U–Pb LA–ICPMS dating using accessory mineral sta

Chemical Geology 363, 185-199 DOI: 10.1016/j.chemgeo.2013.11.006

Citation Report

#	Article	IF	CITATIONS
1	GGR Biennial Critical Review: Analytical Developments Since 2012. Geostandards and Geoanalytical Research, 2014, 38, 467-512.	1.7	8
2	LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity. Geochronometria, 2014, 41, 306-314.	0.2	18
3	Determination of U–Pb Ages for Young Zircons using Laser Ablationâ€ <scp>ICP</scp> â€Mass Spectrometry Coupled with an Ion Detection Attenuator Device. Geostandards and Geoanalytical Research, 2014, 38, 409-420.	1.7	66
4	LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters, 2014, 401, 132-147.	1.8	41
5	The thermal history of the western Irish onshore. Journal of the Geological Society, 2014, 171, 779-792.	0.9	13
6	Chemical Abrasion Applied to LA-ICP-MS U–Pb Zircon Geochronology. Minerals (Basel, Switzerland), 2014, 4, 503-518.	0.8	39
7	High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica Et Cosmochimica Acta, 2014, 127, 39-56.	1.6	154
8	Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chemical Geology, 2014, 385, 35-55.	1.4	234
9	In situ U–Pb dating of bastnaesite by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1017-1023.	1.6	41
10	Simultaneous in situ determination of Uâ€Pb and Smâ€Nd isotopes in monazite by laser ablation ICPâ€MS. Geochemistry, Geophysics, Geosystems, 2014, 15, 2575-2600.	1.0	36
11	LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geologica Carpathica, 2014, 65, 273-284.	0.2	17
12	Does a Heavy Fe-Isotope Composition of Akilia Quartz-Amphibole-Pyroxene Rocks Necessitate a BIF Origin?. Astrobiology, 2015, 15, 816-824.	1.5	6
13	Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 2015, 11, 189-194.	0.5	159
14	U–Pb ages of apatite in the western Tauern Window (Eastern Alps): Tracing the onset of collision-related exhumation in the European plate. Earth and Planetary Science Letters, 2015, 418, 53-65.	1.8	27
16	U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 2015, 402, 89-110.	1.4	204
17	Cambrian plutonism in Northeast Japan and its significance for the earliest arc-trench system of proto-Japan: New U–Pb zircon ages of the oldest granitoids in the Kitakami and Ou Mountains. Journal of Asian Earth Sciences, 2015, 108, 136-149.	1.0	46
18	Atomic spectrometry update: review of advances in atomic spectrometry and related techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 1017-1037.	1.6	18
19	Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambrian Research, 2015, 271, 160-172.	1.2	51

#	Article	IF	CITATIONS
20	Standardless fission-track dating of the Durango apatite age standard. Chemical Geology, 2015, 417, 44-57.	1.4	21
21	2014 atomic spectrometry update – a review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 2015, 30, 21-63.	1.6	21
22	Exhumation history of the Peake and Denison Inliers: insights from low-temperature thermochronology. Australian Journal of Earth Sciences, 2016, 63, 805-820.	0.4	13
23	Age and origin of fluorapatite-rich dyke from Baranec Mt. (Tatra Mts., Western Carpathians): a key to understanding of the post-orogenic processes and element mobility. Geologica Carpathica, 2016, 67, 417-432.	0.2	2
24	Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. Journal of Analytical Atomic Spectrometry, 2016, 31, 1206-1215.	1.6	71
25	Proto-Andean evolution of the Eastern Cordillera of Peru. Gondwana Research, 2016, 35, 59-78.	3.0	37
26	Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool. Bulletin of the Geological Society of America, 2016, 128, 1439-1460.	1.6	50
27	Communityâ€Derived Standards for <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> Uâ€(Thâ€)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 2016, 40, 311-332.	1.7	570
28	Tracing the thermal evolution of the Corsican lower crust during Tethyan rifting. Tectonics, 2016, 35, 2439-2466.	1.3	25
29	Detecting magma-poor orogens in the detrital record. Geology, 2016, 44, 871-874.	2.0	53
30	Measuring plume-related exhumation of the British Isles in Early Cenozoic times. Earth and Planetary Science Letters, 2016, 456, 1-15.	1.8	24
31	U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). American Mineralogist, 2016, 101, 2430-2442.	0.9	58
32	Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: Examples at the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit and other localities. Precambrian Research, 2016, 281, 185-199.	1.2	37
33	Allanite U Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration Chemical Geology, 2016, 438, 91-102.	1.4	41
34	(LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chemical Geology, 2016, 435, 35-48.	1.4	104
35	Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals – Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochimica Et Cosmochimica Acta, 2016, 178, 106-123.	1.6	34
36	Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research, 2016, 278, 283-302.	1.2	51
37	Polygenetic titanite records the composition of metamorphic fluids during the exhumation of ultrahighâ€pressure metagranite in the Sulu orogen. Journal of Metamorphic Geology, 2016, 34, 573-594.	1.6	15

#	Article	IF	CITATIONS
38	MKED1: A new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology. Chemical Geology, 2016, 425, 110-126.	1.4	153
39	Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 2016, 72, 313-322.	1.1	109
40	Dating shear zones with plastically deformed titanite: New insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precambrian Research, 2017, 291, 220-235.	1.2	42
41	Rapid high-resolution U–Pb LA-Q-ICPMS age mapping of zircon. Journal of Analytical Atomic Spectrometry, 2017, 32, 262-276.	1.6	18
42	LA-Q-ICP-MS apatite U/Pb geochronology using common Pb in plagioclase: Examples from layered mafic intrusions. American Mineralogist, 2017, 102, 571-579.	0.9	16
43	Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160209.	1.6	51
44	A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool â€~Monocle'. Chemical Geology, 2017, 463, 76-93.	1.4	91
45	Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology. Journal of Asian Earth Sciences, 2017, 143, 326-342.	1.0	47
46	U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 2017, 460, 106-116.	1.4	120
47	Non-matrix-matched standardisation in LA-ICP-MS analysis: general approach, and application to allanite Th–U–Pb dating. Journal of Analytical Atomic Spectrometry, 2017, 32, 1359-1377.	1.6	34
48	A Potential (Uâ€Th)/He Zircon Reference Material from Penglai Zircon Megacrysts. Geostandards and Geoanalytical Research, 2017, 41, 359-365.	1.7	16
49	Titanite-bearing calc-silicate rocks constrain timing, duration and magnitude of metamorphic CO 2 degassing in the Himalayan belt. Lithos, 2017, 292-293, 364-378.	0.6	22
50	Empirical constraints on the effects of radiation damage on helium diffusion in zircon. Geochimica Et Cosmochimica Acta, 2017, 218, 308-322.	1.6	44
51	A calcite reference material for LAâ€ŀCPâ€MS Uâ€₽b geochronology. Geochemistry, Geophysics, Geosystems, 2017, 18, 2807-2814.	1.0	213
52	Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases. Precambrian Research, 2017, 300, 107-120.	1.2	56
53	GGR Biennial Critical Review: Analytical Developments Since 2014. Geostandards and Geoanalytical Research, 2017, 41, 493-562.	1.7	11
54	Access DeniedSingle-track length measurements of step-etched fission tracks in Durango apatite: "Vorsprung durch Technik― American Mineralogist, 2017, , .	0.9	3
55	Laser Ablation ICP-MS U-Pb and 40Ar-39Ar age constraints on Neoarchean to Paleoproterozoic magmatic and tectono-metamorphic evolution of the link between Hope Bay and Elu greenstone belts, northeast Slave craton, NWT, Canada. Gondwana Research. 2017, 51, 1-16.	3.0	2

