The wide spectrum of tubulinopathies: what are the key

Brain 137, 1676-1700 DOI: 10.1093/brain/awu082

Citation Report

#	Article	IF	CITATIONS
1	Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathologica Communications, 2014, 2, 69.	2.4	106
2	Microtubule Self-Organization via Protein-RNA Network Crosstalk. Cell, 2014, 158, 245-247.	13.5	2
3	APC Is an RNA-Binding Protein, and Its Interactome Provides a Link to Neural Development and Microtubule Assembly. Cell, 2014, 158, 368-382.	13.5	153
4	TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Scientific Reports, 2015, 5, 15165.	1.6	23
5	Terminology in morphological anomalies of the cerebellum does matter. Cerebellum and Ataxias, 2015, 2, 8.	1.9	28
6	The expression of <i>tubb2b</i> undergoes a developmental transition in murine cortical neurons. Journal of Comparative Neurology, 2015, 523, 2161-2186.	0.9	23
7	Mosaic dominant <i>TUBB4A</i> mutation in an inbred family with complicated hereditary spastic paraplegia. Movement Disorders, 2015, 30, 854-858.	2.2	34
8	Monozygotic twins with a de novo 0.32 Mb 16q24.3 deletion, including <i>TUBB</i> 3 presenting with developmental delay and mild facial dysmorphism but without overt brain malformation. American Journal of Medical Genetics, Part A, 2015, 167, 2731-2736.	0.7	8
9	Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration. Frontiers in Cellular Neuroscience, 2015, 9, 394.	1.8	82
10	Genotype-phenotype correlation in neuronal migration disorders and cortical dysplasias. Frontiers in Neuroscience, 2015, 9, 181.	1.4	52
11	Tubulinopathies and Their Brain Malformation Syndromes: Every <i>TUB</i> on Its Own Bottom. Epilepsy Currents, 2015, 15, 65-67.	0.4	9
12	TUBA1A Mutation Associated With Eye Abnormalities in Addition to Brain Malformation. Pediatric Neurology, 2015, 53, 442-444.	1.0	26
13	Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Molecular Psychiatry, 2015, 20, 176-182.	4.1	178
14	Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Human Molecular Genetics, 2015, 24, 5313-5325.	1.4	77
15	γ-Tubulin complexes in microtubule nucleation and beyond. Molecular Biology of the Cell, 2015, 26, 2957-2962.	0.9	104
16	Genetic Causes of Intellectual Disability: TheÂGenes Controlling Cortical Development. , 2016, , 43-64.		0
17	Sending Mixed Signals: The Expanding Role of Molecular Cascade Mutations in Malformations of Cortical Development and Epilepsy. Epilepsy Currents, 2016, 16, 158-163.	0.4	5
18	Nosological delineation of congenital ocular motor apraxia type Cogan: an observational study. Orphanet Journal of Rare Diseases, 2016, 11, 104.	1.2	21

