Unique Properties of Halide Perovskites as Possible Ori Performance

Advanced Materials 26, 4653-4658 DOI: 10.1002/adma.201306281

Citation Report

#	Article	IF	CITATIONS
1	Shallow halogen vacancies in halide optoelectronic materials. Physical Review B, 2014, 90, .	1.1	119
2	Qualifying composition dependent <i>p</i> and <i>n</i> self-doping in CH3NH3PbI3. Applied Physics Letters, 2014, 105, .	1.5	518
3	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	5.8	2,214
4	Predictions for p-Type CH ₃ NH ₃ PbI ₃ Perovskites. Journal of Physical Chemistry C, 2014, 118, 25350-25354.	1.5	71
5	Anomalous Alloy Properties in Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2014, 5, 3625-3631.	2.1	231
6	First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 19565-19571.	1.5	220
7	Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnl ₃ . Chemistry of Materials, 2014, 26, 6068-6072.	3.2	256
8	Hole blocking PbI ₂ /CH ₃ NH ₃ PbI ₃ interface. Physica Status Solidi - Rapid Research Letters, 2014, 08, 763-766.	1.2	46
9	Vapor-assisted solution process for perovskite materials and solar cells. MRS Bulletin, 2015, 40, 667-673.	1.7	39
10	Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications, 2015, 5, 265-275.	0.8	662
11	Charge arrier Dynamics and Mobilities in Formamidinium Lead Mixedâ€Halide Perovskites. Advanced Materials, 2015, 27, 7938-7944.	11.1	343
12	Methylammonium fragmentation in amines as source of localized trap levels and the healing role of Cl in hybrid lead-iodide perovskites. Physical Review B, 2015, 92, .	1.1	54
13	Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Physical Review B, 2015, 92, .	1.1	100
14	Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Scientific Reports, 2015, 5, 16977.	1.6	56
15	Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics. Advanced Materials, 2015, 27, 6157-6162.	11.1	83
16	Copper(I) Iodide as Hole onductor in Planar Perovskite Solar Cells: Probing the Origin of <i>J</i> – <i>V</i> Hysteresis. Advanced Functional Materials, 2015, 25, 5650-5661.	7.8	260
17	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
18	Oneâ€Dimensional Selfâ€Standing TiO ₂ Nanotube Array Layers Designed for Perovskite Solar Cell Applications. ChemPhysChem, 2015, 16, 2836-2841.	1.0	29

ATION RE

#	Article	IF	CITATIONS
19	Lead Replacement in CH ₃ NH ₃ PbI ₃ Perovskites. Advanced Electronic Materials, 2015, 1, 1500089.	2.6	67
20	Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 13965-13971.	1.5	28
21	Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 6730-6733.	6.6	1,045
22	Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7, 10595-10599.	2.8	294
23	Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9, 409-415.	15.6	781
24	Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2355-2362.	2.1	64
25	Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chemistry of Materials, 2015, 27, 4405-4412.	3.2	305
26	Spectroscopic ellipsometry studies of CH3NH3PbX3 thin films and their growth evolution. , 2015, , .		5
27	Perovskites: Solar cells & engineering applications – materials and device developments. Solar Energy, 2015, 122, 678-699.	2.9	133
28	Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation. Solar Energy, 2015, 122, 773-782.	2.9	42
29	Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4774-4785.	2.1	280
30	Phenoxazineâ€Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401720.	10.2	109
31	Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. Journal of Physical Chemistry C, 2015, 119, 5253-5264.	1.5	246
32	Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.	5.2	91
33	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	3.0	70
34	Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 3456-3465.	1.5	361
35	Cooperative kinetics of depolarization in CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Energy and Environmental Science, 2015, 8, 910-915.	15.6	116
36	Control of Charge Transport in the Perovskite CH ₃ NH ₃ PbI ₃ Thin Film. ChemPhysChem, 2015, 16, 842-847.	1.0	36

#	Article	IF	CITATIONS
37	Perovskite thin-film solar cell: excitation in photovoltaic science. Science China Chemistry, 2015, 58, 221-238.	4.2	63
38	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	10.2	144
39	Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 875-880.	2.1	422
40	Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. Journal of Power Sources, 2015, 283, 61-67.	4.0	106
41	Improving the TiO ₂ electron transport layer in perovskite solar cells using acetylacetonate-based additives. Journal of Materials Chemistry A, 2015, 3, 9108-9115.	5.2	104
42	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
43	Uncovering the Veil of the Degradation in Perovskite CH ₃ NH ₃ PbI ₃ upon Humidity Exposure: A First-Principles Study. Journal of Physical Chemistry Letters, 2015, 6, 3289-3295.	2.1	171
44	Effect of surface composition on electronic properties of methylammonium lead iodide perovskite. Journal of Materiomics, 2015, 1, 213-220.	2.8	49
45	Solvent-assisted growth of organic–inorganic hybrid perovskites with enhanced photovoltaic performances. Solar Energy Materials and Solar Cells, 2015, 143, 360-368.	3.0	14
46	Evolution of Organic–Inorganic Lead Halide Perovskite from Solid-State Iodoplumbate Complexes. Journal of Physical Chemistry C, 2015, 119, 17065-17073.	1.5	70
47	Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. Journal of Materials Chemistry A, 2015, 3, 19310-19313.	5.2	70
48	Thin-Film Preparation and Characterization of Cs ₃ Sb ₂ I ₉ : A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.	3.2	653
49	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	5.2	232
50	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
51	Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite. Nano Letters, 2015, 15, 4644-4649.	4.5	108
52	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	2.1	170
53	Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Applied Physics Letters, 2015, 106, .	1.5	181
54	Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective, Journal of Applied Physics, 2015, 117	1.1	17

#	Article	IF	CITATIONS
55	Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348, 683-686.	6.0	1,833
56	Origin of High Electronic Quality in Structurally Disordered CH ₃ NH ₃ PbI ₃ and the Passivation Effect of Cl and O at Grain Boundaries. Advanced Electronic Materials, 2015, 1, 1500044.	2.6	175
57	Ferroelectric solar cells based on inorganic–organic hybrid perovskites. Journal of Materials Chemistry A, 2015, 3, 7699-7705.	5.2	103
58	Nucleation and Crystal Growth of Organic–Inorganic Lead Halide Perovskites under Different Relative Humidity. ACS Applied Materials & Interfaces, 2015, 7, 9110-9117.	4.0	137
59	Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2015, 27, 4612-4619.	3.2	212
60	Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 2015, 15, 275-280.	8.2	268
61	Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: Role of the reduced bimolecular recombination. Journal of Applied Physics, 2015, 117, .	1.1	69
62	Investigating the charge carrier transport within the hole-transport material free perovskite solar cell processed in ambient air. Solar Energy Materials and Solar Cells, 2015, 140, 320-327.	3.0	52
63	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	5.8	358
64	Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters, 2015, 15, 2402-2408.	4.5	412
65	Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Materials Horizons, 2015, 2, 315-322.	6.4	366
66	Native defects in Tl6SI4: Density functional calculations. Journal of Applied Physics, 2015, 117, .	1.1	7
67	Ultrasensitive solution-processed perovskite hybrid photodetectors. Journal of Materials Chemistry C, 2015, 3, 6600-6606.	2.7	104
68	Emerging Thinâ€Film Photovoltaic Technologies. Chemie-Ingenieur-Technik, 2015, 87, 376-389.	0.4	14
69	Solid-State Physics Perspective on Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2015, 119, 10161-10177.	1.5	205
70	Theoretical limit of power conversion efficiency for organic and hybrid halide perovskite photovoltaics. Japanese Journal of Applied Physics, 2015, 54, 08KF04.	0.8	22
71	Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24163-24168.	5.2	186
72	Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 2015, 3, 23888-23894.	5.2	161

#	Article	IF	CITATIONS
73	Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by Cathodoluminescence Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26904-26911.	1.5	153
74	First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. Journal of the American Chemical Society, 2015, 137, 10048-10051.	6.6	582
75	Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2015, 2, 578-583.	6.4	167
76	Efficient planar perovskite solar cells using room-temperature vacuum-processed C ₆₀ electron selective layers. Journal of Materials Chemistry A, 2015, 3, 17971-17976.	5.2	100
77	Collective Behavior of Molecular Dipoles in CH3NH3PbI3. Journal of Physical Chemistry C, 2015, 119, 19674-19680.	1.5	46
78	Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Communications, 2015, 6, 7961.	5.8	406
79	Theoretical and experimental study of earth-abundant solar cell materials. , 2015, , .		0
80	<i>Ab initio</i> design of CsSn(XxY 1â^'x)3 (X and Y = Cl, Br, and I) perovskites for photovoltaics. AIP Advances, 2015, 5, .	0.6	17
81	Investigation of Bismuth Triiodide (Bil ₃) for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2015, 6, 4297-4302.	2.1	176
82	Crystal and Electronic Structures of Complex Bismuth Iodides <i>A</i> ₃ Bi ₂ I ₉ (<i>A</i> = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics. Chemistry of Materials, 2015, 27, 7137-7148.	3.2	413
83	Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy, 2015, 17, 131-139.	8.2	48
84	In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells. Organic Electronics, 2015, 27, 46-52.	1.4	23
85	Optical band gap transition from direct to indirect induced by organic content of CH3NH3PbI3 perovskite films. Applied Physics Letters, 2015, 107, .	1.5	38
86	Mixed Iodide–Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3743-3748.	2.1	100
87	Material Innovation in Advancing Organometal Halide Perovskite Functionality. Journal of Physical Chemistry Letters, 2015, 6, 4862-4872.	2.1	37
88	Control of <i>I</i> – <i>V</i> Hysteresis in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 4633-4639.	2.1	430
89	Nanoscale Charge Localization Induced by Random Orientations of Organic Molecules in Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Nano Letters, 2015, 15, 248-253.	4.5	243
90	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522

#	Article	IF	CITATIONS
91	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, 1401855.	10.2	337
92	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
93	Lowâ€Temperature Fabrication of Efficient Wideâ€Bandgap Organolead Trihalide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401616.	10.2	134
94	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
95	Efficient photovoltaic and electroluminescent perovskite devices. Chemical Communications, 2015, 51, 569-571.	2.2	110
96	The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Physical Chemistry Chemical Physics, 2015, 17, 112-116.	1.3	335
97	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	5.2	1,114
98	Perovskite Solar Cells: Progress and Advancements. Energies, 2016, 9, 861.	1.6	106
99	Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite. Materials, 2016, 9, 123.	1.3	85
100	Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer. Journal of Physical Chemistry C, 2016, 120, 16437-16445.	1.5	89
101	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	5.2	210
102	Slow Organicâ€ŧoâ€Inorganic Subâ€Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence. Advanced Energy Materials, 2016, 6, 1600422.	10.2	32
103	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
104	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	10.2	268
105	Temperatureâ€Đependent Bias Poling and Hysteresis in Planar Organoâ€Metal Halide Perovskite Photovoltaic Cells. Advanced Energy Materials, 2016, 6, 1501994.	10.2	36
106	A high-performance self-powered broadband photodetector based on a CH ₃ NH ₃ PbI ₃ perovskite/ZnO nanorod array heterostructure. Journal of Materials Chemistry C, 2016, 4, 7302-7308.	2.7	159
107	Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH ₃ NH ₃ PbI ₃ Perovskites. Advanced Materials, 2016, 28, 553-559.	11.1	148
108	Thin Insulating Tunneling Contacts for Efficient and Waterâ€Resistant Perovskite Solar Cells. Advanced Materials, 2016, 28, 6734-6739.	11.1	533

