Nanoparticle solutions as adhesives for gels and biologic

Nature 505, 382-385

DOI: 10.1038/nature12806

Citation Report

#	Article	IF	CITATIONS
1	Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs. International Journal of Nanomedicine, 2014, 9, 3963.	6.7	46
2	Dissipative properties and chain evolution of highly strained nanocomposite hydrogel. Journal of Applied Physics, 2014, 116, .	2.5	20
3	A nanoparticle solution. Nature Materials, 2014, 13, 231-232.	27.5	13
4	Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by Aqueous Solutions of Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 6369-6373.	13.8	197
5	Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Threeâ€Component Recognition with Reinforcing Cellulose Nanorods. Advanced Functional Materials, 2014, 24, 2706-2713.	14.9	227
7	Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.	11.9	158
8	Probing pH-Responsive Interactions between Polymer Brushes and Hydrogels by Neutron Reflectivity. Langmuir, 2014, 30, 9700-9706.	3.5	8
9	Fabrication of 3D Polypyrrole/Graphene Oxide Composite Hydrogels with High Performance Swelling Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 884-889.	3.7	21
10	Photoinduced Sequence-Controlled Copper-Mediated Polymerization: Synthesis of Decablock Copolymers. ACS Macro Letters, 2014, 3, 732-737.	4.8	102
11	A Meniscus-climbing Gel Robot. Chemistry Letters, 2014, 43, 938-940.	1.3	13
12	Probing Colloidal Gels at Multiple Length Scales: The Role of Hydrodynamics. Physical Review Letters, 2015, 114, 258302.	7.8	42
14	Selfâ€Adjustable Adhesion of Polyampholyte Hydrogels. Advanced Materials, 2015, 27, 7344-7348.	21.0	160
15	A Highly Elastic and Rapidly Crosslinkable Elastinâ€Like Polypeptideâ€Based Hydrogel for Biomedical Applications. Advanced Functional Materials, 2015, 25, 4814-4826.	14.9	201
16	Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion. International Journal of Nanomedicine, 2015, 10, 1479.	6.7	30
17	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	4.1	297
18	Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels. PLoS ONE, 2015, 10, e0136293.	2.5	33
19	Enhanced angiogenesis of growth factor-free porous biodegradable adhesive made with hexanoyl group-modified gelatin. Biomaterials, 2015, 63, 14-23.	11.4	32
20	Hydrogel formed by the co-assembly of sodium laurate and silica nanoparticles. RSC Advances, 2015, 5, 106005-106011.	3.6	6

#	Article	IF	CITATIONS
21	Homogeneous deposition of particles by absorption on hydrogels. Europhysics Letters, 2015, 112, 48004.	2.0	15
22	Novel Musselâ€Inspired Injectable Selfâ€Healing Hydrogel with Antiâ€Biofouling Property. Advanced Materials, 2015, 27, 1294-1299.	21.0	473
23	Stackable, Covalently Fused Gels: Repair and Composite Formation. Macromolecules, 2015, 48, 1169-1178.	4.8	30
24	Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature Communications, 2015, 6, 6295.	12.8	425
25	Nanoparticle-Induced Charge Redistribution of the Air–Water Interface. Journal of Physical Chemistry C, 2015, 119, 2661-2668.	3.1	30
26	Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Applied Materials & 2015, 7, 5029-5037.	8.0	288
27	Oligomeric Hydrogels Selfâ€Assembled from Reductionâ€Controlled Condensation. Angewandte Chemie - International Edition, 2015, 54, 3639-3642.	13.8	60
28	Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multiâ€Functional Materials. Advanced Science, 2015, 2, 1400010.	11.2	653
29	Exploiting Electrostatic Interactions in Polymer–Nanoparticle Hydrogels. ACS Macro Letters, 2015, 4, 848-852.	4.8	95
30	RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs. Journal of Colloid and Interface Science, 2015, 458, 14-21.	9.4	29
31	Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter, 2015, 11, 5905-5917.	2.7	21
32	Adhesion of poly(vinyl alcohol) hydrogels by the electrophoretic manipulation of phenylboronic acid copolymers. Journal of Materials Chemistry B, 2015, 3, 6740-6745.	5.8	12
33	Enzyme Induced Stiffening of Nanoparticle–Hydrogel Composites with Structural Color. ACS Nano, 2015, 9, 8004-8011.	14.6	51
34	Tuning colloidal gels by shear. Soft Matter, 2015, 11, 4640-4648.	2.7	97
35	Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. ACS Macro Letters, 2015, 4, 467-471.	4.8	69
36	Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Nature Communications, 2015, 6, 6650.	12.8	80
37	Mussel-inspired nanofibrous sheet for suture-less stomach incision surgery. Chemical Communications, 2015, 51, 8695-8698.	4.1	28
38	Failing softly: a fracture theory of highly-deformable materials. Soft Matter, 2015, 11, 3812-3821.	2.7	27

#	Article	IF	Citations
39	Extremely tough composites from fabric reinforced polyampholyte hydrogels. Materials Horizons, 2015, 2, 584-591.	12.2	108
40	Ligand switch in photoinduced copper-mediated polymerization: synthesis of methacrylate–acrylate block copolymers. Polymer Chemistry, 2015, 6, 6488-6497.	3.9	44
41	A shape healable tough hydrogel. New Journal of Chemistry, 2015, 39, 8461-8466.	2.8	14
42	Recent developments in dynamic fracture: some perspectives. International Journal of Fracture, 2015, 196, 33-57.	2.2	48
43	Control of the rheological properties of clay nanosheet hydrogels with a guanidinium-attached calix[4] arene binder. Chemical Communications, 2015, 51, 15184-15187.	4.1	13
44	Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter, 2015, 11, 8550-8583.	2.7	131
45	Rewritable hydrogel coatings using water as the ink. , 2015, , .		0
46	Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release. Journal of the American Chemical Society, 2015, 137, 16098-16108.	13.7	147
47	Micro―and Nanostructured Biomaterials for Sutureless Tissue Repair. Advanced Healthcare Materials, 2016, 5, 401-414.	7.6	25
48	Saltâ€Driven Deposition of Thermoresponsive Polymerâ€Coated Metal Nanoparticles on Solid Substrates. Angewandte Chemie - International Edition, 2016, 55, 7086-7090.	13.8	17
49	Soft nanocomposites: nanoparticles to tune gel properties. Polymer International, 2016, 65, 268-279.	3.1	29
50	Thermoresponsive Toughening with Crack Bifurcation in Phaseâ€Separated Hydrogels under Isochoric Conditions. Advanced Materials, 2016, 28, 5857-5864.	21.0	91
51	Doubleâ€Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration. Advanced Materials, 2016, 28, 6740-6745.	21.0	225
52	An Injectable Selfâ€Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Advanced Materials, 2016, 28, 3669-3676.	21.0	700
53	Saltâ€Driven Deposition of Thermoresponsive Polymerâ€Coated Metal Nanoparticles on Solid Substrates. Angewandte Chemie, 2016, 128, 7202-7206.	2.0	9
54	Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14255-14260.	7.1	78
56	Soft Supramolecular Nanoparticles by Noncovalent and Host–Guest Interactions. Small, 2016, 12, 96-119.	10.0	78
57	Separation and analysis of carbon nanomaterials in complex matrix. TrAC - Trends in Analytical Chemistry, 2016, 80, 416-428.	11.4	16

#	Article	IF	CITATIONS
58	Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10049-10069.	8.0	206
59	Multiscale Surface-Attached Hydrogel Thin Films with Tailored Architecture. ACS Applied Materials & Interfaces, 2016, 8, 11729-11738.	8.0	61
60	Hydrogel Adhesion with Wrinkle Formation by Spatial Control of Polymer Networks. Journal of Physical Chemistry B, 2016, 120, 5042-5046.	2.6	27
61	Control of the mechanical strength of a bipyridine-based polymeric gel from linear nanofibre to helix with a chiral dopant. Chemical Communications, 2016, 52, 7600-7603.	4.1	4
62	Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. Langmuir, 2016, 32, 5573-5579.	3.5	13
63	Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3193-202.	7.1	62
64	Nanoparticles as Adhesives for Soft Polymeric Materials. Macromolecules, 2016, 49, 3586-3592.	4.8	28
65	A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. Journal of the Mechanics and Physics of Solids, 2016, 94, 127-147.	4.8	82
66	Synergistic toughening of nanocomposite double network hydrogels by physical adsorption and chemical bonding of polymer chains to inorganic nanospheres and nanorods: a comparative study. RSC Advances, 2016, 6, 37974-37981.	3.6	22
67	Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding. Advanced Science, 2016, 3, 1600206.	11.2	115
68	Polymer Structure Dependent Hierarchy in PolyMOC Gels. Macromolecules, 2016, 49, 6896-6902.	4.8	48
69	Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. Polymer, 2016, 101, 406-414.	3.8	17
70	Molecular Dynamics Simulations of the Effect of Elastocapillarity on Reinforcement of Soft Polymeric Materials by Liquid Inclusions. Macromolecules, 2016, 49, 7108-7115.	4.8	12
71	Hybrid organic–inorganic supramolecular hydrogel reinforced with CePO ₄ nanowires. Polymer Chemistry, 2016, 7, 6485-6489.	3.9	12
72	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, 11, 1105-1111.	31.5	337
73	Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresource Technology, 2016, 219, 451-457.	9.6	106
74	Nanoindentation and finite element modelling of chitosan–alginate multilayer coated hydrogels. Soft Matter, 2016, 12, 7338-7349.	2.7	11
7 5	Supramolecular Metalloâ€Bioadhesive for Minimally Invasive Use. Advanced Materials, 2016, 28, 8675-8680.	21.0	64