#	Article	IF	CITATIONS
56	Greater South China extended to the Khanka block: Detrital zircon geochronology of middle-upper Paleozoic sandstones in Primorye, Far East Russia. Journal of Asian Earth Sciences, 2017, 145, 565-575.	1.0	50
57	A prolonged granitoid formation in Saglek Block, Labrador: Zonal growth and crustal reworking of continental crust in the Eoarchean. Geoscience Frontiers, 2017, 8, 355-385.	4.3	29
59	EARLY, DEEP MAGNETITE-FLUORAPATITE MINERALIZATION AT THE OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA*. Economic Geology, 2017, 112, 1531-1542.	1.8	46
60	Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nature Geoscience, 2018, 11, 357-361.	5.4	86
61	Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems. Gondwana Research, 2018, 56, 90-104.	3.0	14
62	An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis. Geochemistry, Geophysics, Geosystems, 2018, 19, 1309-1326.	1.0	62
63	Late Cretaceous granitic magmatism and mineralization in the Yingwuling W–Sn deposit, South China: Constraints from zircon and cassiterite U–Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 2018, 96, 115-129.	1.1	42
64	IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 2018, 9, 1479-1493.	4.3	1,505
65	Depositional age and correlation of the Oonah Formation: refining the timing of Neoproterozoic basin formation in Tasmania. Australian Journal of Earth Sciences, 2018, 65, 391-407.	0.4	9
66	The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri-Gondwanan sediment mixing in Ireland. Journal of the Geological Society, 2018, 175, 411-424.	0.9	13
67	Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology. Geoscience Frontiers, 2018, 9, 1495-1514.	4.3	41
68	The trace element and U-Pb systematics of metamorphic apatite. Chemical Geology, 2018, 483, 218-238.	1.4	91
69	Use of trace and rare earth elements to quantify autogenic and allogenic inputs within a lowland karst network. Applied Geochemistry, 2018, 90, 101-114.	1.4	24
70	Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology. Chemical Geology, 2018, 483, 201-217.	1.4	23
71	Standardless fission-track ages of the IUGS age standards. Chemical Geology, 2018, 488, 87-104.	1.4	21
72	Distinguishing slow cooling versus multiphase cooling and heating in zircon and apatite (U-Th)/He datasets: The case of the McClure Mountain syenite standard. Chemical Geology, 2018, 485, 90-99.	1.4	25
73	Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif. Lithos, 2018, 308-309, 381-394.	0.6	36
74	Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA-(MC)-ICP-MS U-Pb dating and rare earth element analyses. Chemical Geology, 2018, 484, 191-209.	1.4	10

#	Article	IF	Citations
75	Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology, 2018, 483, 558-566.	1.4	47
76	Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos, 2018, 308-309, 118-133.	0.6	22
77	Application of in situ titanite U–Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore Geology Reviews, 2018, 95, 325-341.	1.1	17
78	U–Th–Pb systematics in zircon and apatite from the Chicxulub impact crater, Yucatán, Mexico. Geological Magazine, 2018, 155, 1330-1350.	0.9	9
79	Peak to post-peak thermal history of the Saglek Block of Labrador: A multiphase and multi-instrumental approach to geochronology. Chemical Geology, 2018, 484, 210-223.	1.4	21
80	Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology. Tectonophysics, 2018, 722, 577-594.	0.9	29
81	LA-ICP-MS titanite U-Pb dating and mineral chemistry of the Luohe magnetite-apatite (MA)-type deposit in the Lu-Zong volcanic basin, Eastern China. Ore Geology Reviews, 2018, 92, 284-296.	1.1	16
82	Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time. Bulletin of the Geological Society of America, 2018, 130, 2087-2109.	1.6	31
83	U–Pb SHRIMP-II ages of titanite and timing constraints on apatite–nepheline mineralization in the Khibiny and Lovozero alkaline massifs (Kola Peninsula). Russian Geology and Geophysics, 2018, 59, 962-974.	0.3	10
84	Thermochronological insights into reactivation of a continental shear zone in response to Equatorial Atlantic rifting (northern Ghana). Scientific Reports, 2018, 8, 16619.	1.6	17
85	Geology and U-Th-Pb Dating of the Gakara REE Deposit, Burundi. Minerals (Basel, Switzerland), 2018, 8, 394.	0.8	13
86	Geology, Apatite Geochronology, and Geochemistry of the Ernest Henry Inter-Lens: Implications for a Re-Examined Deposit Model. Minerals (Basel, Switzerland), 2018, 8, 405.	0.8	20
87	An Image Mapping Approach to Uâ€Pb LAâ€ICPâ€MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics, Geosystems, 2018, 19, 4631-4648.	1.0	56
88	New age in the geological evolution of the Cerro de Mercado Iron Oxide Apatite deposit, Mexico: Implication in the Durango apatite standard (DAP) age variability. Journal of South American Earth Sciences, 2018, 88, 367-373.	0.6	2
89	In situ LA-ICP-MS apatite and zircon U–Pb geochronology of the Nicholson Lake impact structure, Canada: Shock and related thermal effects. Earth and Planetary Science Letters, 2018, 504, 185-197.	1.8	32
90	Post-accretionary exhumation of the Meguma terrane relative to the Avalon terrane in the Canadian Appalachians. Tectonophysics, 2018, 747-748, 343-356.	0.9	11
91	Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia). Lithos, 2018, 314-315, 140-155.	0.6	31
92	Variscan Sb-Au mineralization in Central Brittany (France): A new metallogenic model derived from the Le Semnon district. Ore Geology Reviews, 2018, 97, 109-142.	1.1	16

		OILI	
#	Article	IF	CITATIONS
93	Apatite: a U-Pb thermochronometer or geochronometer?. Lithos, 2018, 318-319, 143-157.	0.6	108
94	An apatite U–Pb thermal history map for the northern Gawler Craton, South Australia. Geoscience Frontiers, 2018, 9, 1293-1308.	4.3	19
95	Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology. Minerals (Basel,) Tj ETQqC) 0.0 rgBT	/ Øs verlock 1
96	U–Th–Pb geochronology and simultaneous analysis of multiple isotope systems in geological samples by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2018, 33, 1600-1615.	1.6	13
97	Evidence for evolved Hadean crust from Sr isotopes in apatite within Eoarchean zircon from the Acasta Gneiss Complex. Geochimica Et Cosmochimica Acta, 2018, 235, 450-462.	1.6	32
98	Apatite stability under different oxygen fugacities relevant to planetary bodies. Mineralogy and Petrology, 2018, 112, 789-800.	0.4	2
99	Geochemistry and apatite U–Pb geochronology of alkaline gabbros from the Nodoushan plutonic complex, Sanandaj–Sirjan Zone, Central Iran: Evidence for Early Palaeozoic rifting of northern Gondwana. Geological Journal, 2019, 54, 1902-1926.	0.6	7
100	Tectonically assisted exhumation and cooling of Variscan granites in an anatectic complex of the Central Iberian Zone, Portugal: constraints from LA-ICP-MS zircon and apatite U–Pb ages. International Journal of Earth Sciences, 2019, 108, 2153-2175.	0.9	18
101	Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chemical Geology, 2019, 524, 406-420.	1.4	19
102	Corrections for initial isotopic disequilibrium in the speleothem U-Pb dating method. Quaternary Geochronology, 2019, 54, 101009.	0.6	10
103	Triassic sand supply to the Slyne Basin, offshore western Ireland – new insights from a multi-proxy provenance approach. Journal of the Geological Society, 2019, 176, 1120-1135.	0.9	10
104	Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 2019, 197, 102918.	4.0	47
105	In situ multiphase U–Pb geochronology and shock analysis of apatite, titanite and zircon from the Lac La Moinerie impact structure, Canada. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	16
106	The thermo-tectonic evolution of the southern Congo Craton margin as determined from apatite and muscovite thermochronology. Tectonophysics, 2019, 766, 398-415.	0.9	6
107	Characterization of the rhyolite of Bodie Hills and 40Ar/39Ar intercalibration with Ar mineral standards. Chemical Geology, 2019, 525, 282-302.	1.4	19
108	Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan. Bulletin of the Geological Society of America, 2019, 131, 1607-1622.	1.6	29
109	In Situ Uâ€Thâ€Pb Dating and Srâ€Nd Isotope Analysis of Bastnäte by LAâ€(MC)â€ICPâ€MS. Geostandards and Geoanalytical Research, 2019, 43, 543-565.	1.7	32
110	Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan,) Tj ETQq1 1 Geoscience Frontiers, 2019, 10, 2153-2166.	0.784314 4.3	rgBT /Over 35