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
109	Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 2722-2729.	2.1	333
110	High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312-316.	13.7	2,767
111	The Effect of Impurities on the Impedance Spectroscopy Response of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 28519-28526.	1.5	35
112	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	4.0	24
113	Band alignment of MAPb(I1– <i>x</i> Br <i>x</i>)3 thin films by vacuum deposition. Applied Physics Letters, 2016, 109, .	1.5	9
114	Room-temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: An <i>ab initio</i> molecular dynamics perspective. Physical Review B, 2016, 94, .	1.1	62
115	Optical properties and degradation monitoring of CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> . , 2016, , .		0
116	Aerosol methods to fabricate perovskite solar cells. , 2016, , .		0
117	<i>Ab initio</i> modeling of 2D layered organohalide lead perovskites. Journal of Chemical Physics, 2016, 144, 164701.	1.2	37
118	First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides. Journal of Applied Physics, 2016, 120, .	1.1	41
119	The presence of CH3NH2 neutral species in organometal halide perovskite films. Applied Physics Letters, 2016, 108, .	1.5	50
120	Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Transactions, 2016, 45, 7856-7865.	1.6	53
121	Efficient Perovskite Hybrid Photovoltaics via Alcoholâ€Vapor Annealing Treatment. Advanced Functional Materials, 2016, 26, 101-110.	7.8	117
122	A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26, 50-56.	8.2	151
123	The effect of porous lead iodide precursor film on perovskite film formation and its photovoltaic property after an effective pretreatment. Superlattices and Microstructures, 2016, 94, 196-203.	1.4	5
124	Unravelling the Effects of Grain Boundary and Chemical Doping on Electron–Hole Recombination in CH ₃ NH ₃ Pbl ₃ Perovskite by Time-Domain Atomistic Simulation. Journal of the American Chemical Society, 2016, 138, 3884-3890.	6.6	333
125	Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews, 2016, 116, 4558-4596.	23.0	2,147
126	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218

#	Article	IF	CITATIONS
127	Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. Nano Letters, 2016, 16, 3335-3340.	4.5	94
128	Vertically aligned nanostructured TiO ₂ photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale, 2016, 8, 11472-11479.	2.8	48

129 State and prospects of solar cells based on perovskites. Applied Solar Energy (English Translation of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

130	New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells. Nano Energy, 2016, 26, 7-15.	8.2	89
131	Improving the Photoluminescence Properties of Perovskite CH ₃ NH ₃ PbBr _{3-x} Cl _{<i>x</i>Organic Cation and Chlorine Concentrations. ACS Applied Materials & Interfaces, 2016, 8, 12756-12763.}	4.0	30
132	Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells. IEEE Journal of Quantum Electronics, 2016, 52, 1-6.	1.0	33
133	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 25489-25495.	4.0	38
134	Bromide regulated film formation of CH3NH3PbI3 in low-pressure vapor-assisted deposition for efficient planar-heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 1026-1037.	3.0	27
135	Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Physical Chemistry Chemical Physics, 2016, 18, 27143-27147.	1.3	62
136	First-principles investigation of a novel organic-inorganic strontium halide perovskites and CH ₃ NH ₃ Pb _{1-x} Sr _x I ₃ solid solution. Integrated Ferroelectrics, 2016, 175, 193-201.	0.3	1
137	Charge Stripe Formation in Molecular Ferroelectric Organohalide Perovskites for Efficient Charge Separation. Journal of Physical Chemistry C, 2016, 120, 23969-23975.	1.5	14
138	Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2016, 4, 16975-16981.	5.2	67
139	lonâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Perovskite. Angewandte Chemie - International Edition, 2016, 55, 13460-13464.	7.2	80
140	Investigation of high efficiency methyl ammonium lead halide perovskite-Si tandem solar cell. , 2016, , .		0
141	Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD. Advanced Functional Materials, 2016, 26, 8221-8230.	7.8	27
142	lonâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Perovskite. Angewandte Chemie, 2016, 128. 13658-13662.	1.6	9
143	The Additive Coordination Effect on Hybrids Perovskite Crystallization and Highâ€Performance Solar Cell. Advanced Materials, 2016, 28, 9862-9868.	11.1	270
144	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	5.2	143

#	Article	IF	CITATIONS
145	Optical monitoring of CH ₃ NH ₃ PbI ₃ thin films upon atmospheric exposure. Journal Physics D: Applied Physics, 2016, 49, 405102.	1.3	18
146	Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 21505-21511.	4.0	25
147	Materials for Photovoltaic Solar Cells. , 2016, , 27-91.		0
148	Effect of crystal structures on the stability of CH 3 NH 3 PbI 3 under humidity environment. Solar Energy, 2016, 136, 470-474.	2.9	7
149	Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3091-3096.	2.1	169
150	Defect Physics of CH3NH3PbX3 (XÂ=Âl, Br, Cl) Perovskites. , 2016, , 79-105.		19
151	APbI3 (AÂ=ÂCH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction. , 2016, , 223-253.		3
152	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	11.1	636
153	Effects of water molecules on the chemical stability of MAGeI ₃ perovskite explored from a theoretical viewpoint. Physical Chemistry Chemical Physics, 2016, 18, 24526-24536.	1.3	22
154	Role of Metal Oxide Electronâ€Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells. ChemSusChem, 2016, 9, 2559-2566.	3.6	76
155	Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14276-14283.	5.2	204
156	Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2016, 7, 3458-3466.	2.1	176
157	Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices. ACS Applied Materials & amp; Interfaces, 2016, 8, 23086-23094.	4.0	28
158	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">H<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">N<mml:msub><mml:mi< td=""><td>1.1</td><td>49</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	1.1	49
159	mathvariant="normal">Hcmmtmi>3cmmtmi>PbBcmmtmsub>c Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie - International Edition, 2016, 55, 13067-13071.	mml:mi 7.2	47
160	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	1.7	114
161	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	15.6	410
162	Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fillâ€Factor Solar Cells. Advanced Materials, 2016, 28, 9839-9845.	11.1	150

#	Article	IF	CITATIONS
163	Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie, 2016, 128, 13261-13265.	1.6	14
164	First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon. Physical Chemistry Chemical Physics, 2016, 18, 20542-20549.	1.3	54
165	Perovskite Luminescent Materials. Topics in Current Chemistry, 2016, 374, 52.	3.0	20
166	Bismuth chalcohalides and oxyhalides as optoelectronic materials. Physical Review B, 2016, 93, .	1.1	82
167	Importance of quantum correction for the quantitative simulation of photoexcited scanning tunneling spectra of semiconductor surfaces. Physical Review B, 2016, 93, .	1.1	13
168	Unreacted Pbl ₂ as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343.	6.6	696
169	Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films. Journal of Materials Chemistry C, 2016, 4, 7775-7782.	2.7	100
170	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	2.1	115
171	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	2.1	38
172	Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nature Communications, 2016, 7, 12253.	5.8	363
173	Highly Efficient Integrated Perovskite Solar Cells Containing a Small Molecule-PC ₇₀ BM Bulk Heterojunction Layer with an Extended Photovoltaic Response Up to 900 nm. Chemistry of Materials, 2016, 28, 8631-8639.	3.2	41
174	Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles. Scientific Reports, 2016, 6, 19968.	1.6	119
175	High coverage solution-processed planar perovskite solar cell grown based on the Stranski–Krastanov mechanism at low temperature and short time. RSC Advances, 2016, 6, 112677-112685.	1.7	17
176	Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. ACS Applied Materials & amp; Interfaces, 2016, 8, 32366-32375.	4.0	19
177	TiO ₂ –ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14998-15003.	6.6	220
178	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	3.6	178
179	Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4764-4794.	2.1	177
180	Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. Journal of Materials Chemistry C, 2016, 4, 11253-11260.	2.7	49

ARTICLE IF CITATIONS Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide 181 5.2 19 perovskite diodes. Journal of Materials Chemistry A, 2016, 4, 18614-18620. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study. 1.6 69 Scientific Reports, 2016, 6, 20131. Influence of the substrate on the bulk properties of hybrid lead halide perovskite films. Journal of 183 5.2 52 Materials Chemistry A, 2016, 4, 18153-18163. Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and 184 79 organic solar cells. Nano Energy, 2016, 30, 387-397. Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and 185 8.2 56 stable planar solar cells with module-scales. Nano Energy, 2016, 30, 667-676. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221. 11.1 Numerical simulation and light trapping in perovskite solar cell. Journal of Photonics for Energy, 187 0.8 18 2016, 6, 025507. N and p-type properties in organo-metal halide perovskites studied by Seebeck effects. Organic 188 1.4 Electronics, 2016, 35, 216-220. Chemically, spatially, and temporally resolved 2D mapping study for the role of grain interiors and grain boundaries of organic-inorganic lead halide perovskites. Solar Energy Materials and Solar 189 3.0 21 Čells, 2016, 155, 134-140. Transformation of Sintered CsPbBr₃ Nanocrystals to Cubic CsPbI₃ and Gradient CsPbBr_{<i>x</i>}1_{3â€"<i>x</i>} through Halide Exchange. Journal of the 6.6 American Chemical Society, 2016, 138, 8603-8611. 191 A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 2016, 37, 61-73. 186 1.4 Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008. 23.0 1,343 Dissociation of Methylammonium Cations in Hybrid Organic–Inorganic Perovskite Solar Cells. Nano 193 4.5 49 Letters, 2016, 16, 4720-4725. Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and 194 2.1 Ultrahigh Mobility of Iodine. Journal of Physical Chemistry Letters, 2016, 7, 2356-2361. Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting. Journal of Solid State Electrochemistry, 2016, 195 1.2 10 20, 2633-2642. Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Solar 69 Energy Materials and Solar Cells, 2016, 157, 318-325. Native Defectâ€Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar Cells. Advanced 197 7.8 218 Functional Materials, 2016, 26, 1411-1419. Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on 198 Amphiphileâ€Modified CH₃NH₃PbI₃. Advanced Materials, 2016, 28, 11.1 258 2910-2915.