#	Article	IF	CITATIONS
19	Magnetic Resonance Imaging of Malformations of Midbrain-Hindbrain. Journal of Computer Assisted Tomography, 2016, 40, 14-25.	0.5	30
20	Disorders of Microtubule Function in Neurons: Imaging Correlates. American Journal of Neuroradiology, 2016, 37, 528-535.	1.2	56
21	A novel <i>TUBB3</i> mutation in a sporadic patient with asymmetric cortical dysplasia. American Journal of Medical Genetics, Part A, 2016, 170, 1076-1079.	0.7	19
22	Mutations in <i>TUBB8</i> cause a multiplicity of phenotypes in human oocytes and early embryos. Journal of Medical Genetics, 2016, 53, 662-671.	1.5	91
23	Uner Tan syndrome caused by a homozygousTUBB2Bmutation affecting microtubule stability. Human Molecular Genetics, 2016, 26, ddw383.	1.4	11
24	A Mutation in the Tubulin-Encoding <i>TUBB3</i> Gene Causes Complex Cortical Malformations and Unilateral Hypohidrosis. Child Neurology Open, 2016, 3, 2329048X1666575.	0.5	9
25	Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nature Communications, 2016, 7, 12187.	5.8	153
26	Principles of Microtubule Organization: Insight from the Study of Neurons. , 2016, , 79-115.		0
27	The genetics of cerebellar malformations. Seminars in Fetal and Neonatal Medicine, 2016, 21, 321-332.	1.1	47
29	TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy. American Journal of Human Genetics, 2016, 99, 974-983.	2.6	49
30	The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton, 2016, 73, 521-550.	1.0	116
31	Cerebellar and Brainstem Malformations. Neuroimaging Clinics of North America, 2016, 26, 341-357.	0.5	30
32	Genetic Basis of Brain Malformations. Molecular Syndromology, 2016, 7, 220-233.	0.3	156
33	Malformations of cortical development. Annals of Neurology, 2016, 80, 797-810.	2.8	95
34	Two unique <i>TUBB3</i> mutations cause both CFEOM3 and malformations of cortical development. American Journal of Medical Genetics, Part A, 2016, 170, 297-305.	0.7	51
35	De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: An unusual presentation of tubulinopathy. European Journal of Medical Genetics, 2016, 59, 249-256.	0.7	23
36	Isolation of Functional Tubulin Dimers and of Tubulin-Associated Proteins from Mammalian Cells. Current Biology, 2016, 26, 1728-1736.	1.8	66
37	Mutations in <i>TUBB8</i> and Human Oocyte Meiotic Arrest. New England Journal of Medicine, 2016, 374, 223-232.	13.9	212

	CITATION	Report	
#	Article	IF	CITATIONS
38	Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin–microtubule interface. Nature Communications, 2016, 7, 10058.	5.8	26
39	Novel α-tubulin mutation disrupts neural development and tubulin proteostasis. Developmental Biology, 2016, 409, 406-419.	0.9	36
40	Malformations of Cortical Development. , 2016, , 141-164.		1
41	Mutations in the murine homologue of TUBB5 cause microcephaly by perturbing cell cycle progression and inducing p53 associated apoptosis. Development (Cambridge), 2016, 143, 1126-33.	1.2	25
42	Corpus callosum and epilepsies. Seizure: the Journal of the British Epilepsy Association, 2016, 37, 55-60.	0.9	52
43	Posterior Fossa Malformations. , 2016, , 109-140.		0
44	Differential diagnosis of ventriculomegaly and brainstem kinking on fetal MRI. Brain and Development, 2016, 38, 103-108.	0.6	22
45	Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. American Journal of Human Genetics, 2016, 98, 149-164.	2.6	270
46	Perinatal Neuroradiology. , 2016, , .		2
47	Expanding the spectrum of congenital anomalies of the diencephalic–mesencephalic junction. Neuroradiology, 2016, 58, 33-44.	1.1	23
48	I-PV: a CIRCOS module for interactive protein sequence visualization. Bioinformatics, 2016, 32, 447-449.	1.8	6
49	Cellular and molecular introduction to brain development. Neurobiology of Disease, 2016, 92, 3-17.	2.1	128
50	Microcephaly, intractable seizures and developmental delay caused by biallelic variants in <i><scp>TBCD</scp></i> : further delineation of a new chaperoneâ€mediated tubulinopathy. Clinical Genetics, 2017, 91, 725-738.	1.0	25
51	Brain-specific knockin of the pathogenic Tubb5 E401K allele causes defects in motor coordination and prepulse inhibition. Behavioural Brain Research, 2017, 323, 47-55.	1.2	6
52	Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Human Molecular Genetics, 2017, 26, R37-R44.	1.4	59
53	Lissencephaly: Expanded imaging and clinical classification. American Journal of Medical Genetics, Part A, 2017, 173, 1473-1488.	0.7	104
54	Prenatal Brainstem Disruptions: Small Lesions–Big Problems. Neuropediatrics, 2017, 48, 350-355.	0.3	1
55	A Practical Approach to Supratentorial Brain Malformations. Radiologic Clinics of North America, 2017, 55, 609-627.	0.9	13

