asymmetric palladium catalysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1472-1474. Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions.	0.8	2
124 125 126	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967. An alliance between chiral phosphite-type compounds and porphyrins in asymmetric palladium catalysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1472-1474. Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560. A tri-aromatic amide hemicryptophane host: synthesis and acetylcholine binding. Tetrahedron Letters,	0.8 2.9	2 1 3
124 125 126 127	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967. An alliance between chiral phosphite-type compounds and porphyrins in asymmetric palladium catalysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1472-1474. Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560. A tri-aromatic amide hemicryptophane host: synthesis and acetylcholine binding. Tetrahedron Letters, 2016, 57, 5112-5115. Tuning the structure of 1,3,5-benzene tricarboxamide self-assemblies through stereochemistry.	0.8 2.9 0.7	2 1 3 14
124 125 126 127 128	Capturing Hydrophobic Trifluoroiodomethane in Water into an M ₄ L ₆ Cage. European Journal of Inorganic Chemistry, 2016, 2016, 4964-4967. An alliance between chiral phosphite-type compounds and porphyrins in asymmetric palladium catalysis. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1472-1474. Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560. A tri-aromatic amide hemicryptophane host: synthesis and acetylcholine binding. Tetrahedron Letters, 2016, 57, 5112-5115. Tuning the structure of 1,3,5-benzene tricarboxamide self-assemblies through stereochemistry. Chemical Communications, 2016, 52, 13369-13372.	0.8 2.9 0.7 2.2	2 1 3 14 21

ARTICLE IF CITATIONS Incorporation of various alcohol substituents to a metalloporphyrin platform for dramatic changes 132 1.8 3 in morphologies of microcrystals. Inorganic Chemistry Communication, 2016, 69, 40-44. The intricacies of the stacking interaction in a pyrrole \hat{e} (pyrrole system. Structural Chemistry, 2016, 27, 1.0 1107-1120. Synthesis of a novel chitosan-based Ce(IV) complex with proteolytic activity in vitro toward edible 134 5.11 biological proteins. Carbohydrate Polymers, 2016, 140, 154-162. The amino side chains do matter: chemoselectivity in the one-pot three-component synthesis of 2-amino-4H-chromenes by supramolecular catalysis with amino-appended Î²-cyclodextrins (ACDs) in water. Catalysis Science and Technology, 2016, 6, 4283-4293. Three is company: dual intramolecular hydrogen-bond enabled carboxylic acid active in ring-opening 136 1.9 19 polymerization. Polymer Chemistry, 2016, 7, 1111-1120. An Energetic Guide for Estimating Trifluoromethyl Cation Donor Abilities of Electrophilic Trifluoromethylating Reagents: Computations of X–CF₃ Bond Heterolytic Dissociation Enthalpies. Journal of Organic Chemistry, 2016, 81, 3119-3126. 1.7 Palladium-Based Supramolecularly Regulated Catalysts for Asymmetric Allylic Substitutions. 138 1.1 22 Organometallics, 2016, 35, 528-533. Cooperativity in Noncovalent Interactions. Chemical Reviews, 2016, 116, 2775-2825. 23.0 680 Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates. Journal of 140 59 6.6 the American Chemical Society, 2016, 1'38, 4852-4859. Supramolecularly assisted modulations in chromophoric properties and their possible applications: 141 an overview. Journal of Materials Chemistry C, 2016, 4, 2685-2706. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and 142 6.6 262 substrates for highly efficient reactions. Nature Chemistry, 2016, 8, 225-230. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 2016, 116, 254 2023-2078. Anionic phosph(in)ito ($\hat{a} \in \alpha$ phosphoryl \hat{e}) ligands: Non-classical $\hat{a} \in \alpha$ actor \hat{e} -phosphane-type ligands in 144 9.5 43 coordination chemistry. Coordination Chemistry Reviews, 2016, 308, 97-116. "Breathing―Motion of a Modulable Molecular Cavity. Chemistry - A European Journal, 2017, 23, 145 1.7 6495-6498. Metal-induced supramolecular chirality inversion of small self-assembled molecules in solution. 146 2.2 28 Chemical Communications, 2017, 53, 1945-1948. Chiral Titanium Coordination Assemblies: Robust Cooperative Selfâ€Supported Catalysts for Asymmetric Ring Opening of <i>meso</i>â€Epoxides with Aliphatic Amines. Advanced Synthesis and Catalysis, 2017, 147 14 359, 494-505. Cation-i€ Assisted Synthesis of Alkyl Aryl Ethers<i>via</i>C-CN Functionalization of 1,2-Dicyano 148 0.7 8 Pyrazines. ChemistrySelect, 2017, 2, 1944-1949. Emergence of Hemicryptophanes: From Synthesis to Applications for Recognition, Molecular 149 Machines, and Supramolecular Catalysis. Chemical Reviews, 2017, 117, 4900-4942.

#	Article	IF	CITATIONS
150	Inclusion complexes of organic salts with β-cyclodextrin as organocatalysts for CO ₂ cycloaddition with epoxides. RSC Advances, 2017, 7, 14721-14732.	1.7	23
151	De novo endo-functionalized organic cages as cooperative multi-hydrogen-bond-donating catalysts. Chemical Communications, 2017, 53, 3524-3526.	2.2	11
152	Platinumâ€Based Organometallic Folders for the Recognition of Electronâ€Deficient Aromatic Substrates. Chemistry - A European Journal, 2017, 23, 7272-7277.	1.7	11
153	Copolymerization of Ethylene with Acrylate Monomers by Amide-Functionalized α-Diimine Pd Catalysts. Organometallics, 2017, 36, 1873-1879.	1.1	34
154	Nickelâ€Cornered Molecular Rectangles as Polycyclic Aromatic Hydrocarbon Receptors. Chemistry - A European Journal, 2017, 23, 6675-6681.	1.7	54
155	Synthesis, Resolution, and Absolute Configuration of Chiral Tris(2-pyridylmethyl)amine-Based Hemicryptophane Molecular Cages. Journal of Organic Chemistry, 2017, 82, 6082-6088.	1.7	18
156	Asymmetric Supramolecular Organocatalysis: A Complementary Upgrade to Organocatalysis. European Journal of Organic Chemistry, 2017, 2017, 5460-5483.	1.2	24
157	Complex electronic interplay of σ-hole and π-hole interactions in crystals of halogen substituted 1,3,4-oxadiazol-2(3H)-thiones. CrystEngComm, 2017, 19, 3485-3498.	1.3	18
158	Pnicogen bond interaction between PF2Y (Y = –Câ~°N, –Nâ~°C) with NH3, CH3OH, H2O, and HF molecules. Structural Chemistry, 2017, 28, 1843-1851.	1.0	3
159	Does Confinement Always Lead to Thermodynamically and/or Kinetically Favorable Reactions? A Case Study using Diels–Alder Reactions within ExBox ⁺⁴ and CB[7]. ChemPhysChem, 2017, 18, 2162-2170.	1.0	24
160	Reversible formation and cleavage of Pt→Ag dative bonds in a pre-organized cavity of a luminescent heteropolynuclear platinum(<scp>ii</scp>) complex. Chemical Communications, 2017, 53, 6405-6408.	2.2	20
161	Selfâ€Assembled Chiral Nanostructures as Scaffolds for Asymmetric Reactions. Chemistry - A European Journal, 2017, 23, 9439-9450.	1.7	48
162	Cold Catalysts with Polyaromatic-NHC ligands. Enhancement of Activity by Addition of Pyrene. Organometallics, 2017, 36, 1447-1451.	1.1	34
163	Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646.	13.7	583
164	Binding of ion pairs in a thiourea-functionalized self-folding cavitand. Organic Chemistry Frontiers, 2017, 4, 1244-1249.	2.3	4
165	Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Physical Chemistry Chemical Physics, 2017, 19, 1181-1189.	1.3	34
166	Lewis Acid–Base Interaction ontrolled <i>ortho</i> â€Selective Câ^'H Borylation of Aryl Sulfides. Angewandte Chemie, 2017, 129, 1517-1521.	1.6	27
167	Lewis Acid–Base Interactionâ€Controlled <i>ortho</i> â€Selective Câ~'H Borylation of Aryl Sulfides. Angewandte Chemie - International Edition, 2017, 56, 1495-1499.	7.2	127