#	Article	IF	CITATIONS
199	Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching. Advanced Materials, 2016, 28, 6562-6567.	11.1	285
200	Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Physical Chemistry Chemical Physics, 2016, 18, 5219-5231.	1.3	61
201	High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Solar Energy Materials and Solar Cells, 2016, 149, 121-127.	3.0	69
202	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107
203	Trigonal Cu ₂ -II-Sn-VI ₄ (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 4828-4834.	1.3	94
204	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	1.9	457
205	Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chemistry of Materials, 2016, 28, 821-829.	3.2	175
206	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale, 2016, 8, 1627-1634.	2.8	69
207	Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. Journal of Materials Chemistry C, 2016, 4, 793-800.	2.7	171
208	Highly efficient perovskite solar cells with precursor composition-dependent morphology. Solar Energy Materials and Solar Cells, 2016, 145, 231-237.	3.0	29
209	Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 11-27.	2.7	185
210	A numerical model for charge transport and energy conversion of perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 4476-4486.	1.3	56
211	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
212	Low-temperature solution processable n–i–p perovskite solar cell. Japanese Journal of Applied Physics, 2016, 55, 04EA01.	0.8	3
213	Preparation and photovoltaic properties of perovskite solar cell based on ZnO nanorod arrays. Applied Surface Science, 2016, 388, 89-96.	3.1	35
214	Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 23, 40-49.	8.2	59
215	Origin of <i><i>J</i>–<i>V</i></i> Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 905-917.	2.1	631
216	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	14.8	117

#	Article	IF	CITATIONS
217	Experimental Evidence of Localized Shallow States in Orthorhombic Phase of CH ₃ NH ₃ PbI ₃ Perovskite Thin Films Revealed by Photocurrent Beat Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 5347-5352.	1.5	33
218	Surface Properties of CH ₃ NH ₃ PbI ₃ for Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 554-561.	7.6	145
219	Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites. Nanoscale, 2016, 8, 11426-11431.	2.8	90
220	Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics. Science Advances, 2016, 2, e1501104.	4.7	66
221	A general non-CH ₃ NH ₃ X (X = I, Br) one-step deposition of CH ₃ NH ₃ PbX ₃ perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.	5.2	47
222	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	8.2	180
223	Effects of interfacial chemical states on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4392-4397.	5.2	25
224	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
225	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	1.5	72
226	Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy, 2016, 22, 507-513.	8.2	66
227	Effect of halide-mixing on the electronic transport properties of organometallic perovskites. Solar Energy Materials and Solar Cells, 2016, 148, 2-10.	3.0	25
228	Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 2016, 28, 284-292.	3.2	1,606
229	Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3. Solar Energy Materials and Solar Cells, 2016, 148, 60-66.	3.0	18
230	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 2016, 123, 74-87.	2.9	117
231	Organometal halide perovskite thin films and solar cells by vapor deposition. Journal of Materials Chemistry A, 2016, 4, 6693-6713.	5.2	210
232	Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells. Journal of the American Chemical Society, 2016, 138, 463-470.	6.6	221
233	Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.	8.2	125
234	Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10, 53-59.	15.6	760

#	Article	IF	CITATIONS
235	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	15.6	1,457
236	Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells. Materials Letters, 2017, 191, 77-79.	1.3	39
237	Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3â´'xIx (0Ââ‰ÂxÂâ‰Â1). Journal of Alloys and Compounds, 2017, 702, 404-409.	2.8	55
238	Exploring stability of formamidinium lead trihalide for solar cell application. Science Bulletin, 2017, 62, 249-255.	4.3	30
239	Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. Journal of the American Chemical Society, 2017, 139, 2630-2638.	6.6	714
240	A theoretical study on the charge transport properties of DNA. Organic Electronics, 2017, 42, 244-255.	1.4	7
241	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. Chemistry of Materials, 2017, 29, 1964-1988.	3.2	116
242	Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Materials Science in Semiconductor Processing, 2017, 63, 6-11.	1.9	26
243	Applications of cesium in the perovskite solar cells. Journal of Semiconductors, 2017, 38, 011003.	2.0	26
244	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
245	Ferroelectric Alignment of Organic Cations Inhibits Nonradiative Electron–Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 812-818.	2.1	52
246	Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7029-7035.	4.0	122
247	First-Principles Study of Novel Two-Dimensional (C ₄ H ₉ NH ₃) ₂ PbX ₄ Perovskites for Solar Cell Absorbers. Journal of Physical Chemistry Letters, 2017, 8, 876-883.	2.1	61
248	Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3. Scientific Reports, 2017, 7, 41860.	1.6	31
249	Do grain boundaries dominate non-radiative recombination in CH ₃ NH ₃ PbI ₃ perovskite thin films?. Physical Chemistry Chemical Physics, 2017, 19, 5043-5050.	1.3	161
250	Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction. Physical Chemistry Chemical Physics, 2017, 19, 6057-6063.	1.3	92
251	Fabrication and Characterization of High-Quality Perovskite Films with Large Crystal Grains. Journal of Physical Chemistry Letters, 2017, 8, 720-726.	2.1	16
252	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	11.1	104

#	Article	IF	CITATIONS
253	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	16.0	85
254	Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale, 2017, 9, 4236-4243.	2.8	135
255	Influence of defects and dopants on the photovoltaic performance of Bi ₂ S ₃ : first-principles insights. Journal of Materials Chemistry A, 2017, 5, 6200-6210.	5.2	97
256	Deep level trapped defect analysis in CH ₃ NH ₃ PbI ₃ perovskite solar cells by deep level transient spectroscopy. Energy and Environmental Science, 2017, 10, 1128-1133.	15.6	206
257	Band Tailing and Deep Defect States in CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Perovskites As Revealed by Sub-Bandgap Photocurrent. ACS Energy Letters, 2017, 2, 709-715.	8.8	102
258	A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications. Physical Chemistry Chemical Physics, 2017, 19, 9143-9148.	1.3	49
259	New Films on Old Substrates: Toward Green and Sustainable Energy Production via Recycling of Functional Components from Degraded Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 3261-3269.	3.2	39
260	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
261	Electrochemical impedance analysis of perovskite–electrolyte interfaces. Chemical Communications, 2017, 53, 2467-2470.	2.2	46
262	Effects of precursor solution composition on the performance and I-V hysteresis of perovskite solar cells based on CH3NH3PbI3-xClx. Nanoscale Research Letters, 2017, 12, 84.	3.1	27
263	Brief review of emerging photovoltaic absorbers. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 8-15.	3.2	64
264	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Advances, 2017, 7, 10985-10991.	1.7	18
265	Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Openâ€Circuit Voltage and Low Recombination. Advanced Energy Materials, 2017, 7, 1602358.	10.2	430
266	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. ACS Energy Letters, 2017, 2, 837-845.	8.8	187
267	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	2.8	42
269	Calculation studies on point defects in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011006.	2.0	20
270	Low-toxic metal halide perovskites: opportunities and future challenges. Journal of Materials Chemistry A, 2017, 5, 11436-11449.	5.2	123
271	Formation of hybrid ABX ₃ perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Transactions, 2017, 46, 3500-3509.	1.6	133

		EPORT	
# 272	ARTICLE Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1234-1242.	IF 15.6	Citations 458
273	A Printable Organic Electron Transport Layer for Lowâ€Temperatureâ€Processed, Hysteresisâ€Free, and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700226.	10.2	46
274	Cu–In Halide Perovskite Solar Absorbers. Journal of the American Chemical Society, 2017, 139, 6718-6725.	6.6	316
275	Effects of down-conversion CeO2:Eu3+ nanophosphors in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 11346-11357.	1.1	33
276	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318
277	Intrinsic Instability of Cs ₂ In(I)M(III)X ₆ (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. Journal of the American Chemical Society, 2017, 139, 6054-6057.	6.6	253
278	Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy, 2017, 38, 193-200.	8.2	75
279	Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells. Advanced Functional Materials, 2017, 27, 1701433.	7.8	26
280	A Perylenediimide Tetramerâ€Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell. Solar Rrl, 2017, 1, 1700046.	3.1	28
281	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	8.8	190
283	First principles study of 2D layered organohalide tin perovskites. Journal of Chemical Physics, 2017, 146, 234703.	1.2	19
284	Morphology and structure improvement of the hybrid CH3NH3PbI3 perovskite film via external doping. Thin Solid Films, 2017, 636, 296-301.	0.8	4
285	Synergetic Accrual of Lamellar Nanohybrids for Band-Selective Photodetection. Journal of Physical Chemistry C, 2017, 121, 14037-14044.	1.5	10
286	In Situ Observation of Crystallization of Methylammonium Lead Iodide Perovskite from Microdroplets. Small, 2017, 13, 1604125.	5.2	39
287	Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy, 2017, 38, 1-11.	8.2	65
288	Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior. Journal of Materials Chemistry A, 2017, 5, 13032-13038.	5.2	82
289	Effect of water on the effective Goldschmidt tolerance factor and photoelectric conversion efficiency of organic–inorganic perovskite: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 14955-14960.	1.3	10
290	Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 2017, 5, 15124-15129.	5.2	213

#	Article	IF	CITATIONS
291	Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Advanced Electronic Materials, 2017, 3, 1700141.	2.6	81
292	Performance enhancement of perovskite solar cell by controlling deposition temperature of copper phthalocyanine as a dopant-free hole transporting layer. Organic Electronics, 2017, 48, 211-216.	1.4	23
293	The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Letters, 2017, 17, 4270-4276.	4.5	226
294	An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C ₆ H ₄ NH ₂ CuBr ₂ I film with metal-like conductivity. Journal of Materials Chemistry A, 2017, 5, 13834-13841.	5.2	27
295	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
296	Dimensionality and Interface Engineering of 2D Homologous Perovskites for Boosted Charge-Carrier Transport and Photodetection Performances. Journal of Physical Chemistry Letters, 2017, 8, 2565-2572.	2.1	77
297	Theoretical Treatment of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 15806-15817.	7.2	107
298	Theoretische Abhandlung über CH ₃ NH ₃ Pbl ₃ â€Perowskitâ€6olarzellen. Angewandte Chemie, 2017, 129, 16014-16026.	1.6	5
299	Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH ₃ NH ₃ PbI ₃) Perovskite Photochemistry. Nano Letters, 2017, 17, 4151-4157.	4.5	55
300	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	8.8	31
301	Halide perovskite solar cells using monocrystalline TiO ₂ nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology, 2017, 28, 274001.	1.3	67
302	Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells. Nano Energy, 2017, 38, 297-303.	8.2	42
303	Facile Method to Reduce Surface Defects and Trap Densities in Perovskite Photovoltaics. ACS Applied Materials & Ma	4.0	71
304	Moisture-stable Perovskite Material with 1,3-Propanediaminium Cation for Solar Cell Application. Chemistry Letters, 2017, 46, 1227-1229.	0.7	3
305	Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. RSC Advances, 2017, 7, 29944-29952.	1.7	16
306	Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. Journal of Chemical Physics, 2017, 146, 224702.	1.2	49
307	Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Modern Electronic Materials, 2017, 3, 1-25.	0.2	29
308	Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2999-3007.	2.1	441

#	Article	IF	CITATIONS
309	Performance improvement of dual processed perovskite solar cell-acid-modified ZnO nanorods with Cl-doped light harvesting layer. International Journal of Energy Research, 2017, 41, 1847-1854.	2.2	9
310	Enhanced Performance and Photostability of Perovskite Solar Cells by Introduction of Fluorescent Carbon Dots. ACS Applied Materials & Interfaces, 2017, 9, 14518-14524.	4.0	76
311	Perovskite–Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Nearâ€Infrared Telecommunication Band. Advanced Materials, 2017, 29, 1604431.	11.1	132
312	Addressing Toxicity of Lead: Progress and Applications of Lowâ€Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
314	lons Matter: Description of the Anomalous Electronic Behavior in Methylammonium Lead Halide Perovskite Devices. Advanced Functional Materials, 2017, 27, 1606584.	7.8	65
315	The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH 3 (CH 2) 3 NH 3 CdBr 4 compound. Journal of Physics and Chemistry of Solids, 2017, 106, 65-75.	1.9	10
316	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	2.7	90
317	High concentration PbI 2 ·DMSO complex precursor solution of 1.7ÂM in DMF for high-thickness and full-coverage CH 3 NH 3 PbI 3â^'x Br x thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 5603-5608.	1.1	7
318	Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides. Advanced Materials, 2017, 29, 1604733.	11.1	154
319	Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities. Chemistry of Materials, 2017, 29, 524-538.	3.2	135
320	Pressureâ€Induced Multiferroics via Pseudo Jahn–Teller Effects and Novel Couplings. Advanced Functional Materials, 2017, 27, 1604513.	7.8	25
321	Structural Stabilities and Electronic Properties of High-Angle Grain Boundaries in Perovskite Cesium Lead Halides. Journal of Physical Chemistry C, 2017, 121, 1715-1722.	1.5	99
322	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2421-2429.	4.0	315
323	Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells. RSC Advances, 2017, 7, 10118-10123.	1.7	19
324	Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4, 206-216.	6.4	553
325	Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Antiâ€Solvent Additive Deposition. Advanced Materials, 2017, 29, 1604056.	11.1	63
326	Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2017, 139, 836-842.	6.6	470
327	CsPbBr ₃ Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition. Chemistry of Materials, 2017, 29, 9767-9774.	3.2	178

