A Single-Component Molecular Superconductor

Journal of the American Chemical Society 136, 7619-7622 DOI: 10.1021/ja503690m

Citation Report

#	Article	IF	CITATIONS
1	Enhanced Electrical Conductivity in a Substitutionally Doped Spiro-bis(phenalenyl)boron Radical Molecular Solid. Journal of the American Chemical Society, 2014, 136, 14738-14741.	13.7	30
2	Hydrogen-Bonding Interactions in a Single-Component Molecular Conductor: a Hydroxyethyl-Substituted Radical Gold Dithiolene Complex. Inorganic Chemistry, 2014, 53, 8755-8761.	4.0	28
3	Radical or Not Radical: Compared Structures of Metal (M = Ni, Au) Bis-Dithiolene Complexes with a Thiazole Backbone. Inorganic Chemistry, 2014, 53, 8681-8690.	4.0	35
4	High-Pressure Resistivity Measurement Under High Quality Hydrostatic Condition. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2015, 25, 292-297.	0.0	0
5	Resistive Switching Induced by Electric Pulses in a Single-Component Molecular Mott Insulator. Journal of Physical Chemistry C, 2015, 119, 2983-2988.	3.1	15
6	Band Structure Engineering by Substitutional Doping in Solid-State Solutions of [5-Me-PLY(O,O)] ₂ B _(1–<i>x</i>) Be _{<i>x</i>} Radical Crystals. Journal of the American Chemical Society, 2015, 137, 10000-10008.	13.7	16
7	Conducting films based on single-component molecular metals. Chemical Communications, 2015, 51, 13117-13119.	4.1	8
8	Interplay between Organic–Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes. Inorganic Chemistry, 2015, 54, 5013-5020.	4.0	13
9	A Single-Component Conductor Based on a Radical Gold Dithiolene Complex with Alkyl-Substituted Thiophene-2,3-dithiolate Ligand. Inorganic Chemistry, 2015, 54, 9908-9913.	4.0	31
10	Netal complexes of E-expanded ligands (2): Synthesis and characterizations of bis[2-[(octylimino)methyl]-1-pyrenolato-N,O] palladium(II) and the stabilized vacant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>2.2 :msup><n< td=""><td>2 nml:mrow></td></n<></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math 	2.2 :msup> <n< td=""><td>2 nml:mrow></td></n<>	2 nml:mrow>
11	Direct Control of Spin Distribution and Anisotropy in Cu-Dithiolene Complex Anions by Light. Inorganics, 2016, 4, 7.	2.7	10
12	Efficient Synthesis of One―and Twoâ€Dimensional Multimetallic Gold–Bis(dithiolene) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 3228-3232.	2.0	11
13	An Electrically Conductive Single-Component Donor–Acceptor–Donor Aggregate with Hydrogen-Bonding Lattice. Inorganic Chemistry, 2016, 55, 13027-13034.	4.0	4
14	Electrochemical deposition of highly-conducting metal dithiolene films. Dalton Transactions, 2016, 45, 9363-9368.	3.3	10
15	A Platinum–Dithiolene Monoanionic Salt Exhibiting Multiproperties, Including Room-Temperature Proton-Dependent Solution Luminescence. Inorganic Chemistry, 2016, 55, 5118-5126.	4.0	5
16	Localization versus Delocalization in Chiral Single Component Conductors of Gold Bis(dithiolene) Complexes. Journal of the American Chemical Society, 2016, 138, 6838-6851.	13.7	43
17	A Single-component Molecular Conductor with Metal–Metal Bonding, [Pd(hfdt) ₂] (hfdt:) Tj ETQqC	0 0 rgBT	/Qverlock 1

19	Phthalocyanine-Based Single-Component Molecular Conductor [Mn ^{III} (Pc)(CN)] ₂ O. Inorganic Chemistry, 2016, 55, 7314-7316.	4.0	5
----	---	-----	---