#	Article	IF	CITATIONS
111	Paleocene metamorphism along the Pennine–Austroalpine suture constrained by U–Pb dating of titanite and rutile (Malenco, Alps). Swiss Journal of Geosciences, 2019, 112, 517-542.	0.5	12
112	Coexistence of MORB- and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. Bulletin of the Geological Society of America, 2019, 131, 1276-1294.	1.6	15
113	Sedimentology and U-Pb dating of Carboniferous to Permian continental series of the northern Massif Central (France): Local palaeogeographic evolution and larger scale correlations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109228.	1.0	17
114	On the track of a Scottish impact structure: a detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland. Geological Magazine, 2019, 156, 1863-1876.	0.9	11
115	Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence. Bulletin of the Geological Society of America, 2019, 131, 730-748.	1.6	44
116	Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District. American Mineralogist, 2019, 104, 118-129.	0.9	81
117	Titanite dates crystallization: Slow Pb diffusion during superâ€solidus reâ€equilibration. Journal of Metamorphic Geology, 2019, 37, 823-838.	1.6	26
118	Thermotectonic Evolution of the North Pyrenean Agly Massif During Early Cretaceous Hyperextension Using Multiâ€mineral Uâ€Pb Thermochronometry. Tectonics, 2019, 38, 1509-1531.	1.3	28
119	Reconstructing deepâ€ŧime histories from integrated thermochronology: An example from southern Baffin Island, Canada. Terra Nova, 2019, 31, 189-204.	0.9	15
120	Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet. Ore Geology Reviews, 2019, 107, 587-599.	1.1	47
121	Natural Titanite Reference Materials for <i>In Situ</i> Uâ€Pb and Smâ€Nd Isotopic Measurements by <scp>LA</scp> â€{ <scp>MC</scp>)â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2019, 43, 355-384.	1.7	36
122	Calcic garnets as a geochronological and petrogenetic tool applicable to a wide variety of rocks. Lithos, 2019, 338-339, 141-154.	0.6	22
123	Genetic and ore-forming ages of the Fe–P–(Ti) oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, NW China. Australian Journal of Earth Sciences, 2019, 66, 1041-1062.	0.4	5
124	The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study. Geochimica Et Cosmochimica Acta, 2019, 251, 15-35.	1.6	15
125	Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan. Gondwana Research, 2019, 71, 1-15.	3.0	39
126	Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences (Switzerland), 2019, 9, 467.	1.0	9
127	Ultrafast, >Â50ÂHz <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> Spot Analysis Applied to U–Pb Dati of Zircon and other Uâ€Bearing Minerals. Geostandards and Geoanalytical Research, 2019, 43, 39-60.	ng 1.7	28
128	On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador. Precambrian Research, 2019, 323, 70-81.	1.2	25

#	Article	IF	CITATIONS
129	Trace elements in titanite: A potential tool to constrain polygenetic growth processes and timing. Chemical Geology, 2019, 509, 1-19.	1.4	43
130	U/Pb and (U-Th-Sm)/He "double―dating of detrital apatite by laser ablation: A critical evaluation. Chemical Geology, 2019, 506, 40-50.	1.4	12
131	Composition and <scp>U—Pb</scp> ages of apatite in the <scp>Amba Dongar</scp> carbonatite–alkaline complex, <scp>India</scp> . Geological Journal, 2019, 54, 3438-3454.	0.6	23
132	Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. Geological Society Special Publication, 2020, 484, 255-274.	0.8	21
133	Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang orogenic deposit, Jiaodong, China. Mineralium Deposita, 2020, 55, 293-308.	1.7	31
134	Competing sediment sources during Paleozoic closure of the Marathon-Ouachita remnant ocean basin. Bulletin of the Geological Society of America, 2020, 132, 3-16.	1.6	12
135	A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China: Evidence from magnetite geochemistry and multi-mineral U-Pb geochronology. Bulletin of the Geological Society of America, 2020, 132, 899-917.	1.6	28
136	The polyphase evolution of a late Variscan W/Au deposit (Salau, French Pyrenees): insights from REE and U/Pb LA-ICP-MS analyses. Mineralium Deposita, 2020, 55, 1127-1147.	1.7	21
137	Disturbances in the Sm–Nd isotope system of the Acasta Gneiss Complex—Implications for the Nd isotope record of the early Earth. Earth and Planetary Science Letters, 2020, 530, 115900.	1.8	33
138	LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia. Bulletin of the Geological Society of America, 2020, 132, 1031-1045.	1.6	19
139	Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland. Chemical Geology, 2020, 536, 119467.	1.4	33
140	How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews, 2020, 201, 103082.	4.0	28
141	The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 2020, 201, 103044.	4.0	135
142	<i>In situ</i> sequential U–Pb age and Sm–Nd systematics measurements of natural LREE-enriched minerals using single laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 510-517.	1.6	2
143	Preâ€orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees. Journal of Metamorphic Geology, 2020, 38, 183-204.	1.6	13
144	Oxygen isotope homogeneity assessment for apatite Uâ€Thâ€Pb geochronology reference materials. Surface and Interface Analysis, 2020, 52, 197-213.	0.8	12
145	Late Paleozoic Exhumation of the West Junggar Mountains, NW China. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018013.	1.4	13
146	The clastic record of a Wilson Cycle: Evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc. Earth and Planetary Science Letters, 2020, 552, 116588.	1.8	13

#	Article	IF	CITATIONS
147	Using apatite to resolve the age and protoliths of mid-crustal shear zones: A case study from the Taxaquara Shear Zone, SE Brazil. Lithos, 2020, 378-379, 105817.	0.6	7
148	A step towards unraveling the paleogeographic attribution of pre-Mesozoic basement complexes in the Western Alps based on U–Pb geochronology of Permian magmatism. Swiss Journal of Geosciences, 2020, 113, .	0.5	17
149	Burma Terrane Collision and Northward Indentation in the Eastern Himalayas Recorded in the Eoceneâ€Miocene Chindwin Basin (Myanmar). Tectonics, 2020, 39, e2020TC006413.	1.3	36
150	Apatite U–Pb dating and geochemistry of the Kyrgyz South Tian Shan (Central Asia): Establishing an apatite fingerprint for provenance studies. Geoscience Frontiers, 2020, 11, 2003-2015.	4.3	11
151	Zircon age of vaugnerite intrusives from the Central and Southern Vosges crystalline massif (E) Tj ETQq0 0 0 rgBT Geologique De France, 2020, 191, 26.	/Overlock 0.9	2 10 Tf 50 58 4
152	U-Pb DATING OF HYDROTHERMAL TITANITE RESOLVES MULTIPLE PHASES OF PROPYLITIC ALTERATION IN THE OYU TOLGOI PORPHYRY DISTRICT, MONGOLIA. Economic Geology, 2020, 115, 1605-1618.	1.8	9
153	The Tres Arroyos Granitic Aplite-Pegmatite Field (Central Iberian Zone, Spain): Petrogenetic Constraints from Evolution of Nb-Ta-Sn Oxides, Whole-Rock Geochemistry and U-Pb Geochronology. Minerals (Basel, Switzerland), 2020, 10, 1008.	0.8	9
154	Protracted Shearing at Midcrustal Conditions During Large cale Thrusting in the Scandinavian Caledonides. Tectonics, 2020, 39, e2020TC006267.	1.3	16
155	Accurate and precise <i>in situ</i> U–Pb isotope dating of wolframite series minerals <i>via</i> LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 2191-2203.	1.6	37
156	Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Research, 2020, 87, 303-319.	3.0	39
157	LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sedimentary Geology, 2020, 407, 105728.	1.0	22
158	Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite – Improvements, potential reference materials, and application to the Archean Saglek Block gneisses. Chemical Geology, 2020, 539, 119493.	1.4	42
159	A comparison of geochronological methods commonly applied to kimberlites and related rocks: Three case studies from Finland. Chemical Geology, 2020, 558, 119899.	1.4	16
160	Apatite geochronology and chemistry of Luanchuan granitoids in the East Qinling Orogen, China: Implications for petrogenesis, metallogenesis and exploration. Lithos, 2020, 378-379, 105797.	0.6	18
161	Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions. Chemical Geology, 2020, 556, 119841.	1.4	8
162	Reconsidering initial Pb in titanite in the context of in situ dating. American Mineralogist, 2020, 105, 1672-1685.	0.9	9
163	Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals (Basel, Switzerland), 2020, 10, 266.	0.8	9
164	Meso-Cenozoic multiple exhumation in the Shandong Peninsula, eastern North China Craton: Implications for lithospheric destruction. Lithos, 2020, 370-371, 105597.	0.6	18