ARTICLE IF CITATIONS Fluorine Interactions in the 3D Packing of $\hat{a} \in \mathbb{C}Pt(|V| < sub > 2 < /sub > \hat{a} \in \mathbb{O}$ rganometallic Molecular Materials: 1.4 4 Structural and Computational Approaches. Crystal Growth and Design, 2017, 17, 409-413. Supramolecular bidentate phosphine ligand scaffolds from deconstructed Hamilton receptors. 2.2 Chemical Communications, 2017, 53, 561-564. Spontaneous Si–C bond cleavage in (Triphos^{Si})-nickel complexes. Dalton Transactions, 170 1.6 16 2017, 46, 907-917. Palladiumâ€Catalysed Crossâ€Coupling Reactions Controlled by Noncovalent Znâ‹...â‹...â‹...N Interactions. Chemistry - A European Journal, 2017, 23, 5033-5043. Electronic Effects of Aromatic Rings on the Catalytic Activity of Dioxidomolybdenum(VI)â€"Hydrazone 1.0 51 Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 999-1006. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization. Inorganic Chemistry, 2017, 56, 12448-12456. Fluorinated elements of Group 15 as pnictogen bond donor sites. Journal of Fluorine Chemistry, 2017, 0.9 71 203, 62-74. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chemical Reviews, 2017, 117, 13461-13501. 23.0 238 Rational Optimization of Supramolecular Catalysts for the Rhodiumâ€Catalyzed Asymmetric 1.6 6 Hydrogenation Reaction. Angewandte Chemie, 2017, 129, 13236-13240. The phase stability of terephthalic acid under high pressure. Chemical Physics Letters, 2017, 689, 56-61. 1.2 Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. 6.6 189 Journal of the American Chemical Society, 2017, 139, 16548-16555. Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cationâ~'Ï€ Interactions. Journal of Organic Chemistry, 2017, 82, 9418-9424. 1.7 Rational Optimization of Supramolecular Catalysts for the Rhodium atalyzed Asymmetric 180 7.2 30 Hydrogenation Reaction. Angewandte Chemie - International Edition, 2017, 56, 13056-13060. Gold(I) Metallo†weezers for the Recognition of Functionalized Polycyclic Aromatic Hydrocarbons by 1.7 44 Combined π–Ï€ Stacking and Hâ€Bonding. Chemistry - A European Journal, 2017, 23, 14439-14444. Using weak interactions to control Câ€"H mono-nitration of indolines. Chemical Communications, 2017, 2.2 51 53, 11368-11371. Modulating the Performance of an Asymmetric Organocatalyst by Tuning Its Spatial Environment in a Metalâ& Organic Framework. Journal of the American Chemical Society, 2017, 139, 13936-13943. <i>meta</i>â€Selective Câ[^]H Borylation of Benzylamineâ€, Phenethylamineâ€, and Phenylpropylamineâ€Derived 1.6 43 Amides Enabled by a Single Anionic Ligand. Angewandte Chemie, 2017, 129, 13536-13540. Sulfoxidation inside a <i>C</i>₃-Vanadium(V) Bowl-Shaped Catalyst. ACS Catalysis, 2017, 7,

CITATION REPORT

7340-7345.

168

169

171

172

174

176

178

179

182

#	Article	IF	CITATIONS
186	<i>meta</i> ‧elective Câ^'H Borylation of Benzylamineâ€, Phenethylamineâ€, and Phenylpropylamineâ€Derived Amides Enabled by a Single Anionic Ligand. Angewandte Chemie - International Edition, 2017, 56, 13351-13355.	7.2	142
187	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additiveâ€Controlled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie - International Edition, 2017, 56, 10564-10568.	7.2	25
188	Estimation of non-covalent C Hâ<ï€, ï€â<ï€ (chelate ring) and hydrogen bonding interactions in vanadium(V) Schiff base complexes: Methylene spacer regulated variation in self-assembly. Inorganica Chimica Acta, 2017, 467, 212-220.	1.2	11
189	Efficient active-template synthesis of calix[6]arene-based oriented pseudorotaxanes and rotaxanes. Organic and Biomolecular Chemistry, 2017, 15, 6753-6763.	1.5	13
190	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additive ontrolled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie, 2017, 129, 10700-10704.	1.6	11
191	Catalytic Intramolecular Cycloaddition Reactions by Using a Discrete Molecular Architecture. Chemistry - A European Journal, 2017, 23, 15704-15712.	1.7	35
192	Quantitative investigation of C–Hâ<ï€ and other intermolecular interactions in a series of crystalline N-(substituted phenyl)-2-naphthamide derivatives. CrystEngComm, 2017, 19, 5473-5491.	1.3	13
193	Controlling ligand binding for tunable and switchable catalysis: cation-modulated hemilability in pincer-crown ether ligands. Dalton Transactions, 2017, 46, 11987-12000.	1.6	52
194	Air-oxidation from sulfur to sulfone-bridged Schiff-base macrocyclic complexes showing enhanced antimicrobial activities. Scientific Reports, 2017, 7, 15881.	1.6	6
195	Supramolecular Design of the Trinuclear Silver(I) and Copper(I) Metal Pyrazolates Complexes with Ruthenium Sandwich Compounds via Intermolecular Metalâ~ï€ Interactions. Crystal Growth and Design, 2017, 17, 6770-6779.	1.4	28
196	New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses. Journal of Molecular Structure, 2017, 1131, 201-211.	1.8	23
197	Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coordination Chemistry Reviews, 2017, 345, 54-72.	9.5	250
198	Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chemical Science, 2017, 8, 789-794.	3.7	36
199	Reconstituting redox active centers of heme-containing proteins with biomineralized gold toward peroxidase mimics with strong intrinsic catalysis and electrocatalysis for H2O2 detection. Biosensors and Bioelectronics, 2017, 87, 1036-1043.	5.3	18
200	Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chemical Science, 2017, 8, 864-877.	3.7	283
201	Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Chemical Science, 2017, 8, 2091-2100.	3.7	32
202	Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions. Nucleic Acids Research, 2017, 45, gkx025.	6.5	32
203	Halogen-Bonded Co-Crystals of Aromatic N-oxides: Polydentate Acceptors for Halogen and Hydrogen Bonds. Crystals, 2017, 7, 214.	1.0	21

#	Article	IF	CITATIONS
204	Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis. Catalysts, 2017, 7, 173.	1.6	37
205	Supramolecular Enzyme Mimics. , 2017, , 459-510.		10
206	Novel Chiral Bis-Phosphoramides as Organocatalysts for Tetrachlorosilane-Mediated Reactions. Molecules, 2017, 22, 2181.	1.7	1
207	Macrocycleâ€Enabled Counteranion Trapping for Improved Catalytic Efficiency. Chemistry - A European Journal, 2018, 24, 4268-4272.	1.7	21
208	Inducing Axial Chirality in a Supramolecular Catalyst. Angewandte Chemie - International Edition, 2018, 57, 5100-5104.	7.2	32
209	Chemical Reactivity and Quantifying the Intra―and Intermolecular Interactions in Zwitterionic Compounds. ChemistrySelect, 2018, 3, 2045-2052.	0.7	5
210	Soft–Hard Acid–Base ontrolled Câ^'H Trifluoroethoxylation and Trideuteriomethoxylation of Anilides. Asian Journal of Organic Chemistry, 2018, 7, 715-719.	1.3	21
211	Host–Guest Interaction at Molecular Interfaces: Cucurbit[7]uril as a Sensitive Probe of Structural Heterogeneity in Ferrocenyl Self-Assembled Monolayers on Gold. Journal of Physical Chemistry C, 2018, 122, 15986-15995.	1.5	11
212	Inducing Axial Chirality in a Supramolecular Catalyst. Angewandte Chemie, 2018, 130, 5194-5198.	1.6	11
213	Dissipative Synthetic DNAâ€Based Receptors for the Transient Loading and Release of Molecular Cargo. Angewandte Chemie - International Edition, 2018, 57, 10489-10493.	7.2	82
214	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie, 2018, 130, 6185-6189.	1.6	11
215	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6077-6081.	7.2	44
216	Computational Description of a Huisgen Cycloaddition Inside a Selfâ€Assembled Nanocapsule. European Journal of Organic Chemistry, 2018, 2018, 2103-2109.	1.2	14
217	Theoretical insights into aggregation-induced helicity modulation of a perylene bisimide derivative. Journal of Molecular Modeling, 2018, 24, 51.	0.8	4
218	Allosteric regulation of metal-binding sites inside an optically-active helical foldamer and its tubular assemblies. Chemical Communications, 2018, 54, 2417-2420.	2.2	12
219	XBphos-Rh: a halogen-bond assembled supramolecular catalyst. Chemical Science, 2018, 9, 3644-3648.	3.7	42
220	Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie, 2018, 130, 4622-4627.	1.6	7
221	Encapsulation of Crabtree's Catalyst in Sulfonated MILâ€101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment.	7.2	52