#	Article	IF	CITATIONS
76	An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. Journal of Materials Chemistry B, 2016, 4, 5585-5592.	5.8	37
77	Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	24
78	Nanostickers for cells: a model study using cell–nanoparticle hybrid aggregates. Soft Matter, 2016, 12, 7902-7907.	2.7	13
79	Hydroxyapatite-coated double network hydrogel directly bondable to the bone: Biological and biomechanical evaluations of the bonding property in an osteochondral defect. Acta Biomaterialia, 2016, 44, 125-134.	8.3	35
80	Guidable GNR-Fe 3 O 4-PEM@SiO 2 composite particles containing near infrared active nanocalorifiers for laser assisted tissue welding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 73-81.	4.7	20
81	Electrophoretic hydrogel adhesion for fabrication of three-dimensional materials. Polymer Journal, 2016, 48, 1095-1101.	2.7	15
82	Unusual fluorescence and sol–gel transition properties of a pyridine-based polymeric gel formed via the hydrazone reaction. Journal of Materials Chemistry C, 2016, 4, 9646-9650.	5.5	14
84	Hydrogel–colloid interfacial interactions: a study of tailored adhesion using optical tweezers. Soft Matter, 2016, 12, 6575-6587.	2.7	7
85	Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Scientific Reports, 2016, 6, 22736.	3.3	89
86	Biological Adhesives. , 2016, , .		23
87	Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polymer Chemistry, 2016, 7, 7142-7151.	3.9	44
87		3.9	67
	Chemistry, 2016, 7, 7142-7151.		
88	Chemistry, 2016, 7, 7142-7151. Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394. Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed	4.8	67
88	Chemistry, 2016, 7, 7142-7151. Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394. Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed crosslinker. Colloids and Surfaces B: Biointerfaces, 2016, 146, 212-220. Highly Tolerant and Durable Adhesion between Hydrogels Utilizing Intercalation of Cationic	4.8 5.0	27
88 89 90	Chemistry, 2016, 7, 7142-7151. Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394. Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed crosslinker. Colloids and Surfaces B: Biointerfaces, 2016, 146, 212-220. Highly Tolerant and Durable Adhesion between Hydrogels Utilizing Intercalation of Cationic Substituents into Layered Inorganic Compounds. ACS Macro Letters, 2016, 5, 704-708. Production in ⟨i⟩Pichia pastoris⟨/i⟩ of proteinâ€based polymers with small heterodimerâ€forming blocks.	4.8 5.0 4.8	67 27 17
88 89 90	Biosynthetic Polymers as Functional Materials. Macromolecules, 2016, 49, 4379-4394. Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed crosslinker. Colloids and Surfaces B: Biointerfaces, 2016, 146, 212-220. Highly Tolerant and Durable Adhesion between Hydrogels Utilizing Intercalation of Cationic Substituents into Layered Inorganic Compounds. ACS Macro Letters, 2016, 5, 704-708. Production in ⟨i⟩Pichia pastoris⟨ i⟩ of proteinâ€based polymers with small heterodimerâ€forming blocks. Biotechnology and Bioengineering, 2016, 113, 953-960.	4.8 5.0 4.8 3.3	67 27 17 4

#	Article	IF	CITATIONS
95	A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Advances, 2016, 6, 26599-26605.	3.6	80
96	Biocompatible magnetic core–shell nanocomposites for engineered magnetic tissues. Nanoscale, 2016, 8, 8138-8150.	5.6	56
97	Chemistry and properties at a sub-nanometer scale. Chemical Science, 2016, 7, 3978-3991.	7.4	61
98	A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chemical Science, 2016, 7, 2736-2742.	7.4	97
99	Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter, 2016, 12 , $1344-1359$.	2.7	95
100	Micro Total Analysis Systems: Fundamental Advances and Applications. Analytical Chemistry, 2016, 88, 320-338.	6.5	94
101	Adhesion between highly stretchable materials. Soft Matter, 2016, 12, 1093-1099.	2.7	93
102	Adhesive and sealant interfaces for general surgery applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 626-639.	3.4	122
103	Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry, 2017, 110, 82-93.	5.8	174
104	A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Advances, 2017, 7, 2450-2459.	3.6	93
105	Strong, Tough, Stretchable, and Selfâ€Adhesive Hydrogels from Intrinsically Unstructured Proteins. Advanced Materials, 2017, 29, 1604743.	21.0	130
106	A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chemical Society Reviews, 2017, 46, 1483-1509.	38.1	77
107	Local structure of percolating gels at very low volume fractions. Journal of Chemical Physics, 2017, 146, 014905.	3.0	18
108	Dynamics of Dual Networks: Strain Rate and Temperature Effects in Hydrogels with Reversible H-Bonds. Macromolecules, 2017, 50, 652-659.	4.8	66
109	Inverse emulsion freeâ€radical polymerization of acrylamide terpolymer for enhanced oil recovery application in harsh reservoir conditions. Polymer Engineering and Science, 2017, 57, 1214-1223.	3.1	14
110	Energyâ€Dissipative Matrices Enable Synergistic Toughening in Fiber Reinforced Soft Composites. Advanced Functional Materials, 2017, 27, 1605350.	14.9	116
111	Optimal Reactivity and Improved Selfâ€Healing Capability of Structurally Dynamic Polymers Grafted on Janus Nanoparticles Governed by Chain Stiffness and Spatial Organization. Small, 2017, 13, 1603155.	10.0	31
112	Solid–Liquid Work of Adhesion. Langmuir, 2017, 33, 3594-3600.	3.5	148

#	Article	IF	CITATIONS
114	Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. Journal of Materials Chemistry B, 2017, 5, 2416-2424.	5.8	43
115	Tuning underwater adhesion with cation–π interactions. Nature Chemistry, 2017, 9, 473-479.	13.6	239
116	Structural and mechanical properties of a range of chitosan-based hybrid networks loaded with colloidal silica and polystyrene particles. Journal of Materials Science, 2017, 52, 8338-8347.	3.7	19
117	Tough and tunable adhesion of hydrogels: experiments and models. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 543-554.	3.4	62
118	Biocompatible nanostructured solid adhesives for biological soft tissues. Acta Biomaterialia, 2017, 57, 404-413.	8.3	25
119	Near-infrared photochemistry at interfaces based on upconverting nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 23585-23596.	2.8	43
120	Nanoparticle Coupling to Hydrogel Networks: New Insights from Electroacoustic Spectroscopy. Macromolecules, 2017, 50, 4030-4038.	4.8	12
121	A Transparent, Highly Stretchable, Autonomous Selfâ€Healing Poly(dimethyl siloxane) Elastomer. Macromolecular Rapid Communications, 2017, 38, 1700110.	3.9	165
122	Facile preparation of hybrid vesicles loaded with silica nanoparticles via aqueous photoinitiated polymerization-induced self-assembly. RSC Advances, 2017, 7, 23114-23121.	3.6	39
123	Rapid hydrogel repair utilizing microgel architectures. Materials Chemistry Frontiers, 2017, 1, 1594-1599.	5.9	4
124	Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment. Applied Surface Science, 2017, 418, 522-529.	6.1	11
125	Stimuli-Responsive Adhesion for 3D Fabrication of Hydrogels. , 2017, , 255-267.		0
126	Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017, 3, e1700053.	10.3	359
127	Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9, 8418-8426.	5.6	49
128	ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. Journal of Materials Chemistry B, 2017, 5, 4535-4541.	5.8	90
129	Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles. Macromolecules, 2017, 50, 4465-4473.	4.8	30
130	Instabilities in confined elastic layers under tension: Fringe, fingering and cavitation. Journal of the Mechanics and Physics of Solids, 2017, 106, 229-256.	4.8	37
131	A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, 2017, 546, 396-400.	27.8	369

#	Article	IF	CITATIONS
132	Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Materials Chemistry Frontiers, 2017, 1, 1257-1272.	5.9	85
133	Mechanistic Insights into the Directed Assembly of Hydrogel Blocks Mediated by Polyelectrolytes or Microgels. Langmuir, 2017, 33, 3864-3870.	3.5	3
134	Enhanced sealing strength of a hydrophobically-modified Alaska pollock gelatin-based sealant. Biomaterials Science, 2017, 5, 982-989.	5.4	49
135	Enzyme-induced dual-network Îμ-poly- <scp>l</scp> -lysine-based hydrogels with robust self-healing and antibacterial performance. Chemical Communications, 2017, 53, 4803-4806.	4.1	24
136	Elastocapillarity: Surface Tension and the Mechanics of Soft Solids. Annual Review of Condensed Matter Physics, 2017, 8, 99-118.	14.5	247
137	Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37929-37940.	8.0	41
138	Vibrational properties and stability of FePt nanoalloys. Physical Review B, 2017, 95, .	3.2	7
139	Bioinspired Adhesive Hydrogels Tackified by Nucleobases. Advanced Functional Materials, 2017, 27, 1703132.	14.9	154
140	Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. ACS Applied Materials & Damp; Interfaces, 2017, 9, 31469-31477.	8.0	49
141	Design and fabrication of functional hydrogels through interfacial engineering. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1181-1193.	3.8	28
142	Direct measurement of strain-dependent solid surface stress. Nature Communications, 2017, 8, 555.	12.8	79
143	Design of yield-stress fluids: a rheology-to-structure inverse problem. Soft Matter, 2017, 13, 7578-7594.	2.7	83
144	Upconversion Nanoparticles/Hyaluronate–Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano, 2017, 11, 9979-9988.	14.6	81
145	Interfacial self-healing of nanocomposite hydrogels: Theory and experiment. Journal of the Mechanics and Physics of Solids, 2017, 109, 288-306.	4.8	30
146	Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nature Communications, 2017, 8, 15807.	12.8	67
147	Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterials. Biomacromolecules, 2017, 18, 2767-2776.	5.4	71
148	Recent advances in studying single bacteria and biofilm mechanics. Advances in Colloid and Interface Science, 2017, 247, 573-588.	14.7	42
149	Highly Elastic, Transparent, and Conductive 3Dâ€Printed Ionic Composite Hydrogels. Advanced Functional Materials, 2017, 27, 1701807.	14.9	162

#	Article	IF	CITATIONS
150	Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO ₃ Nanoparticles. Advanced Functional Materials, 2017, 27, 1700897.	14.9	38
151	From Adhesion to Wetting: Contact Mechanics at the Surfaces of Super-Soft Brush-Like Elastomers. ACS Macro Letters, 2017, 6, 854-858.	4.8	24
152	Particle Adsorption on Hydrogel Surfaces in Aqueous Media due to van der Waals Attraction. Scientific Reports, 2017, 7, 6099.	3.3	33
153	Rough Adhesive Hydrogels (RAd gels) for Underwater Adhesion. ACS Applied Materials & amp; Interfaces, 2017, 9, 27409-27413.	8.0	36
154	Tough adhesives for diverse wet surfaces. Science, 2017, 357, 378-381.	12.6	1,068
155	Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core–shell inorganic–organic hybrid latex particles. Soft Matter, 2017, 13, 6059-6067.	2.7	49
157	3D printing of bacteria into functional complex materials. Science Advances, 2017, 3, eaao6804.	10.3	314
158	Silica Nanoparticles as Adhesives for Biological Tissues? Reâ€Examining the Effect of Particles Size, Particle Shape, and the Unexpected Role of Base. Particle and Particle Systems Characterization, 2017, 34, 1700286.	2.3	13
159	Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts. Physical Review X, 2017, 7, .	8.9	6
160	A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22160-22175.	8.0	127
161	Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8163-8168.	7.1	111
162	Bioadhesive Nanoaggregates Based on Polyaspartamide- $\langle i \rangle$ g $\langle i \rangle$ -C18/DOPA for Wound Healing. Biomacromolecules, 2017, 18, 2402-2409.	5.4	23
163	Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. ACS Applied Materials & Camp; Interfaces, 2017, 9, 24230-24237.	8.0	118
164	Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States. Journal of Thermal Spray Technology, 2017, 26, 958-969.	3.1	5
165	Nano- and microparticles at fluid and biological interfaces. Journal of Physics Condensed Matter, 2017, 29, 373003.	1.8	64
166	Stimuli-Responsive Interfaces. , 2017, , .		3
167	Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. Journal of Magnetism and Magnetic Materials, 2017, 431, 110-114.	2.3	13
168	Enhanced Sealing by Hydrophobic Modification of Alaska Pollockâ€Derived Gelatinâ€Based Surgical Sealants for the Treatment of Pulmonary Air Leaks. Macromolecular Bioscience, 2017, 17, 1600349.	4.1	41