#	Article	IF	CITATIONS
56	Cerebral palsy and seizures in a child with tubulinopathy pattern dysgenesis and focal cortical dysplasia. Radiology Case Reports, 2017, 12, 396-400.	0.2	2
57	Tubulins and brain development – The origins of functional specification. Molecular and Cellular Neurosciences, 2017, 84, 58-67.	1.0	67
58	TUBB2B Mutation in an Adult Patient with Myoclonus-Dystonia. Case Reports in Neurology, 2017, 9, 216-221.	0.3	6
59	Drosophila beta-tubulin 97EF is upregulated at low temperature and stabilizes microtubules. Development (Cambridge), 2017, 144, 4573-4587.	1.2	16
60	WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain, 2017, 140, 2597-2609.	3.7	28
61	De novo pathogenic variant in TUBB2A presenting with arthrogryposis multiplex congenita, brain abnormalities, and severe developmental delay. , 2017, 173, 2725-2730.		15
62	Distinct effects of tubulin isotype mutations on neurite growth in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2017, 28, 2786-2801.	0.9	29
63	Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development (Cambridge), 2017, 144, 4002-4014.	1.2	15
64	Tubulin isotype specificity in neuronal migration: Tuba8 can't fill in for Tuba1a. Journal of Cell Biology, 2017, 216, 2247-2249.	2.3	5
65	A TUBB6 mutation is associated with autosomal dominant non-progressive congenital facial palsy, bilateral ptosis and velopharyngeal dysfunction. Human Molecular Genetics, 2017, 26, 4055-4066.	1.4	13
66	Exome Pool-Seq in neurodevelopmental disorders. European Journal of Human Genetics, 2017, 25, 1364-1376.	1.4	77
67	Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. Journal of Cell Biology, 2017, 216, 2443-2461.	2.3	61
68	Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. European Radiology, 2017, 27, 5080-5092.	2.3	36
69	Neuropathological Hallmarks of Brain Malformations in Extreme Phenotypes Related to DYNC1H1 Mutations. Journal of Neuropathology and Experimental Neurology, 2017, 76, 195-205.	0.9	15
70	Recurrent KIF2A mutations are responsible for classic lissencephaly. Neurogenetics, 2017, 18, 73-79.	0.7	41
71	A heterozygous mutation in <i>tubulin, beta <scp>2B</scp></i> (<i><scp>Tubb2b</scp></i>) causes cognitive deficits and hippocampal disorganization. Genes, Brain and Behavior, 2017, 16, 250-259.	1.1	8
72	De Novo <i>TUBB2A</i> Variant Presenting With Anterior Temporal Pachygyria. Journal of Child Neurology, 2017, 32, 127-131.	0.7	15
73	Clinical heterogeneity associated with <i>TUBB3</i> gene mutation in a Turkish family with congenital fibrosis of the extraocular muscles. Ophthalmic Genetics, 2017, 38, 288-290.	0.5	4

		15	Currentia
#	ARTICLE PRUNE is crucial for normal brain development and mutated in microcephaly with	IF	CITATIONS
74	neurodevelopmental impairment. Brain, 2017, 140, 940-952.	3.7	62
75	Double Cortexâ~†. , 2017, , .		0
76	The α-Tubulin gene TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend. Journal of Developmental Biology, 2017, 5, 8.	0.9	50
77	Epileptogenic Brain Malformations and Mutations in Tubulin Genes: A Case Report and Review of the Literature. International Journal of Molecular Sciences, 2017, 18, 2273.	1.8	9
78	Human mutations in integrator complex subunits link transcriptome integrity to brain development. PLoS Genetics, 2017, 13, e1006809.	1.5	66
79	Diffusion Tensor Imaging and Fiber Tractography of Pediatric Posterior Fossa Malformations. Neurographics, 2017, 7, 243-261.	0.2	1
80	Disorders of Cerebellar and Brainstem Development. , 2017, , 199-207.		0
81	Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genetics in Medicine, 2018, 20, 1354-1364.	1.1	92
82	Twenty-Five Diagnoses on Midline Images of the Brain: From Fetus to Child to Adult. Radiographics, 2018, 38, 218-235.	1.4	10
83	Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBC1. European Journal of Human Genetics, 2018, 26, 1132-1142.	1.4	30
84	Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development. Human Molecular Genetics, 2018, 27, 224-238.	1.4	34
85	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	2.3	87
86	γ-Tubulin–γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. International Journal of Molecular Sciences, 2018, 19, 3245.	1.8	16
87	TAPping into the treasures of tubulin using novel protein production methods. Essays in Biochemistry, 2018, 62, 781-792.	2.1	4
88	Comprehensive genotype-phenotype correlation in lissencephaly. Quantitative Imaging in Medicine and Surgery, 2018, 8, 673-693.	1.1	17
89	Tubulinopathies. Topics in Magnetic Resonance Imaging, 2018, 27, 395-408.	0.7	30
90	Î ³ -tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduction and Targeted Therapy, 2018, 3, 24.	7.1	34
92	Genetics of neuromuscular fetal akinesia in the genomics era. Journal of Medical Genetics, 2018, 55, 505-514.	1.5	35