	Сітатіо	n Report	
#	Article	IF	Citations
222	A self-assembled peroxidase from $5\hat{a}\in^2$ -GMP and heme. Chemical Communications, 2018, 54, 1587-1590.	2.2	13
223	Removable Water-Soluble Olefin Metathesis Catalyst via Host–Guest Interaction. Organic Letters, 2018, 20, 736-739.	2.4	20
224	Katalytische, positions―und enantioselektive Câ€Hâ€Oxygenierung durch einen chiralen Manganâ€Porphyrinâ€Komplex mit einer entfernten Bindungsstelle. Angewandte Chemie, 2018, 130, 3003-3007.	1.6	26
225	Superphenylphosphines: Nanographene-Based Ligands That Control Coordination Geometry and Drive Supramolecular Assembly. Journal of the American Chemical Society, 2018, 140, 1131-1141.	6.6	22
226	Site―and Enantioselective Câ^'H Oxygenation Catalyzed by a Chiral Manganese Porphyrin Complex with a Remote Binding Site. Angewandte Chemie - International Edition, 2018, 57, 2953-2957.	7.2	94
227	Testing the limits of halogen bonding in coordination chemistry. CrystEngComm, 2018, 20, 539-549.	1.3	27
228	Utilization of Donor–Acceptor Interactions for the Catalytic Acceleration of Nucleophilic Additions to Aromatic Carbonyl Compounds. Angewandte Chemie, 2018, 130, 2152-2155.	1.6	5
229	Controlling orthogonal self-assembly through <i>cis</i> – <i>trans</i> isomerization of a non-covalent palladium complex dimer. Chemical Communications, 2018, 54, 2094-2097.	2.2	9
230	Utilization of Donor–Acceptor Interactions for the Catalytic Acceleration of Nucleophilic Additions to Aromatic Carbonyl Compounds. Angewandte Chemie - International Edition, 2018, 57, 2130-2133.	7.2	13
231	Soft–Hard Acid/Base-Controlled, Oxidative, <i>N</i> -Selective Arylation of Sulfonanilides via a Nitrenium Ion. Journal of Organic Chemistry, 2018, 83, 1340-1347.	1.7	24
232	Dissipative Synthetic DNAâ€Based Receptors for the Transient Loading and Release of Molecular Cargo. Angewandte Chemie, 2018, 130, 10649-10653.	1.6	35
233	Hydrogen bond strengthening between o-nitroaniline and formaldehyde in electronic excited states: A theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 194-201.	2.0	8
234	Ion Pair-Directed C–H Activation on Flexible Ammonium Salts: <i>meta</i> -Selective Borylation of Quaternized Phenethylamines and Phenylpropylamines. ACS Catalysis, 2018, 8, 3764-3769.	5.5	89
235	Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coordination Chemistry Reviews, 2018, 375, 285-332.	9.5	46
236	A Dinuclear Au(I) Complex with a Pyrene-di-N-heterocyclic Carbene Linker: Supramolecular and Catalytic Studies. Organometallics, 2018, 37, 3407-3411.	1.1	28
237	Smart N-Heterocyclic Carbene Ligands in Catalysis. Chemical Reviews, 2018, 118, 9988-10031.	23.0	759
238	What can only occur in supramolecular systems; first solid-state conversion of micro to nanostructures without any treatment in environmental conditions. Ultrasonics Sonochemistry, 2018, 40, 17-20.	3.8	16
239	6,6′-Thiobis(methylene)-β-cyclodextrin dimer as a dimeric host and reusable promoter for synthesis of chromenones in water. Tetrahedron, 2018, 74, 194-198.	1.0	7

#	Article	IF	Citations
240	Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB[7] cavitand. Journal of Computational Chemistry, 2018, 39, 151-160.	1.5	34
241	Copper(<scp>ii</scp>) serves as an efficient additive for metal-directed self-assembly of over 20 thiacyclophanes. Chemical Communications, 2018, 54, 13419-13422.	2.2	9
242	Spiroborate-Based Double-Stranded Helicates: <i>Meso</i> -to- <i>Racemo</i> Isomerization and Ion-Triggered Springlike Motion of the <i>Racemo</i> -Helicate. Journal of the American Chemical Society, 2018, 140, 17027-17039.	6.6	36
243	Molecular Mechanism and Solvation Effect of Supramolecular Catalysis in a Synthetic Cavitand Receptor with an Inwardly Directed Carboxylic Acid for Ring-Opening Cyclization of Epoxy Alcohols. ACS Catalysis, 2018, 8, 11910-11925.	5.5	11
244	Templating and Catalyzing [2+2] Photocycloaddition in Solution Using a Dynamic Gâ€Quadruplex. Angewandte Chemie, 2018, 130, 17392-17396.	1.6	4
245	Chiral Supramolecular U-Shaped Catalysts Induce the Multiselective Diels–Alder Reaction of Propargyl Aldehyde. Journal of the American Chemical Society, 2018, 140, 16253-16263.	6.6	34
246	Organocatalysis: A Brief Overview on Its Evolution and Applications. Catalysts, 2018, 8, 605.	1.6	106
247	Theoretical Density Functional Theory insights into the nature of chalcogen bonding between CX ₂ (X = S, Se, Te) and diazine from monomer to supramolecular complexes. International Journal of Quantum Chemistry, 2019, 119, e25837.	1.0	10
248	Site-Selective Cross-Coupling of Remote Chlorides Enabled by Electrostatically Directed Palladium Catalysis. Journal of the American Chemical Society, 2018, 140, 13570-13574.	6.6	43
249	Hydrogenâ€Bondingâ€Assisted Supramolecular Metal Catalysis. Chemistry - an Asian Journal, 2018, 13, 3623-3646.	1.7	42
250	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. Accounts of Chemical Research, 2018, 51, 2447-2455.	7.6	292
251	A Supramolecular Palladium Catalyst Displaying Substrate Selectivity by Remote Control. Chemistry - A European Journal, 2019, 25, 627-634.	1.7	16
252	Pillar5arenes as Supramolecular Hosts in Aqueous Biphasic Rhodiumâ€Catalyzed Hydroformylation of Long Alkylâ€chain Alkenes. ChemCatChem, 2018, 10, 5306-5313.	1.8	11
253	Templating and Catalyzing [2+2] Photocycloaddition in Solution Using a Dynamic Gâ€Quadruplex. Angewandte Chemie - International Edition, 2018, 57, 17146-17150.	7.2	12
254	Solid‣tate Umbrellaâ€type Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€type Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie, 2018, 130, 16283-16287.	1.6	6
255	Solidâ€State Umbrellaâ€type Inversion of a VO 5 Squareâ€Pyramidal Unit in a Bowlâ€type Dodecavanadate Induced by Insertion and Elimination of a Guest Molecule. Angewandte Chemie - International Edition, 2018, 57, 16051-16055.	7.2	18
256	Pyrene-Connected Tetraimidazolylidene Complexes of Iridium and Rhodium. Structural Features and Catalytic Applications. Organometallics, 2018, 37, 4070-4076.	1.1	16
257	Tandem Regioselective Hydroformylationâ€Hydrogenation of Internal Alkynes Using a Supramolecular Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14817-14821.	7.2	34

#	Article	IF	CITATIONS
258	Tandem Regioselective Hydroformylationâ€Hydrogenation of Internal Alkynes Using a Supramolecular Catalyst. Angewandte Chemie, 2018, 130, 15033-15037.	1.6	10
259	Enantioselective anti-Mannich reaction catalyzed by modularly designed organocatalysts. Tetrahedron, 2018, 74, 6166-6172.	1.0	8
260	Guanidinium as bifunctional organocatalyst for ring-opening polymerizations. Polymer, 2018, 154, 17-26.	1.8	13
261	A Route to Enantiopure (<i>O</i> -Methyl) ₆ -2,6-Helic[6]arenes: Synthesis of Hexabromo-Substituted 2,6-Helic[6]arene Derivatives and Their Suzuki–Miyaura Coupling Reactions. Journal of Organic Chemistry, 2018, 83, 11532-11540.	1.7	19
262	Combined Role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and Ionic Liquid Effect for the Enantioselective Biginelli Multicomponent Reaction. Journal of Organic Chemistry, 2018, 83, 12143-12153.	1.7	49
263	Synthesis, structures, and investigation of noncovalent interactions of 1,3-dimethyl-5-(4ʹ/3ʹ-pyridylazo)-6-aminouracil and their Ni(II) complexes. Journal of Molecular Structure, 2018, 1170, 70-81.	1.8	6
265	Benchmarking of the <i>R</i> ^{–7} Anisotropic Dispersion Energy Term on the S22 Dimer Test Set. Journal of Physical Chemistry A, 2018, 122, 6100-6108.	1.1	2
266	Synthesis of chiral supramolecular bisphosphinite palladacycles through hydrogen transfer-promoted self-assembly process. Chemical Communications, 2018, 54, 10132-10135.	2.2	7
267	Strategies for the design and synthesis of pincer-based dendrimers. , 2018, , 245-291.		5
268	Construction of heterometallic M2Pd3 supramolecular cages via a metalloligand strategy as heterogeneous catalyst for Suzuki–Miyaura coupling reaction. Inorganica Chimica Acta, 2018, 482, 605-611.	1.2	14
269	A Shapeâ€Adaptable Organometallic Supramolecular Coordination Cage for the Encapsulation of Fullerenes. Chemistry - A European Journal, 2018, 24, 14802-14807.	1.7	45
270	Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews, 2018, 47, 5038-5060.	18.7	63
272	Confinement induced catalytic activity in a Diels-Alder reaction: comparison among various CB[n], n = 6–8, cavitands. Journal of Molecular Modeling, 2018, 24, 228.	0.8	7
273	Ligand Template Strategies for Catalyst Encapsulation. Accounts of Chemical Research, 2018, 51, 2115-2128.	7.6	121
274	Heterogeneous Removal of Water-Soluble Ruthenium Olefin Metathesis Catalyst from Aqueous Media Via Host-Guest Interaction. Journal of Visualized Experiments, 2018, , .	0.2	1
275	A Discrete Selfâ€Assembled Pd ₁₂ Triangular Orthobicupola Cage and its Use for Intramolecular Cycloaddition. Chemistry - A European Journal, 2018, 24, 13938-13946.	1.7	32
276	A Halogenâ€Bond Donor Catalyst for Templated Macrocyclization. Angewandte Chemie - International Edition, 2019, 58, 14940-14943.	7.2	13
277	A Zn 4 L 6 Capsule with Enhanced Catalytic Câ^'C Bond Formation Activity upon C 60 Binding. Angewandte Chemie, 2019, 131, 9171-9175.	1.6	15