#	Article	IF	CITATIONS
169	Bio-inspired reversible underwater adhesive. Nature Communications, 2017, 8, 2218.	12.8	353
170	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. Polymers, 2017, 9, 186.	4.5	10
171	Organic Nanocarriers for the Delivery of Antiinfective Agents. , 2017, , 369-393.		1
172	Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	4
173	Molecular Simulation on Polymer Adhesives. Journal of the Adhesion Society of Japan, 2017, 53, 19-23.	0.0	0
174	Nitroarylurea-terminated supramolecular polymers that exhibit facile thermal repair and aqueous swelling-induced sealing of defects. Polymer, 2018, 140, 1-9.	3.8	7
175	Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive. ACS Applied Materials & Interfaces, 2018, 10, 10471-10479.	8.0	142
176	Macroscopic Adhesion of Thermoreversible ABC Triblock Copolymerâ€Based Hydrogels Via Boronic Acid–Sugar Complexation. Macromolecular Rapid Communications, 2018, 39, e1700835.	3.9	9
177	Bioadhesive, Hemostatic, and Antibacterial <i>in Situ</i> Chitin–Fibrin Nanocomposite Gel for Controlling Bleeding and Preventing Infections at Mediastinum. ACS Sustainable Chemistry and Engineering, 2018, 6, 7826-7840.	6.7	62
178	Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals – State of the Art. Lasers in Manufacturing and Materials Processing, 2018, 5, 143-167.	2.2	6
179	Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Advanced Materials, 2018, 30, e1704235.	21.0	329
180	Dynamic Interfacial Adhesion through Cucurbit[<i>n</i>]uril Molecular Recognition. Angewandte Chemie, 2018, 130, 8992-8996.	2.0	35
181	Cucurbit[<i>n</i>]uril Supramolecular Hydrogel Networks as Tough and Healable Adhesives. Advanced Functional Materials, 2018, 28, 1800848.	14.9	98
182	In Situ Formation of Slippery-Liquid-Infused Nanofibrous Surface for a Transparent Antifouling Endoscope Lens. ACS Biomaterials Science and Engineering, 2018, 4, 1871-1879.	5.2	19
183	Dynamic Interfacial Adhesion through Cucurbit[<i>n</i>]uril Molecular Recognition. Angewandte Chemie - International Edition, 2018, 57, 8854-8858.	13.8	83
184	Structure and Dynamics of Solvated Polymers near a Silica Surface: On the Different Roles Played by Solvent. Journal of Physical Chemistry B, 2018, 122, 4573-4582.	2.6	9
185	Inorganic Nanomaterials for Soft Tissue Repair and Regeneration. Annual Review of Biomedical Engineering, 2018, 20, 353-374.	12.3	62
186	Tuning Wet Adhesion of Weak Polyelectrolyte Multilayers. ACS Applied Materials & amp; Interfaces, 2018, 10, 7401-7412.	8.0	20

#	Article	IF	CITATIONS
187	Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices. Acta Biomaterialia, 2018, 70, 98-109.	8.3	21
188	Gold Nanorod-Based Engineered Cardiac Patch for Suture-Free Engraftment by Near IR. Nano Letters, 2018, 18, 4069-4073.	9.1	7 5
189	Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method. Green Chemistry, 2018, 20, 843-850.	9.0	72
190	Silicon Carbide Nanoparticles as an Effective Bioadhesive to Bond Collagen Containing Composite Gel Layers for Tissue Engineering Applications. Advanced Healthcare Materials, 2018, 7, 1701385.	7.6	15
191	Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 2018, 7, e1701067.	7.6	68
192	Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Research, 2018, 131, 246-254.	11.3	291
193	Topological Adhesion of Wet Materials. Advanced Materials, 2018, 30, e1800671.	21.0	276
194	Nanoparticle Organization Controls Their Potency as Universal Glues for Gels. Nano Letters, 2018, 18, 3530-3537.	9.1	11
195	Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition. Journal of the American Chemical Society, 2018, 140, 6408-6415.	13.7	12
196	Nanoparticle wrapping at small non-spherical vesicles: curvatures at play. Nanoscale, 2018, 10, 6445-6458.	5.6	21
197	Interfacing Soft and Hard Materials with Triple-Shape-Memory and Self-Healing Functions. Macromolecules, 2018, 51, 2437-2446.	4.8	37
198	Reversible cyanovinylcarbazole-based polymer gel via photo-cross-linking reaction. Supramolecular Chemistry, 2018, 30, 227-233.	1.2	1
199	Sessile nanofluid droplet can act like a crane. Journal of Colloid and Interface Science, 2018, 512, 497-510.	9.4	3
200	Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials, 2018, 151, 66-77.	11.4	235
201	Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites. Lasers in Surgery and Medicine, 2018, 50, 143-152.	2.1	20
202	Enhanced Mechanical and Helical Properties with Achiral Calix[4]arene in a Coâ€Assembled Hydrogel with a Helical Structure. European Journal of Organic Chemistry, 2018, 2018, 219-222.	2.4	6
203	Biodegradable Nanoparticles Enhanced Adhesiveness of Musselâ€Like Hydrogels at Tissue Interface. Advanced Healthcare Materials, 2018, 7, e1701069.	7.6	47
204	Elongation thinning and morphology deformation of nanoparticle-filled polypropylene/polystyrene blends in elongational flow. Journal of Rheology, 2018, 62, 11-23.	2.6	11

#	Article	IF	Citations
205	Supramolecular polymeric biomaterials. Biomaterials Science, 2018, 6, 10-37.	5.4	129
206	Effect of incorporating clustered silica nanoparticles on the performance and biocompatibility of catechol-containing PEG-based bioadhesive. Biomedical Materials (Bristol), 2018, 13, 025003.	3.3	21
207	Injectable network biomaterials via molecular or colloidal self-assembly. Advanced Drug Delivery Reviews, 2018, 127, 185-207.	13.7	65
208	Fast and excellent healing of hydroxypropyl guar gum/poly(<i>N,N</i> â€dimethyl acrylamide) hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 239-247.	2.1	10
209	Effect of functionalized PHEMA micro―and nanoâ€particles on the viscoelastic properties of fibrin–agarose biomaterials. Journal of Biomedical Materials Research - Part A, 2018, 106, 738-745.	4.0	5
210	Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Research Letters, 2018, 13, 393.	5.7	34
211	Bioactive nanoparticle-based formulations increase survival area of perforator flaps in a rat model. PLoS ONE, 2018, 13, e0207802.	2.5	15
212	Hemodynamic shear flow regulates biophysical characteristics and functions of circulating breast tumor cells reminiscent of brain metastasis. Soft Matter, 2018, 14, 9528-9533.	2.7	18
213	Graphene-Oxide and Hydrogel Coated FBG-Based pH Sensor for Biomedical Applications. Proceedings (mdpi), $2018, 2, .$	0.2	4
215	Colloidal Lignin Particles as Adhesives for Soft Materials. Nanomaterials, 2018, 8, 1001.	4.1	33
216	Advanced Hydrogel Structures. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
217	Microgel in a Pore: Intraparticle Segregation or Snail-like Behavior Caused by Collapse and Swelling. Macromolecules, 2018, 51, 8147-8155.	4.8	14
218	Strong and tough hydrogels crosslinked by multiâ€functional polymer colloids. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1336-1350.	2.1	60
219	Antibacterial and biodegradable tissue nano-adhesives for rapid wound closure. International Journal of Nanomedicine, 2018, Volume 13, 5849-5863.	6.7	43
220	Composite Double-Network Hydrogels To Improve Adhesion on Biological Surfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38692-38699.	8.0	81
221	Self-assembled biomaterials using host-guest interactions. , 2018, , 205-231.		6
222	An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Selfâ€Rescue. Advanced Functional Materials, 2018, 28, 1804925.	14.9	125
223	Equilibrium and Out-of-Equilibrium Adherence of Hydrogels against Polymer Brushes. Macromolecules, 2018, 51, 7556-7566.	4.8	18

#	Article	IF	CITATIONS
224	Self-Healing and Adhesive Artificial Tissue Implant for Voice Recovery. ACS Applied Bio Materials, 2018, 1, 1134-1146.	4.6	19
225	Tough and Self-Healable Nanocomposite Hydrogels for Repeatable Water Treatment. Polymers, 2018, 10, 880.	4.5	22
226	Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: A mini review. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1306-1313.	2.1	56
227	Strong, Rebondable, Dynamic Cross-Linked Cellulose Nanocrystal Polymer Nanocomposite Adhesives. ACS Applied Materials & Dynamic Cross-Linked Cellulose Nanocrystal Polymer Nanocomposite Adhesives.	8.0	49
228	How To Measure Work of Adhesion and Surface Tension of Soft Polymeric Materials. Macromolecules, 2018, 51, 4059-4067.	4.8	21
229	Supramolecular Gluing of Polymeric Hydrogels. ChemNanoMat, 2018, 4, 772-775.	2.8	8
230	Hydrogel ionotronics. Nature Reviews Materials, 2018, 3, 125-142.	48.7	1,119
231	Biocompatible alkyl cyanoacrylates and their derivatives as bio-adhesives. Biomaterials Science, 2018, 6, 1691-1711.	5.4	71
232	Stress Dissipation in Cucurbit[8]uril Ternary Complex Small Molecule Adhesives. Langmuir, 2018, 34, 13104-13109.	3.5	8
233	Instant Strong Adhesive Behavior of Nanocomposite Gels toward Hydrophilic Porous Materials. Langmuir, 2018, 34, 8480-8488.	3.5	11
234	A crown-ether-based moldable supramolecular gel with unusual mechanical properties and controllable electrical conductivity prepared by cation-mediated cross-linking. Polymer Chemistry, 2018, 9, 3900-3907.	3.9	16
235	Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design. Advanced Materials, 2018, 30, e1801884.	21.0	235
236	Particle-loaded gels. , 2018, , 143-178.		0
237	The contact mechanics challenge: tribology meets soft matter. Soft Matter, 2018, 14, 5706-5709.	2.7	6
238	Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an adhesive layer. Journal of Materials Chemistry A, 2018, 6, 15147-15153.	10.3	43
239	Calciumâ€Modified Silk as a Biocompatible and Strong Adhesive for Epidermal Electronics. Advanced Functional Materials, 2018, 28, 1800802.	14.9	141
240	Microrheology of DNA hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8137-8142.	7.1	96
241	Formation of Silica–Organic Hybrid Nanoparticles by Cross-linking of Ultra-small Silica Nanoparticles. Chemistry Letters, 2018, 47, 1018-1021.	1.3	3