#	Article	IF	CITATIONS
165	Shocked titanite records Chicxulub hydrothermal alteration and impact age. Geochimica Et Cosmochimica Acta, 2020, 281, 12-30.	1.6	20
166	Further Evaluation of Penglai Zircon Megacrysts as a Reference Material for (Uâ€Th)/He Dating. Geostandards and Geoanalytical Research, 2020, 44, 763-783.	1.7	7

167 Cadomian (ca. 550ÂMa) magmatic and thermal imprint on the North Arabian-Nubian Shield (south and) Tj ETQq0 0.0 rgBT /Overlock 10

168	Removal of Hg interferences for common Pb correction when dating apatite and titanite by LA-ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1472-1481.	1.6	13
169	U–Pb geochronology of apatite and zircon from the Brent impact structure, Canada: a Late Ordovician Sandbian–Katian boundary event associated with L-Chondrite parent body disruption. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	10
170	Metamorphic response within different subduction–obduction settings preserved on the NE Arabian margin. Gondwana Research, 2020, 83, 298-371.	3.0	7
171	Geochronology of metamorphism, deformation and fluid circulation: A comparison between Rb-Sr and Ar-Ar phyllosilicate and U-Pb apatite systematics in the Karagwe-Ankole Belt (Central Africa). Gondwana Research, 2020, 83, 279-297.	3.0	11
172	A clearer view of crustal evolution: U-Pb, Sm-Nd, and Lu-Hf isotope systematics in five detrital minerals unravel the tectonothermal history of northern China. Bulletin of the Geological Society of America, 2020, 132, 2367-2381.	1.6	12
173	Provenance of Pennsylvanian–Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in southwestern Laurentia: Implications for continental-scale Laurentian sediment transport systems. Lithosphere, 2020, 12, 88-121.	0.6	36
174	Evidence for a concealed Midcontinent Rift-related northeast Iowa intrusive complex. Precambrian Research, 2020, 347, 105845.	1.2	3
175	Paleoproterozoic juvenile magmatism within the northeastern sector of the São Francisco paleocontinent: Insights from the shoshonitic high Ba–Sr Montezuma granitoids. Geoscience Frontiers, 2020, 11, 1821-1840.	4.3	16
176	Multi-Tool (LA-ICPMS, EMPA and XRD) Investigation on Heavy Minerals from Selected Holocene Peat-Bog Deposits from the Upper Vistula River Valley, Poland. Minerals (Basel, Switzerland), 2020, 10, 9.	0.8	6
177	Silicate-Carbonate Liquid Immiscibility: Insights from the Crevier Alkaline Intrusion (Quebec). Journal of Petrology, 2020, 61, .	1.1	13
178	Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 2020, 202, 103093.	4.0	85
179	Provenance of Triassic sandstones in the basins of Northern Ireland—Implications for NW European Triassic palaeodrainage. Geological Journal, 2020, 55, 5432-5450.	0.6	4
180	Multiphase U-Pb geochronology of sintered breccias from the Steen River impact structure, Canada: Mixed target considerations for a Jurassic-Cretaceous boundary event. Geochimica Et Cosmochimica Acta, 2020, 274, 136-156.	1.6	8
181	From Burial to Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained Through Multimethod Petrochronology, Case Study from the Lévézou Massif (French Massif Central,) Tj ET	Qq 0.0 0 rg	BT2Dverloc

182	LA-ICP-MS U Pb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material:Implications for metallogenesis of South China. Gondwana Research, 2020, 83, 217-231.	3	.0	39	
-----	---	---	----	----	--

#	Article	IF	Citations
183	Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 2020, 580, 81-86.	13.7	69
184	Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U–Pb and molybdenite Re–Os dating. Geoscience Frontiers, 2020, 11, 1581-1592.	4.3	27
185	First U-Pb LA-ICP-MS in situ dating of supergene copper mineralization: case study in the Chuquicamata mining district, Atacama Desert, Chile. Mineralium Deposita, 2021, 56, 239-252.	1.7	11
186	Multiple generations of titanites and their geochemical characteristics record the magmatic-hydrothermal processes and timing of the Dongguashan porphyry-skarn Cu-Au system, Tongling district, Eastern China. Mineralium Deposita, 2021, 56, 363-380.	1.7	29
187	Constraining recycled detritus in quartzâ€rich sandstones: Insights from a multiâ€proxy provenance study of the Midâ€Carboniferous, Clare Basin, western Ireland. Basin Research, 2021, 33, 342-363.	1.3	16
188	Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. Bulletin of the Geological Society of America, 2021, 133, 199-211.	1.6	21
189	Apatite fission-track dating by LA-Q-ICP-MS imaging. Chemical Geology, 2021, 560, 119977.	1.4	9
190	Strontium isotope analysis of apatite via SIMS. Chemical Geology, 2021, 559, 119979.	1.4	14
191	Exhumation history of the La Caridad and Suaqui Verde porphyry copper deposits in the eastern Basin and Range province of Sonora: Insights from thermobarometry and apatite thermochronology. Journal of South American Earth Sciences, 2021, 105, 102893.	0.6	3
192	Newly discovered MORB-Type HP garnet amphibolites from the Indus-Yarlung Tsangpo suture zone: Implications for the Cenozoic India–Asia collision. Gondwana Research, 2021, 90, 102-117.	3.0	12
193	From sink to source: Using offshore thermochronometric data to extract onshore erosion signals in Namibia. Basin Research, 2021, 33, 1580-1602.	1.3	5
194	New constraints for paleogeographic reconstructions at ca. 1.88ÂGa from geochronology and paleomagnetism of the CarajĄ̃js dyke swarm (eastern Amazonia). Precambrian Research, 2021, 353, 106039.	1.2	12
195	Incipient Wolframite Deposition at Panasqueira (Portugal): W-Rich Rutile and Tourmaline Compositions as Proxies for the Early Fluid Composition. Economic Geology, 2021, 116, 123-146.	1.8	26
196	Dating mafic magmatism by integrating baddeleyite, zircon and apatite U–Pb geochronology: A case study of Proterozoic mafic dykes/sills in the North China Craton. Lithos, 2021, 380-381, 105820.	0.6	5
197	Geological characteristics and geochronology of the Xianshuili Sn-W deposit, eastern Guangdong Province. Acta Petrologica Sinica, 2021, 37, 733-746.	0.3	1
198	The tungsten-gold veins of Bonnac (French Massif central): new constraints for a Variscan granite-related genesis. Bulletin - Societie Geologique De France, 2021, 192, 7.	0.9	2
199	Late Cretaceous to Oligocene overlapping plutonic magmatism episodes in the eastern Mesa Central province of Mexico. International Geology Review, 2022, 64, 675-697.	1.1	8
200	Genetic relationship between greisenization and Sn–W mineralization in vein and greisen deposits: Insights from the Panasqueira deposit (Portugal). Bulletin - Societie Geologique De France, 2021, 192, 2. 	0.9	15