#	Article	IF	CITATIONS
328	Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Scientific Reports, 2017, 7, 14025.	1.6	310
329	Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. Journal of Materials Chemistry A, 2017, 5, 22975-22983.	5.2	38
330	Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion. ACS Nano, 2017, 11, 11488-11496.	7.3	105
331	Octamethyl-substituted Pd(<scp>ii</scp>) phthalocyanine with long carrier lifetime as a dopant-free hole selective material for performance enhancement of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24416-24424.	5.2	45
332	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
333	Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties. Journal of Materials Chemistry A, 2017, 5, 21919-21925.	5.2	35
334	Influences of organic cation and hydrochloric acid additive on the morphology and photoluminescence of HC(NH2)2PbBr3 films. Optical Materials, 2017, 73, 736-741.	1.7	4
335	Effects of Spin States on Photovoltaic Actions in Organo-Metal Halide Perovskite Solar Cells Based on Circularly Polarized Photoexcitation. ACS Photonics, 2017, 4, 2821-2827.	3.2	18
336	Light Soaking Phenomena in Organic–Inorganic Mixed Halide Perovskite Single Crystals. ACS Photonics, 2017, 4, 2813-2820.	3.2	31
337	[(CH ₃) ₃ NH] ₃ Bi ₂ I ₉ : A Polar Leadâ€Free Hybrid Perovskite‣ike Material as a Potential Semiconducting Absorber. Chemistry - A European Journal, 2017, 23, 17304-17310.	1.7	46
338	Solution-Processed Ultrathin TiO ₂ Compact Layer Hybridized with Mesoporous TiO ₂ for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36865-36874.	4.0	51
339	Slowâ€Photonâ€Effectâ€Induced Photoelectricalâ€Conversion Efficiency Enhancement for Carbonâ€Quantumâ€Dotâ€Sensitized Inorganic CsPbBr ₃ Inverse Opal Perovskite Solar Cells. Advanced Materials, 2017, 29, 1703682.	11.1	133
340	Electrical Heatingâ€Assisted Multiple Coating Method for Fabrication of Highâ€Performance Perovskite Fiber Solar Cells by Thickness Control. Advanced Materials Interfaces, 2017, 4, 1700833.	1.9	16
341	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	5.2	40
342	Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells. Applied Physics Letters, 2017, 111, .	1.5	63
343	First-principles study on the initial decomposition process of CH3NH3PbI3. Journal of Chemical Physics, 2017, 147, 124702.	1.2	10
344	Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced Materials, 2017, 29, 1702838.	11.1	117
345	Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI ₃ Perovskites. Journal of the American Chemical Society, 2017, 139, 14800-14806.	6.6	230

#	Article	IF	CITATIONS
346	Laplace current deep level transient spectroscopy measurements of defect states in methylammonium lead bromide single crystals. Journal of Applied Physics, 2017, 122, .	1.1	50
347	Exploring Emerging Photovoltaic Materials Beyond Perovskite: The Case of Skutterudite. Chemistry of Materials, 2017, 29, 9429-9435.	3.2	16
348	Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials, 2017, 7, 1701136.	10.2	257
349	Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells. Journal Physics D: Applied Physics, 2017, 50, 405501.	1.3	7
350	First-principles study on the electric structure and ferroelectricity in epitaxial CsSnl ₃ films. RSC Advances, 2017, 7, 41077-41083.	1.7	25
351	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	7.3	48
352	Influence of processing temperature and precursor composition on phase region of solution processed methylammonium lead iodide perovskite. Materials Research Express, 2017, 4, 096201.	0.8	1
353	Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI ₃ . Science Advances, 2017, 3, e1701293.	4.7	325
354	Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure. Journal of Physical Chemistry C, 2017, 121, 23886-23895.	1.5	38
355	Solar cell device simulations. , 2017, , .		0
355 356	Solar cell device simulations. , 2017, , . Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287.	2.7	0
	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance	2.7 0.6	
356	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62.		15
356 357	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62. xmins:mml="http://www.w3.org/1998/Wath/Wath/VL"> <mmin:mmow><mmin: mathvariant="normal">P<mmin: mathvariant="normal">P<td>0.6</td><td>15 5</td></mmin: </mmin: </mmin:mmow>	0.6	15 5
356 357 358	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62. xmins:mmi="http://www.w3.org/1998/Wath/MathWL"> <mmi:mrow><mmi:mi mathvariant="normal">P<mmi:msub><mmi:mi mathvariant="normal">b</mmi:mi><mmi:mi mathvariant="normal">b<mmi:mi mathvariant="normal">is /mmi:mi></mmi:mi </mmi:mi </mmi:msub></mmi:mi </mmi:mrow> mathvariant="normal">is /mmi:mi>mathvariant="normal">is /mmi:mi>mathvariant="normal">is /mmi:mi>mathvariant="normal">is /mmi:mi>mathvariant="normal">is /mmi:mi>mathvariant="normal">is /mmi:mi>/mmi:mi	0.6	15 5 12
356 357 358 359	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62. xmins:mml= http://www.w3.org/1996/Niath/Niath/Ni_> <mml:mirow><mml:mi mathvariant="normal">P<mml:msub><mml:mirow><mml:mi mathvariant="normal">>P<mml:msub><mml:mi mathvariant="normal">>b</mml:mi><mml:mi mathvariant="normal">>P<mml:msub><mml:mi mathvariant="normal">>b</mml:mi> xmlns:mml= http://www.w3.org/1998/Math/MathML"><mml:micwariant="normal">>ml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">><mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">></mml:mi </mml:mi </mml:msub><mml:mi mathvariant="normal">><</mml:mi </mml:mi </mml:msub></mml:micwariant="normal"></mml:msub></mml:mi </mml:msub></mml:mi </mml:mirow></mml:msub></mml:mi </mml:mirow>	0.6 1.4 1.1	15 5 12 13
356 357 358 359 360	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices. AIP Advances, 2017, 7, 085207. Investigation of highly efficient methyl ammonium lead halide perovskite solar cell with non-textured front surface. Optik, 2017, 148, 54-62. Ministmit="ntp://www.w3.org/1998/Wath/WathWL"> <mmitmrow><mmitmi mathyariant="normal">> //mmitmi><mmitmsub><mmitmrow><mmitmi mathyariant="normal">> //mmitmi></mmitmi </mmitmrow></mmitmsub><mmitmi mathyariant="normal">> //mmitmi></mmitmi </mmitmi </mmitmrow></mmitmsub><mmitmi mathyariant="normal">> //mmitmi></mmitmi </mmitmi </mmitmrow></mmitmsub><mmitmi mathyariant="normal">> //mmitmi><</mmitmi </mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow></mmitmsub></mmitmi </mmitmrow>	0.6 1.4 1.1 5.2	15 5 12 13 334

#	Article	IF	CITATIONS
364	Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 2017, 157, 853-859.	2.9	31
365	Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C, 2017, 5, 10152-10157.	2.7	18
366	High Photoluminescence Quantum Yields in Organic Semiconductor–Perovskite Composite Thin Films. ChemSusChem, 2017, 10, 3788-3793.	3.6	15
367	Photon management for efficient hybrid perovskite solar cells via synergetic localized grating and enhanced fluorescence effect. Nano Energy, 2017, 40, 540-549.	8.2	22
368	Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Scientific Reports, 2017, 7, 7843.	1.6	61
369	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
370	Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers. ACS Photonics, 2017, 4, 2522-2528.	3.2	61
371	ITO-Free Flexible Perovskite Solar Cells Based on Roll-to-Roll, Slot-Die Coated Silver Nanowire Electrodes. Solar Rrl, 2017, 1, 1700059.	3.1	78
372	18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar Rrl, 2017, 1, 1700097.	3.1	97
373	DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26937-26947.	4.0	75
374	Synthesis of Cesium Lead Halide Perovskite Quantum Dots. Journal of Chemical Education, 2017, 94, 1150-1156.	1.1	51
375	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr ₃ microcrystals and on-paper pencil-drawn electrodes. Journal of Materials Chemistry C, 2017, 5, 7441-7445.	2.7	51
376	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.	10.2	240
377	High Efficiency MAPbI ₃ Perovskite Solar Cell Using a Pure Thin Film of Polyoxometalate as Scaffold Layer. ChemSusChem, 2017, 10, 3773-3779.	3.6	40
378	Origin of Hysteresis in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films. Advanced Functional Materials, 2017, 27, 1701924.	7.8	86
379	A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. CheM, 2017, 3, 290-302.	5.8	335
380	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	8.2	89
381	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276

ARTICLE IF CITATIONS Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and 382 2.1 69 <i>>J</i>ã€"<i>V</i> Modeling. Journal of Physical Chemistry Letters, 2017, 8, 6073-6079. Segregation of Native Defects to the Grain Boundaries in Methylammonium Lead lodide Perovskite. 2.1 Journal of Physical Chemistry Letters, 2017, 8, 5935-5942. Unique Trapped Dimer State of the Photogenerated Hole in Hybrid Orthorhombic CH₃NH₃Pbl₃Perovskite: Identification, Origin, and Implications. 384 4.519 Nano Letters, 2017, 17, 7724-7730. Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 17285-17288. Carrier diffusion in thin-film CH3NH3PbI3 perovskite measured using four-wave mixing. Applied Physics 386 1.5 29 Letters, 2017, 111, . DFT Study of Mechanical Properties and Stability of Cubic Methylammonium Lead Halide Perovskites (CH₃NH₃PbX₃, X = I, Br, Cl). Journal of Physical Chemistry C, 2017, 1.5 121, 27059-27070. Simultaneous Evolution of Uniaxially Oriented Grains and Ultralow-Density Grain-Boundary Network 388 in CH₃NH₃PbI₃ Perovskite Thin Films Mediated by Precursor Phase 8.8 82 Metastability. ACS Energy Letters, 2017, 2, 2727-2733. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature 23.3 927 Reviews Materials, 2017, 2, Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied 390 4.0 453 Materials & amp; Interfaces, 2017, 9, 30197-30246. Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. Journal of 2.8 Alloys and Compounds, 2017, 695, 555-560. Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€Temperature 392 5.2 183 Processed Yâ€Doped SnO₂ Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769. Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Physica Status Solidi (B): Basic Research, 2017, 254, 1600379. $\label{eq:mixed cation FA < i > (sub > (i) PEA < sub > 1 \\ a \\ e \\ (sub > (i) < sub > (i) \\ sub > 3 \\ (sub > with) \\ a \\ (sub > (i) \\ (sub > (i) \\ (sub > 3) \\ (sub > 3) \\ (sub > 3) \\ (sub > (i) \\ (sub > 3) \\$ Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced 394 10.2 298 Energy Materials, 2017, 7, 1601307. Numerical analysis of a hysteresis model in perovskite solar cells. Computational Materials Science, 1.4 2017, 126, 22-28. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide 396 1.9 37 Perovskite for Photovoltaic Applications. Inorganic Chemistry, 2017, 56, 26-32. Distant-Atom Mutation for Better Earth-Abundant Light Absorbers: A Case Study of Cu₂BaSnSe₄. ACS Energy Letters, 2017, 2, 29-35. Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes with High Efficiency and Low Driving 398 11.1 179 Voltage. Advanced Materials, 2017, 29, 1603826. Modeling hybrid perovskites by molecular dynamics. Journal of Physics Condensed Matter, 2017, 29, 399 043001.