#	Article	IF	CITATIONS
242	The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants. Soft Matter, 2018, 14, 5764-5774.	2.7	41
243	Multipurpose and Durable Adhesive Hydrogel Assisted by Adenine and Uracil from Ribonucleic Acid. Chemistry - A European Journal, 2018, 24, 15119-15125.	3.3	13
244	Adhesive Hydrogel System Based on the Intercalation of Anionic Substituents into Layered Double Hydroxides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29925-29932.	8.0	12
245	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	21.0	216
246	Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 1029-1054.	4.8	423
247	Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nature Biomedical Engineering, 2019, 3, 611-620.	22.5	154
249	Chemo-enzymatically prepared lignin nanoparticles for value-added applications. World Journal of Microbiology and Biotechnology, 2019, 35, 125.	3.6	31
250	Sewing Hydrogels: Adhesion of Hydrogels Utilizing in Situ Polymerization of Linear Polymers inside Gel Networks. Macromolecules, 2019, 52, 5690-5697.	4.8	22
251	Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. Small, 2019, 15, e1901566.	10.0	41
252	Mesoporous silica nanoparticles for tissueâ €e ngineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1573.	6.1	87
253	Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery. Accounts of Chemical Research, 2019, 52, 2101-2112.	15.6	149
254	Rational Nanotoolbox with Theranostic Potential for Medicated Proâ€Regenerative Corneal Implants. Advanced Functional Materials, 2019, 29, 1903760.	14.9	10
255	Capillarity-Enhanced Organ-Attachable Adhesive with Highly Drainable Wrinkled Octopus-Inspired Architectures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25674-25681.	8.0	47
256	3D Printing Super Strong Hydrogel for Artificial Meniscus. ACS Applied Polymer Materials, 2019, 1, 2023-2032.	4.4	34
257	Environmental Nanoparticle-Induced Toughening and Pinning of a Growing Crack in a Biopolymer Hydrogel. Physical Review Letters, 2019, 123, 158002.	7.8	3
258	A Lightâ€Driven Microgel Rotor. Small, 2019, 15, e1903379.	10.0	32
259	Bioinspired from mussel and salivary acquired pellicle: a universal dual-functional polypeptide coating for implant materials. Materials Today Chemistry, 2019, 14, 100205.	3.5	12
260	Janus Nanoparticles Enable Entropy-Driven Mixing of Bicomponent Hydrogels. Langmuir, 2019, 35, 14840-14848.	3.5	10

#	ARTICLE	IF	CITATIONS
261	Dry double-sided tape for adhesion of wet tissues and devices. Nature, 2019, 575, 169-174.	27.8	798
262	Liquid Biopsy for Hepatocellular Carcinoma. Current Hepatology Reports, 2019, 18, 390-399.	0.9	1
263	Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, 2019, , .	1.0	12
264	Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure. Journal of Optics (United Kingdom), 2019, 21, 105003.	2.2	4
265	Silica-based nanosystems for therapeuticÂapplications in the skin. Nanomedicine, 2019, 14, 2243-2267.	3.3	17
266	Shear thinning pectin hydrogels physically cross-linked with chitosan nanogels. Carbohydrate Polymers, 2019, 225, 115249.	10.2	41
267	Hydrogel-mediated semiconductor wafer bonding. Applied Physics Letters, 2019, 115, .	3.3	8
268	<i>In situ</i> -forming, mechanically resilient hydrogels for cell delivery. Journal of Materials Chemistry B, 2019, 7, 5742-5761.	5.8	25
269	Effect of responsive graft length on mechanical toughening and transparency in microphase-separated hydrogels. Soft Matter, 2019, 15, 8653-8666.	2.7	8
270	Fertility-enhancing male reproductive surgery: glimpses into the past and thoughts for the future. Fertility and Sterility, 2019, 112, 426-437.	1.0	7
271	Instant, Tough, Noncovalent Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 40749-40757.	8.0	60
272	Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Network PEG-Based Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 36458-36468.	8.0	67
273	Underwater-adhesive microparticle dressing composed of hydrophobically-modified Alaska pollock gelatin for gastrointestinal tract wound healing. Acta Biomaterialia, 2019, 99, 387-396.	8.3	44
274	Magnetorheology of alginate ferrogels. Smart Materials and Structures, 2019, 28, 035018.	3.5	15
275	Highly Permeable Skin Patch with Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion. Advanced Functional Materials, 2019, 29, 1807614.	14.9	129
276	A Robust Salty Water Adhesive by Counterion Exchange Induced Coacervate. Macromolecular Rapid Communications, 2019, 40, e1800758.	3.9	14
277	The synthesis of poly(arylthiols) and their utilization in the preparation of cross-linked dynamic covalent polymer nanoparticles and hydrogels. Polymer Chemistry, 2019, 10, 1258-1267.	3.9	9
278	Facile Preparation of Lignin-Based Underwater Adhesives with Improved Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 4508-4514.	6.7	51

#	Article	IF	Citations
279	Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1637-1651.	5.8	93
280	Gluing Interfaces with Soft Nanoparticles. Langmuir, 2019, 35, 7277-7284.	3.5	2
281	Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering. IEEE Transactions on Nanobioscience, 2019, 18, 597-610.	3.3	9
282	Highâ€Strength, Rapidly Selfâ€Recoverable, and Antifatigue Nanoâ€SiO ₂ /Poly(Acrylamide–Lauryl)	Tj.ETQq1	1 0.784314 15
283	Semiâ€Crystalline, Threeâ€Segmented Hybrid Gels with Multiple Shapeâ€Memory Effect. Macromolecular Symposia, 2019, 385, 1800164.	0.7	8
284	Nanoparticles for Biomedicine: Coagulation During Synthesis and Applications. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 155-174.	6.8	27
285	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet—Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet—Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet†"Dry Adhesion"Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet†"Dry Adhesion"Dry Adhesion. ACS Applied Materials & Design Molecular Topology for Wet†"Dry Adhesion"Dry Adhesion (No. 2018) Account Account Topology for Wet†"Dry Adhesion"Dry Adhesion (No. 2018) Account Topology for Wetâf	8.0	76
286	Friction Force on Hydrogel Containing Nanoparticles. Chemistry Letters, 2019, 48, 586-588.	1.3	1
287	Hydrophobic Hydrogels with Fruitâ€Like Structure and Functions. Advanced Materials, 2019, 31, e1900702.	21.0	64
288	Nanocomposite Hydrogels with Optic–Sonic Transparency and Hydroacoustic-Sensitive Conductivity for Potential Antiscouting Sonar. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20386-20393.	8.0	17
289	From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules, 2019, 52, 3852-3862.	4.8	13
290	Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics. Macromolecules, 2019, 52, 3965-3974.	4.8	67
291	Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10, 1854.	12.8	52
292	Inclusion Size Effect on Mechanical Properties of Particle Hydrogel Composite. Acta Mechanica Solida Sinica, 2019, 32, 643-651.	1.9	8
293	Composite Nanostructures and Adhesion Analysis of Natural Plant Hydrogels Investigated by Atomic Force Microscopy. IEEE Transactions on Nanobioscience, 2019, 18, 448-455.	3.3	5
294	A green strategy to endow superabsorbents with stretchability and self-healability. Chemical Engineering Journal, 2019, 370, 274-286.	12.7	14
295	Metal–organic frameworks: a universal strategy towards super-elastic hydrogels. Polymer Chemistry, 2019, 10, 2263-2272.	3.9	35
296	Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. Materials Science and Engineering C, 2019, 100, 215-225.	7.3	16

#	ARTICLE	IF	CITATIONS
297	Diffusive Adhesives for Waterâ€Rich Materials: Strong and Tunable Adhesion Beyond the Interface. Chemistry - A European Journal, 2019, 25, 8085-8091.	3.3	2
298	A (Macro)Molecular-Level Understanding of Polymer Network Topology. Trends in Chemistry, 2019, 1, 318-334.	8.5	127
299	Physics of adhesive organs in animals. European Physical Journal: Special Topics, 2019, 227, 2501-2512.	2.6	12
300	Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses. ACS Applied Materials & Diterfaces, 2019, 11, 15071-15078.	8.0	22
301	Advanced Hydrogel Structures. Polymers and Polymeric Composites, 2019, , 279-305.	0.6	1
302	Improving the adhesion, flexibility, and hemostatic efficacy of a sprayable polymer blend surgical sealant by incorporating silica particles. Acta Biomaterialia, 2019, 90, 205-216.	8.3	36
303	Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Advanced Materials, 2019, 31, e1803309.	21.0	203
304	Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge. , 2019, , 805-853.		3
305	Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, 2019, 11, 275.	4.5	142
306	Structural changes in nanoparticle-hydrogel composites at very low filler concentrations. Journal of Chemical Physics, 2019, 150, 064908.	3.0	9
307	Connecting the Drops: Observing Collective Flow Behavior in Emulsions. Frontiers in Physics, 2019, 7, .	2.1	2
308	Bioinspired and Microgel-Tackified Adhesive Hydrogel with Rapid Self-Healing and High Stretchability. Macromolecules, 2019, 52, 72-80.	4.8	76
309	Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2830-2839.	8.0	37
310	Double-layer perfusable collagen microtube device for heterogeneous cell culture. Biofabrication, 2019, 11, 015010.	7.1	11
311	A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydrate Polymers, 2019, 206, 664-673.	10.2	77
312	Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5885-5895.	8.0	171
313	Nonâ€Newtonian Polymer–Nanoparticle Hydrogels Enhance Cell Viability during Injection. Macromolecular Bioscience, 2019, 19, e1800275.	4.1	49
314	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	3.7	206

#	Article	IF	CITATIONS
315	Composite Hydrogel Embedded with Porous Microspheres for Long-Term pH-Sensitive Drug Delivery. Tissue Engineering - Part A, 2019, 25, 172-182.	3.1	8
316	Adhesives to empower a manipulator inspired by the chameleon tongue. Chinese Chemical Letters, 2020, 31, 821-825.	9.0	4
317	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	14.9	507
318	Nanoparticles in dermatologic surgery. Journal of the American Academy of Dermatology, 2020, 83, 1144-1149.	1.2	7
319	Hydration and swelling of dry polymers for wet adhesion. Journal of the Mechanics and Physics of Solids, 2020, 137, 103863.	4.8	50
320	Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering C, 2020, 109, 110649.	7.3	7 5
321	Structural considerations for physical hydrogels based on polymer–nanoparticle interactions. Molecular Systems Design and Engineering, 2020, 5, 401-407.	3.4	22
322	Nonspecific interactions in biomedical applications. Current Opinion in Colloid and Interface Science, 2020, 47, 70-83.	7.4	12
323	Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. European Polymer Journal, 2020, 124, 109448.	5.4	32
324	Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angewandte Chemie - International Edition, 2020, 59, 4294-4298.	13.8	48
325	Interfacial fatigue fracture of tissue adhesive hydrogels. Extreme Mechanics Letters, 2020, 34, 100601.	4.1	29
326	Alginateâ€Boronic Acid: pH‶riggered Bioinspired Glue for Hydrogel Assembly. Advanced Functional Materials, 2020, 30, 1908497.	14.9	52
327	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	21.0	127
328	Metal-crosslinked É>-poly-L-lysine tissue adhesives with high adhesive performance: Inspiration from mussel adhesive environment. International Journal of Biological Macromolecules, 2020, 153, 1251-1261.	7.5	8
329	Confined evaporation-induced self-assembly of colloidal lignin particles for anisotropic adhesion. Colloids and Interface Science Communications, 2020, 38, 100306.	4.1	9
330	Magnetorheological Effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers, 2020, 12, 2371.	4.5	15
331	Programming Living Glue Systems to Perform Autonomous Mechanical Repairs. Matter, 2020, 3, 2080-2092.	10.0	41
332	Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. Materials, 2020, 13, 3072.	2.9	41