#	Article	IF	CITATIONS
201	Assessment of the mineral ilmenite for U–Pb dating by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1244-1260.	1.6	9
202	Ã,ge et genèse de la coupole granitique à métaux rares (Sn, Li, Nb-Ta, W) de Montebras (Creuse, Massif) Tj E1	-Qရ1 _{.9} 1 0.7	'84314 rgBT
203	Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China. Acta Petrologica Sinica, 2021, 37, 747-768.	0.3	4
204	Central European Variscan Basement in the Outer Carpathians: A Case Study from the Magura Nappe, Outer Western Carpathians, Poland. Minerals (Basel, Switzerland), 2021, 11, 256.	0.8	4
205	Initiation and Evolution of the Shanxi Rift System in North China: Evidence From Lowâ€Temperature Thermochronology in a Plate Reconstruction Framework. Tectonics, 2021, 40, e2020TC006298.	1.3	42
206	U â^' Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation. Geochronology, 2021, 3, 123-147.	1.0	8
207	Reworked early Precambrian basement of the Dunhuang Block (NW China) as revealed by titanite U–Pb dating. Lithos, 2021, 384-385, 105963.	0.6	1
208	Resolving mid- to upper-crustal exhumation through apatite petrochronology and thermochronology. Chemical Geology, 2021, 565, 120071.	1.4	19
209	The Great Falls Tectonic Zone after the assembly of Laurentia: evidence for long-term tectonic stability from xenolith apatite. Lithos, 2021, 384-385, 105977.	0.6	6
210	The provenance of Middle Jurassic to Cretaceous sediments in the Irish and Celtic Sea Basins: tectonic and environmental controls on sediment sourcing. Journal of the Geological Society, 2021, 178, .	0.9	0
211	Mesoarchean (ultra)-high temperature and high-pressure metamorphism along a microblock suture: Evidence from Earth's oldest khondalites in southern India. Gondwana Research, 2021, 91, 129-151.	3.0	25
212	Carboniferous highâ€ <i>P</i> metamorphism and deformation in the Belledonne Massif (Western Alps). Journal of Metamorphic Geology, 2021, 39, 1009-1044.	1.6	12
213	<i>In situ</i> Reaction-replacement Origin of Hornblendites in the Early Cretaceous Laiyuan Complex, North China Craton, and Implications for its Tectono-magmatic Evolution. Journal of Petrology, 2021, 62, .	1.1	9
214	High-temperature fluids in granites during the Neoarchaean-Palaeoproterozoic transition: Insight from Closepet titanite chemistry and U-Pb dating (Dharwar craton, India). Lithos, 2021, 386-387, 106039.	0.6	0
215	New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths. European Journal of Mineralogy, 2021, 33, 233-247.	0.4	1
216	U–Pb Dating of Apatite, Titanite and Zircon of the Kingash Mafic–Ultramafic Massif, Kan Terrane, Siberia: from Rodinia Break-up to the Reunion with the Siberian Craton. Journal of Petrology, 2021, 62,	1.1	4
217	Inherited structure as a control on late Paleozoic and Mesozoic exhumation of the Tarbagatai Mountains, southeastern Kazakhstan. Journal of the Geological Society, 2021, 178, .	0.9	6
218	Geochemical constraints on the distribution of trace elements and volatiles in fluorapatite from the Panasqueira tin-tungsten deposit (Portugal). Chemie Der Erde, 2021, 81, 125765.	0.8	1

 #
 ARTICLE
 IF
 CITATIONS

 219
 Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence
from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals (Basel,) Tj ETQq0 0 0 0g8T /Overlock 10 Tf

220	and Overview. Journal of Asian Earth Sciences, 2021, 211, 104690.	1.0	7
221	Deep- versus shallow-marine sandstone provenance in the mid-Carboniferous Clare Basin, western Ireland. Journal of the Geological Society, 2021, 178, .	0.9	3
222	Precise U Pb dating of grandite garnets by LA-ICP-MS: Assessing ablation behaviors under matrix-matched and non-matrix-matched conditions and applications to various skarn deposits. Chemical Geology, 2021, 572, 120198.	1.4	9
223	U-Pb geochronology of apatite crystallized within a terrestrial impact melt sheet: Manicouagan as a geochronometer test site. , 2021, , 495-505.		1
224	Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ U–Pb carbonate geochronology and isotope geochemistry. Marine and Petroleum Geology, 2021, 129, 105080.	1.5	19
225	Cassiterite U-Pb dating of the lower Cretaceous Yanbei tin porphyry district in the Mikengshan volcanic basin, SE China. Ore Geology Reviews, 2021, 134, 104151.	1.1	17
226	Uranium–lead phosphate chronostratigraphy: A proof of concept from the mid-Carboniferous boundary. Sedimentary Geology, 2021, 422, 105961.	1.0	4
227	Mafic intrusions in southwestern Australia related to supercontinent assembly or breakup?. Australian Journal of Earth Sciences, 0, , 1-23.	0.4	1
228	Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	31
229	Implication of Mineralogy and Isotope Data on the Origin of the Permian Basic Volcanic Rocks of the Hronicum (Slovakia, Western Carpathians). Minerals (Basel, Switzerland), 2021, 11, 841.	0.8	1
230	Spatial variation in provenance signal: identifying complex sand sourcing within a Carboniferous basin using multiproxy provenance analysis. Journal of the Geological Society, 2022, 179, .	0.9	5
231	Apatite Uâ€Pb Dating with Common Pb Correction Using LAâ€ICPâ€IMS/MS. Geostandards and Geoanalytical Research, 2021, 45, 621-642.	1.7	10
232	Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit, South China. American Mineralogist, 2021, 106, 1503-1519.	0.9	7
233	Detrital apatite geochemistry and thermochronology from the Oligocene/Miocene Alpine foreland record the early exhumation of the Tauern Window. Basin Research, 2021, 33, 3021-3044.	1.3	6
234	The Mesozoic exhumation history of the Karatau-Talas range, western Tian Shan, Kazakhstan-Kyrgyzstan. Tectonophysics, 2021, 814, 228977.	0.9	12
235	In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chemical Geology, 2021, 577, 120299.	1.4	62
236	Triassic breakup of Pangea in southern Mexico: Thermochronological evidence from the Tianguistengo formation. Chemie Der Erde, 2021, 81, 125776.	0.8	6

#	Article	IF	CITATIONS
237	U-Pb systematics of uranium-rich apatite from Adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating. Chemical Geology, 2021, 581, 120417.	1.4	9
238	Role of Basement Structural Inheritance and Strike-Slip Fault Dynamics in the Formation of the Pataz Gold Vein System, Eastern Andean Cordillera, Northern Peru. Economic Geology, 2021, 116, 1503-1535.	1.8	7
239	Reconstructing environmental signals across the Permian-Triassic boundary in the SE Germanic Basin: A Quantitative Provenance Analysis (QPA) approach. Global and Planetary Change, 2021, 206, 103631.	1.6	7
240	Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U-Pb and apatite U-Pb, fission track and (U-Th)/He analyses in the Zhangguangcai Range, NE China. Tectonophysics, 2021, 818, 229075.	0.9	7
241	Apatite and biotite thermochronometers help explain an Arctic Caledonide inverted metamorphic gradient. Chemical Geology, 2021, 584, 120524.	1.4	4
242	The geochronology of the Haobugao skarn Zn-Pb deposit (NE China) using garnet LA-ICP-MS U-Pb dating. Ore Geology Reviews, 2021, 139, 104437.	1.1	16
243	U/Pb geochronology of wolframite by LA-ICP-MS; mineralogical constraints, analytical procedures, data interpretation, and comparison with ID-TIMS. Chemical Geology, 2021, 584, 120511.	1.4	12
244	Use of high-U hydrothermal apatite containing excess 206Pb to constrain the age of uranium mineralization at the Coles Hill deposit, Virginia, USA. Chemical Geology, 2021, 584, 120509.	1.4	1
245	Technical note: LA–ICP-MS U–Pb dating of unetched and etched apatites. Geochronology, 2021, 3, 59-65.	1.0	0
246	Simultaneous determination of Sm–Nd isotopes, trace-element compositions and U–Pb ages of titanite using a laser-ablation split-stream technique with the addition of water vapor. Journal of Analytical Atomic Spectrometry, 2021, 36, 2312-2321.	1.6	10
248	Understanding Preservation of Primary Signatures in Apatite by Comparing Matrix and Zirconâ€Hosted Crystals From the Eoarchean Acasta Gneiss Complex (Canada). Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008923.	1.0	15
249	U-Pb dating of calcite using LA-ICP-MS: Instrumental setup for non-matrix-matched age dating and determination of analytical areas using elemental imaging. Geochemical Journal, 2018, 52, 531-540.	0.5	16
250	Geochronology and Sr–Nd–Hf isotope constraints on the petrogenesis of teschenites from the type-locality in the Outer Western Carpathians. Geologica Carpathica, 2019, 70, 222-240.	0.2	6
251	Exploring the advantages and limitations of in situ U–Pb carbonate geochronology using speleothems. Geochronology, 2019, 1, 69-84.	1.0	20
252	An Archean Porphyry-Type Gold Deposit: The CÃʿté Gold Au(-Cu) Deposit, Swayze Greenstone Belt, Superior Province, Ontario, Canada. Economic Geology, 2021, 116, 47-89.	1.8	15
253	Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits. Minerals (Basel, Switzerland), 2021, 11, 1166.	0.8	3
254	Apatite U-Pb Thermochronology: A Review. Minerals (Basel, Switzerland), 2021, 11, 1095.	0.8	21
255	Polyphase post-Variscan thinning of the North Pyrenean crust: Constraints from the P-T-t-deformation history of the exhumed Variscan lower crust (Saleix Massif, France).	0.9	3