#	Article	IF	CITATIONS
400	Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects. Inorganic Chemistry, 2017, 56, 11-25.	1.9	45
401	DC magnetron sputtered TiO <inf>2</inf> thin film as efficient hole blocking layer for perovskite solar cell. , 2017, , .		1
402	Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nature Communications, 2017, 8, 2230.	5.8	220
403	Temperature dependence of the effective mass of the hybrid organic-inorganic perovskites CH3NH3PbI3. Applied Physics Letters, 2017, 111, .	1.5	11
404	Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D. Indian Journal of Science and Technology, 2017, 10, 1-8.	0.5	43
405	One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials, 2017, 7, 95.	1.9	41
406	CH3NH3Cl Assisted Solvent Engineering for Highly Crystallized and Large Grain Size Mixed-Composition (FAPbI3)0.85(MAPbBr3)0.15 Perovskites. Crystals, 2017, 7, 272.	1.0	26
407	Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap. , 0, , .		1
408	Photovoltaic Module Durability and Reliability: Analysis of a 23-Year-Old Array Operating in Quebec, Canada. , 2017, , .		0
410	A first-principles prediction on the "healing effect―of graphene preventing carrier trapping near the surface of metal halide perovskites. Chemical Science, 2018, 9, 3341-3353.	3.7	19
411	Bandgap Engineering of Stable Leadâ€Free Oxide Double Perovskites for Photovoltaics. Advanced Materials, 2018, 30, e1705901.	11.1	57
412	First-principles study of the electronic and optical properties of Li(Nb,Os)O3 alloys. Applied Physics Letters, 2018, 112, .	1.5	7
413	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	11.1	54
414	Impact of grain boundary defect on performance of perovskite solar cell. Materials Science in Semiconductor Processing, 2018, 79, 46-52.	1.9	23
415	Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH ₃ NH ₃ PbI ₃ [*] . Chinese Physics Letters, 2018, 35, 036104.	1.3	154
416	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	5.8	165
417	Recent progress in lead-free perovskite (-like) solar cells. Materials Today Energy, 2018, 8, 157-165.	2.5	60
418	Controlled surface decomposition derived passivation and energy-level alignment behaviors for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9397-9401.	5.2	20

IF ARTICLE CITATIONS # Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal 419 7.1 39 halide perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 962-970. Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors with High Detectivity. Journal of Physical Chemistry Letters, 2018, 9, 2043-2048. 2.1 Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on 421 5.8 323 photovoltaic performance. Nature Communications, 2018, 9, 1336. Tunable Crystallization and Nucleation of Planar CH₃NH₃Pbl₃through Solvent-Modified Interdiffusion. ACS Applied Materials & amp; Interfaces, 2018, 10, 14673-14683. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B) Tj ETQq0 0 Q gBT /Overlock 10 T 423

424	Determination of the structural phase and octahedral rotation angle in halide perovskites. Applied Physics Letters, 2018, 112, .	1.5	38
425	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	11.1	28
426	Effects of Spin–Orbit Coupling on Nonequilibrium Quantum Transport Properties of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 4150-4155.	1.5	8
427	Grain Boundary Engineering of Halide Perovskite CH ₃ NH ₃ PbI ₃ Solar Cells with Photochemically Active Additives. Journal of Physical Chemistry C, 2018, 122, 4817-4821.	1.5	31
428	Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 7974-7981.	4.0	40
429	Ab Initio Design of Low Band Gap 2D Tin Organohalide Perovskites. Journal of Physical Chemistry C, 2018, 122, 3677-3689.	1.5	10
430	Efficient design of perovskite solar cell using mixed halide and copper oxide. Chinese Physics B, 2018, 27, 018801.	0.7	7
431	Investigating the Role of the Organic Cation in Formamidinium Lead Iodide Perovskite Using Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 895-901.	2.1	72
432	Sequentially Vapor-Grown Hybrid Perovskite for Planar Heterojunction Solar Cells. Nanoscale Research Letters, 2018, 13, 9.	3.1	18
433	Lowâ€Bandgap Methylammoniumâ€Rubidium Cation Snâ€Rich Perovskites for Efficient Ultraviolet–Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2018, 28, 1706068.	7.8	70
434	Electrodeposition of organic–inorganic tri-halide perovskites solar cell. Journal of Power Sources, 2018, 378, 717-731.	4.0	36
435	Interfacial engineering <i>via</i> inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3435-3443.	5.2	30
436	Oneâ€Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217.	3.1	90

#	Article	IF	CITATIONS
437	Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic Applications. Solar Rrl, 2018, 2, 1700186.	3.1	98
438	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1–<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	3.2	93
439	lodine chemistry determines the defect tolerance of lead-halide perovskites. Energy and Environmental Science, 2018, 11, 702-713.	15.6	480
440	Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1124-1132.	2.1	52
441	How Methylammonium Cations and Chlorine Dopants Heal Defects in Lead Iodide Perovskites. Advanced Energy Materials, 2018, 8, 1702754.	10.2	86
442	Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities. ACS Energy Letters, 2018, 3, 469-475.	8.8	54
443	Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 1019-1027.	6.6	241
444	Lowâ€Temperature Processed Nanostructured Rutile TiO ₂ Array Films for Perovskite Solar Cells With High Efficiency and Stability. Solar Rrl, 2018, 2, 1700164.	3.1	18
445	Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs ₃ Sb ₂ I ₉ . ACS Applied Materials & Interfaces, 2018, 10, 2566-2573.	4.0	137
446	Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature. Electrochimica Acta, 2018, 261, 227-235.	2.6	74
447	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	3.1	31
448	Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3793-3823.	5.2	154
449	Controlled synthesis of brightly fluorescent CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals employing Pb(C ₁₇ H ₃₃ COO) ₂ as the sole lead source. RSC Advances, 2018, 8, 1132-1139.	1.7	6
450	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	8.2	19
451	Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9220-9227.	5.2	55
452	From Ultrafast to Ultraslow: Charge-Carrier Dynamics of Perovskite Solar Cells. Joule, 2018, 2, 879-901.	11.7	190
453	A Lewis Baseâ€Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800055.	3.1	83
454	Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study. Organic Electronics, 2018, 59, 99-106.	1.4	123

#	Article	IF	CITATIONS
455	Synthesis and Characterization of an Efficient Hole-Conductor Free Halide Perovskite CH ₃ NH ₃ PbI ₃ Semiconductor Absorber Based Photovoltaic Device for IOT. Journal of the Electrochemical Society, 2018, 165, B3023-B3029.	1.3	27
456	The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites. Advanced Functional Materials, 2018, 28, 1706995.	7.8	28
457	Diameter engineering on TiO2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Solar Energy, 2018, 166, 42-49.	2.9	16
458	Controllable Preparation of Rutile TiO ₂ Nanorod Array for Enhanced Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1649-1657.	2.5	26
459	Elucidating the Impact of Thin Film Texture on Charge Transport and Collection in Perovskite Solar Cells. ACS Omega, 2018, 3, 3522-3529.	1.6	8
460	SKPM study on organic-inorganic perovskite materials. AIP Advances, 2018, 8, .	0.6	9
461	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
462	Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy and Environmental Science, 2018, 11, 1460-1469.	15.6	61
463	Top-Down Approaches Towards Single Crystal Perovskite Solar Cells. Scientific Reports, 2018, 8, 4906.	1.6	34
464	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide. RSC Advances, 2018, 8, 11455-11461.	1.7	4
465	Photorefractive Effect in Organic–Inorganic Hybrid Perovskites and Its Application to Optical Phase Shifter. Advanced Optical Materials, 2018, 6, 1701366.	3.6	38
466	Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2, 1700316.	4.6	95
467	Crystallisation behaviour of CH3NH3PbI3 films: The benefits of sub-second flash lamp annealing. Thin Solid Films, 2018, 653, 204-214.	0.8	11
468	Additive Selection Strategy for High Performance Perovskite Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 13884-13893.	1.5	71
469	Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2018, 123, .	1.1	17
470	Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Organic Electronics, 2018, 57, 221-225.	1.4	7
471	UNDERSTANDING THE EFFECT OF DEPRESSOR ON THE TIO ₂ COMPACT LAYER FOR THE PHOTOCURRENT PERFORMANCE OF PEROVSKITE SOLAR CELLS. Surface Review and Letters, 2018, 25, 1950019.	0.5	0
472	Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy and Environmental Science, 2018, 11, 151-165.	15.6	586

ARTICLE IF CITATIONS Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic 473 1.9 316 Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1700623. Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces. Journal of Solid State 474 1.4 Chemistry, 2018, 258, 488-494. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser 475 1.0 19 Evaporation. Journal of Electronic Materials, 2018, 47, 917-926. Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of Energy Chemistry, 2018, 27, 637-649. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic 477 11.1 141 Performance. Advanced Materials, 2018, 30, 1700764. Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden–Popper Perovskites for Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2018, 8, 1700979. 478 10.2 286 Improving the efficiency and environmental stability of inverted planar perovskite solar cells via 479 3.1 93 silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 2018, 427, 782-790. A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 480 7.1 38 2018, 27, 1054-1066. CH3NH3PbI3/GeSe bilayer heterojunction solar cell with high performance. Solar Energy, 2018, 159, 481 2.9 27 142-148. Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. 10.2 Advanced Energy Materials, 2018, 8, 1702093. Layered Halide Double Perovskites Cs_{3+<i>n</i>}M(II)_{<i>n</i>}Sb₂X_{9+3<i>n</i>} (M = Sn,) Tj ETQq2D 0 rgBTr/Overlock 483 Enhancing Ferroelectric Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH₃NH₃Pbl₃: Strain and Doping Engineering. Journal of Physical 1.5 Chemistry C, 2018, 122, 177-184. The mixing effect of organic cations on the structural, electronic and optical properties of FA_xMA_{1â^{*}x}Pbl₃perovskites. Physical Chemistry Chemical Physics, 485 1.3 24 2018, 20, 941-950. Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications. Chemistry - A 486 1.7 European Journal, 2018, 24, 2305-2316. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of 487 329 5.6 Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24. Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy 488 Materials and Solar Cells, 2018, 175, 1-19. 489 The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160. 2.5209 Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and

formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.