#	Article	IF	CITATIONS
333	Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS Applied Bio Materials, 2020, 3, 9093-9100.	4.6	8
334	Hydrogel-Tissue Adhesion Using Blood Coagulation Induced by Silica Nanoparticle Coatings. ACS Applied Bio Materials, 2020, 3, 8808-8819.	4.6	10
335	Strong adhesion of hydrogels by polyelectrolyte adhesives. Polymer, 2020, 206, 122845.	3.8	19
336	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, 15, 1-109.	0.1	0
337	Bioinspired Hydrogel–Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51036-51043.	8.0	20
338	Fabrication of a Surface Adhesion Layer for Hydrogel Sensors via Photografting. ACS Applied Polymer Materials, 2020, 2, 4140-4148.	4.4	15
339	A Phenolâ€Amine Superglue Inspired by Insect Sclerotization Process. Advanced Materials, 2020, 32, e2002118.	21.0	55
340	Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics, 2020, 12, 780.	4.5	28
341	Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004407.	14.9	142
342	Direct observation of morphological transition for an adsorbed single polymer chain. Scientific Reports, 2020, 10, 20914.	3.3	11
343	Clay nanolayer encapsulation, evolving from origins of life to future technologies. European Physical Journal: Special Topics, 2020, 229, 2863-2879.	2.6	5
344	Environmental control of crack propagation in polymer hydrogels. Mechanics of Soft Materials, 2020, 2, 1.	0.9	10
345	The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today, 2020, 41, 219-242.	14.2	125
346	Origin of transparency in scattering biomimetic collagen materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11947-11953.	7.1	13
347	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
348	Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion. Extreme Mechanics Letters, 2020, 39, 100797.	4.1	10
349	Lamellar Bilayer to Fibril Structure Transformation of Tough Photonic Hydrogel under Elongation. Macromolecules, 2020, 53, 4711-4721.	4.8	7
350	Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules, 2020, 21, 2949-2965.	5.4	17

#	Article	IF	CITATIONS
351	Instant tough bioadhesive with triggerable benign detachment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15497-15503.	7.1	210
352	Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.	4.1	43
353	Hydrogel networks as underwater contact adhesives for different surfaces. Materials Horizons, 2020, 7, 2063-2070.	12.2	88
354	Strength and toughness of adhesion of soft materials measured in lap shear. Journal of the Mechanics and Physics of Solids, 2020, 143, 103988.	4.8	44
355	Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation. Advanced Science, 2020, 7, 2000912.	11.2	17
356	Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nature Communications, 2020, 11, 1420.	12.8	167
357	Hybrid Materials from Ultrahighâ€Inorganicâ€Content Mineral Plastic Hydrogels: Arbitrarily Shapeable, Strong, and Tough. Advanced Functional Materials, 2020, 30, 1910425.	14.9	38
358	A sequential design approach for in situ incorporation of cellulose nanocrystals in emulsion-based pressure sensitive adhesives. Cellulose, 2020, 27, 10837-10853.	4.9	14
359	Structure–property correlation of silicone hydrogels based on 3â€{tris(trimethylsilyloxy)silyl]propyl methacrylate monomer. Journal of Applied Polymer Science, 2020, 137, 49198.	2.6	3
360	Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Materials, 2020, 3, 381-405.	5.7	25
361	The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromolecular Materials and Engineering, 2020, 305, 2000285.	3.6	29
362	Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomaterialia, 2020, 113, 84-100.	8.3	100
363	Energy dissipation <i>via</i> the internal fracture of the silica particle network in inorganic/organic double network ion gels. Soft Matter, 2020, 16, 2363-2370.	2.7	12
364	Hybrid Complex Coacervate. Polymers, 2020, 12, 320.	4.5	8
365	Underwater Adhesion of Multiresponsive Complex Coacervates. Advanced Materials Interfaces, 2020, 7, 1901785.	3.7	40
366	Design of a mechanically strong and highly stretchable thermoplastic silicone elastomer based on coulombic interactions. Journal of Materials Chemistry A, 2020, 8, 5943-5951.	10.3	46
367	Fabrication of a biomimetic hydrogel actuator with rhythmic deformation driven by a pH oscillator. Soft Matter, 2020, 16, 2928-2932.	2.7	19
368	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	21.0	64

#	Article	IF	CITATIONS
369	Thermosetting polymers in cold sintering: The fabrication of ZnOâ€polydimethylsiloxane composites. Journal of the American Ceramic Society, 2020, 103, 3039-3050.	3.8	28
370	Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Research, 2020, 13, 373-379.	10.4	27
371	Nanomaterials for Angiogenesis in Skin Tissue Engineering. Tissue Engineering - Part B: Reviews, 2020, 26, 203-216.	4.8	53
372	Bioinspired structural color patch with anisotropic surface adhesion. Science Advances, 2020, 6, eaax8258.	10.3	150
373	Doubleâ€Hydrophobicâ€Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling. Advanced Science, 2020, 7, 1903145.	11.2	54
374	Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angewandte Chemie, 2020, 132, 4324-4328.	2.0	10
375	Elastocapillarity and rolling dynamics of solid nanoparticles on soft elastic substrates. Soft Matter, 2020, 16, 2230-2237.	2.7	3
376	Anisotropic viscoelastic phase separation in polydisperse hard rods leads to nonsticky gelation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3415-3420.	7.1	6
377	A Highly Stretchable, Realâ€Time Selfâ€Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics. Advanced Healthcare Materials, 2020, 9, e1901423.	7.6	89
378	Formation of stable aggregates by fluid-assembled solid bridges. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3375-3381.	7.1	33
379	Titanium as an Instant Adhesive for Biological Soft Tissue. Advanced Materials Interfaces, 2020, 7, 1902089.	3.7	9
380	Factors That Determine the Adhesive Strength in a Bioinspired Bone Tissue Adhesive. ChemEngineering, 2020, 4, 19.	2.4	10
381	Pneumatically Actuated Self-Healing Bionic Crawling Soft Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 445-454.	3.4	22
382	Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chemical Engineering Journal, 2020, 394, 124941.	12.7	72
383	Effects of nanomaterials on metal toxicity: Case study of graphene family on Cd. Ecotoxicology and Environmental Safety, 2020, 194, 110448.	6.0	6
384	Dopamine-Modified Hyaluronic Acid Hydrogel Adhesives with Fast-Forming and High Tissue Adhesion. ACS Applied Materials & Diterfaces, 2020, 12, 18225-18234.	8.0	175
385	Two-stage thiol-based click reactions for the preparation and adhesion of hydrogels. Polymer Chemistry, 2020, 11, 2986-2994.	3.9	6
386	Spherical lignin particles: a review on their sustainability and applications. Green Chemistry, 2020, 22, 2712-2733.	9.0	228

#	Article	IF	CITATIONS
387	<p>Engineering of Aerogel-Based Biomaterials for Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 2363-2378.	6.7	72
388	Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Molecular Pharmaceutics, 2021, 18, 550-575.	4.6	84
389	Functional hydrogel coatings. National Science Review, 2021, 8, nwaa254.	9.5	191
390	Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomaterials Science, 2021, 9, 38-50.	5.4	52
391	Electrical bioadhesive interface for bioelectronics. Nature Materials, 2021, 20, 229-236.	27.5	361
392	3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 2021, 6, 27-47.	48.7	140
393	Preparation and characterization of gelatin-gallic acid/ZnO nanocomposite with antibacterial properties as a promising multi-functional bioadhesive for wound dressing applications. International Journal of Adhesion and Adhesives, 2021, 104, 102749.	2.9	20
394	Custom-made lipid nanotubes as a tissue and hydrogel adhesive. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125609.	4.7	3
395	Tough hydrogels with tunable soft and wet interfacial adhesion. Polymer Testing, 2021, 93, 106976.	4.8	21
396	Nanocomposite adhesive hydrogels: from design to application. Journal of Materials Chemistry B, 2021, 9, 585-593.	5.8	51
397	Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Advanced Materials, 2021, 33, e2004349.	21.0	212
398	Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications. Green Chemistry, 2021, 23, 629-669.	9.0	56
399	From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomaterialia, 2021, 122, 1-25.	8.3	57
400	Bioinspired Thermoresponsive Xyloglucan–Cellulose Nanocrystal Hydrogels. Biomacromolecules, 2021, 22, 743-753.	5.4	15
401	Adhesive and tough hydrogels: from structural design to applications. Journal of Materials Chemistry B, 2021, 9, 5954-5966.	5.8	31
402	Silica Nanoparticles. Advances in Experimental Medicine and Biology, 2021, 1309, 41-65.	1.6	5
403	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839.	2.7	7
404	Fabrication of robust protein-based foams with multifunctionality by manipulating intermolecular interactions. Green Chemistry, 2021, 23, 8187-8199.	9.0	7

#	Article	IF	CITATIONS
405	Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021, 37, 313-372.	8.4	81
406	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	7.6	36
407	Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels. Journal of Materials Chemistry A, 2021, 9, 14806-14817.	10.3	17
408	Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2, 4532-4573.	5.4	85
409	Batch Effect Adjustment to Lower the Drug Attrition Rate of MCF-7 Breast Cancer Cells Exposed to Silica Nanomaterial-Derived Scaffolds. Assay and Drug Development Technologies, 2021, 19, 46-61.	1.2	2
410	Transforming non-adhesive hydrogels to reversible tough adhesives <i>via</i> mixed-solvent-induced phase separation. Journal of Materials Chemistry A, 2021, 9, 9706-9718.	10.3	43
411	Gold nanorods crosslinking PNIPAM hydrogels via dynamic Au-thiolate interaction with stretchable, adhesive, self-healing, and photothermal properties. Gold Bulletin, 2021, 54, 59-67.	2.4	8
412	Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels. Inorganic Chemistry Frontiers, 2021, 8, 1482-1488.	6.0	7
413	Designing Nanoparticles as Glues for Hydrogels: Insights from a Microscopic Model. Macromolecules, 2021, 54, 1992-2000.	4.8	2
414	Physical networks from entropy-driven non-covalent interactions. Nature Communications, 2021, 12, 746.	12.8	55
415	Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43, 101182.	4.1	8
416	Switchable adhesion between hydrogels by wrinkling. Extreme Mechanics Letters, 2021, 43, 101193.	4.1	31
417	Bio-inspired hydrogel with all-weather adhesion, cooling and reusability functions for photovoltaic panels. Solar Energy, 2021, 216, 358-364.	6.1	15
418	A Spiderâ€6ilkâ€Inspired Wet Adhesive with Supercold Tolerance. Advanced Materials, 2021, 33, e2007301.	21.0	59
419	Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. Journal of Physical Chemistry B, 2021, 125, 2994-3004.	2.6	3
420	Preparation, Physical Properties, and Applications of Water-Based Functional Polymer Inks. Polymers, 2021, 13, 1419.	4.5	4
421	Biomimetic Tough Gels with Weak Bonds Unravel the Role of Collagen from Fibril to Suprafibrillar Selfâ€Assembly. Macromolecular Bioscience, 2021, 21, 2000435.	4.1	3
422	Emerging Functional Biomaterials as Medical Patches. ACS Nano, 2021, 15, 5977-6007.	14.6	48