#	Article	IF	CITATIONS
256	Magma evolution and Cu-Au mineralization potential of the Upper Devonian-Lower Carboniferous Tulasu basin, Western Tianshan Orogen (NW China): Apatite U-Pb dating and geochemical perspectives. Ore Geology Reviews, 2021, 139, 104526.	1.1	4
257	Late diagenetic evolution of Ordovician limestones in the Baltoscandian basin revealed through trace-element mapping and in situ U–Pb dating of calcite. Chemical Geology, 2021, 585, 120563.	1.4	5
258	U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites. Chemical Geology, 2021, 586, 120604.	1.4	15
259	The role of inherited Pb in controlling the quality of speleothem U-Pb ages. Quaternary Geochronology, 2021, 67, 101243.	0.6	1
260	In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature. Acta Petrologica Sinica, 2020, 36, 2983-2994.	0.3	1
261	Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth and Planetary Science Letters, 2020, 541, 116263.	1.8	6
262	U-Pb geochronology of rutile: deciphering the cooling history of the Oaxacan Complex granulites, southern Mexico. Revista Mexicana De Ciencias Geologicas, 2020, 37, 135-145.	0.2	3
263	Expanding the limits of laser-ablation U–Pb calcite geochronology. Geochronology, 2020, 2, 343-354.	1.0	26
264	Inter-cratonic geochronological and geochemical correlations of the Derim Derim–Galiwinku/Yanliao reconstructed Large Igneous Province across the North Australian and North China cratons. Gondwana Research, 2022, 103, 473-486.	3.0	8
265	CASSITERITE U-Pb GEOCHRONOLOGY OF THE SANTA BÃRBARA TIN DISTRICT, RONDÔNIA TIN PROVINCE, BRAZIL. Economic Geology, 2022, 117, 719-729.	1.8	5
266	Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. Bulletin of the Geological Society of America, 2022, 134, 1863-1876.	1.6	9
267	Geodynamic setting and ore formation of the Younusisayi thorium deposit in the Altyn orogenic belt, NW China. Ore Geology Reviews, 2021, 140, 104552.	1.1	7
268	Well-Constrained Mineralization Ages by Integrated 40Ar/39Ar and U-Pb Dating Techniques for the Xitian W-Sn Polymetallic Deposit, South China. Economic Geology, 0, , .	1.8	2
269	Buried Triassic rocks and vertical distribution of ores in the giant Jiaodong gold province (China) revealed by apatite xenocrysts in hydrothermal quartz veins. Ore Geology Reviews, 2022, 140, 104612.	1.1	13
270	Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System. Geosciences (Switzerland), 2022, 12, 20.	1.0	2
271	Linking uplift and mineralisation at the Mount Novit Zn-Pb-Ag Deposit, Northern Australia: Evidence from geology, U–Pb geochronology and sphalerite geochemistry. Geoscience Frontiers, 2022, 13, 101347.	4.3	7
272	Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals. Basin Research, 2022, 34, 1055-1083.	1.3	10
273	Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry. Chemical Geology, 2022, 590, 120689.	1.4	21

#	Article	IF	CITATIONS
274	An apatite to unravel petrogenic processes of the Nova-Bollinger Ni-Cu magmatic sulfide deposit, Western Australia. Precambrian Research, 2022, 369, 106524.	1.2	3
275	Uplift-exhumation and preservation of the Yumugou Mo-W deposit, East Qinling, China: Insights from multiple apatite low-temperature thermochronology. Ore Geology Reviews, 2022, 141, 104670.	1.1	12
276	Geochronology and tectonic setting of the giant Guobaoshan Rb deposit, Central Tianshan, NW China. Ore Geology Reviews, 2022, 141, 104636.	1.1	8
278	A twoâ€stage, faultâ€controlled paleofluid system at the southern termination of the Gypsum Valley salt wall, Paradox Basin, Colorado, USA. Basin Research, 2022, 34, 1020-1054.	1.3	1
279	Petrogenesis of Dacites in a Triassic Volcanic Arc in the South China Sea: Constraints From Whole Rock and Mineral Geochemistry. Frontiers in Earth Science, 2022, 9, .	0.8	0
280	PL57 garnet as a new natural reference material for in situ U–Pb isotope analysis and its perspective for geological applications. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	11
281	<i>In situ</i> U–Pb geochronology of vesuvianite by LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 69-81.	1.6	7
282	Assessing the Uâ€Pb, Smâ€Nd and Srâ€Sr Isotopic Compositions of the Sumé Apatite as a Reference Material for LAâ€ICPâ€MS Analysis. Geostandards and Geoanalytical Research, 2022, 46, 71-95.	1.7	13
283	Results report of apatite fission-track analysis by LA-ICP-MS and its comparison with the conventional external detector method of dating. Journal of Analytical Atomic Spectrometry, 2022, 37, 369-380.	1.6	0
284	Matrix effects and improved calibration procedures for SIMS titanite U Pb dating. Chemical Geology, 2022, 593, 120755.	1.4	6
285	Terminal tectono-magmatic phase of the New England Orogen driven by lithospheric delamination. Gondwana Research, 2022, 106, 105-125.	3.0	1
286	Detrital apatite <scp>Lu–Hf</scp> and <scp>U–Pb</scp> geochronology applied to the southwestern Siberian margin. Terra Nova, 2022, 34, 201-209.	0.9	9
287	Thorium zoning in monazite: A case study from the Ivrea–Verbano zone, NW Italy. Journal of Metamorphic Geology, 2022, 40, 1015-1042.	1.6	9
288	Apatite and zircon geochemistry for discriminating ore-forming intrusions in the Luming giant porphyry Mo deposit, Northeastern China. Ore Geology Reviews, 2022, 143, 104771.	1.1	6
289	U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS. Chemical Geology, 2022, 593, 120754.	1.4	16
290	Radiation damage allows identification of truly inherited zircon. Communications Earth & Environment, 2022, 3, .	2.6	5
291	LAâ€ICPâ€MS/MS Singleâ€Spot Rbâ€Sr Dating. Geostandards and Geoanalytical Research, 2022, 46, 143-168.	1.7	28
292	Apatite U-Pb Dating and Composition Constraints for Magmatic–Hydrothermal Evolution in the Giant Renli Nb-Ta Deposit, South China. Minerals (Basel, Switzerland), 2022, 12, 344.	0.8	3