#	Article	IF	Citations
93	The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 2018, 12, 165.	1.8	147
94	Prenatal diagnosis of brainstem anomalies. European Journal of Paediatric Neurology, 2018, 22, 1016-1026.	0.7	11
95	Neuronal Migration. , 2018, , 120-144.e8.		1
96	Tubulin genes and malformations of cortical development. European Journal of Medical Genetics, 2018, 61, 744-754.	0.7	93
97	Neuronal-Specific TUBB3 Is Not Required for Normal Neuronal Function but Is Essential for Timely Axon Regeneration. Cell Reports, 2018, 24, 1865-1879.e9.	2.9	101
98	Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation. Brain Sciences, 2018, 8, 145.	1.1	18
99	A case of tubulinopathy presenting with porencephaly caused by a novel missense mutation in the TUBA1A gene. Brain and Development, 2018, 40, 819-823.	0.6	8
100	The spectrum of brainstem malformations associated to mutations of the tubulin genes family: MRI and DTI analysis. European Radiology, 2019, 29, 770-782.	2.3	22
101	Differential requirements of tubulin genes in mammalian forebrain development. PLoS Genetics, 2019, 15, e1008243.	1.5	39
102	Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain, 2019, 142, 2965-2978.	3.7	12
104	Fetal and neonatal neurogenetics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 162, 105-132.	1.0	7
105	Linking Cell Polarity to Cortical Development and Malformations. Frontiers in Cellular Neuroscience, 2019, 13, 244.	1.8	45
106	Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells, 2019, 8, 669.	1.8	27
107	Corpus Callosum. Neuroimaging Clinics of North America, 2019, 29, 445-459.	0.5	11
108	Bi-allelic Pathogenic Variants in TUBGCP2 Cause Microcephaly and Lissencephaly Spectrum Disorders. American Journal of Human Genetics, 2019, 105, 1005-1015.	2.6	24
109	A neurodevelopmental TUBB2B β-tubulin mutation impairs Bim1 (yeast EB1)-dependent spindle positioning. Biology Open, 2019, 8, .	0.6	6
110	Malformations of Cerebral Cortex Development: Molecules and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 293-318.	9.6	71
111	Case reports: novel TUBG1 mutations with milder neurodevelopmental presentations. BMC Medical Genetics, 2019, 20, 95.	2.1	10