#	Article	IF	Citations
423	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	47.7	472
424	Fabrication of Amphiphilic Janus Silica Nanospheres for Pickering Emulsions. Chemistry Letters, 2021, 50, 1293-1295.	1.3	0
425	Mussel-inspired hydrogels as tissue adhesives for hemostasis with fast-forming and self-healing properties. European Polymer Journal, 2021, 148, 110361.	5.4	14
426	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076.	5.2	89
427	Biosilicated collagen/β-tricalcium phosphate composites as a BMP-2-delivering boneâ€graft substitute for accelerated craniofacial bone regeneration. Biomaterials Research, 2021, 25, 13.	6.9	25
428	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie, 2021, 133, 23880-23887.	2.0	8
429	Mixed Metal Oxide Nanoparticle Formulations for the Treatment of Seroma. ACS Biomaterials Science and Engineering, 2021, 7, 2676-2686.	5.2	4
430	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie - International Edition, 2021, 60, 23687-23694.	13.8	78
431	Swell induced stress in a hydrogel coating. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 797-802.	3.4	4
432	Lignin Nanoparticles and Their Nanocomposites. Nanomaterials, 2021, 11, 1336.	4.1	87
433	Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 2021, 116, 101388.	24.7	251
434	Superstrong Water-Based Supramolecular Adhesives Derived from Poly(vinyl alcohol)/Poly(acrylic) Tj ETQq1	1 0.784314 rgE	3T ₄ 9verlock
435	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. Langmuir, 2021, 37, 5923-5931.	3.5	10
436	Fabrication of Polymer Particle Adhesives for Multi-material Joining. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 82-87.	0.0	0
437	Recent Strategies for Strengthening and Stiffening Tough Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2100026.	3.6	34
438	Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 2021, 33, e2007663.	21.0	117
439	A New Type of Biological Glue Derived from Fish Swim Bladder: Outstanding Adhesion and Surgical Applications. Advanced Materials Technologies, 2021, 6, 2100303.	5.8	6
440	Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Advances in Colloid and Interface Science, 2021, 292, 102408.	14.7	22

#	Article	IF	CITATIONS
441	Ultra-strong bio-glue from genetically engineered polypeptides. Nature Communications, 2021, 12, 3613.	12.8	104
442	Photoinitiator-grafted polymer chains for integrating hydrogels with various materials. Cell Reports Physical Science, 2021, 2, 100463.	5.6	14
443	Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials, 2021, 14, 3337.	2.9	25
444	Enhancing Tissue Adhesion and Osteoblastic Differentiation of MC3T3 1 Cells on Poly(aryl ether) Tj ETQq1 1 0. Bioscience, 2021, 21, e2100078.	784314 rg 4.1	gBT /Overlo 9
445	Stimuli-Responsive Toughening of Hydrogels. Chemistry of Materials, 2021, 33, 7633-7656.	6.7	68
446	Real space analysis of colloidal gels: triumphs, challenges and future directions. Journal of Physics Condensed Matter, 2021, 33, 453002.	1.8	21
447	Unraveling the Role of Architecture in Polymer-Based Glues for Hydrogels. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 42230-42239.	8.0	0
448	On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Materials Science, 2022, 4, 83-96.	8.8	25
449	How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200330.	3.4	9
450	Bioinspired Underwater Adhesives. Advanced Materials, 2021, 33, e2102983.	21.0	178
451	Study on the degradation mechanism of the frame for membrane electrode assembly in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 36954-36968.	7.1	6
452	Strong, Multifaceted Guanidinium-Based Adhesion of Bioorganic Nanoparticles to Wet Biological Tissue. Jacs Au, 2021, 1, 1399-1411.	7.9	16
453	A pH-driven genipin gelator to engineer decellularized extracellular matrix-based tissue adhesives. Acta Biomaterialia, 2021, 131, 211-221.	8.3	20
454	Gold nanoparticles-deranged double network for Janus adhesive-tough hydrogel as strain sensor. Chemical Engineering Journal, 2021, 420, 130447.	12.7	53
455	Physiologicallyâ€Regulated Adhesion of Hydrogels for Wound Dressing. Advanced Materials Interfaces, 2021, 8, 2101131.	3.7	20
456	Graphene Oxide Encapsulating Liquid Metal to Toughen Hydrogel. Advanced Functional Materials, 2021, 31, 2106761.	14.9	72
457	Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Advances in Colloid and Interface Science, 2021, 296, 102521.	14.7	12
458	Enhance the debonding resistance of hydrogel by large-scale bridging. Journal of the Mechanics and Physics of Solids, 2021, 155, 104570.	4.8	18

#	Article	IF	Citations
459	Organisation of clay nanoplatelets in a polyelectrolyte-based hydrogel. Journal of Colloid and Interface Science, 2021, 604, 358-367.	9.4	9
460	The role of nanoscale structures in the development of topical hemostatic agents. Materials Today Nano, 2021, 16, 100137.	4.6	9
461	Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. Journal of Colloid and Interface Science, 2022, 607, 1239-1252.	9.4	8
462	Improvement in the Performance of the Polylactic Acid Composites by Using Deep Eutectic Solvent Treated Pulp Fiber. Journal of Renewable Materials, 2021, 9, 1897-1911.	2.2	5
463	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	47.7	306
464	Nanobased Biodegradable Hydrogel for Biomedical Application. Gels Horizons: From Science To Smart Materials, 2021, , 81-107.	0.3	0
465	Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polymer Journal, 2021, 53, 505-513.	2.7	13
466	Robust Underwater Adhesives Based on Dynamic Hydrophilic and Hydrophobic Moieties to Diverse Surfaces. ACS Applied Materials & Surfaces, 2021, 13, 3435-3444.	8.0	24
467	Integrated Design of a Musselâ€Inspired Hydrogel Biofilm Composite Structure to Guide Bone Regeneration. Macromolecular Materials and Engineering, 2020, 305, 2000064.	3.6	7
468	EML webinar overview: Extreme mechanics of soft materials for merging human–machineâ€∢ intelligence. Extreme Mechanics Letters, 2020, 39, 100784.	4.1	9
469	Adhesives: Tissue Repair and Reconstruction. , 2017, , 1-18.		1
470	Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering. Biomedical Optics Express, 2020, 11, 2254.	2.9	14
471	Bioadhesives in neurosurgery: a review. Journal of Neurosurgery, 2020, 133, 1928-1938.	1.6	17
472	Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. Science Advances, 2021, 7, eabk2451.	10.3	66
473	Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science, 2021, 123, 101472.	24.7	77
474	Effects of Cordyceps militaris extract and its mixture with silica nanoparticles on burn wound healing on mouse model. Journal of Drug Delivery Science and Technology, 2022, 67, 102901.	3.0	1
475	Bioadhesives. , 2015, , 1-10.		0
476	Bioadhesives. , 2016, , 228-237.		0

#	Article	IF	CITATIONS
477	High-Strength Adhesive Exuded from the Adventitious Roots of English Ivy., 2016, , 321-344.		1
478	Nanobiotechnology: Current and Future Perspectives in Combating Microbial Pathogenesis. , 2019, , 337-350.		O
479	Shear Thinning Hydrogel-based 3D Tissue Modelling. Biomaterials Science Series, 2019, , 94-118.	0.2	1
480	Nanopolysaccharides-Based Green Additives. Springer Series in Biomaterials Science and Engineering, 2019, , 367-388.	1.0	0
481	DETERMINATION OF THE BIOADHESION INDICATORS OF VAGINAL GEL WITH RESVERATROL AND HYALURONIC ACID. EUREKA Health Sciences, 2019, 2, 33-39.	0.1	3
483	Therapeutic Use of Inorganic Nanomaterials in Malignant Diseases. Environmental Chemistry for A Sustainable World, 2020, , 47-87.	0.5	O
485	Functional Hydrogel Interface Materials for Advanced Bioelectronic Devices. Accounts of Materials Research, 2021, 2, 1010-1023.	11.7	39
486	Hydroxyapatiteâ€hybridized doubleâ€network hydrogel surface enhances differentiation of bone marrowâ€derived mesenchymal stem cells to osteogenic cells. Journal of Biomedical Materials Research - Part A, 2022, 110, 747-760.	4.0	3
487	Silica/Protein and Silica/Polysaccharide Interactions and Their Contributions to the Functional Properties of Derived Hybrid Wound Dressing Hydrogels. International Journal of Biomaterials, 2021, 2021, 1-13.	2.4	5
488	Autofluorescence guided welding of heart tissue by laser pulse bursts at 1550 nm. Biomedical Optics Express, 2020, 11, 6271.	2.9	9
489	Cohesion mechanisms for bioadhesives. Bioactive Materials, 2022, 13, 105-118.	15.6	43
490	Coâ€Assembly of Biosynthetic Chiral Nematic Adhesive Materials with Dynamic Polarized Luminescence. Small, 2022, 18, e2104340.	10.0	17
491	Polymeric Hydrogels—A Promising Platform in Enhancing Water Security for a Sustainable Future. Advanced Materials Interfaces, 2021, 8, 2100580.	3.7	46
492	Keratin-Associated Protein Nanoparticles as Hemostatic Agents. ACS Applied Nano Materials, 2021, 4, 12798-12806.	5.0	10
493	Recent progress in surgical adhesives for biomedical applications. Smart Materials in Medicine, 2022, 3, 41-65.	6.7	32
494	Colloidal Supraballs of Mesoporous Silica Nanoparticles as Bioresorbable Adhesives for Hydrogels. Chemistry of Materials, 2022, 34, 584-593.	6.7	9
495	Bioadhesion design of hydrogels: adhesion strategies and evaluation methods for biological interfaces. Journal of Adhesion Science and Technology, 2023, 37, 335-369.	2.6	0
496	Engineered multifunctional nanocomposite hydrogel dressing to promote vascularization and anti-inflammation by sustained releasing of Mg2+ for diabetic wounds. Composites Part B: Engineering, 2022, 231, 109569.	12.0	58