#	Article	IF	CITATIONS
293	Generation of Arc-Like and OIB-Like Magmas Triggered by Slab Detachment in the Eastern Mexican Alkaline Province: Petrological Evidence from the Cenozoic Sierra de San Carlos-Cruillas Complex, Tamaulipas. Journal of Petrology, 2022, 63, .	1.1	8
294	Uâ€Pb dating of zircon and monazite from the uplifted Variscan crystalline basement of the Ries impact crater. Meteoritics and Planetary Science, 2022, 57, 830-849.	0.7	5
295	An apatite trace element and Sr-Nd isotope geochemical study of syenites and carbonatite, exemplified by the Epembe alkaline‑carbonatite complex, Namibia. Lithos, 2022, , 106699.	0.6	1
296	Geochronological and geochemical constraints on the origin of highly ¹³ C _{carb} -depleted calcite in basal Ediacaran cap carbonate. Geological Magazine, 2022, 159, 1323-1334.	0.9	14
297	In situ apatite U-Pb dating for the ophiolite-hosted Nianzha orogenic gold deposit, Southern Tibet. Ore Geology Reviews, 2022, 144, 104811.	1.1	8
298	U-Pb zircon-titanite-apatite age constraints on basin development and basin inversion in the Kiruna mining district, Sweden. Precambrian Research, 2022, 372, 106613.	1.2	8
299	HT overprint of HP granulites in the Oisans–Pelvoux massif: Implications for the dynamics of the Variscan collision in the external western Alps. Lithos, 2022, 416-417, 106650.	0.6	5
300	Late Permian orogenic gold mineralization at Haoyaoerhudong, northern China: Constraints from hydrothermal titanite and apatite chemistry. Ore Geology Reviews, 2022, 144, 104858.	1.1	6
301	U/Pb geochronology of fossil fish dentine from Romualdo Formation, Araripe Basin, northeast of Brazil. Journal of South American Earth Sciences, 2022, 116, 103774.	0.6	13
302	Recognition of late Paleoproterozoic gold mineralization in the North China craton: Evidence from multi-mineral U-Pb geochronology and stable isotopes of the Shanggong deposit. Bulletin of the Geological Society of America, 2023, 135, 211-232.	1.6	5
303	Study on Dating Method of Hydrothermal Dolomite—A Case Study of Hydrothermal Dolomite of Permian Formation in Sichuan Basin. Advances in Geosciences, 2022, 12, 627-635.	0.0	1
304	U–Pb age constraints on the protolith, cooling and exhumation of a Variscan middle crust migmatite complex from the Central Iberian Zone: insights into the Variscan metamorphic evolution and Ediacaran palaeogeographic implications. Journal of the Geological Society, 2022, 179, .	0.9	7
305	Emplacement ages of diamondiferous kimberlites in the Wafangdian District, North China Craton: New evidence from LA-ICP-MS U-Pb geochronology of andradite-rich garnet. Gondwana Research, 2022, 109, 493-517.	3.0	5
306	U-Pb Scheelite Ages of Tungsten and Antimony Mineralization in the Stibnite-Yellow Pine District, Central Idaho. Economic Geology, 0, , .	1.8	3
307	Ice Volume Variations and Provenance Trends in the Oligocene-Early Miocene Glaciomarine Sediments of the Central Ross Sea, Antarctica (Dsdp Site 270). SSRN Electronic Journal, 0, , .	0.4	0
308	Khan River and Bear Lake: Two Natural Titanite Reference Materials for Highâ€Spatial Resolution Uâ€Pb Microanalysis. Geostandards and Geoanalytical Research, 2022, 46, 701-733.	1.7	6
309	Apatites Record Sedimentary Provenance Change 4–5 Myrs Before Clay in the Oligocene/Miocene Alpine Molasse. Frontiers in Earth Science, 0, 10, .	0.8	0
310	New U-Pb zircon ages of plagiogranites from the Coastal Complex ophiolite and Twillingate batholith, Newfoundland: evidence for the oldest and overlapping silicic magmatism in the nascent Cambrian peri-Laurentia forearc and arc terranes. Gondwana Research, 2022, , .	3.0	2

#	Article	IF	CITATIONS
311	Trace Element Distribution in Zoned Kyanite of Thassos Island (Greece) Using Combined Spectroscopic Analyses. Applied Spectroscopy, 0, , 000370282211087.	1.2	2
312	Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Geochronology, 2022, 4, 399-407.	1.0	0
313	Vesuvianite: A potential U-Pb geochronometer for skarn mineralizationa case study of tungsten and tin deposits in South China. Chemical Geology, 2022, 607, 121017.	1.4	3
314	A detailed record of early solar system melting in the carbonaceous achondrites Northwest Africa 7680 and 6962. Meteoritics and Planetary Science, 2022, 57, 1722-1744.	0.7	1
315	PRECISE AGE CONSTRAINTS FOR THE WOXI Au-Sb-W DEPOSIT, SOUTH CHINA. Economic Geology, 2023, 118, 509-518.	1.8	11
316	Denudation of the Cordillera and intraplate belt in central Patagonia inferred by detrital multi-dating of foreland basin deposits. Sedimentary Geology, 2022, 440, 106237.	1.0	3
317	Age and evolution of the Nanyangshan rare-metal mineralized pegmatite revealed by cassiterite U-Pb geochronology and tourmaline chemistry. Ore Geology Reviews, 2022, 150, 105121.	1.1	3
318	Unraveling evolution histories of large hydrothermal systems via garnet U-Pb dating, sulfide trace element and isotopic analyses: A case study of Shuikoushan polymetallic ore field, South China. Ore Geology Reviews, 2022, 149, 105063.	1.1	8
319	Geochronology and geochemical characteristics of ore-forming granite in Maopengdian Sn deposit, northern Jiangxi Province. Ore Geology Reviews, 2022, 149, 105098.	1.1	1
320	Tonian evolution of an active continental margin - a model for Neoproterozoic NW India-SE Pakistan–E Oman linkage. Precambrian Research, 2022, 381, 106822.	1.2	4
321	Chemistry and U–Pb geochronology of cassiterite in the Xiasai deposit, central Yidun Terrane (SW) Tj ETQq0 0	0 rgBT /Ov	verlock 10 T
322	Episodic reactivation of carbonate fault zones with implications for permeability – An example from Provence, Southeast France. Marine and Petroleum Geology, 2022, 145, 105905.	1.5	11
323	Why are the Appalachians high? New insights from detrital apatite laser ablation (U-Th-Sm)/He dating. Earth and Planetary Science Letters, 2022, 597, 117794.	1.8	1
324	Combined garnet, scheelite and apatite U–Pb dating of mineralizing events in the Qiaomaishan Cu–W skarn deposit, eastern China. Geoscience Frontiers, 2023, 14, 101459.	4.3	6
325	In Situ U–Th–Pb Dating of Parisite: Implication for the Age of Mineralization of Colombian Emeralds. Minerals (Basel, Switzerland), 2022, 12, 1232.	0.8	0
326	Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geology Reviews, 2022, 150, 105134.	1.1	6
327	Geodynamic seawater-sediment porewater evolution of the east central Atlantic Paleogene ocean margin revealed by U-Pb dating of sedimentary phosphates. Frontiers in Earth Science, 0, 10, .	0.8	3
328	Hyperspectral cathodoluminescence, trace element, and U-Pb geochronological characterization of apatite from the Ernest Henry iron oxide copper-gold (IOCG) deposit, Cloncurry district, Queensland.	0.8	0