CITATION REPORT

5.2

#	ARTICLE Promising photovoltaic and solid-state-lighting materials: two-dimensional Ruddlesden–Popper type lead-free halide double perovskites	IF	CITATIONS
491	Cs _{n+1} ln _{n/2} Sb _{n/2} 3n+1(<i>n</i> = 3) and Cs _{n+1} ln _{n/2} Sb _{n/2} Cl _{3n+1} /Cs _{m+1} Cu _{m/2} m/2	2.7 /sub>Bi <s< td=""><td>19 ub>m/2</td></s<>	19 ub>m/2
492	Recent Challenges of Solar Cell Technologies; A Critical Analysis. , 2018, , .		2
493	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
494	High efficiency flexible perovskite solar cells using SnO2/graphene electron selective layer and silver nanowires electrode. Applied Physics Letters, 2018, 113, .	1.5	16
495	Rationalizing Perovskite Data for Machine Learning and Materials Design. Journal of Physical Chemistry Letters, 2018, 9, 6948-6954.	2.1	68
496	Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 2018, 9, 4785.	5.8	238
497	First-Principle Insights of Electronic and Optical Properties of Cubic Organic–Inorganic MAGe _{<i>x</i>} Pb _(1–<i>x</i>) I ₃ Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2018, 122, 28245-28255.	1.5	34
498	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42542-42551.	4.0	50
499	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	13.7	1,451
500	Photovoltaic Effect in Indium(I) Iodide Thin Films. Chemistry of Materials, 2018, 30, 8226-8232.	3.2	13
501	Organic-Inorganic Hybrid Perovskite Solar Cells. Springer Series in Optical Sciences, 2018, , 463-507.	0.5	2
503	Ruddlesden–Popper Perovskite for Stable Solar Cells. Energy and Environmental Materials, 2018, 1, 221-231.	7.3	85
504	Suppressed hysteresis and enhanced performance of triple cation perovskite solar cell with chlorine incorporation. Journal of Materials Chemistry C, 2018, 6, 13157-13161.	2.7	18
505	Dielectric Behavior as a Screen in Rational Searches for Electronic Materials: Metal Pnictide Sulfosalts. Journal of the American Chemical Society, 2018, 140, 18058-18065.	6.6	69
508	Effects of Electron–Phonon Coupling on Electronic Properties of Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 7090-7097.	2.1	44
509	The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, e1802573.	5.2	42
510	Solution-Processable Cu(II) Phthalocyanine Derivative as Dopant-Free Hole Transport Layer for Efficient and Low-Cost Rutile TiO ₂ Array-Based Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	2
511	The effect of solution process control on the formation of the α-FAPbI3 perovskite: FAPbI3 versus MAPbI3 solar cells. Solar Energy, 2018, 174, 780-785.	2.9	19

#	Article	IF	CITATIONS
512	Electronic Properties of {111} Twin Boundaries in a Mixed-Ion Lead Halide Perovskite Solar Absorber. ACS Energy Letters, 2018, 3, 2663-2668.	8.8	47
513	Effect of metal doping on the visible light absorption, electronic structure and mechanical properties of non-toxic metal halide CsGeCl ₃ . RSC Advances, 2018, 8, 33010-33018.	1.7	80
514	Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. ACS Energy Letters, 2018, 3, 2701-2707.	8.8	176
515	Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2018, 2, 2706-2721.	11.7	124
516	Probing and Controlling Intragrain Crystallinity for Improved Low Temperature–Processed Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1803943.	7.8	18
517	Modulating Surface Morphology Related to Crystallization Speed of Perovskite Grain and Semiconductor Properties of Optical Absorber Layer under Controlled Doping of Potassium Ions for Solar Cells. Materials, 2018, 11, 1605.	1.3	11
518	Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency. Journal of the American Chemical Society, 2018, 140, 15655-15660.	6.6	20
519	Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Solar Energy, 2018, 173, 1315-1322.	2.9	31
520	Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880-886.	8.2	104
521	High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics. Journal Physics D: Applied Physics, 2018, 51, 474003.	1.3	50
522	Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Joule, 2018, 2, 1866-1878.	11.7	187
524	Ultrafast exciton many-body interactions and hot-phonon bottleneck in colloidal cesium lead halide perovskite nanocrystals. Physical Review B, 2018, 98, .	1.1	89
525	Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites. Metals, 2018, 8, 667.	1.0	123
527	PIN Diodes Array Made of Perovskite Single Crystal for Xâ€Ray Imaging. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800380.	1.2	63
528	Predicting the thermodynamic stability of double-perovskite halides from density functional theory. APL Materials, 2018, 6, .	2.2	42
529	The Exploration of Carrier Behavior in the Inverted Mixed Perovskite Singleâ€Crystal Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800224.	1.9	58
530	A CsPbBr ₃ /TiO ₂ Composite for Visibleâ€Lightâ€Driven Photocatalytic Benzyl Alcohol Oxidation. ChemSusChem, 2018, 11, 2057-2061.	3.6	130
531	Surface Photovoltage Spectroscopy Study of Ultrasonically Sprayedâ€Aerosol CH ₃ NH ₃ Pbl ₃ Perovskite Crystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800133.	0.8	10

#	Article	IF	CITATIONS
532	Diammonium Cations in the FASnI ₃ Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. ACS Energy Letters, 2018, 3, 1470-1476.	8.8	114
533	Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni(OH) ₂ nanosheets with Co(OH) ₂ quantum dot modification. Nanoscale, 2018, 10, 10554-10563.	2.8	44
534	Grain-boundary effect and post treatment of active layer for efficient inverted planar perovskite solar cells. Electrochimica Acta, 2018, 281, 9-16.	2.6	15
535	The electronic properties of CH ₃ NH ₃ PbI ₃ perovskite surfaces tuned by inverted polarities of pyridine and ethylamine. Journal of Materials Chemistry C, 2018, 6, 6733-6738.	2.7	3
536	Exploring a Polar Twoâ€dimensional Multiâ€layered Hybrid Perovskite of (C ₅ H ₁₁ NH ₃) ₂ (CH ₃ NH ₃)Pb _{ for Ultrafastâ€Responding Photodetection. Laser and Photonics Reviews, 2018, 12, 1800060.}	2≪ /st ub>l<	subbə:7
537	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
538	Doping and Switchable Photovoltaic Effect in Leadâ€Free Perovskites Enabled by Metal Cation Transmutation. Advanced Materials, 2018, 30, e1802080.	11.1	30
539	Hybrid Inorganic Organic Perovskites. , 2018, , 123-162.		7
540	Direct tuning of the band gap <i>via</i> electronically-active organic cations and large piezoelectric response in one-dimensional hybrid halides from first-principles. Journal of Materials Chemistry C, 2018, 6, 7671-7676.	2.7	11
541	Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. Solar Rrl, 2018, 2, 1800069.	3.1	13
542	Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2018, 9, 3878-3885.	2.1	12
543	High Current Density and Low Hysteresis Effect of Planar Perovskite Solar Cells via PCBM-doping and Interfacial Improvement. ACS Applied Materials & Interfaces, 2018, 10, 29954-29964.	4.0	35
544	Precisely Controlling the Grain Sizes with an Ammonium Hypophosphite Additive for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1802320.	7.8	65
545	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. Solar Energy, 2018, 173, 407-424.	2.9	56
546	Pressure-Assisted Annealing Strategy for High-Performance Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 4714-4719.	2.1	50
547	Ultrafast Ionizing Radiation Detection by p–n Junctions Made with Single Crystals of Solutionâ€Processed Perovskite. Advanced Electronic Materials, 2018, 4, 1800237.	2.6	29
548	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	1.9	41
549	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291.		0

#	Article	IF	CITATIONS
550	Optical absorption coefficient red shift effect of iodine vacancy in MAPbI3. Computational Materials Science, 2018, 154, 138-142.	1.4	0
551	Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2, 1662-1673.	11.7	297
552	Structural and Chemical Features Giving Rise to Defect Tolerance of Binary Semiconductors. Chemistry of Materials, 2018, 30, 5583-5592.	3.2	36
553	Microstructure Engineering of Metal-Halide Perovskite Films for Efficient Solar Cells. , 2018, , .		0
554	Numerical simulations of perovskite thin-film solar cells using a CdS hole blocking layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	32
555	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
556	Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1983-1990.	8.8	158
557	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	8.2	59
558	Elucidation of Chemical Species and Reactivity at Methylammonium Lead Iodide and Cesium Tin Bromide Perovskite Surfaces via Orthogonal Reaction Chemistry. Journal of Physical Chemistry C, 2018, 122, 17882-17894.	1.5	16
559	Modified Sequential Deposition Route through Localized-Liquid-Liquid-Diffusion for Improved Perovskite Multi-Crystalline Thin Films with Micrometer-Scaled Grains for Solar Cells. Nanomaterials, 2018, 8, 416.	1.9	8
560	New iron-based multiferroics with improper ferroelectricity. Journal Physics D: Applied Physics, 2018, 51, 243002.	1.3	7
561	Perovskite–Perovskite Homojunctions via Compositional Doping. Journal of Physical Chemistry Letters, 2018, 9, 2770-2775.	2.1	77
562	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	8.8	106
563	Importance of Electronic Correlations and Unusual Excitonic Effects in Formamidinium Lead Halide Perovskites. Physical Review X, 2018, 8, .	2.8	9
564	Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47, 7050-7058.	1.6	34
565	Mechanism suppressing charge recombination at iodine defects in CH3NH3PbI3 by polaron formation. Journal of Materials Chemistry A, 2018, 6, 16863-16867.	5.2	26
566	Effects of Moisture-Based Grain Boundary Passivation on Cell Performance and Ionic Migration in Organic–Inorganic Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30322-30329.	4.0	40
567	Candidate replacements for lead in CH3NH3PbI3 from first principles calculations. Computational Materials Science, 2018, 155, 69-73.	1.4	7

#	Article	IF	CITATIONS
568	Nonlinear optical properties of lead halide perovskites. , 2018, , .		0
569	Low-temperature bromide modification of SnO2 for highly efficient perovskite solar cells. Journal of Solid State Electrochemistry, 2018, 22, 3751-3759.	1.2	10
570	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	5.1	334
571	Atomic-Scale Identification of Planar Defects in Cesium Lead Bromide Perovskite Nanocrystals. Microscopy and Microanalysis, 2018, 24, 100-101.	0.2	2
572	Role of alkyl chain length in diaminoalkane linked 2D Ruddlesden–Popper halide perovskites. CrystEngComm, 2018, 20, 6704-6712.	1.3	25
573	Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532, 387-394.	5.0	31
574	High-Quality Perovskite Film Preparations for Efficient Perovskite Solar Cells. , 0, , .		0
575	Tailoring the Band Gap in 3D Hybrid Perovskites by Substitution of the Organic Cations: (CH ₃ NH ₃) _{1â^'2<i>y</i>} (NH ₃ (CH ₂) _{2(0≤i>yâ‰@.25). Chemistry - A European Journal, 2018, 24, 9075-9082.}	o> ıM H≺sub	>> ₿ 2/sub>)<
576	Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study. Physical Review B, 2018, 97, .	1.1	53
577	Static and Dynamic Structures of Perovskite Halides ABX3 (B = Pb, Sn) and Their Characteristic Semiconducting Properties by a Hückel Analytical Calculation. Bulletin of the Chemical Society of Japan, 2018, 91, 1196-1204.	2.0	11
578	Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy and Environmental Science, 2019, 12, 442-462.	15.6	433
579	Transition from Positive to Negative Photoconductance in Doped Hybrid Perovskite Semiconductors. Advanced Optical Materials, 2019, 7, 1900865.	3.6	47
580	Perovskite-Betavoltaic Cells: A Novel Application of Organic–Inorganic Hybrid Halide Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 32969-32977.	4.0	20
581	Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines. ACS Applied Energy Materials, 2019, 2, 6230-6236.	2.5	18
582	Effect of Phase Transition on Optical Properties and Photovoltaic Performance in Cesium Lead Bromine Perovskite: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 20764-20768.	1.5	2
583	Uncovering the microscopic mechanism of incorporating Mn2+ ions into CsPbCl3 crystal lattice. Journal of Materials Chemistry C, 2019, 7, 11177-11183.	2.7	11
584	Stable Lead-Free (CH ₃ NH ₃ 3Bi ₂ I ₉ Perovskite for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15080-15085.	3.2	93
585	Defect Activity in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1901183.	11.1	191