#	Article	IF	CITATIONS
497	Self-adhering implantable device of titanium: Enhanced soft-tissue adhesion by sandblast pretreatment. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112283.	5.0	10
498	Advances in Amine-Surface Functionalization of Inorganic Adsorbents for Water Treatment and Antimicrobial Activities: A Review. Polymers, 2022, 14, 378.	4.5	23
499	Effect of Cross-Linkers on Mussel- and Elastin-Inspired Adhesives on Physiological Substrates. ACS Applied Bio Materials, 2022, 5, 630-641.	4.6	6
500	A Shapeâ€Programmable Hierarchical Fibrous Membrane Composite System to Promote Wound Healing in Diabetic Patients. Small, 2022, 18, e2107544.	10.0	27
501	Bioinspired super-strong aqueous synthetic tissue adhesives. Matter, 2022, 5, 933-956.	10.0	14
502	Molecular Rationale for the Design of Instantaneous, Strain-Tolerant Polymeric Adhesive in a Stretchable Underwater Human–Machine Interface. ACS Nano, 2022, 16, 1368-1380.	14.6	19
503	Particle Adsorption on Polymer Gel Surface Driven by van der Waals Attraction. Bulletin of the Chemical Society of Japan, 2022, 95, 314-324.	3.2	5
504	Super Adhesive MXeneâ€based Nanocomposite Hydrogel with Selfâ€Healable and Conductivity Properties via Radiation Synthesis. Advanced Engineering Materials, 2022, 24, 2101692.	3.5	8
505	A Logicâ€Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. Advanced Materials, 2022, 34, e2108430.	21.0	84
506	Single Copolymer Chainâ€Templated Synthesis of Ultrasmall Symmetric and Asymmetric Silicaâ€Based Nanoparticles. Advanced Functional Materials, 2022, 32, .	14.9	10
507	Emerging Biopolymerâ€Based Bioadhesives. Macromolecular Bioscience, 2022, 22, e2100340.	4.1	26
508	Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nature Communications, 2021, 12, 7162.	12.8	70
509	An Instant, Repeatable and Universal Supramolecular Adhesive Based on Natural Small Molecules for Dry/Wet Environments. SSRN Electronic Journal, 0, , .	0.4	0
510	pH Oscillator-Driven Jellyfish-like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Letters, 2022, 11, 347-353.	4.8	25
511	Radiation synthesis and characterization of polymeric wet adhesives for attracting and trapping insects. International Journal of Materials Research, 2022, 113, 101-111.	0.3	1
512	Colorimetric Nanoparticle-Embedded Hydrogels for a Biosensing Platform. Nanomaterials, 2022, 12, 1150.	4.1	6
513	Magnetorheological effect in dense magnetic polymers. European Physical Journal: Special Topics, 0, , 1.	2.6	1
514	Polyglutamic Acidâ€Based Elastic and Tough Adhesive Patch Promotes Tissue Regeneration through In Situ Macrophage Modulation. Advanced Science, 2022, 9, e2106115.	11.2	14

#	Article	IF	CITATIONS
515	An instant, repeatable and universal supramolecular adhesive based on natural small molecules for dry/wet environments. Chemical Engineering Journal, 2022, 442, 136206.	12.7	25
516	Role of Polymer Concentration and Crosslinking Density on Release Rates of Small Molecule Drugs. International Journal of Molecular Sciences, 2022, 23, 4118.	4.1	17
517	Tailorâ€Made Charged Catecholâ€Based Polymeric Ligands to Build Robust Fuel Cells Containing Antioxidative Nanoparticles. Advanced Electronic Materials, 2022, 8, .	5.1	6
518	Nature-Inspired Hydrogel Network for Efficient Tissue-Specific Underwater Adhesive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59761-59771.	8.0	26
519	Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. Materials Science and Engineering C, 2022, 134, 112589.	7.3	15
520	Two-Dimensional Cellular Patterning on a Polymer Film Based on Interfacial Stiffness. Langmuir, 2021, 37, 14911-14919.	3.5	2
521	Organic–inorganic hybrid nanomaterials prepared <i>via</i> polymerization-induced self-assembly: recent developments and future opportunities. Polymer Chemistry, 2022, 13, 2554-2569.	3.9	32
522	Adhesion advances: from nanomaterials to biomimetic adhesion and applications. Soft Matter, 2022, 18, 3447-3464.	2.7	23
523	Rationalizing the Effect of Shape and Size in Nanoparticle-Based Glues. Journal of Physical Chemistry C, 2022, 126, 7517-7528.	3.1	2
524	Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. Journal of Materials Chemistry A, 2022, 10, 11823-11853.	10.3	74
525	Ultraâ€Strong and Proton Conductive Aquaâ€Based Adhesives from Facile Blending of Polyvinyl Alcohol and Tungsten Oxide Clusters. Advanced Functional Materials, 2022, 32, .	14.9	20
526	Magneto-Responsive Nanocomposites with a Metal–Ligand Supramolecular Matrix. Macromolecules, 2022, 55, 3936-3947.	4.8	9
527	Infant Skin Friendly Adhesive Hydrogel Patch Activated at Body Temperature for Bioelectronics Securing and Diabetic Wound Healing. ACS Nano, 2022, 16, 8662-8676.	14.6	112
528	Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydrate Polymers, 2022, 291, 119574.	10.2	29
529	Glutathione-Sensitive Nanoglue Platform with Effective Nucleic Acids Gluing onto Liposomes for Photo-Gene Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25126-25134.	8.0	7
530	Gelation of highly entangled hydrophobic macromolecular fluid for ultrastrong underwater in situ fast tissue adhesion. Science Advances, 2022, 8, .	10.3	31
531	Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 2906-2920.	21.1	61
532	Zn ²⁺ Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29491-29505.	8.0	23

#	Article	IF	CITATIONS
533	A double-network strategy for the tough tissue adhesion of hydrogels with long-term stability under physiological environment. Soft Matter, 2022, 18, 6192-6199.	2.7	10
534	Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. Journal of Polymer Science, 2022, 60, 2525-2542.	3.8	45
535	Biodegradable polyaspartamideâ€g― <scp> C ₁₈ </scp> / <scp>DOPA</scp> / <scp>GLYâ€NEOnanoâ€adhesives for wound closure/healing with antimicrobial activity. Journal of Biomedical Materials Research - Part A, O, , .</scp>	cp> 4.0	0
536	Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. Small, 2022, 18, .	10.0	19
537	Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	37
538	Preparation of Mussel-Inspired Stable-Bonding Dust Binders for Fugitive Dust Control. ACS Applied Polymer Materials, 2022, 4, 5341-5354.	4.4	3
539	Entropyâ€Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angewandte Chemie, 0, , .	2.0	0
540	Entropyâ€Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
541	A Preclinical Validation of Iron Oxide Nanoparticles for Treatment of Perianal Fistulizing Crohn's Disease. International Journal of Molecular Sciences, 2022, 23, 8324.	4.1	1
542	Tough Wet Adhesion of Hydrogen-Bond-Based Hydrogel with On-Demand Debonding and Efficient Hemostasis. ACS Applied Materials & Interfaces, 2022, 14, 36166-36177.	8.0	32
543	Controlled tough bioadhesion mediated by ultrasound. Science, 2022, 377, 751-755.	12.6	79
544	Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Materials and Design, 2022, 222, 111070.	7.0	12
545	Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Frontiers in Nutrition, 0, 9, .	3.7	2
546	Recent Advances in Nano-Formulations for Skin Wound Repair Applications. Drug Design, Development and Therapy, 0, Volume 16, 2707-2728.	4.3	9
548	Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. IScience, 2022, 25, 105106.	4.1	9
549	Dual network poly(dimethyl siloxane)–impact hardening polymer composite with autonomous self-healing and soft–stiffness switch abilities. Materials Today Communications, 2022, 33, 104489.	1.9	3
550	Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry, 2022, 26, 101144.	3.5	8
551	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, , .	0.1	1

#	Article	IF	CITATIONS
552	Coatings of hydroxyapatite–bioactive glass microparticles for adhesion to biological tissues. RSC Advances, 2022, 12, 21079-21091.	3.6	5
553	Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomaterialia, 2022, 152, 171-185.	8.3	9
554	Inorganic nanoparticle empowered biomaterial hybrids: Engineered payload release. Frontiers in Nanotechnology, 0, 4, .	4.8	1
555	Incorporation of cellulose nanocrystals and reactive surfactants for improved pressureâ€sensitive adhesive performance. AICHE Journal, 2022, 68, .	3.6	5
556	Convenient hydrogel adhesion with crystalline zones. Journal of Industrial and Engineering Chemistry, 2023, 117, 103-108.	5.8	3
557	Combined effect of surface pretreatment and nanomaterial reinforcement on the adhesion strength of aluminium joints. International Journal of Adhesion and Adhesives, 2022, 119, 103274.	2.9	7
558	Bridging wounds: tissue adhesives' essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. Burns and Trauma, 2022, 10, .	4.9	12
559	Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering. Biomacromolecules, 2022, 23, 4629-4644.	5.4	6
560	Controlled Delivery of Corticosteroids Using Tunable Tough Adhesives. Advanced Healthcare Materials, 2023, 12, .	7.6	8
561	Texture and rheological features of strain and pH sensitive chitosan-imine graphene-oxide composite hydrogel with fast self-healing nature. International Journal of Biological Macromolecules, 2022, 222, 3129-3141.	7. 5	5
562	Self-adhesive Devices Made of Titanium for Biological Soft Tissue. Materia Japan, 2022, 61, 760-764.	0.1	0
563	Corrosion resistance self-healing coating with bioinspired interfacial structure. Progress in Organic Coatings, 2023, 174, 107303.	3.9	1
564	Endoscopy Deliverable and Mushroom-Cap-Inspired Hyperboloid-Shaped Drug-Laden Bioadhesive Hydrogel for Stomach Perforation Repair. ACS Nano, 2023, 17, 111-126.	14.6	24
565	Aligned nanofibrous collagen membranes from fish swim bladder as a tough and acid-resistant suture for pH-regulated stomach perforation and tendon rupture. Biomaterials Research, 2022, 26, .	6.9	3
566	Development of polar phases in ferroelectric poly(vinylidene fluoride) (PVDF) nanoparticles. Polymer, 2023, 264, 125540.	3.8	10
567	Dual action of a tyrosinase–mesoporous silica nanoparticle complex for synergistic tissue adhesion. Chemical Communications, 2022, 59, 94-97.	4.1	0
568	Local conformations and heterogeneities in structures and dynamics of isotactic polypropylene adsorbed onto carbon fiber. Polymer, 2023, 265, 125584.	3.8	2
569	The potential for nanomaterial toxicity affecting the male reproductive system. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	6.1	5