CITATION REPORT

#	Article	IF	CITATIONS
20	Antiferromagnetic Ordering in the Single-Component Molecular Conductor [Pd(tmdt) ₂]. Inorganic Chemistry, 2016, 55, 7709-7716.	4.0	13
21	Pressure-Induced Conductivity in a Neutral Nonplanar Spin-Localized Radical. Journal of the American Chemical Society, 2016, 138, 11517-11525.	13.7	38
22	Single-Component Conductors: A Sturdy Electronic Structure Generated by Bulky Substituents. Inorganic Chemistry, 2016, 55, 6036-6046.	4.0	22
23	Chiral, radical, gold bis(dithiolene) complexes. New Journal of Chemistry, 2016, 40, 7113-7120.	2.8	16
24	TTF[Ni(dmit)2]2: From single-crystals to thin layers, nanowires, and nanoparticles. Coordination Chemistry Reviews, 2016, 308, 433-444.	18.8	16
25	Three ion–pair complexes containing bis(maleonitriledithiolate)copper(II) anion and substituted 2-aminopyridinium cations: Syntheses, crystal structures, and magnetic properties. Journal of Molecular Structure, 2016, 1109, 31-39.	3.6	1
26	Emergence of the Dirac Electron System in a Single-Component Molecular Conductor under High Pressure. Journal of the American Chemical Society, 2017, 139, 1770-1773.	13.7	52
27	Effect of the type-I to type-II Weyl semimetal topological transition on superconductivity. Physical Review B, 2017, 95, .	3.2	48
28	Chiral metal-dithiolene complexes. Coordination Chemistry Reviews, 2017, 346, 20-31.	18.8	33
29	Development of Novel Functional Organic Crystals by Utilizing Proton- and ï€-Electron-Donating/Accepting Abilities. Bulletin of the Chemical Society of Japan, 2017, 90, 1181-1188.	3.2	29
30	Subtle Steric Differences Impact the Structural and Conducting Properties of Radical Gold Bis(dithiolene) Complexes. Chemistry - A European Journal, 2017, 23, 16004-16013.	3.3	18
31	Development of a Control Method for Conduction and Magnetism in Molecular Crystals. Bulletin of the Chemical Society of Japan, 2017, 90, 89-136.	3.2	15
32	Role of the Openâ€Shell Character on the Pressureâ€Induced Conductivity of an Organic Donor–Acceptor Radical Dyad. Chemistry - A European Journal, 2018, 24, 5500-5505.	3.3	14
33	The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angewandte Chemie - International Edition, 2018, 57, 4192-4214.	13.8	150
34	Electrical Conductivity of Copper Hexamers Tuned by their Ground-State Valences. Inorganic Chemistry, 2018, 57, 3443-3450.	4.0	10
35	Neutral, closed-shell nickel bis(2-alkylthio-thiazole-4,5-dithiolate) complexes as single component molecular conductors. Dalton Transactions, 2018, 47, 6580-6589.	3.3	4
36	Towards the generalized iterative synthesis of small molecules. Nature Reviews Chemistry, 2018, 2, .	30.2	94
37	Interplay between bandwidth-controlled and filling-controlled pressure-induced Mott insulator to metal transition in the molecular compound [Au(Et-thiazdt) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:mrow>]<</mml:math 	3.2 ath>.	5

# 38	ARTICLE Solids, liquids, and gases under high pressure. Reviews of Modern Physics, 2018, 90, .	lF 45.6	Citations 337
39	Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angewandte Chemie, 2018, 130, 4266-4288.	2.0	21
40	Stable Metallic State of a Neutral-Radical Single-Component Conductor at Ambient Pressure. Journal of the American Chemical Society, 2018, 140, 6998-7004.	13.7	48
41	High Pressure Crystal Structure and Electrical Properties of a Single Component Molecular Crystal [Ni(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). Molecules, 2019, 24, 1843.	3.8	5
42	Construction of three-dimensional anionic molecular frameworks based on hydrogen-bonded metal dithiolene complexes and the crystal solvent effect. CrystEngComm, 2019, 21, 2940-2948.	2.6	12
43	Single-component molecular conductor [Pt(dmdt) ₂]—a three-dimensional ambient-pressure molecular Dirac electron system. Chemical Communications, 2019, 55, 3327-3330.	4.1	31
44	Effect of Substitution on the Hysteretic Phase Transition in a Bistable Phenalenylâ€Based Neutral Radical Molecular Conductor. Chemistry - A European Journal, 2019, 25, 4166-4174.	3.3	2
45	Zero-, one- and two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties. Coordination Chemistry Reviews, 2019, 380, 419-439.	18.8	49
46	Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chemical Science, 2020, 11, 1066-1078.	7.4	22
47	Effects of halogen atom replacement on the structure and magnetic properties of a molecular crystal with supramolecular two-dimensional network mediated via sulfur's ΃-holes. Journal of Magnetism and Magnetic Materials, 2020, 497, 165986.	2.3	1
48	(Photo)Thermal Stimulation of Functional Dithiolene Complexes in Soft Matter. European Journal of Inorganic Chemistry, 2020, 2020, 508-522.	2.0	12
49	Prototype Material for New Strategy of Photon Energy Storage. Inorganics, 2020, 8, 53.	2.7	4
50	Electrochemical deposition of a semiconducting gold dithiolene complex with NIR absorption. Dalton Transactions, 2020, 49, 13786-13796.	3.3	3
51	Single-component conductors based on closed-shell Ni and Pt bis(dithiolene) complexes: metallization under high pressure. Journal of Materials Chemistry C, 2020, 8, 11581-11592.	5.5	11
52	Syntheses, Structures, and Physical Properties of Neutral Gold Dithiolate Complex, [Au(etdt)2]·THF. Crystals, 2020, 10, 1001.	2.2	2
53	Near-infrared light-responsive UCST-nanogels using an efficient nickel-bis(dithiolene) photothermal crosslinker. Polymer Chemistry, 2020, 11, 3863-3875.	3.9	16
54	Clarification of the Relationship between the Magnetic and Conductive Properties of Infinite Chains in Trioxotriangulene Radical Crystals by Spinâ€Projected DFT/Planeâ€Wave Calculations. Advanced Theory and Simulations, 2020, 3, 2000050.	2.8	10
55	Hydrogen bonding interactions in single component molecular conductors based on metal (Ni, Au) bis(dithiolene) complexes. Dalton Transactions, 2020, 49, 6056-6064.	3.3	19