#	Article	IF	CITATIONS
586	Unravelling the Effects of Pressure-Induced Suppressed Electron–Hole Recombination in CsPbBr ₃ Perovskite: Time-Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 4354-4361.	2.1	19
587	Identification of defects and defect energy distribution in the perovskite layer of MAPbl _{3â^'x} Cl _x perovskite solar cell. Materials Research Express, 2019, 6, 105510.	0.8	4
588	Electronic Properties and Photovoltaic Functionality of Zn-Doped Orthorhombic CH3NH3PbI3: A GGA+vdW Study. Journal of Electronic Materials, 2019, 48, 6327-6334.	1.0	2
589	Metal Cations in Efficient Perovskite Solar Cells: Progress and Perspective. Advanced Materials, 2019, 31, e1902037.	11.1	71
590	CH ₃ NH ₃ PbI ₃ thin films prepared by hot-casting technique in the air: growth mechanism, trap states and relating solar cells. Japanese Journal of Applied Physics, 2019, 58, SIID07.	0.8	5
591	Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials, 2019, 4, 573-587.	23.3	200
592	Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics. Computational Materials Science, 2019, 169, 109118.	1.4	50
593	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
594	Monitoring Electron–Phonon Interactions in Lead Halide Perovskites Using Time-Resolved THz Spectroscopy. ACS Nano, 2019, 13, 8826-8835.	7.3	52
595	Tuning electronic and optical properties of CsPbI3 by applying strain: A first-principles theoretical study. Chemical Physics Letters, 2019, 732, 136642.	1.2	40
596	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	11.1	96
597	Formation mechanism of concentric and colorful ring perovskite films. Synthetic Metals, 2019, 255, 116107.	2.1	1
598	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
599	Imaging and Mapping Characterization Tools for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900444.	10.2	44
600	Layer-Dependent Ultrahigh-Mobility Transport Properties in All-Inorganic Two-Dimensional Cs ₂ Pbl ₂ Cl ₂ and Cs ₂ Snl ₂ Cl ₂ Perovskites. Journal of Physical Chemistry C, 2019, 123, 27978-27985.	1.5	45
601	Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.	1.9	19
602	Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Materials Today Energy, 2019, 14, 100341.	2.5	12
603	Defect states of organic lead halide single crystals grown by inverse-temperature crystallization. Applied Physics Letters, 2019, 115, .	1.5	9

	CITATION R	CITATION REPORT		
#	Article	IF	Citations	
604	Designing Two-Dimensional Properties in Three-Dimensional Halide Perovskites via Orbital Engineering. Journal of Physical Chemistry Letters, 2019, 10, 6688-6694.	2.1	25	
605	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie, 2019, 131, 16280-16286.	1.6	6	
606	The effect of phase purification on photovoltaic performance of perovskite solar cells. Applied Physics Letters, 2019, 115, 192105.	1.5	4	
607	Towards the maximum efficiency design of a perovskite solar cell by material properties tuning: A multidimensional approach. Solar Energy, 2019, 194, 499-509.	2.9	1	
608	First-Principles Study on Electronic and Optical Properties of Pb-Free Halide Perovskites Cs2TiX6 (X =) Tj ETQq0 104802.	0 0 rgBT /0 0.7	Overlock 10 Tf 16	
609	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie - International Edition, 2019, 58, 16134-16140.	7.2	12	
610	Influence of Orientational Disorder on the Optical Absorption Properties of the Hybrid Metalâ€Halide Perovskite CH ₃ NH ₃ PbI ₃ . ChemPhysChem, 2019, 20, 3228-3237.	1.0	2	
611	Role of CuAlO2 as an absorber layer for solar energy converter. Solar Energy, 2019, 193, 799-805.	2.9	22	
612	Efficiency Improvement of TiO ₂ Nanorods Electron Transport Layer Based Perovskite Solar Cells by Solvothermal Etching. IEEE Journal of Photovoltaics, 2019, 9, 1699-1707.	1.5	15	
613	Defect Engineering of Grain Boundaries in Leadâ€Free Halide Double Perovskites for Better Optoelectronic Performance. Advanced Functional Materials, 2019, 29, 1805870.	7.8	30	
614	Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA) ₃ InBr ₆ with Direct Band Gap. Inorganic Chemistry, 2019, 58, 15602-15609.	1.9	81	
615	The Role of Grain Boundaries in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901489.	10.2	202	
616	A facile way to improve the efficiency of perovskite/silicon four-terminal tandem solar cell based on the optimization of long-wavelength spectral response. AIP Conference Proceedings, 2019, , .	0.3	1	
617	Material Design and Optoelectronic Properties of Three-Dimensional Quadruple Perovskite Halides. Journal of Physical Chemistry Letters, 2019, 10, 5219-5225.	2.1	70	
618	Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic–Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies. Journal of Physical Chemistry C, 2019, 123, 23323-23333.	1.5	15	
619	The Way to Pursue Truly High-Performance Perovskite Solar Cells. Nanomaterials, 2019, 9, 1269.	1.9	10	
620	Role of Ligand–Ligand Interactions in the Stabilization of Thin Layers of Tin Bromide Perovskite: An Ab Initio Study of the Atomic and Electronic Structure, and Optical Properties. Journal of Physical Chemistry C, 2019, 123, 25176-25184.	1.5	14	
621	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 39930-39939.	4.0	26	

#	Article	IF	CITATIONS
622	Graphite-N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 37796-37803.	4.0	61
623	Monolayer HfTeSe ₄ : A Promising Two-Dimensional Photovoltaic Material for Solar Cells with High Efficiency. ACS Applied Materials & amp; Interfaces, 2019, 11, 37901-37907.	4.0	34
624	Off-Stoichiometric Methylammonium Iodide Passivated Large-Grain Perovskite Film in Ambient Air for Efficient Inverted Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 39882-39889.	4.0	50
625	Surface Defect Dynamics in Organic–Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS Nano, 2019, 13, 12127-12136.	7.3	56
626	Rapid large-grain (>100â€Î¼m) formation of organic-inorganic perovskite thin films via shear deposition for photovoltaic application. Solar Energy, 2019, 191, 629-636.	2.9	10
627	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
628	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	11.1	92
629	Novel optoelectronic rotors based on orthorhombic CsPb(Br/I) ₃ nanorods. Nanoscale, 2019, 11, 3117-3122.	2.8	14
630	Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports, 2019, 9, 718.	1.6	130
631	All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 365-375.	3.2	133
632	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
633	Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1803384.	10.2	219
634	Orientation Regulation of Tinâ€Based Reducedâ€Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Advanced Functional Materials, 2019, 29, 1807696.	7.8	136
635	Understanding the Formation of Vertical Orientation in Two-dimensional Metal Halide Perovskite Thin Films. Chemistry of Materials, 2019, 31, 1336-1343.	3.2	93
636	Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls. ACS Applied Materials & Interfaces, 2019, 11, 6907-6917.	4.0	63
637	Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX ₃ to 2D Ruddlesden–Popper perovskite absorbers. Journal of Materials Chemistry A, 2019, 7, 5898-5933.	5.2	102
638	B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. Journal of Materials Chemistry C, 2019, 7, 2781-2808.	2.7	124
639	Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface. Journal of Materials Chemistry A, 2019, 7, 5779-5793.	5.2	40

#	Article	IF	CITATIONS
640	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	5.2	173
641	Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193, 107-132.	3.0	135
642	Morphological and compositional progress in halide perovskite solar cells. Chemical Communications, 2019, 55, 1192-1200.	2.2	136
643	Nitrogenâ€Dopantâ€Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902489.	7.8	18
644	Highâ€Performance and Stable Perovskite Solar Cells Based on Dopantâ€Free Arylamineâ€Substituted Copper(II) Phthalocyanine Holeâ€Transporting Materials. Advanced Energy Materials, 2019, 9, 1901019.	10.2	80
645	Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical Materials, 2019, 94, 1-8.	1.7	19
646	Transient Sub-Band-Gap States at Grain Boundaries of CH ₃ NH ₃ PbI ₃ Perovskite Act as Fast Temperature Relaxation Centers. ACS Energy Letters, 2019, 4, 1741-1747.	8.8	33
647	Structurally Stabilizing and Environment Friendly Triggers: Doubleâ€Metallic Leadâ€Free Perovskites. Solar Rrl, 2019, 3, 1900148.	3.1	36
648	Stable Dynamics Performance and High Efficiency of ABX ₃ â€Type Superâ€Alkali Perovskites First Obtained by Introducing H ₅ O ₂ Cation. Advanced Energy Materials, 2019, 9, 1900664.	10.2	113
649	Nal Doping Effect on Photophysical Properties of Organic-Lead-Halide Perovskite Thin Films by Using Solution Process. Advances in Materials Science and Engineering, 2019, 2019, 1-9.	1.0	2
650	Progress of All-inorganic Cesium Lead-free Perovskite Solar Cells. Chemistry Letters, 2019, 48, 989-1005.	0.7	19
651	KBaTeBiO ₆ : A Lead-Free, Inorganic Double-Perovskite Semiconductor for Photovoltaic Applications. Chemistry of Materials, 2019, 31, 4769-4778.	3.2	46
652	Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Frontiers of Physics, 2019, 14, 1.	2.4	42
653	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
654	High-Performance Photodetector Based on Organic–Inorganic Perovskite CH ₃ NH ₃ PbI ₃ /ZnO Heterostructure. IEEE Photonics Technology Letters, 2019, 31, 1151-1154.	1.3	41
655	Engineering the mesoporous TiO2 layer by a facile method to improve the performance of perovskite solar cells. Electrochimica Acta, 2019, 318, 83-90.	2.6	9
656	Interfacial Effects during Rapid Lamination within MAPbI ₃ Thin Films and Solar Cells. ACS Applied Energy Materials, 2019, 2, 5083-5093.	2.5	41
657	Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends in Chemistry, 2019, 1, 368-379.	4.4	100