#	ARTICLE	IF	CITATIONS
570	Two-Phase Composite Adhesive with Viscoelastic Inclusion. ACS Applied Polymer Materials, 2022, 4, 9095-9102.	4.4	0
571	Design of a Biopolymer-Based Tissue Adhesive Particle for Biomedical Applications. Journal of the Japan Society of Colour Material, 2022, 95, 341-345.	0.1	0
572	Multifunctional Mesoporous Silica Nanoparticles Reinforced Silk Fibroin Composite with Antibacterial and Osteogenic Effects for Infectious Bone Rehabilitation. International Journal of Nanomedicine, 0, Volume 17, 5661-5678.	6.7	2
573	Bismuth Tungstate–Silver Sulfide Z-Scheme Heterostructure Nanoglue Promotes Wound Healing through Wound Sealing and Bacterial Inactivation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 53491-53500.	8.0	2
574	Interfacial Molecular Lock: A Universal Strategy for Hydrogel Adhesion. ACS Applied Polymer Materials, 2023, 5, 1037-1045.	4.4	4
575	A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nature Communications, 2022, 13, .	12.8	58
576	Bioâ€inspired adhesive hydrogel for biomedicineâ€"principles and design strategies. , 2022, 1, .		17
577	Ternary Synergy of Lys, Dopa, and Phe Results in Strong Cohesion of Peptide Films. ACS Applied Bio Materials, 2023, 6, 865-873.	4.6	1
578	Adhesive Gel System Growable by Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. ACS Applied Polymer Materials, 2023, 5, 983-990.	4.4	1
579	An Ultrasoundâ€Driven Bioadhesive Triboelectric Nanogenerator for Instant Wound Sealing and Electrically Accelerated Healing in Emergencies. Advanced Materials, 2023, 35, .	21.0	38
580	A Mechanically Reinforced Super Bone Glue Makes a Leap in Hard Tissue Strong Adhesion and Augmented Bone Regeneration. Advanced Science, 2023, 10, .	11.2	11
581	A mace-like heterostructural enriched injectable hydrogel composite for on-demand promotion of diabetic wound healing. Journal of Materials Chemistry B, 2023, 11, 2166-2183.	5.8	12
582	Adhesive Composite Hydrogel Patch for Sustained Transdermal Drug Delivery To Treat Atopic Dermatitis. Chemistry of Materials, 2023, 35, 1209-1217.	6.7	10
583	Understanding the Electrochemical Performances of Si Anodes Incorporating Mechanically Interlocked Binders Prepared from α-Cyclodextrin-Based Polyrotaxanes. Chemistry of Materials, 2023, 35, 937-947.	6.7	5
584	Development, structural and rheological characterization, and in vitro evaluation of the zinc-doped 45S5 bioactive glass-vaseline ointment for potential wound healing applications. Journal of Materials Research, 2023, 38, 1557-1572.	2.6	7
585	Bioinspired nucleobase-containing polyelectrolytes as robust and tunable adhesives by balancing the adhesive and cohesive properties. Chemical Science, 2023, 14, 3938-3948.	7.4	5
586	Osmocapillary adhesion: Reversible and strong adhesion between any hydrogel. Extreme Mechanics Letters, 2023, 61, 101996.	4.1	2
587	Adhesive cryogel particles for bridging confined and irregular tissue defects. Military Medical Research, 2023, 10, .	3.4	0

#	Article	IF	CITATIONS
588	Biogenic silica microparticles as a new and sustainable cosmetic ingredient: Assessment of performance and quality parameters. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113305.	5.0	2
589	Cross-linked entanglement of aldehyde and amine-functionalized nanocellulose reinforced with biomineralization to produce an all-bio-based adhesive. Chemical Engineering Journal, 2023, 465, 142888.	12.7	16
590	Soft underwater adhesives based on weak molecular interactions. Progress in Polymer Science, 2023, 139, 101649.	24.7	9
591	Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration. Journal of Nanobiotechnology, 2023, 21, .	9.1	3
592	Vacuolated coacervate mediates the bimodal release kinetics of diverse macromolecular drugs in vivo. Materials Today, 2023, , .	14.2	0
593	Tracking of Intestinal Probiotics In Vivo by NIR-IIb Fluorescence Imaging. ACS Applied Materials & Samp; Interfaces, 2023, 15, 20603-20612.	8.0	3
594	A surface-grafted hydrogel demonstrating thermoresponsive adhesive strength change. Soft Matter, 2023, 19, 3249-3252.	2.7	2
595	Spiky surface topography of heterostructured nanoparticles for programmable acceleration of multistage wound healing. Materials Today Nano, 2023, 23, 100351.	4.6	1
596	Preparation of desirable plant protein-based adhesive via bioinspired Laponite-assisted organic-inorganic copolymerization. Industrial Crops and Products, 2023, 202, 116988.	5.2	1
597	Injectable, Antibacterial, and Hemostatic Tissue Sealant Hydrogels. Advanced Healthcare Materials, 2023, 12, .	7.6	10
598	Development of an Adhesive Gel System for Changing the Structure and Properties of Its Adhesive Joint via Reactions with Amine Molecules after Adhesion. ACS Applied Materials & Diterfaces, 0, , .	8.0	0
599	Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Science Advances, 2023, 9, .	10.3	22
600	Exploiting perforations to enhance the adhesion of 3D-printed lap shears. Theoretical and Applied Fracture Mechanics, 2023, 126, 103986.	4.7	0
601	Design of interface dynamic cross-linked hybrid network with highly improved mechanical, recycling and adhesive performance. Chemical Engineering Journal, 2023, 471, 144598.	12.7	2
602	Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Advances, 2023, 13, 21345-21364.	3.6	8
603	Bacteria metabolic adaptation to oxidative stress: the case of silica. Journal of Biotechnology, 2023, 374, 80-89.	3.8	0
604	Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications. Advances in Colloid and Interface Science, 2023, 319, 102982.	14.7	3
605	Modified bond-based peridynamic approach for modeling the thermoviscoelastic response of bimaterials with viscoelastic–elastic interface. Engineering With Computers, 0, , .	6.1	1

#	Article	IF	CITATIONS
606	Advances in bioactive nanoparticles for wound healing, tissue engineering and drug delivery., 2023,,.		1
607	Superâ€Tough and Fast Adhesion of Soft Elastomer Based on Strong Noncovalent Interaction in Diverse Environments. Advanced Functional Materials, 2023, 33, .	14.9	3
608	Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nature Communications, $2023, 14, .$	12.8	13
609	HE@PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology. ACS Applied Materials & Interfaces, 2023, 15, 46322-46332.	8.0	2
610	Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applications., 2023, 154, 213647.		0
611	Bioinspired multiphase composite gel materials: From controlled micro-phase separation to multiple functionalities. CheM, 2023, 9, 3113-3137.	11.7	5
612	Double Networks: Hybrid Hydrogels with Clustered Silica. Macromolecules, 2023, 56, 8344-8358.	4.8	2
613	Diatom-Inspired Bionic Hydrophilic Polysaccharide Adhesive for Rapid Sealing Hemostasis. ACS Nano, 2023, 17, 19121-19135.	14.6	4
614	Biological applications of hydrogel coatings. , 2024, , 749-764.		0
615	Role of Polymer–Particle Adhesion in the Reinforcement of Hybrid Hydrogels. Macromolecules, 2023, 56, 8024-8038.	4.8	1
617	One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions. ACS Biomaterials Science and Engineering, 0, , .	5.2	1
618	Procedural Promotion of Multiple Stages in the Wound Healing Process by Graphene-Spiky Silica Heterostructured Nanoparticles. International Journal of Nanomedicine, 0, Volume 18, 6585-6599.	6.7	0
619	Sprayable tissue adhesive microparticle–magnetic nanoparticle composites for local cancer hyperthermia. , 2024, 156, 213707.		1
620	Photothermal Carbon Dots Chelated Hydroxyapatite Filler: High Photothermal Conversion Efficiency and Enhancing Adhesion of Hydrogel. ACS Applied Materials & Samp; Interfaces, 2023, 15, 55335-55345.	8.0	0
621	Thermo/Pressure-Sensitive Self-Fixation Surgical Meshes: The Role of Adhesive Hydrogels in Interface Attachment. ACS Applied Polymer Materials, 2023, 5, 9898-9908.	4.4	0
622	Solid-state inorganic and metallic adhesives for soft biological tissues. Japanese Dental Science Review, 2023, 59, 439-445.	5.1	0
623	Stress softening of nanoparticle-crosslinked hydrogels described using a physics-based damage model. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 150, 106282.	3.1	0
624	Hysteresisâ€Free, Elastic, and Tough Hydrogel with Stretchâ€Rate Independence and High Stability in Physiological Conditions. Small, 0, , .	10.0	0

#	ARTICLE	IF	CITATIONS
625	From Adhesion to Detachment: Strategies to Design Tissueâ€Adhesive Hydrogels. Advanced NanoBiomed Research, 2024, 4, .	3.6	0
626	Ultraviolet Light Debondable Optically Clear Adhesives for Flexible Displays through Efficient Visible‣ight Curing. Advanced Materials, 2024, 36, .	21.0	0
627	Role of polymer interactions in core–shell filaments in the mechanical properties of 3D printed objects. , 2024, 2, 105-116.		0
628	Dynamic Disulfide Bond Regulated Tough Adhesion and On-Demand Debonding of the Albumin-Based Double Network Hydrogel to Diverse Substrates. ACS Applied Polymer Materials, 2024, 6, 330-340.	4.4	0
629	pH and electrically responsive hydrogels with adhesive property. Reactive and Functional Polymers, 2024, 196, 105841.	4.1	0
630	Indirect Adhesion of Hydrogels via the Radical Polymerization Mediated by <i>N</i> , <i>N</i> , <i>N</i> , Administrated Ammonium Persulfate. ACS Applied Polymer Materials, 2024, 6, 1268-1275.	4.4	1
631	Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Advances, 2024, 14, 3525-3535.	3.6	0
632	Rapid, Tough, and Triggerâ€Detachable Hydrogel Adhesion Enabled by Formation of Nanoparticles In Situ. Small, 0, , .	10.0	o
633	Silica nanoparticles enhance interfacial self-adherence of a multi-layered extracellular matrix scaffold for vascular tissue regeneration. Biotechnology Letters, 2024, 46, 469-481.	2.2	0
635	Nanomaterials: A Promising Material for Cardiac Hemostasis. ChemistrySelect, 2024, 9, .	1.5	O
636	Degradable Nanohydroxyapatite-Reinforced Superglue for Rapid Bone Fixation and Promoted Osteogenesis. ACS Nano, 2024, 18, 8517-8530.	14.6	0
637	Designing protein-tannin nanohesives for rapid, universal, and robust wet-adhesion with on-demand debonding. European Polymer Journal, 2024, 209, 112902.	5.4	O
638	Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nature Chemistry, 0, , .	13.6	0
639	A tough bioadhesive based on co-assembly of polypeptide and polysaccharide for adhesion of soft tissues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 689, 133719.	4.7	0
640	The propensity for covalent organic frameworks to template polymer entanglement. Science, 2024, 383, 1337-1343.	12.6	0
641	Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats. Frontiers in Bioengineering and Biotechnology, $0,12,.$	4.1	O
642	Enhanced ROS scavenging and tissue adhesive abilities in injectable hydrogels by protein modification with oligoethyleneimine. Biomaterials Science, 2024, 12, 2312-2320.	5.4	0