		CITATION REPO	ORT	
# 112	ARTICLE TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion ar microtubule dynamics but not neurogenesis. Nature Communications, 2019, 10, 2129.	nd	IF 5.8	Citations
113	Polymicrogyria and Schizencephaly. , 2019, , 480-491.			0
114	Disorders Associated with Tubulinopathies and mTORopathies. , 2019, , 513-520.			0
115	Approach to the Diagnosis of Cortical Developmental Disorders and their Clinical Genetics. 76-85.	2019,,		0
116	Neuroimaging Findings in Moebius Sequence. American Journal of Neuroradiology, 2019, 40), 862-865.	1.2	14
117	The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet Jo Rare Diseases, 2019, 14, 38.	ournal of	1.2	48
118	The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Go for Better Understanding Neurodevelopment?. Journal of Clinical Medicine, 2019, 8, 2088.	od Tool	1.0	19
119	De Novo Mutated TUBB2B Associated Pachygyria Diagnosed by Medical Exome Sequencing Long-Range PCR. Fetal and Pediatric Pathology, 2019, 38, 63-71.	and	0.4	6
120	TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migratic impair dynein activity. Human Molecular Genetics, 2019, 28, 1227-1243.	on and	1.4	35
121	Altered White Matter Organization in the TUBB3 E410K Syndrome. Cerebral Cortex, 2019,	29, 3561-3576.	1.6	13
122	Tubulin mutations in brain development disorders: Why haploinsufficiency does not explain <i>TUBA1A</i> tubulinopathies. Cytoskeleton, 2020, 77, 40-54.	:	1.0	23
123	Developmental Regression and Epilepsy of Infancy with Migrating Focal Seizures Caused by Mutation: A Case Report and Review of the Literature. Neuropediatrics, 2020, 51, 068-071.	TBCD	0.3	7
124	Microcephaly with a simplified gyral pattern in a child with a de novo <i>TUBA1A</i> variant Journal of Medical Genetics, Part A, 2020, 182, 576-578.	:. American	0.7	3
125	Prenatal cerebral imaging features of a new syndromic entity related to KIAA1109 pathoger mimicking tubulinopathy. Prenatal Diagnosis, 2020, 40, 276-281.	ic variants	1.1	4
126	Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule funct Letters, 2020, 594, 3409-3438.	ion. FEBS	1.3	24
127	Clinical variability of TUBB â€essociated disorders: Diagnosis through reanalysis. American J Medical Genetics, Part A, 2020, 182, 3035-3039.	ournal of	0.7	7
128	Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. International Molecular Sciences, 2020, 21, 7354.	Journal of	1.8	63
129	Bilateral lesions of the basal ganglia and thalami (central grey matter)—pictorial review. Neuroradiology, 2020, 62, 1565-1605.		1.1	36

#	Article	IF	CITATIONS
130	The recurrent TUBB3 Gly98Ser substitution is the first described to inconsistently result in CFEOM3. American Journal of Medical Genetics, Part A, 2020, 182, 2161-2167.	0.7	3
131	Investigation of the most common clinical and imaging findings and the role of tubulin genes in the etiology of malformations of cortical development. Turkish Journal of Medical Sciences, 2020, 50, 1573-1579.	0.4	0
132	International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nature Reviews Neurology, 2020, 16, 618-635.	4.9	53
133	Autosomal dominant TUBB3-related syndrome: Fetal, radiologic, clinical and morphological features. European Journal of Paediatric Neurology, 2020, 26, 46-60.	0.7	11
134	Pontocerebellar Hypoplasia: a Pattern Recognition Approach. Cerebellum, 2020, 19, 569-582.	1.4	33
135	TUBB3 E410K syndrome: Case report and review of the clinical spectrum of TUBB3 mutations. American Journal of Medical Genetics, Part A, 2020, 182, 1977-1984.	0.7	15
136	Targeted re-sequencing in malformations of cortical development: genotype-phenotype correlations. Seizure: the Journal of the British Epilepsy Association, 2020, 80, 145-152.	0.9	13
137	Gene-Focused Networks Underlying Phenotypic Convergence in a Systematically Phenotyped Cohort With Heterogeneous Intellectual Disability. Frontiers in Bioengineering and Biotechnology, 2020, 8, 45.	2.0	0
138	Neuronal migration disorders. , 2020, , 577-588.		0
139	Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells, 2020, 9, 358.	1.8	79
140	TUBB Variants Underlying Different Phenotypes Result in Altered Vesicle Trafficking and Microtubule Dynamics. International Journal of Molecular Sciences, 2020, 21, 1385.	1.8	20
141	Cortical Malformations: Lessons in Human Brain Development. Frontiers in Cellular Neuroscience, 2019, 13, 576.	1.8	65
142	Two different prenatal imaging cerebral patterns of tubulinopathy. Ultrasound in Obstetrics and Gynecology, 2021, 57, 493-497.	0.9	14
143	Defining the phenotypical spectrum associated with variants in <i>TUBB2A</i> . Journal of Medical Genetics, 2021, 58, 33-40.	1.5	11
144	Whole exome sequencing of fetal structural anomalies detected by ultrasonography. Journal of Human Genetics, 2021, 66, 499-507.	1.1	18
145	Cross-sectional quantitative analysis of the natural history of TUBA1A and TUBB2B tubulinopathies. Genetics in Medicine, 2021, 23, 516-523.	1.1	8
146	Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations. Molecular Neurobiology, 2021, 58, 1291-1302.	1.9	5
147	Second trimester fetal MRI features in a fetus with TUBB3 gene mutation. Radiology Case Reports, 2021, 16, 381-383.	0.2	2