#	Article	IF	CITATIONS
330	Deformation Termination of the Kanggur Ductile Shear Zone in Eastern Tianshan, NW China: Insights from U-Pb Dating of Zircon and Apatite. Minerals (Basel, Switzerland), 2022, 12, 1284.	0.8	0
331	Nappe Imbrication Within the Phylliteâ€Quartzite Unit of West Crete: Implications for Sustained Highâ€Pressure Metamorphism in the Hellenide Subduction Orogen, Greece. Tectonics, 2022, 41, .	1.3	2
332	Lu–Hf, Sm–Nd, and U–Pb isotopic coupling and decoupling in apatite. Geochimica Et Cosmochimica Acta, 2022, 338, 121-135.	1.6	10
333	Dating fluid infiltration and deformation in the subducted ultramafic oceanic lithosphere by perovskite geochronology. Chemical Geology, 2023, 615, 121205.	1.4	3
334	Garnet geochemistry of the giant Beiya gold–polymetallic deposit in SW China: Insights into fluid evolution during skarn formation. Ore Geology Reviews, 2022, 150, 105198.	1.1	3
335	A <scp>LAâ€ICPâ€MS</scp> Comparison of Reference Materials Used in Cassiterite <scp>Uâ€₽b</scp> Geochronology. Geostandards and Geoanalytical Research, 2023, 47, 67-87.	1.7	3
336	Superimposed mineralization in the Tongbai composite orogen, central China: Revealed from geological and geochronological data of the Yindongpo gold deposit. Ore Geology Reviews, 2023, 152, 105246.	1.1	3
337	Le gisement à étain–cuivre–indium de Charrier (Allier)Â: un skarnoÃ⁻de viséen (340 Ma) traceur de la métallogenèse varisque du nord Massif central. Bulletin - Societie Geologique De France, 2022, 193, 17.	⁹ 0.9	1
338	The Chicxulub impact structure reveals the first in-situ Jurassic magmatic intrusions of the YucatÃin Peninsula, Mexico. Lithos, 2023, 436-437, 106953.	0.6	0
339	The Tertiary structuration of the Western Subalpine foreland deciphered by calcite-filled faults and veins. Earth-Science Reviews, 2023, 236, 104270.	4.0	7
340	Metamorphism as the cause of bone alteration in the Jarrow assemblage (Langsettian, Pennsylvanian) of Ireland. Palaeontology, 2022, 65, .	1.0	1
341	Petrogenesis of the Limerick Igneous Suite: insights into the causes of post-eruptive alteration and the magmatic sources underlying the Iapetus Suture in SW Ireland. Journal of the Geological Society, 2023, 180, .	0.9	1
342	Tracking the origin of metasomatic and ore-forming fluids in IOCG deposits through apatite geochemistry (Nautanen North deposit, Norrbotten, Sweden). Lithos, 2023, 438-439, 106995.	0.6	1
343	Ice volume variations and provenance trends in the Oligocene-early Miocene glaciomarine sediments of the Central Ross Sea, Antarctica (DSDP Site 270). Global and Planetary Change, 2023, 221, 104042.	1.6	2
344	Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation. Geological Society Special Publication, 2024, 537, 165-184.	0.8	7
345	Petrogenesis and metallogenesis of the Qieganbulake carbonatite-related phosphate deposit associated with the mafic–ultramafic–carbonatite complex in the Kuluketage block, northeastern Tarim Craton. Geological Magazine, 2023, 160, 685-711.	0.9	1
346	Investigation of the Ablation Behaviour of <scp>Andraditeâ€Grossular</scp> Garnets and Rutile with Implications for <scp>Uâ€₽b</scp> Geochronology. Geostandards and Geoanalytical Research, 2023, 47, 267-295.	1.7	1
347	The Effect of Sediment Storage in Glaciated Catchments on Multimineral Detrital Geochronology: Deciphering Conflicting Zircon and Apatite Uâ€Pb Dates. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	1.0	0

#	Article	IF	CITATIONS
348	Identifying superimposed W–Sn mineralization events using cassiterite microtextures, trace-element chemistry, and geochronology. Ore Geology Reviews, 2023, 153, 105281.	1.1	1
349	Detrital rutile: Records of the deep crust, ores and fluids. Lithos, 2023, 438-439, 107010.	0.6	7
350	Constraining the timing of deep magmatic pulses from diamondiferous kimberlite and related rocks in the South China Continent and implications for diamond exploration. Ore Geology Reviews, 2023, 154, 105328.	1.1	1
351	In Situ U—Pb Dating and Trace Element Analysis of Garnet in the Tongshanling Cu Polymetallic Deposit, South China. Minerals (Basel, Switzerland), 2023, 13, 187.	0.8	1
352	Oldest syenitic intrusions of the Yilgarn Craton identified at Karari gold deposit, Carosue Dam camp, Western Australia?. Australian Journal of Earth Sciences, 2023, 70, 344-357.	0.4	0
353	Brama: a new freeware Python software for reduction and imaging of LA-ICP-MS data from U–Pb scans. Journal of Analytical Atomic Spectrometry, 2023, 38, 578-586.	1.6	3
354	From Tethyan subduction to Arabia-Eurasia continental collision: Multiple geo-thermochronological signals from granitoids in NW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 621, 111567.	1.0	1
356	Multi-stage alteration at Nifty copper deposit resolved via accessory mineral dating and trace elements. Precambrian Research, 2023, 388, 107018.	1.2	0
357	Recognition of the Xiayu intermediate-sulfidation epithermal Ag-Pb-Zn-Au(-Cu) mineralization in the East Qinling polymetallic ore belt, China: Constraints from geology and geochronology. Ore Geology Reviews, 2023, 156, 105398.	1.1	5
358	Early Neoproterozoic fore-arc basin strata of the Malyi Karatau Range (South Kazakhstan): Depositional ages, provenance and implications for reconstructions of Precambrian continents. Gondwana Research, 2023, 119, 313-340.	3.0	6
359	Geochemistry and origin of hydrothermal apatite in Carlin-type Au deposits, southwestern China (Gaolong deposit). Ore Geology Reviews, 2023, 154, 105312.	1.1	3
360	A revised model for the George Fisher and Hilton Zn-Pb-Ag deposits, NW Queensland: Insights from the geology, age and alteration of the local dolerite dykes. Ore Geology Reviews, 2023, 154, 105311.	1.1	1
361	Apatite as a record of ore-forming processes: Magmatic-hydrothermal evolution of the Hutouya Cu–Fe–Pb–Zn ore district in the Qiman Tagh Metallogenic Belt, NW China. Ore Geology Reviews, 2023, 154, 105343.	1.1	0
362	Dating mylonitic overprinting of ancient rocks. Communications Earth & Environment, 2023, 4, .	2.6	3
363	Late Neoproterozoic–Cambrian eclogites and highâ€pressure granulites in the Central Qilian terrane (China) record the earliest subduction of Protoâ€Tethyan Ocean in the eastern Tethysides. Journal of Metamorphic Geology, 2023, 41, 849-878.	1.6	2
364	The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf. Geosciences (Switzerland), 2023, 13, 91.	1.0	0
365	Duluth Complex <scp>FC1</scp> Apatite and Zircon: Reference Materials for (<scp>Uâ€Th</scp>)/He Dating?. Geostandards and Geoanalytical Research, 2023, 47, 669-681.	1.7	3
366	Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals (Basel,) Tj ETQq1 1 0.784314	rg B)T. \$Ovei	lo c k 10 Tf 50

#	Article	IF	CITATIONS
367	Mesoâ€Cenozoic Tectonic History of the Altai: New Insights From Apatite Uâ€Pb and Fission Track Thermochronology for the Fuyun Area (Xinjiang, China). Tectonics, 2023, 42, .	1.3	2
368	Dating Strikeâ€Slip Ductile Shear Through Combined Zirconâ€, Titanite―and Apatite U–Pb Geochronology Along the Southern Tan‣u Fault Zone, East China. Tectonics, 2023, 42, .	1.3	0
369	Current applications using key mineral phases in igneous and metamorphic geology: perspectives for the future. Geological Society Special Publication, 2024, 537, 57-121.	0.8	3
370	An early cretaceous thermal event in the Sakar Unit (Strandja Zone, SE Bulgaria/NW Turkey) revealed based on U Pb rutile geochronology and Zr-in-rutile thermometry. Lithos, 2023, , 107186.	0.6	0
371	U–Pb calcite dating of brittle deformation in Permian carbonates within the Chicomuselo fold and thrust belt, SE Mexico. Journal of Structural Geology, 2023, 171, 104863.	1.0	2
379	Title is missing!. , 2023, , .		0