#	Article	IF	CITATIONS
278	A combined experimental and theoretical analysis of the solid-state supramolecular self-assembly of N-(2,4-dichlorophenyl)-1-naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. Journal of Molecular Structure, 2019, 1197, 458-470.	1.8	15
279	Exploiting Noncovalent Interactions for Room-Temperature Heteroselective <i>rac</i> -Lactide Polymerization Using Aluminum Catalysts. ACS Catalysis, 2019, 9, 7912-7920.	5.5	40
280	Target-Architecture Engineering of a Novel Two-dimensional Metal–Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	1.4	14
281	Origin of the Selectivity and Activity in the Rhodium-Catalyzed Asymmetric Hydrogenation Using Supramolecular Ligands. ACS Catalysis, 2019, 9, 7535-7547.	5.5	18
282	Synthesis of environmentally friendly, magnetic acid-type calix[4]arene catalyst for obtaining Biginelli adducts. Journal of Saudi Chemical Society, 2019, 23, 1060-1069.	2.4	10
283	Catalytic reactions within the cavity of coordination cages. Chemical Society Reviews, 2019, 48, 4707-4730.	18.7	313
284	A Pt(II)â€based Hexagonal Ionic Supramolecular Coordination Complex and its DNA Interactions ChemistrySelect, 2019, 4, 8255-8262.	0.7	4
285	A domino reaction for generating β-aryl aldehydes from alkynes by substrate recognition catalysis. Nature Communications, 2019, 10, 4868.	5.8	7
286	The Intrinsic Enzyme Activities of the Classic Polyoxometalates. Scientific Reports, 2019, 9, 14832.	1.6	20
287	A Halogenâ€Bond Donor Catalyst for Templated Macrocyclization. Angewandte Chemie, 2019, 131, 15082-15085.	1.6	0
288	Sulfonatocalixarene Counterion Exchange Binding Model in Action: Metalâ€Ion Catalysis Through Hostâ€Guest Complexation. ChemCatChem, 2019, 11, 5397-5404.	1.8	5
289	Molecular Electrocatalysts for the Hydrogen Evolution Reaction: Input from Quantum Chemistry. ChemSusChem, 2019, 12, 4905-4915.	3.6	33
290	Catalysis of Organic Reactions through Halogen Bonding. ACS Catalysis, 2019, 9, 9622-9639.	5.5	280
291	Para-Selective, Iridium-Catalyzed C–H Borylations of Sulfated Phenols, Benzyl Alcohols, and Anilines Directed by Ion-Pair Electrostatic Interactions. Journal of the American Chemical Society, 2019, 141, 15483-15487.	6.6	88
292	Mineralizing gold-silver bimetals into hemin-melamine matrix: A nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose. Analytica Chimica Acta, 2019, 1092, 57-65.	2.6	26
293	Stereochemistry of oxidative addition of methyl iodide and hydrogen peroxide to organoplatinum(II) complexes having an appended phenol group and the supramolecular chemistry of the platinum(IV) products. Journal of Organometallic Chemistry, 2019, 902, 120962.	0.8	11
294	Experimental and theoretical study of the role of CH/i€ interactions in the aminolysis reaction of acetyl galactoside. Carbohydrate Research, 2019, 486, 107821.	1.1	5
295	Supramolecular Host–Guest Inclusion to Regulate Long-Range Electron Transfer at Highly Oriented Molecular Interfaces. Journal of Physical Chemistry C, 2019, 123, 26315-26323.	1.5	3

#	Article	IF	CITATIONS
296	Self-assembled M ₁₂ L ₂₄ nanospheres as a reaction vessel to facilitate a dinuclear Cu(<scp>i</scp>) catalyzed cyclization reaction. Chemical Science, 2019, 10, 1316-1321.	3.7	34
297	Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Molecular Catalysis, 2019, 467, 1-8.	1.0	7
298	Halogen bonding effects on the outcome of reactions at metal centres. Chemical Communications, 2019, 55, 2380-2383.	2.2	23
299	Goldâ€catalyzed Cycloisomerization Reactions within Guanidinium M12L24Nanospheres: the Effect of Local Concentrations. ChemCatChem, 2019, 11, 1458-1464.	1.8	11
300	Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm, 2019, 21, 1358-1362.	1.3	28
301	Ion-Pair-Directed Borylation of Aromatic Phosphonium Salts. Journal of Organic Chemistry, 2019, 84, 13124-13134.	1.7	51
302	Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. Journal of Organic Chemistry, 2019, 84, 8815-8836.	1.7	68
303	Macrocyclic N-Heterocyclic Carbenes: Synthesis and Catalytic Applications. Organometallics, 2019, 38, 2338-2346.	1.1	9
304	Supramolecular Interlocked Biphenyl Ligands for Enantioselective Ti-Catalyzed Alkylation of Aromatic Aldehydes. Organometallics, 2019, 38, 3955-3960.	1.1	9
305	Supramolecular Catalysis Using Organic Macrocycles. , 2019, , 1-47.		2
306	Interplay between n→ï€* Interactions and Dynamic Covalent Bonds: Quantification and Modulation by Solvent Effects. Journal of the American Chemical Society, 2019, 141, 8825-8833.	6.6	24
307	Ionic Liquid Gels: Supramolecular Reaction Media for the Alcoholysis of Anhydrides. Journal of Organic Chemistry, 2019, 84, 6356-6365.	1.7	18
308	A Zn ₄ L ₆ Capsule with Enhanced Catalytic Câ^'C Bond Formation Activity upon C ₆₀ Binding. Angewandte Chemie - International Edition, 2019, 58, 9073-9077.	7.2	44
309	Bonding, Reactivity, and Dynamics in Confined Systems. Journal of Physical Chemistry A, 2019, 123, 4513-4531.	1.1	48
310	Cation-controlled catalysis with crown ether-containing transition metal complexes. Chemical Communications, 2019, 55, 5047-5059.	2.2	78
311	Utility of Bis-4-pyridines as Supramolecular Linkers for 5-Sulfosalicylic Acid Centers: Structural and Optical Investigations. Crystal Growth and Design, 2019, 19, 2289-2297.	1.4	24
312	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. Catalysts, 2019, 9, 163.	1.6	22
313	Flavinium and Alkaliâ€Metal Assembly on Sulfated Chitin: A Heterogeneous Supramolecular Catalyst for H ₂ O ₂ â€Mediated Oxidation. ChemSusChem, 2019, 12, 1640-1645.	3.6	10

	Стато	CITATION REPORT	
#	Article	IF	CITATIONS
314	High-Relaxivity Gd(III)–Hemicryptophane Complex. Organic Letters, 2019, 21, 1999-2003.	2.4	12
315	Double-Circularly Connected Saloph-Belt Macrocycles Generated from a Bis-Armed Bifunctional Monomer. Journal of the American Chemical Society, 2019, 141, 6462-6467.	6.6	30
316	Editorial: Supramolecular Aspects in Catalysis. Frontiers in Chemistry, 2019, 7, 174.	1.8	9
317	A Selfâ€Assembling Ligand Switch That Involves Hydroxide Addition to an sp 2 Hybridised Phosphorus Atom – A System Allowing OH – Mediated Uptake of [MCl 2] (M = Pd, Pt) Centres. European Journal of Inorganic Chemistry, 2019, 2019, 1544-1551.	1.0	0
318	Site-selective nitrenoid insertions utilizing postfunctionalized bifunctional rhodium(<scp>ii</scp>) catalysts. Chemical Science, 2019, 10, 3324-3329.	3.7	26
319	Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coordination Chemistry Reviews, 2019, 386, 69-84.	9.5	164
320	Self-assembled organic nanotube promoted allylation of ketones in aqueous phase. Chemical Communications, 2019, 55, 3254-3257.	2.2	2
321	Inducing Enantioselectivity in a Dynamic Catalyst by Supramolecular Interlocking. Angewandte Chemie, 2019, 131, 6372-6376.	1.6	8
322	Noncovalent interactions in metal complex catalysis. Coordination Chemistry Reviews, 2019, 387, 32-46.	9.5	207
323	Inducing Enantioselectivity in a Dynamic Catalyst by Supramolecular Interlocking. Angewandte Chemie - International Edition, 2019, 58, 6306-6310.	7.2	33
324	Predicting Supramolecular Connectivity of Metal-Containing Solid-State Assemblies using Calculated Molecular Electrostatic Potential Surfaces. Crystal Growth and Design, 2019, 19, 1985-1995.	1.4	22
325	Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chemical Communications, 2019, 55, 3081-3084.	2.2	20
326	Unveiling the formation 1 : 2 supramolecular complexes between cucurbit[7]uril and a cationic calix[4]arene derivative. Chemical Communications, 2019, 55, 13828-13831.	2.2	8
327	Aromatic Donor–Acceptor Interaction-Based Co(III)-salen Self-Assemblies and Their Applications in Asymmetric Ring Opening of Epoxides. Organic Letters, 2019, 21, 513-518.	2.4	15
328	Copper(II) acetate structures with benzimidazole derivatives. Inorganica Chimica Acta, 2019, 488, 238-245.	1.2	7
329	Novel 1,3,2-diazaphospholidines with pseudodipeptide substituents. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 493-496.	0.8	1
330	Models for Cooperative Catalysis: Oxidative Addition Reactions of Dimethylplatinum(II) Complexes with Ligands Having Both NH and OH Functionality. ACS Omega, 2019, 4, 257-268.	1.6	7
331	Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angewandte Chemie - International Edition, 2019, 58, 2696-2699.	7.2	36