		CITATION REI	PORT	
#	Article		IF	CITATIONS
148	Neuronal migration and disorders $\hat{a} \in \hat{a}$ an update. Current Opinion in Neurobiology, 20.	21, 66, 57-68.	2.0	25
149	Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Europe Paediatric Neurology, 2021, 30, 71-81.	ean Journal of	0.7	22
150	α1A and α1C form microtubules to display distinct properties mainly mediated by the Journal of Molecular Cell Biology, 2022, 13, 864-875.	ir C-terminal tails.	1.5	12
151	Diagnostic Approach to Cerebellar Hypoplasia. Cerebellum, 2021, 20, 631-658.		1.4	16
152	Neuropathology of genetically defined malformations of cortical development—A sys literature review. Neuropathology and Applied Neurobiology, 2021, 47, 585-602.	tematic	1.8	9
153	A novel TUBG1 mutation with neurodevelopmental disorder caused by malformations development. BioMed Research International, 2021, 2021, 1-8.	of cortical	0.9	5
154	Using data from the 100,000 Genomes Project to resolve conflicting interpretations or TUBB2A mutation. Journal of Medical Genetics, 2021, , jmedgenet-2020-107528.	f a recurrent	1.5	3
155	Epistatic, synthetic, and balancing interactions among tubulin missense mutations affe growth in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2021, 32, 331-	ecting neurite 347.	0.9	7
157	Folding for the Immune Synapse: CCT Chaperonin and the Cytoskeleton. Frontiers in C Developmental Biology, 2021, 9, 658460.	ell and	1.8	7
158	Neonatal encephalopathy: Etiologies other than hypoxic-ischemic encephalopathy. Ser and Neonatal Medicine, 2021, 26, 101272.	ninars in Fetal	1.1	21
159	A Novel De Novo TUBB3 Variant Causing Developmental Delay, Epilepsy and Mild Oph Symptoms in a Chinese Child. Journal of Molecular Neuroscience, 2022, 72, 37-44.	chalmological	1.1	3
160	Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Internation Molecular Sciences, 2021, 22, 10387.	nal Journal of	1.8	7
161	Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into M dynein function. Molecular Biology of the Cell, 2021, 32, ar10.	AP-mediated	0.9	8
162	A novel family illustrating the mild phenotypic spectrum of TUBB2B variants. European Paediatric Neurology, 2021, 35, 35-39.	Journal of	0.7	2
163	Novel function of <i>N</i> -acetyltransferase for microtubule stability and JNK signaling <i>Drosophila</i> organ development. Proceedings of the National Academy of Science States of America, 2021, 118, .		3.3	8
164	Genetic interaction screen for severe neurodevelopmental disorders reveals a function between Ube3a and Mef2 in Drosophila melanogaster. Scientific Reports, 2020, 10, 12	al link 204.	1.6	8
165	Reconsidering NMIHBA Core Features: Macrocephaly Is Not a So Unusual Sign in PRUN Encephalopathy. Journal of Pediatric Neurology, 2021, 19, 116-123.	IE1-Related	0.0	1
166	Genetic heterogeneity of polymicrogyria: study of 123 patients using deep sequencing Communications, 2021, 3, fcaa221.	;. Brain	1.5	22

