Characterisation of honeys according to their content of performance liquid chromatography/tandem mass spec

Food Chemistry 145, 404-408 DOI: 10.1016/j.foodchem.2013.08.068

Citation Report

#	Article	IF	CITATIONS
1	Effects of Honey and Its Mechanisms of Action on the Development and Progression of Cancer. Molecules, 2014, 19, 2497-2522.	1.7	148
2	Chromatographic ECD fingerprints combined with a chemometric method used for the identification of three light-coloured unifloral honeys. Analytical Methods, 2015, 7, 8393-8401.	1.3	8
3	Recent developments in honey characterization. RSC Advances, 2015, 5, 59696-59714.	1.7	37
4	Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (<i>Apis mellifera</i> ssp. <i>sicula</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 5864-5874.	2.4	39
5	Dispersive liquid–liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta, 2015, 131, 185-191.	2.9	57
6	Honey and Cancer: Current Status and Future Directions. Diseases (Basel, Switzerland), 2016, 4, 30.	1.0	38
7	Development and validation of a LC-ESI-MS/MS method for the determination of phenolic compounds in honeydew honeys with the diluted-and-shoot approach. Food Research International, 2016, 87, 60-67.	2.9	94
8	Phenolics and abscisic acid identified in acacia honey comparing different SPE cartridges coupled with HPLC-PDA. Journal of Food Composition and Analysis, 2016, 53, 91-101.	1.9	34
9	Hollow molecular imprinted polymers towards rapid, effective and selective extraction of caffeic acid from fruits. Journal of Chromatography A, 2016, 1470, 27-32.	1.8	58
10	Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. European Food Research and Technology, 2016, 242, 1201-1210.	1.6	46
11	Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity. Chemical Papers, 2016, 70, .	1.0	3
12	Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food Chemistry, 2016, 204, 56-61.	4.2	40
13	The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor. Talanta, 2016, 150, 61-70.	2.9	28
14	Assessment of phenolic profile of Turkish honeys. International Journal of Food Properties, 2017, 20, 864-876.	1.3	63
15	Phenolic Acid and Flavonoid Composition of Malaysian Honeys. Journal of Food Biochemistry, 2017, 41, e12282.	1.2	10
16	Screening bioactivity and bioactive constituents of Nordic unifloral honeys. Food Chemistry, 2017, 237, 214-224.	4.2	47
17	Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chemistry, 2017, 237, 1118-1123.	4.2	34
18	Highly sensitive electrochemical detection of palmatine using a biocompatible multiwalled carbon nanotube/poly- l -lysine composite. Journal of Colloid and Interface Science, 2017, 498, 144-152.	5.0	36

#	Article	IF	CITATIONS
19	Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 2017, 63, 89-97.	1.9	79
20	A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1072-1100.	5.9	191
21	Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice. Food Research International, 2017, 101, 35-44.	2.9	34
22	Polyphenols as Possible Markers of Botanical Origin of Honey. Journal of AOAC INTERNATIONAL, 2017, 100, 852-861.	0.7	38
23	Development and Validation of a GC-MS Method for the Analysis of Homogentisic Acid in Strawberry Tree (Arbutus unedo L.) Honey. Journal of AOAC INTERNATIONAL, 2017, 100, 889-892.	0.7	8
24	Characterization of Chinese Unifloral Honeys Based on Proline and Phenolic Content as Markers of Botanical Origin, Using Multivariate Analysis. Molecules, 2017, 22, 735.	1.7	24
25	Hepatoprotective Effects of the Honey of <i>Apis cerana Fabricius</i> on Bromobenzeneâ€Induced Liver Damage in Mice. Journal of Food Science, 2018, 83, 509-516.	1.5	16
26	Analysis of Polyphenols in Honey: Extraction, Separation and Quantification Procedures. Separation and Purification Reviews, 2018, 47, 142-158.	2.8	26
27	Two-Way Characterization of Beekeepers' Honey According to Botanical Origin on the Basis of Mineral Content Analysis Using ICP-OES Implemented with Multiple Chemometric Tools. Foods, 2019, 8, 210.	1.9	16
28	Multivariate statistical analysis of the polyphenols content for the discrimination of honey produced in Sicily (Southern Italy). Journal of Food Composition and Analysis, 2019, 82, 103225.	1.9	13
29	Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey. Journal of Chromatography A, 2019, 1601, 104-114.	1.8	57
30	Phenolic compounds profile and biochemical properties of honeys in relationship to the honey floral sources. Phytochemical Analysis, 2019, 30, 481-492.	1.2	54
31	A novel sensitive laccase biosensor using gold nanoparticles and poly Lâ€arginine to detect catechol in natural water. Biotechnology and Applied Biochemistry, 2019, 66, 502-509.	1.4	18
32	Authentication of phacelia honeys (Phacelia tanacetifolia) based on a combination of HPLC and HPTLC analyses as well as spectrophotometric measurements. LWT - Food Science and Technology, 2019, 107, 199-207.	2.5	18
33	Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison With Important Commercial Honeys. Frontiers in Microbiology, 2019, 10, 263.	1.5	55
34	Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT - Food Science and Technology, 2019, 101, 236-245.	2.5	50
35	Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 2019, 285, 24-33.	4.0	27
36	Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols. Journal of Chromatography A, 2020, 1612, 460631.	1.8	26