#	Article	IF	CITATIONS
332	Mechanistic Interplay between Light Switching and Guest Binding in Photochromic [Pd ₂ Dithienylethene ₄] Coordination Cages. Journal of the American Chemical Society, 2019, 141, 2097-2103.	6.6	132
333	Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angewandte Chemie, 2019, 131, 2722-2725.	1.6	5
334	Efficient modular phosphorus-containing ligands for stereoselective catalysis. Pure and Applied Chemistry, 2019, 91, 3-15.	0.9	6
335	Tuning the H-bond donicity boosts carboxylic acid efficiency in ring-opening polymerization. European Polymer Journal, 2019, 112, 799-808.	2.6	5
336	Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity. ChemCatChem, 2019, 11, 287-297.	1.8	59
337	The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. Chemistry - A European Journal, 2019, 25, 4899-4913.	1.7	81
338	"Backdoor Induction―of Chirality: Transâ€1,2 yclohexanediamine as Key Building Block for Asymmetric Hydrogenation Catalysts. European Journal of Organic Chemistry, 2019, 2019, 2115-2128.	1.2	13
339	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	11.8	135
340	Amineâ€Responsive Disassembly of Au ^I –Cu ^I Double Salts for Oxidative Carbonylation. Angewandte Chemie, 2020, 132, 2096-2100.	1.6	1
341	Amineâ€Responsive Disassembly of Au ^I –Cu ^I Double Salts for Oxidative Carbonylation. Angewandte Chemie - International Edition, 2020, 59, 2080-2084.	7.2	21
342	Selective recognition of small hydrogen bond acceptors by a calix[6]arene-based molecular container. Supramolecular Chemistry, 2020, 32, 23-29.	1.5	1
343	Complementary doubleâ€stranded helical oligomers bearing achiral bifunctional groups that catalyze asymmetric aldol reaction. Chirality, 2020, 32, 254-264.	1.3	0
344	Understanding the Role of Metallocenium Ion-Pair Aggregates on the Rate of Olefin Insertion into the Metal–Carbon Bond. ACS Catalysis, 2020, 10, 1591-1606.	5.5	25
345	Domainâ€based local pair natural orbital methods within the correlation consistent composite approach. Journal of Computational Chemistry, 2020, 41, 800-813.	1.5	14
346	Hyper-Cross-Linked Polymers for the Capture of Aromatic Volatile Compounds. ACS Applied Polymer Materials, 2020, 2, 647-658.	2.0	21
347	Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catalysis, 2020, 10, 12898-12919.	5.5	88
348	Identifying and Evading Olefin Isomerization Catalyst Deactivation Pathways Resulting from Ion-Tunable Hemilability. ACS Catalysis, 2020, 10, 13019-13030.	5.5	8
349	Enzyme-free synthesis of natural phospholipids in water. Nature Chemistry, 2020, 12, 1029-1034.	6.6	54

#	Article	IF	CITATIONS
350	Design and Applications of Water-Soluble Coordination Cages. Chemical Reviews, 2020, 120, 13480-13544.	23.0	291
351	Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid. Chemical Science, 2020, 11, 8736-8743.	3.7	9
352	Synthesis of dibenzo[<i>a</i> , <i>j</i>]phenazine compounds using hemicucurbit[6]urilâ€catalyzed oxidative dimerization of 2â€arylamines. ChemCatChem, 2020, 12, 5727-5732.	1.8	7
353	Enhanced Activity in the Tosylation of Tolanophanes via Supramolecular HgCl2 Recognition. Australian Journal of Chemistry, 2020, 73, 608.	0.5	5
354	Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catalysis, 2020, 10, 10672-10714.	5.5	127
355	Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a Ï€â€Pocket within Cageâ€Shaped Borates for Molecular Recognition. Chemistry - A European Journal, 2020, 26, 15023-15034.	1.7	3
356	Noncovalent Interactions in C–S Bond Formation Reactions. Journal of Organic Chemistry, 2020, 85, 11997-12011.	1.7	38
357	Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russian Chemical Reviews, 2020, 89, 587-628.	2.5	17
359	Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. Journal of the American Chemical Society, 2020, 142, 21891-21898.	6.6	30
360	Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to \hat{I}_{\pm}, \hat{I}^2 -Enones. Journal of the American Chemical Society, 2020, 142, 10244-10249.	6.6	54
361	Diaza-Crown Ether-Bridged Chiral Diphosphoramidite Ligands: Synthesis and Applications in Asymmetric Catalysis. Journal of Organic Chemistry, 2020, 85, 8176-8184.	1.7	22
362	Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands. Crystals, 2020, 10, 354.	1.0	7
363	Predictable Selectivity in Remote Câ^'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie, 2020, 132, 12803-12808.	1.6	6
364	Permethylated NHCâ€Capped α―and βâ€Cyclodextrins (ICyD ^{Me}) Regioselective and Enantioselective Goldâ€Catalysis in Pure Water. Chemistry - A European Journal, 2020, 26, 15901-15909.	1.7	32
365	Überwindung der intrinsischen ReaktivitÃæbei aliphatischer Câ€Hâ€Oxidation: Bevorzugte C3/C4â€Oxidation von aliphatischen Ammoniumsubstraten. Angewandte Chemie, 2020, 132, 12486-12490.	1.6	5
366	Selective functionalisation of aromatic alcohols with supramolecularly regulated gold(<scp>i</scp>) catalysts. Organic Chemistry Frontiers, 2020, 7, 1626-1634.	2.3	9
367	Overriding Intrinsic Reactivity in Aliphatic Câ^'H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angewandte Chemie - International Edition, 2020, 59, 12387-12391.	7.2	16
368	Chiral Macrocycleâ€Enabled Counteranion Trapping for Boosting Highly Efficient and Enantioselective Catalysis. Angewandte Chemie, 2020, 132, 10986-10990.	1.6	10

	CITATION	LPORT	
#	Article	IF	CITATIONS
369	Mechanically Interlocked Catalysts for Asymmetric Synthesis. ACS Catalysis, 2020, 10, 7719-7733.	5.5	66
370	Enantiodifferentiating Photodimerization of a 2,6â€Disubstituted Anthracene Assisted by Supramolecular Doubleâ€Helix Formation with Chiral Amines. Angewandte Chemie, 2020, 132, 7548-7556.	1.6	5
371	Enantiodifferentiating Photodimerization of a 2,6â€Disubstituted Anthracene Assisted by Supramolecular Doubleâ€Helix Formation with Chiral Amines. Angewandte Chemie - International Edition, 2020, 59, 7478-7486.	7.2	15
372	Chiral Macrocycleâ€Enabled Counteranion Trapping for Boosting Highly Efficient and Enantioselective Catalysis. Angewandte Chemie - International Edition, 2020, 59, 10894-10898.	7.2	42
373	Regioselective Hydroformylation of Internal and Terminal Alkenes via Remote Supramolecular Control. Chemistry - A European Journal, 2020, 26, 8214-8219.	1.7	14
374	Diamidophosphites from β-hydroxyamides: readily assembled ligands for Pd-catalyzed asymmetric allylic substitution. Dalton Transactions, 2020, 49, 5625-5635.	1.6	7
375	Pyridines Bearing Poly(ethylene glycol) Chains: Synthesis and Use as Ligands. Asian Journal of Organic Chemistry, 2020, 9, 761-764.	1.3	0
376	Hydrogenase Mimics in M ₁₂ L ₂₄ Nanospheres to Control Overpotential and Activity in Protonâ€Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18485-18489.	7.2	24
377	Large transition state stabilization from a weak hydrogen bond. Chemical Science, 2020, 11, 7487-7494.	3.7	10
378	Hydrogenase Mimics in M 12 L 24 Nanospheres to Control Overpotential and Activity in Protonâ€Reduction Catalysis. Angewandte Chemie, 2020, 132, 18643-18647.	1.6	9
379	Zweizänige chirale Bis(imidazolium)â€basierte Halogenbrückendonoren: Synthese und Anwendungen in enantioselektiver Erkennung und Katalyse. Angewandte Chemie, 2020, 132, 6872-6877.	1.6	16
380	Bidentate Chiral Bis(imidazolium)â€Based Halogenâ€Bond Donors: Synthesis and Applications in Enantioselective Recognition and Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6806-6810.	7.2	76
381	<i>Bis</i> â€dioxomolybdenum (VI) oxalyldihydrazone complexes: Synthesis, characterization, DFT studies, catalytic epoxidation potential, molecular modeling and biological evaluations. Applied Organometallic Chemistry, 2020, 34, e5573.	1.7	37
382	The power of dissociation: development of displacement assays for chemosensing and latent catalytic systems. Materials Chemistry Frontiers, 2020, 4, 1328-1339.	3.2	0
383	Electrostatically-directed Pd-catalysis in combination with C–H activation: site-selective coupling of remote chlorides with fluoroarenes and fluoroheteroarenes. Chemical Science, 2020, 11, 3022-3027.	3.7	31
384	A multiple hydrogen-bonded three-dimensional supramolecular architecture composed of a unique three-fold interlocked anionic Zn(<scp>ii</scp>)-coordination architecture. CrystEngComm, 2020, 22, 2283-2287.	1.3	2
385	Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chemical Science, 2020, 11, 2121-2129.	3.7	46
386	Asymmetric Hydroformylation Using a Rhodium Catalyst Encapsulated in a Chiral Capsule. Chemistry - an Asian Journal, 2020, 15, 867-875.	1.7	14