#	Article	IF	CITATIONS
169	Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. ELife, 2020, 9, .	2.8	27
170	Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Frontiers in Oncology, 2021, 11, 758146.	1.3	7
171	TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy. Human Genetics, 2021, 140, 1709-1731.	1.8	13
172	Lissencephaly: Update on diagnostics and clinical management. European Journal of Paediatric Neurology, 2021, 35, 147-152.	0.7	16
173	Genetic causes underlying grey matter heterotopia. European Journal of Paediatric Neurology, 2021, 35, 82-92.	0.7	19
174	Neuro-Ophthalmologic Manifestations of Systemic and Intracranial Disease. , 2016, , 649-776.		0
178	Malformations cérébrales. , 2018, , 637-673.e7.		0
183	Fehlbildungen der Kommissuren und des Kortex. , 2019, , 1091-1118.		0
186	Expanding the Phenotype of <i>TUBB2A</i> -Related Tubulinopathy: Three Cases of a Novel, Heterozygous <i>TUBB2A</i> Pathogenic Variant p.Gly98Arg. Molecular Syndromology, 2021, 12, 1-8.	0.3	6
187	A Complex Cortical Malformation Caused by a Mutation in the Tubulin-Encoding <i>TUBB3</i> Gene. Journal of the Korean Society of Radiology, 2020, 81, 1246.	0.1	1
188	Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis. Journal of Cell Biology, 2021, 220, .	2.3	11
189	Kinetically Stabilizing Mutations in Beta Tubulins Create Isotype-Specific Brain Malformations. Frontiers in Cell and Developmental Biology, 2021, 9, 765992.	1.8	13
190	Microtubule-modulating Agents in the Fight Against Neurodegeneration: Will it ever Work?. Current Neuropharmacology, 2022, 20, 782-798.	1.4	10
191	The diagnostic challenges of congenital mirror movements and hand stereotypies in a case with TUBB3-associated tubulinopathy. Acta Neurologica Belgica, 2022, , 1.	0.5	1
192	PCDH12 variants are associated with basal ganglia anomalies and exudative vitreoretinopathy. European Journal of Medical Genetics, 2022, 65, 104405.	0.7	4
196	Complementing the phenotypical spectrum of TUBA1A tubulinopathy and its role in early-onset epilepsies. European Journal of Human Genetics, 2022, 30, 298-306.	1.4	9
197	Prenatal diagnosis of Aicardi syndrome based on a suggestive imaging pattern: A multicenter caseâ€series. Prenatal Diagnosis, 2022, 42, 484-494.	1.1	8
198	Dysregulation of SAA1, TUBA8 and Monocytes Are Key Factors in Ankylosing Spondylitis With Femoral Head Necrosis. Frontiers in Immunology, 2021, 12, 814278.	2.2	3

#	Article	IF	CITATIONS
199	Malformations of Cortical Development. , 2021, , 1-237.		1
200	Mllt11 Regulates Migration and Neurite Outgrowth of Cortical Projection Neurons during Development. Journal of Neuroscience, 2022, 42, 3931-3948.	1.7	6
201	Exome Sequencing Reveals Novel Variants and Expands the Genetic Landscape for Congenital Microcephaly. Genes, 2021, 12, 2014.	1.0	8
205	Congenital Brain Malformations: An Integrated Diagnostic Approach. Seminars in Pediatric Neurology, 2022, 42, 100973.	1.0	6
206	TUBA1A tubulinopathy mutants disrupt neuron morphogenesis and override XMAP215/Stu2 regulation of microtubule dynamics. ELife, 2022, 11, .	2.8	5
207	Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique. Ultrasound in Obstetrics and Gynecology, 2022, 60, 470-476.	0.9	9
208	The "Z―Shaped Brainstem—A Tale of Two Distinct Gene Mutations. Neurology India, 2022, 70, 794.	0.2	0
209	Genomics in the presurgical epilepsy evaluation. Epilepsy Research, 2022, 184, 106951.	0.8	7
210	Generation of an induced pluripotent stem cell line (DHMCi008-A) from an individual with TUBA1A tubulinopathy. Stem Cell Research, 2022, 62, 102818.	0.3	0
211	Broadening the phenotypic spectrum of <i>TUBA1A</i> tubulinopathy to syndromic arthrogryposis multiplex congenita. American Journal of Medical Genetics, Part A, O, , .	0.7	0
213	Child with Intellectual Disability and Seizures. Indian Journal of Pediatrics, 0, , .	0.3	0
214	Tubulinopathy Presenting as Developmental and Epileptic Encephalopathy. Children, 2022, 9, 1105.	0.6	1
215	Tubulin mutations in human neurodevelopmental disorders. Seminars in Cell and Developmental Biology, 2023, 137, 87-95.	2.3	9
216	The fetal brain: migration and gyration anomalies — pre- and postnatal correlations. Pediatric Radiology, 0, , .	1.1	0
217	Generation of an induced pluripotent stem cell line (DHMCi009-A) from an individual with TUBB2A tubulinopathy. Stem Cell Research, 2022, 64, 102879.	0.3	0
218	Microtubules in Differentiated Cells. , 2022, , .		0
219	Identification of TUBB8 Variants in 5 Primary Infertile Women with Multiple Phenotypes in Oocytes and Early Embryos. Reproductive Sciences, 0, , .	1.1	1
220	Loss of non-motor kinesin KIF26A causes congenital brain malformations via dysregulated neuronal migration and axonal growth as well as apoptosis. Developmental Cell, 2022, 57, 2381-2396.e13.	3.1	7