CITATION REPORT

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
37	Defining the standards for medical grade honey. Journal of Apicultural Research, 2020,	59, 125-135.	0.7	48
38	Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Som Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics, 2020, 9,	e of Their 911.	1.5	13
39	Raspberry, Rape, Thyme, Sunflower and Mint Honeys Authentication Using Voltammet Sensors, 2020, 20, 2565.	ric Tongue.	2.1	12
40	Potential Protection Effect of Using Honey, Cinger, and Turmeric as a Natural Treatmer Chemotherapy of Intestinal Toxicity. Journal of Biologically Active Products From Natur 86-99.	nt against re, 2020, 10,	0.1	2
41	Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Suitability for Romanian Honey Authentication. Foods, 2020, 9, 306.	Parameters	1.9	113
42	Determination of the floral origin of honey based on its phenolic profile and physicoch properties coupled with chemometrics. International Journal of Food Properties, 2020,		1.3	20
43	Determination of the antioxidant, antimicrobial and anticancer properties of the honey extract of five different regions of Bingöl province. Journal of Food Science and Techr 2420-2430.		1.4	11
44	Determination of phenolic compounds in estuary water and sediment by solid-phase is dansylation coupled with liquid chromatography-high resolution mass spectrometry. A Methods, 2021, 13, 1404-1411.	otope nalytical	1.3	4
45	Physico-Chemical Profile of Four Types of Honey from the South of the Republic of Mo Nutrition Sciences (Print), 2021, 12, 874-888.	dova. Food and	0.2	7
46	HONEY SUPPLEMENTATION IN LACTATE RINGER-EGG YOLK EXTENDER ON QUALITY O SPERMATOZOA POST-CHILLING. Jurnal Kedokteran Hewan, 2021, 15, 7-10.	F PELUNG CHICKEN	0.1	0
47	Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxo induced apoptosis through inhibition of Wnt/l2-catenin and ERK1/2. Biological Researc		1.5	20
48	Physicochemical parameters as indicators of the authenticity of monofloral honey fron of the Republic of Serbia. Macedonian Journal of Chemistry and Chemical Engineering,	n the territory 2021, 40, 49.	0.2	2
49	Phenolic profiles of raw mono- and polyfloral honeys from Latvia. Journal of Food Com Analysis, 2021, 98, 103813.	position and	1.9	21
50	Evaluation of physical, biochemical properties and cell viability of gamma irradiated ho Food Measurement and Characterization, 2021, 15, 4794-4804.	ney. Journal of	1.6	7
51	Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris). Scientific Re 15289.	2ports, 2021, 11,	1.6	6
52	Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Proper Bioactive Components with Chemometric Analysis. Molecules, 2021, 26, 4801.	ties and	1.7	12
53	Preventive Action of Honey on Methotrexate Induced Intestinal Mucositis in Albino Rat (Immunohistochemical Study). Journal of Cytology & Histology, 2014, 05, .	:S	0.1	1
54	Effect of Honey in Improving Breast Cancer Treatment and Gene Expression Modulatic TIMPs in Triple-Negative Breast Cancer Cells. Pakistan Journal of Zoology, 2018, 50, .	n of MMPs and	0.1	5

#	Article	IF	CITATIONS
55	In vitro anti-Helicobacter pylori activity of Syzygium aromaticum and the preliminary mechanism of action. Journal of Ethnopharmacology, 2022, 288, 114995.	2.0	11
56	Potential Benefits of Tricetin in Medicine for the Treatment of Cancers and Other Health-Related Disorders: Medicinal Importance and Therapeutic Benefit. Natural Products Journal, 2022, 12, .	0.1	1
57	A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods, 2022, 11, 1152.	1.9	13
60	Determination of adulteration, geographical origins, and species of food by mass spectrometry. Mass Spectrometry Reviews, 2023, 42, 2273-2323.	2.8	6
61	An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. Journal of Food Composition and Analysis, 2022, 114, 104751.	1.9	13
62	Integrated Gas Chromatography–Mass Spectrometry and Liquid Chromatography-Quadruple Time of Flight-Mass Spectrometry-Based Untargeted Metabolomics Reveal Possible Metabolites Related to Antioxidant Activity in Stingless Bee Honey. Food Analytical Methods, 0, , .	1.3	0
63	Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Frontiers in Chemistry, 0, 10, .	1.8	5
64	Characterization, Classification and Authentication of Spanish Blossom and Honeydew Honeys by Non-Targeted HPLC-UV and Off-Line SPE HPLC-UV Polyphenolic Fingerprinting Strategies. Foods, 2022, 11, 2345.	1.9	11
65	Characterization of antioxidant activity and analysis of phenolic acids and flavonoids in linden honey. Food Science and Technology, 0, 42, .	0.8	0
66	Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey <i>via</i> HSP-16.2 and SKN-1/Nrf2 pathways in an <i>in vivo</i> model of Alzheimer's disease. Food and Function, 2022, 13, 11185-11199.	2.1	8
67	Temperature-controlled electrochemical sensor based on environmentally responsive polymer/BiPO4/BiOCl/multi-walled carbon nanotube composite for the detection of catechol in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130543.	2.3	5
68	Evaluation of the antioxidant potency of Greek honey from the Taygetos and Pindos mountains using a combination of cellular and molecular methods. Molecular Medicine Reports, 2023, 27, .	1.1	3
70	Probing behavior of <i>Aphis fabae</i> and <i>Myzus persicae</i> on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. , 2023, 90, 83-100.		2
71	Wound healing induces VEGF expression stimulated by forest honey in palatoplasty Sprague Dawley. Dental Journal: Majalah Kedokteran Gigi, 2023, 56, 48-52.	0.0	0
72	In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain. Antioxidants, 2023, 12, 404.	2.2	4
73	Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules, 2023, 28, 3270.	1.7	1

CITATION REPORT