CITATION REPORT

#	Article	IF	CITATIONS
56	The quest for single component molecular metals within neutral transition metal complexes. Journal of Materials Chemistry C, 2021, 9, 10591-10609.	5.5	10
57	Conducting chiral nickel(ii) bis(dithiolene) complexes: structural and electron transport modulation with the charge and the number of stereogenic centres. Journal of Materials Chemistry C, 2021, 9, 4119-4140.	5.5	10
58	Tuning the donor–acceptor interactions in phase-segregated block molecules. Materials Horizons, 2022, 9, 294-302.	12.2	12
59	Solid-solution (alloying) strategies in crystalline molecular conductors. Journal of Materials Chemistry C, 2021, 9, 10557-10572.	5.5	12
60	High-Pressure Crystal Structure and Unusual Magnetoresistance of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). Crystals, 2021, 11, 534.	2.2	3
61	Introducing Selenium in Single-Component Molecular Conductors Based on Nickel Bis(dithiolene) Complexes. Inorganic Chemistry, 2021, 60, 7876-7886.	4.0	4
62	Modern History of Organic Conductors: An Overview. Crystals, 2021, 11, 838.	2.2	23
63	Single-Component Molecular Conductors — Multi-Orbital Correlated ï€-d Electron Systems. Bulletin of the Chemical Society of Japan, 2021, 94, 2540-2562.	3.2	8
64	Nanoparticles of Molecular Conductors and Superconductors: Progress Over the Last Ten Years. European Journal of Inorganic Chemistry, 2020, 2020, 4237-4246.	2.0	3
65	Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE 2020, 89, 124706.	BT /Overloc 1.6	k 10 Tf 50 30 10
65 66	Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE		
	Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a	1.6	10
66	 Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metal–Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, . Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei 	1.6 1.6	10
66 67	 Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metal–Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, . Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1045-1054. Electrical Properties of Single-Component Molecular Crystals under High Pressure. Review of High 	1.6 1.6 0.1	10 1 2
66 67 68	 Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgE 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metal–Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, . Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1045-1054. Electrical Properties of Single-Component Molecular Crystals under High Pressure. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 217-224. Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in 	1.6 1.6 0.1 0.0	10 1 2 1
66 67 68 69	 Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgf 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metalâ€"Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, . Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1045-1054. Electrical Properties of Single-Component Molecular Crystals under High Pressure. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 217-224. Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chemical Communications, 2022, 58, 5668-5682. Neutral Radical Molecular Conductors Based on a Gold Dimethoxybenzenedithiolene Complex with 	1.6 1.6 0.1 0.0 4.1	10 1 2 1 7
 66 67 68 69 70 	Electronic Structure of a Single-Component Molecular Conductor [Pd(dddt)2] (dddt =) Tj ETQq1 1 0.784314 rgf 2020, 89, 124706. Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metal–Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, . Development of Novel Functional Molecular Crystals by Utilizing Dynamic Hydrogen Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1045-1054. Electrical Properties of Single-Component Molecular Crystals under High Pressure. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 217-224. Proton–electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chemical Communications, 2022, 58, 5668-5682. Neutral Radical Molecular Conductors Based on a Gold Dimethoxybenzenedithiolene Complex with and without Crystal Solvent. Chemistry Letters, 2023, 52, 25-28.	1.6 1.6 0.1 0.0 4.1 1.3	10 1 2 1 7 0

#	Article	IF	CITATIONS
74	Dirac Cone Formation in Single-Component Molecular Conductors Based on Metal Dithiolene Complexes. Magnetochemistry, 2023, 9, 174.	2.4	1
75	Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus Physique, 2024, 25, 17-178.	0.9	0