#	Article	IF	CITATIONS
387	Supramolecularly regulated copper-bisoxazoline catalysts for the efficient insertion of carbenoid species into hydroxyl bonds. Chemical Communications, 2020, 56, 6364-6367.	2.2	5
388	Construction of pH sensitive smart glutathione peroxidase (GPx) mimics based on pH responsive pseudorotaxanes. Organic and Biomolecular Chemistry, 2020, 18, 3125-3134.	1.5	1
389	Predictable Selectivity in Remote Câ [~] 'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie - International Edition, 2020, 59, 12703-12708.	7.2	33
390	Preparation and self-aggregation properties of a series of pyrene-imidazolylidene complexes of gold (I). Journal of Organometallic Chemistry, 2020, 917, 121284.	0.8	8
391	The First Quantitative Synthesis of a Closed Three-Link Chain (6 ₁ ³) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. Journal of the American Chemical Society, 2020, 142, 9327-9336.	6.6	35
392	How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M ₆ L ₁₂ and M ₁₂ L ₂₄ Nanospheres. Journal of the American Chemical Society, 2020, 142, 8837-8847.	6.6	32
393	Computational insight into the halogen bonded self-assembly of hexa-coordinated metalloporphyrins. Physical Chemistry Chemical Physics, 2020, 22, 11558-11566.	1.3	13
394	Catalysis within coordination cages. Coordination Chemistry Reviews, 2021, 430, 213656.	9.5	88
395	Surface polar charge induced Ni loaded CdS heterostructure nanorod for efficient photo-catalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 16373-16386.	3.8	10
396	A Switchable Catalyst Duo for Acyl Transfer Proximity Catalysis and Regulation of Substrate Selectivity. Chemistry - A European Journal, 2021, 27, 2997-3001.	1.7	8
397	The Sizeâ€Accelerated Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 774-778.	7.2	17
398	Supramolecular Catalysis with Selfâ€Assembled Capsules and Cages: What Happens in Confined Spaces. ChemCatChem, 2021, 13, 1638-1658.	1.8	52
399	Polyoxometalate/metal–organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Materials Today Energy, 2021, 19, 100618.	2.5	39
400	Carbon (sp3) tetrel bonding mediated BODIPY supramolecular assembly via unprecedented synergy of Csp3⋯N and Csp3⋯F pair interactions. CrystEngComm, 2021, 23, 268-272.	1.3	10
401	Catalytic C–H to C–M (M = Al, Mg) bond transformations with heterometallic complexes. Chemical Science, 2021, 12, 1993-2000.	3.7	22
402	Design of Supramolecular Sensors and Their Applications to Optical Chips and Organic Devices. Bulletin of the Chemical Society of Japan, 2021, 94, 24-33.	2.0	15
403	Chapter 6. Properties and Reactivities of Metal Complexes Within Organic Nanocontainers. Monographs in Supramolecular Chemistry, 2021, , 167-205.	0.2	0
404	Sulfurâ<̄oxygen interaction-controlled (<i>Z</i>)-selective <i>anti</i> -Markovnikov vinyl sulfides. Chemical Communications, 2021, 57, 5698-5701.	2.2	14

#	Article	IF	CITATIONS
405	Constructing a triangular metallacycle with salen–Al and its application to a catalytic cyanosilylation reaction. Chemical Communications, 2021, 57, 10399-10402.	2.2	1
406	Enantioselective "organocatalysis in disguise―by the ligand sphere of chiral metal-templated complexes. Chemical Society Reviews, 2021, 50, 9715-9740.	18.7	31
407	Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chemical Society Reviews, 2021, 50, 3565-3584.	18.7	55
408	New horizons for catalysis disclosed by supramolecular chemistry. Chemical Society Reviews, 2021, 50, 7681-7724.	18.7	117
409	Disulfide metathesis via sulfurâ⊂iodine interaction and photoswitchability. Organic and Biomolecular Chemistry, 2021, 19, 8539-8543.	1.5	5
410	Possible effects of fluxionality of a cavitand on its catalytic activity through confinement. Physical Chemistry Chemical Physics, 2021, 23, 15817-15834.	1.3	5
411	Novel, Chiral, and Enantiopure C ₂ ‣ymmetric Thioureas Promote Asymmetric Protioâ€Pictet‣pengler Reactions by Anionâ€Binding Catalysis. European Journal of Organic Chemistry, 2021, 2021, 825-829.	1.2	8
412	Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorganic Chemistry, 2021, 60, 2009-2022.	1.9	24
413	A general strategy to prepare atomically dispersed biomimetic catalysts based on host–guest chemistry. Chemical Communications, 2021, 57, 1895-1898.	2.2	2
414	Enantioselective Synthesis of Diaryl Sulfoxides Enabled by Molecular Recognition. Organic Letters, 2021, 23, 1829-1834.	2.4	11
415	Mechanochemical control of solvent content in a 1D coordination polymer. Journal of Coordination Chemistry, 2021, 74, 190-199.	0.8	1
416	Silverâ€Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angewandte Chemie - International Edition, 2021, 60, 7920-7926.	7.2	19
417	Silverâ€Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angewandte Chemie, 2021, 133, 7999-8005.	1.6	5
418	Selecting Double Bond Positions with a Single Cation-Responsive Iridium Olefin Isomerization Catalyst. Journal of the American Chemical Society, 2021, 143, 2792-2800.	6.6	34
419	Supramolecular Chirality Suppresses Molecular Chirality: Selective Chiral Recognition in Hierarchically Coassembled Pyridine–Benzimidazole Conjugates with Precise ee% Detection. Journal of Physical Chemistry Letters, 2021, 12, 2912-2921.	2.1	9
420	Water-Mediated Reversible Control of Three-State Double-Stranded Titanium(IV) Helicates. Journal of the American Chemical Society, 2021, 143, 4346-4358.	6.6	11
421	Theoretical Insight into the Reversal of Chemoselectivity in Diels-Alder Reactions of α,β-Unsaturated Aldehydes and Ketones Catalyzed by BrÃ,nsted and Lewis Acids. Organics, 2021, 2, 38-49.	0.6	2
422	Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account. Chemical Record, 2021, 21, 1182-1198.	2.9	14

#	Article	lF	Citations
424	Colossal Trellislike Single-Crystal to Single-Crystal Structural Transformations in Two 1D Coordination Polymers. Crystal Growth and Design, 2021, 21, 3056-3062.	1.4	1
425	Synthesis and Characterization of Polyâ€NHCâ€Derived Silver(I) Assemblies and Their Transformation into Polyâ€imidazolium Macrocycles. European Journal of Inorganic Chemistry, 2021, 2021, 2442-2451.	1.0	9
426	Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coordination Chemistry Reviews, 2021, 434, 213792.	9.5	97
427	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with <i>meta</i> â€6electivity. Angewandte Chemie - International Edition, 2021, 60, 18006-18013.	7.2	66
428	A Computational Study of Asymmetric Hydrogenation of <scp>2â€Phenyl</scp> Acrylic Acids Catalyzed by a Rh(I) Catalyst with Ferrocenyl Chiral Bisphosphorus Ligand: The Role of <scp>Ionâ€Pair</scp> Interaction ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1616-1624.	2.6	4
429	Noncovalent Protection for Direct Synthesis of α-Amino-ω-hydroxyl Poly(ethylene oxide). ACS Macro Letters, 2021, 10, 737-743.	2.3	8
430	Enzymeâ€like Supramolecular Iridium Catalysis Enabling Câ^'H Bond Borylation of Pyridines with meta â€5electivity. Angewandte Chemie, 2021, 133, 18154-18161.	1.6	12
431	Supramolecular asymmetric catalysis mediated by crown ethers and related recognition systems. Green Synthesis and Catalysis, 2021, 2, 156-164.	3.7	22
432	Exploiting Anion–i̇́€ Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie - International Edition, 2021, 60, 20650-20655.	7.2	55
433	Preparation and characterisation of new Ti/Fluorapatite/MWCNTs ternary nanocomposite and its catalytic activity in the synthesis of pyrazolo[3,4-b]quinoline moieties. Materials Today Communications, 2021, 27, 102206.	0.9	0
434	Exploiting Anionâ€"ï€ Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie, 2021, 133, 20818-20823.	1.6	8
435	On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coordination Chemistry Reviews, 2021, 437, 213863.	9.5	17
436	Photochemical Deracemization of Primary Allene Amides by Triplet Energy Transfer: A Combined Synthetic and Theoretical Study. Journal of the American Chemical Society, 2021, 143, 11209-11217.	6.6	55
437	Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. Journal of Organic Chemistry, 2021, 86, 10501-10516.	1.7	5
438	Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews, 2021, 121, 9927-10000.	23.0	110
439	Versatile Applications of Metallopolymers. Progress in Polymer Science, 2021, 119, 101428.	11.8	29
440	Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. Chemical Reviews, 2022, 122, 10126-10169.	23.0	62
441	Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 2021, 185, 113242.	5.3	62