ARTICLE IF CITATIONS # Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin 221 1.5 5 mutations. PLoS Computational Biology, 2022, 18, e1010611. Placental proteome in lateâ€onset of fetal growth restriction. Molecular Medicine Reports, 2022, 26, . 1.1 Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. American 223 2.6 2 Journal of Human Genetics, 2022, 109, 2068-2079. The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure 224 1.8 and microtubule regulation. Frontiers in Cellular Neuroscience, 0, 16, . Genetics of Cortical Development., 2022,,. 225 0 Central Nervous System Part I., 2022, , 179-198. Spectrum of brain malformations in fetuses with mild tubulinopathy. Ultrasound in Obstetrics and 227 0.9 1 Gynecology, 2023, 61, 740-748. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis?. 1.4 Brain Research Bulletin, 2023, 193, 131-145. Congenital Brain Malformations- Update on Newer Classification and Genetic Basis. Seminars in 229 0.2 2 Roentgenology, 2023, 58, 6-27. A De Novo Missense Variant in TUBG2 in a Child with Global Developmental Delay, Microcephaly, 1.0 Refractory Epilepsy and Perisylvian Polymicrogyria. Genes, 2023, 14, 108. Prenatal Neurological Diagnosis: Challenges in Neuroimaging, Prognostic Counseling, and Prediction 231 4 1.0 of Neurodevelopmental Outcomes. Pediatric Neurology, 2023, 142, 60-67. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin 1.8 Code in Neurons. International Journal of Molecular Sciences, 2023, 24, 2781. In silico analysis of TUBA4A mutations in Amyotrophic Lateral Sclerosis to define mechanisms of 233 1.6 2 microtubule disintegration. Scientific Reports, 2023, 13, . Proteome analysis reveals novel serum biomarkers for Henoch-SchĶnlein purpura in Chinese children. 234 1.2 Journal of Protéomics, 2023, 276, 104841. MAPping tubulin mutations. Frontiers in Cell and Developmental Biology, 0, 11, . 235 1.8 4 Dynamics of TUBB protein with five majorly occurring natural variants: a risk of cortical dysplasia. Journal of Molecular Modeling, 2023, 29, . Insights on the Role of \hat{I}_{\pm} - and \hat{I}_{\pm} -Tubulin Isotypes in Early Brain Development. Molecular Neurobiology, 237 1.9 2 2023, 60, 3803-3823. Case report: Structural brain abnormalities in TUBA1A-tubulinopathies: a narrative review. Frontiers 243 in Pediatrics, 0, 11, .

#	ARTICLE	IF	CITATIONS
245	Development and Developmental Disorders of the Cerebral Cortex. , 2023, , 725-891.		0
246	Development and Developmental Disorders of the Forebrain. , 2023, , 595-724.		0
247	Mechanisms of Development. , 2023, , 77-169.		0
248	Editorial: Tubulinopathies: fundamental and clinical challenges. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	0