#	Article	IF	CITATIONS
442	Ï€â€Face Promoted Catalysis in Water: From Electronâ€deficient Molecular Cages to Single Aromatic Slides. Chemistry - an Asian Journal, 2021, 16, 3599-3603.	1.7	10
443	Azideâ‹â‹â‹Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie - International Edition, 2021, 60, 22797-22803.	7.2	26
444	Azideâ‹â‹â‹Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie, 2021, 133, 22979.	1.6	3
445	Polystyrene-Supported Cu/2,2,6,6-Tetramethyl-1-piperidine- <i>N</i> -oxyl Catalytic Systems Constructed by Nanoprecipitation and Their Cooperative Catalysis for Benzyl Alcohol Oxidation. ACS Applied Polymer Materials, 2021, 3, 5171-5179.	2.0	12
446	CoFe2O4/Cu(OH)2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. Results in Chemistry, 2021, 3, 100202.	0.9	10
447	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	2.5	93
448	Noncovalent Interactions at Lanthanide Complexes. Chemistry - A European Journal, 2021, 27, 14370-14389.	1.7	19
449	Bimetallic anchoring catalysis for C-H and C-C activation. Science China Chemistry, 2021, 64, 1923-1937.	4.2	24
450	Role of metal center and coordination environment in M-(Z)-N-((E)-pyridin-2-ylmethylene)isonicotinohydrazonate (MÂ=ÂLaIII, ZnII, CdII or HgII) catalyzed cyanosilylation of aldehydes. Polyhedron, 2021, 209, 115453.	1.0	0
452	Reactivity in a Self-assembled Organic Host. Monographs in Supramolecular Chemistry, 2021, , 133-166.	0.2	1
453	Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Transactions, 2021, 50, 14951-14966.	1.6	7
454	Self-Assembled Coordination Cages and Organic Capsules as Catalytic Supramolecular Reaction Vessels. Fundamental and Applied Catalysis, 2017, , 17-48.	0.9	9
455	Soft Forces in Organic Synthesis by C–N Coupling Reactions. RSC Catalysis Series, 2019, , 188-208.	0.1	4
456	Noncovalent Interactions in the Nitroaldol (Henry) Reaction. RSC Catalysis Series, 2019, , 232-252.	0.1	2
457	Mechanochemical Activation and Catalysis. RSC Catalysis Series, 2019, , 548-563.	0.1	2
458	Cooperative water oxidation catalysis in a series of trinuclear metallosupramolecular ruthenium macrocycles. Energy and Environmental Science, 2017, 10, 2137-2153.	15.6	40
460	Crystal structure analysis of the biologically active drug molecule riluzole and riluzolium chloride. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1084-1089.	0.2	2
461	Insight into Carbocation Induced Nonâ€covalent Interactions in Methanolâ€toâ€olefins Reaction over ZSMâ€5 Zeolite from Solidâ€State NMR Spectroscopy. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS
462	3Dâ€Boronic Ester Architectures: Synthesis, Hostâ€Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. Chemical Record, 2022, 22, .	2.9	5
463	Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chemistry - an Asian Journal, 2021, 16, 3851-3863.	1.7	16
464	Insight into Carbocationâ€Induced Noncovalent Interactions in the Methanolâ€toâ€Olefins Reaction over ZSMâ€5 Zeolite by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 26847-26854.	7.2	9
465	Noncovalent Interactions in the Design of Chiral BrÃ,nsted Acid Catalysts. RSC Catalysis Series, 2019, , 209-231.	0.1	0
466	Noncovalent Interactions in Câ \in "H Bond Functionalization. RSC Catalysis Series, 2019, , 1-25.	0.1	2
467	Noncovalent Interactions in Hydrogenation and Hydroformylation. RSC Catalysis Series, 2019, , 168-187.	0.1	0
468	Influence of Noncovalent Interactions in Catalytic Ring-opening Polymerization Processes. RSC Catalysis Series, 2019, , 415-439.	0.1	0
469	Multifunctional Polyoxometalate Platforms for Supramolecular Lightâ€Driven Hydrogen Evolution**. Chemistry - A European Journal, 2021, 27, 16846-16852.	1.7	6
470	Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. Journal of Solid State Chemistry, 2022, 305, 122637.	1.4	1
471	Ligand Effects in Ruthenium Nanoparticle Catalysis. Molecular Catalysis, 2020, , 407-448.	1.3	1
472	Supramolecular Catalysis Using Organic Macrocycles. , 2020, , 829-875.		0
473	Peptide Self-assembly Applied to Catalytic Asymmetric Aldol Reactions. RSC Soft Matter, 2020, , 126-173.	0.2	1
474	Die größenbeschleunigte kinetische Racematspaltung sekundäer Alkohole. Angewandte Chemie, 2021, 133, 786-791.	1.6	4
475	Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. Journal of Saudi Chemical Society, 2021, 25, 101394.	2.4	16
476	Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Physical Chemistry Chemical Physics, 2021, 23, 26519-26523.	1.3	1
477	Distal Ionic Substrate–Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki–Miyaura Reaction. Journal of the American Chemical Society, 2022, 144, 123-129.	6.6	33
478	Weak bonding strategies for achieving regio- and site-selective transformations. CheM, 2022, 8, 414-438.	5.8	39
479	Mimicking Enzymes: Taking Advantage of the Substrate-Recognition Properties of Metalloporphyrins in Supramolecular Catalysis. Synthesis, 0, , .	1.2	5

#	Article	IF	CITATIONS
481	Dye-loaded metal–organic helical capsules applied to the combination of photocatalytic H ₂ S splitting and nitroaromatic hydrogenation. Chemical Communications, 2022, 58, 807-810.	2.2	9
483	Incommensurate Phase in ĥâ€cobalt (III) Sepulchrate Trinitrate Governed by Highly Competitive Nâ^'Hâ‹â‹â Câ^'Hâ‹â‹â (O Hydrogen Bond Networks**. Chemistry - A European Journal, 2022, 28, .	O and	2
484	H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. Journal of the American Chemical Society, 2022, 144, 3497-3509.	6.6	34
485	π–π Stacking Interaction of Metal Phenoxyl Radical Complexes. Molecules, 2022, 27, 1135.	1.7	4
486	^{<i>t</i>} BuOLi-promoted terminal alkyne functionalizations by aliphatic thiols and alcohols. Organic and Biomolecular Chemistry, 2022, 20, 2671-2680.	1.5	3
487	Heterogeneous Dendrimer-Based Catalysts. Polymers, 2022, 14, 981.	2.0	10
488	A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions. Beilstein Journal of Organic Chemistry, 2022, 18, 337-349.	1.3	3
489	Importance of non-covalent interactions in a nitrile anion metal-complex based on pyridine ligands: A theoretical and experimental approach. Journal of Molecular Structure, 2022, 1261, 132885.	1.8	1
493	Crown Ether-Derived Chiral BINOL: Enantioselective Michael Addition of Alkenyl Boronic Acids to α,β-Unsaturated Ketones. ACS Omega, 2021, 6, 35093-35103.	1.6	6
499	Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chemical Reviews, 2022, 122, 12244-12307.	23.0	119
500	Chalcogen bonding in coordination chemistry. Coordination Chemistry Reviews, 2022, 464, 214556.	9.5	61
501	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.2	3
502	A Bioinspired Iron-Centered Electrocatalyst for Selective Catalytic Reduction of Nitrate to Ammonia. ACS Sustainable Chemistry and Engineering, 2022, 10, 5958-5965.	3.2	23
503	Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions. Beilstein Journal of Organic Chemistry, 0, 18, 486-496.	1.3	3
504	Synthesis, experimental and theoretical analyses of bis(2-ethylphenyl)phosphorodithioates of nickel(II). Journal of Molecular Structure, 2022, 1263, 133166.	1.8	3
505	Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chemical Society Reviews, 2022, 51, 4261-4286.	18.7	57
506	Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical Reviews, 2022, 122, 12308-12369.	23.0	60
507	in Chalcogenodiazoles <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C<mml:mn>4</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">N<mml:mn>4</mml:mn></mml:mi </mml:msub><mml:mtext>Ch</mml:mtext><td>1.8 'ow><td>3 nl:math></td></td></mml:mrow></mml:math>	1.8 'ow> <td>3 nl:math></td>	3 nl:math>
	(Ch=S, Se and Te), Journal of Molecular Structure, 2022, 1265, 133371.		

# 508	ARTICLE Heteroleptic metallosupramolecular aggregates <i>/</i> complexation for supramolecular catalysis. Beilstein Journal of Organic Chemistry, 0, 18, 597-630.	IF 1.3	Citations 9
509	Metal-catalysed C–H bond activation and borylation. Chemical Society Reviews, 2022, 51, 5042-5100.	18.7	104
510	Selfâ€Assembly of a Chiral Bisâ€phosphine Ligand Bearing Pyridyl Crown Ethers and Chiral Primary Ammoniums: Application to Catalytic Asymmetric Hydrogenation Reactions. ChemistrySelect, 2022, 7, .	0.7	1
511	Metal–Organic Cages: Applications in Organic Reactions. Chemistry, 2022, 4, 494-519.	0.9	9
512	Encapsulating electron-deficient dyes into metal–organic capsules to achieve high reduction potentials. Dalton Transactions, 2022, 51, 10860-10865.	1.6	6
513	Engineered non-covalent π interactions as key elements for chiral recognition. Nature Communications, 2022, 13, .	5.8	34
514	Exploring halogenâ<¯halogen interactions in supramolecular self-assemblies of BODIPY networks. CrystEngComm, 2022, 24, 5630-5641.	1.3	6
515	Understanding the Regioselectivity of Ion-Pair-Assisted Meta-Selective C(sp ²)–H Activation in Conformationally Flexible Arylammonium Salts. Journal of Organic Chemistry, 2022, 87, 9222-9231.	1.7	2
516	Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations. Chemistry - A European Journal, 2022, 28, .	1.7	12
517	Photo-generation of H ₂ by heterometallic complexes. Dalton Transactions, 2022, 51, 14022-14031.	1.6	5
518	Encapsulation Enhances the Catalytic Activity of Câ€N Coupling: Reaction Mechanism of a Cu(I)/Calix[8]arene Supramolecular Catalyst. ChemCatChem, 2022, 14, .	1.8	4
519	Molecular Engineering of Noncovalent Dimerization. Journal of the American Chemical Society, 2022, 144, 14962-14975.	6.6	27
520	Unraveling the Origin of the Regioselectivity of a Supramolecular Hydroformylation Catalyst. ChemCatChem, 2022, 14, .	1.8	1
521	Supramolecular Catalysts for Organic Synthesis: Preparation and Applications of Cyclodextrins and Calixarenes in Câ~'C Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
522	Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews, 2022, 122, 13235-13400.	23.0	77
523	Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnology Advances, 2022, 60, 108025.	6.0	8
524	Cucurbit[7]urilâ€Encapsulationâ€Controlled Supramolecular Photoproduct and Radical Fluorescence Emission. Chemistry - A European Journal, 2022, 28, .	1.7	5
525	Decoded fingerprints of hyperresponsive, expanding product space: polyether cascade cyclizations as tools to elucidate supramolecular catalysis. Chemical Science, 2022, 13, 10273-10280.	3.7	4

#	Article	IF	CITATIONS
526	Engineering synergistic effects of immobilized cooperative catalysts. Coordination Chemistry Reviews, 2023, 474, 214863.	9.5	8
528	Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C–H Bonds. Journal of the American Chemical Society, 2022, 144, 18195-18211.	6.6	21
529	Supramolecular and theoretical investigation of copper(II) complexes containing 2,2′-bipyridine and substituted chalcone ligands: Estimation of non-covalent interactions. Journal of Molecular Structure, 2023, 1273, 134271.	1.8	4
531	Tuning the coordination properties of chiral pseudopeptide bis(2-picolyl)amine and iminodiacetamide ligands in Zn(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes. Dalton Transactions, 2022, 51, 17008-17021.	1.6	3
532	Supramolecular approaches to mediate chemical reactivity. Beilstein Journal of Organic Chemistry, 0, 18, 1463-1465.	1.3	0
533	Regulation of Chiral Phosphoric Acid Catalyzed Asymmetric Reaction through Crown Ether Based Host–Guest Chemistry. Organic Letters, 2022, 24, 7955-7960.	2.4	5
534	Cation-Controlled Olefin Isomerization Catalysis with Palladium Pincer Complexes. Organometallics, 2022, 41, 3366-3372.	1.1	5
535	Confusedâ€Prism[5]arene: a Conformationally Adaptive Host by Stereoselective Opening of the 1,4â€Bridged Naphthalene Flap. Chemistry - A European Journal, 2023, 29, .	1.7	6
536	Electronic, steric and catalytic properties of N-heterocyclic carbene rhodium(<scp>i</scp>) complexes linked to (metallo)porphyrins. Chemical Communications, 2022, 58, 13270-13273.	2.2	3
537	Exploring Solid‣tate Supramolecular Architectures of Penta(carboxymethyl)diethylenetriamine: Experimental Observation and Theoretical Studies. ChemistrySelect, 2022, 7, .	0.7	8
538	Universal one-pot strategy for fabricating supported chiral organocatalysts via direct covalent immobilization upon hollow mesoporous polystyrene nanospheres. Applied Catalysis A: General, 2023, 649, 118976.	2.2	5
539	Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chemical Society Reviews, 2023, 52, 663-704.	18.7	39
540	The surface site interaction point approach to non-covalent interactions. Chemical Society Reviews, 2022, 51, 10064-10082.	18.7	13
541	C3-symmetric tripalladium(II) complex for catalysis via geometrical coincident interaction with C3-symmetric substrate. Transition Metal Chemistry, 0, , .	0.7	0
542	Coassembly of Fiber Hydrogel with Antibacterial Activity for Wound Healing. ACS Biomaterials Science and Engineering, 2023, 9, 375-387.	2.6	7
543	Chemistry of Medicinally Important Dihydropyrimidinone-based Heterocycle Scaffolds. Mini-Reviews in Organic Chemistry, 2024, 21, 172-215.	0.6	1
544	Tweezerâ€Based Câ^'H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry - A European Journal, 2023, 29, .	1.7	2
545	Boosting the activity of Mizoroki–Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Znâ< pyridine interactions. Faraday Discussions, 0, 244, 186-198.	1.6	0

#	Article	IF	CITATIONS
546	Fe3O4/SiO2 decorated trimesic acid-melamine nanocomposite: a reusable supramolecular organocatalyst for efficient multicomponent synthesis of imidazole derivatives. Scientific Reports, 2023, 13, .	1.6	14
547	The aid of calorimetry for the thermochemical and kinetic study of the Ï <i>f</i> -hole bonding leading to I2 and 4-(dimethylamino) pyridine complexes in solution. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	0
548	Fluorophore-based host–guest assembly complexes for imaging and therapy. Chemical Communications, 2023, 59, 3024-3039.	2.2	5
549	Cavity-controlled supramolecular catalysis. , 2023, , 387-420.		0
550	Distal meta-alkenylation of formal amines enabled by catalytic use of hydrogen-bonding anionic ligands. CheM, 2023, 9, 989-1003.	5.8	13
551	Engineering intraporous solvent environments: effects of aqueous-organic solvent mixtures on competition between zeolite-catalyzed epoxidation and H ₂ O ₂ decomposition pathways. Chemical Science, 2023, 14, 3160-3181.	3.7	4
552	Insight into structural topology and supramolecular assembly of tetrahydrocarbazole-carbonitrile: On the importance of noncovalent interactions and urease inhibitory profile. Journal of Molecular Structure, 2023, 1285, 135522.	1.8	3
553	Supramolecular control on reactivity and selectivity inside the confined space of H-bonded hexameric capsules. Current Opinion in Colloid and Interface Science, 2023, 65, 101692.	3.4	2
554	A substrate descriptor based approach for the prediction and understanding of the regioselectivity in caged catalyzed hydroformylation. Faraday Discussions, 0, 244, 169-185.	1.6	2
555	Control of Selectivity in Homogeneous Catalysis through Noncovalent Interactions. Chemistry - A European Journal, 2023, 29, .	1.7	13
556	Effect of confinement on the structure, stability and aromaticity of Be32â^'. Chemical Physics Letters, 2023, 816, 140390.	1.2	0
557	Tunable and Switchable Catalysis Enabled by Cation-Controlled Gating with Crown Ether Ligands. Accounts of Chemical Research, 2023, 56, 971-981.	7.6	8
558	Visible‣ightâ€Mediated Photocatalytic Deracemization. Chemistry - A European Journal, 2023, 29, .	1.7	6
559	Principles of Catalysis. Engineering Materials, 2023, , 95-113.	0.3	0
560	Fineâ€Tuning Redox Properties of Heteroleptic Molybdenum Complexes through Ligandâ€Ligandâ€Cooperativity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
561	Fineâ€Tuning Redox Properties of Heteroleptic Molybdenum Complexes through Ligandâ€Ligandâ€Cooperativity. Angewandte Chemie, 0, , .	1.6	0
571	Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Organic Letters, 2023, 25, 5291-5296.	2.4	0
597	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	18.7	0

ARTICLE

IF CITATIONS