#	Article	IF	CITATIONS
658	A SrGeO ₃ inorganic electron-transporting layer for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14559-14564.	5.2	9
659	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	4.5	42
660	Ion induced passivation of grain boundaries in perovskite solar cells. Journal of Applied Physics, 2019, 125, .	1.1	13
661	Conductive metallic filaments dominate in hybrid perovskite-based memory devices. Science China Materials, 2019, 62, 1323-1331.	3.5	18
662	Defect and Contact Passivation for Perovskite Solar Cells. Advanced Materials, 2019, 31, e1900428.	11.1	445
663	Ethylenediammonium-Based "Hollow―Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. Journal of the American Chemical Society, 2019, 141, 8627-8637.	6.6	93
664	Enhancement in power conversion efficiency of edge-functionalized graphene quantum dot through adatoms for solar cell applications. Solar Energy Materials and Solar Cells, 2019, 200, 109908.	3.0	51
665	Tunable internal quantum well alignment in rationally designed oligomer-based perovskite films deposited by resonant infrared matrix-assisted pulsed laser evaporation. Materials Horizons, 2019, 6, 1707-1716.	6.4	48
666	Tunable electronic structures and high efficiency obtained by introducing superalkali and superhalogen into AMX3-type perovskites. Journal of Power Sources, 2019, 429, 120-126.	4.0	43
667	Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. Journal of Physical Chemistry Letters, 2019, 10, 2745-2752.	2.1	8
668	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	19.8	831
669	Direct-Bandgap 2D Silver–Bismuth lodide Double Perovskite: The Structure-Directing Influence of an Oligothiophene Spacer Cation. Journal of the American Chemical Society, 2019, 141, 7955-7964.	6.6	151
670	Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12987-12992.	5.2	57
671	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	3.6	95
672	Tuning the Optical Properties of Already Crystalized Hybrid Perovskite. Solar Rrl, 2019, 3, 1900128.	3.1	5
673	Halide Heterogeneity Affects Local Charge Carrier Dynamics in Mixed-Ion Lead Perovskite Thin Films. Chemistry of Materials, 2019, 31, 3712-3721.	3.2	27
674	Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes. , 2019, , 305-341.		3
675	A DFT study of the electronic, optical and topological properties of free and biaxially strained Culn _{1â°x} Al _x Se ₂ . Journal of Materials Chemistry C, 2019, 7, 5803-5815.	2.7	14

#	Article	IF	CITATIONS
676	The Influence of Dipole Moments Induced by Organic Molecules and Domain Structures on the Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Theory and Simulations, 2019, 2, 1900041.	1.3	5
677	Earth-abundant photovoltaic semiconductor NaSbS2 in the rocksalt-derived structure: A first-principles study. Progress in Natural Science: Materials International, 2019, 29, 322-328.	1.8	8
678	Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics. Advanced Theory and Simulations, 2019, 2, 1800173.	1.3	54
679	The potential of scalability in high efficiency hybrid perovskite thin film luminescent solar concentrators. Solar Energy, 2019, 183, 392-397.	2.9	12
680	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	1.6	8
681	Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide. Chemistry of Materials, 2019, 31, 3599-3612.	3.2	37
682	Symmetry Breaking at MAPbI ₃ Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1617-1623.	2.1	65
683	First principle studies on structure, magneto-electronic and elastic properties of photovoltaic semiconductor halide (RbGeI3) and ferromagnetic half metal oxide (RbDyO3). Computational Condensed Matter, 2019, 19, e00381.	0.9	14
684	Role of Charge-Trapping Iodine Frenkel Defects for Hysteresis in Organic–Inorganic Hybrid Perovskite from First-Principles Calculations. Journal of Physical Chemistry C, 2019, 123, 9629-9633.	1.5	14
685	Advances in solution-processable near-infrared phototransistors. Journal of Materials Chemistry C, 2019, 7, 3711-3729.	2.7	74
686	Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 2019, 20, 976.	1.8	185
687	The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [<i>R</i> ―and <i>S</i> â€1â€(4â€Chlorophenyl)ethylammonium] ₂ PbI ₄ . Advanced Materials, 2019, 31 e1808088.	, 11.1	268
688	Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy, 2019, 59, 619-625.	8.2	88
689	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	5.8	185
690	Electronic and optical properties of perovskite compounds MA _{1â^îl±} FA _{l±} Pbl _{3â^îl²} X _{l²} (X = Cl, Br) explored for photovoltai applications. RSC Advances, 2019, 9, 7015-7024.	C1.7	20
691	Stabilization of Precursor Solution and Perovskite Layer by Addition of Sulfur. Advanced Energy Materials, 2019, 9, 1803476.	10.2	81
692	In Situ Regulating the Order–Disorder Phase Transition in Cs ₂ AgBiBr ₆ Single Crystal toward the Application in an Xâ€Ray Detector. Advanced Functional Materials, 2019, 29, 1900234.	7.8	114
693	First-Principles Study of Ferroelastic Twins in Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1416-1421.	2.1	21

#	Article	IF	CITATIONS
694	Introduction: Perovskites. Chemical Reviews, 2019, 119, 3033-3035.	23.0	76
695	Low-dimensional formamidinium lead perovskite architectures <i>via</i> controllable solvent intercalation. Journal of Materials Chemistry C, 2019, 7, 3945-3951.	2.7	23
696	Materials Design of Solar Cell Absorbers Beyond Perovskites and Conventional Semiconductors via Combining Tetrahedral and Octahedral Coordination. Advanced Materials, 2019, 31, e1806593.	11.1	48
697	Correlation between the morphology and the opto-electronic and electrical properties of organometallic halide perovskite (CH3NH3MH3) thin films. Materials Research Express, 2019, 6, 076431.	0.8	1
698	CsPbl _{2.69} Br _{0.31} solar cells from low-temperature fabrication. Materials Chemistry Frontiers, 2019, 3, 1139-1142.	3.2	19
699	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	15.6	89
700	Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Research Letters, 2019, 14, 4.	3.1	10
701	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem Structures. Solar Rrl, 2019, 3, 1900083.	3.1	10
702	Chlorine Passivation of Grain Boundary Suppresses Electron–Hole Recombination in CsPbBr ₃ Perovskite by Nonadiabatic Molecular Dynamics Simulation. ACS Applied Energy Materials, 2019, 2, 3419-3426.	2.5	32
703	High-Performance Inverted Perovskite Solar Cells Using Doped Poly(triarylamine) as the Hole Transport Layer. ACS Applied Energy Materials, 2019, 2, 1932-1942.	2.5	52
704	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315
705	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	11.1	621
706	Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials. Advanced Materials, 2019, 31, e1805337.	11.1	278
707	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
708	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	7.8	64
709	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	1.5	10
710	Controlled synthesis and photostability of blue emitting Cs ₃ Bi ₂ Br ₉ perovskite nanocrystals by employing weak polar solvents at room temperature. Journal of Materials Chemistry C, 2019, 7, 3688-3695.	2.7	50
711	Tailoring Electronic Properties of SnO ₂ Quantum Dots via Aluminum Addition for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900041.	3.1	26

#	Article	IF	CITATIONS
712	Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 2019, 114, .	1.5	25
713	Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the stability and electronic properties. Journal of the Chinese Chemical Society, 2019, 66, 575-582.	0.8	10
714	Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nature Communications, 2019, 10, 878.	5.8	115
715	Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring. Advanced Energy Materials, 2019, 9, 1803573.	10.2	232
716	Perovskite Solar Cells. , 2019, , .		1
717	BiFeO ₃ /CH ₃ NH ₃ PbI ₃ Perovskite Heterojunction Based Near-Infrared Photodetector. IEEE Electron Device Letters, 2019, 40, 1961-1964.	2.2	32
718	Spacer layer design for efficient fully printable mesoscopic perovskite solar cells. RSC Advances, 2019, 9, 29840-29846.	1.7	14
719	Influence of Ni doping in a lead-halide and a lead-free halide perovskites for optoelectronic applications. AIP Advances, 2019, 9, .	0.6	56
720	Investigation of the effect of precursor ratios on the solution combustion synthesis of zinc zirconate nanocomposite. Heliyon, 2019, 5, e03028.	1.4	10
721	The synergistic effect of cooperating solvent vapor annealing for high-efficiency planar inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 27267-27277.	5.2	24
722	3D low toxicity Cu–Pb binary perovskite films and their photoluminescent/photovoltaic performance. Journal of Materials Chemistry A, 2019, 7, 27225-27235.	5.2	34
723	Sample preparation utilizing sputter coating increases contrast of cellulose nanocrystals in the transmission electron microscope. Microscopy (Oxford, England), 2019, 68, 471-474.	0.7	0
724	Impact of Electron–Phonon Scattering on Optical Properties of CH ₃ NH ₃ PbI ₃ Hybrid Perovskite Material. ACS Omega, 2019, 4, 21487-21493.	1.6	12
725	Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs. Science and Technology of Advanced Materials, 2019, 20, 1118-1130.	2.8	5
726	Reduced Defects of MAPbl ₃ Thin Films Treated by FAI for Highâ€Performance Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1805810.	7.8	73
727	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Interfaces, 2019, 11, 2935-2943.	4.0	13
728	Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb–Ba Cations for High-Performance Photovoltaic Applications. Journal of Physical Chemistry Letters, 2019, 10, 59-66.	2.1	44
729	A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results in Physics, 2019, 12, 1097-1103.	2.0	90

#	Article	IF	CITATIONS
730	Understanding macroscale functionality of metal halide perovskites in terms of nanoscale heterogeneities. JPhys Energy, 2019, 1, 011002.	2.3	3
731	Tuning Bandgap of Mixedâ€Halide Perovskite for Improved Photovoltaic Performance Under Monochromaticâ€Light Illumination. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800727.	0.8	8
732	Enhanced Photovoltaic Performance and Thermal Stability of CH ₃ NH ₃ Pbl ₃ Perovskite through Lattice Symmetrization. ACS Applied Materials & Interfaces, 2019, 11, 740-746.	4.0	20
733	Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties. Solar Energy Materials and Solar Cells, 2019, 191, 33-38.	3.0	90
734	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	2.5	133
735	Enhancing perovskite quality and energy level alignment of TiO2 nanorod arrays-based solar cells via interfacial modification. Solar Energy Materials and Solar Cells, 2019, 191, 183-189.	3.0	19
736	Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells. Advanced Materials, 2019, 31, e1805438.	11.1	41
737	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
738	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
739	Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. Organic Electronics, 2019, 67, 89-94.	1.4	23
740	Are Chalcogenide Perovskites an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell?. Chemistry of Materials, 2019, 31, 565-575.	3.2	88
741	Mechanism for the Extremely Efficient Sensitization of Yb ³⁺ Luminescence in CsPbCl ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 487-492.	2.1	55
742	Stable, color-tunable 2D SCN-based perovskites: revealing the critical influence of an asymmetric pseudo-halide on constituent ions. Nanoscale, 2019, 11, 2608-2616.	2.8	22
743	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	23.0	454
744	Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 2019, 90, 171-181.	1.9	4
745	Stabilizing RbPbBr ₃ Perovskite Nanocrystals through Cs ⁺ Substitution. Chemistry - A European Journal, 2019, 25, 2597-2603.	1.7	25
746	High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer. Journal of the American Chemical Society, 2019, 141, 541-547.	6.6	189
747	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	18.7	845

#	Article	IF	CITATIONS
748	Theoretical study on photoelectric properties of lead-free mixed inorganic perovskite RbGe1-xSnxI3. Current Applied Physics, 2019, 19, 279-284.	1.1	42
749	Stacking effect on electronic, photocatalytic and optical properties: A comparison between bilayer and monolayer SnS. Computational Materials Science, 2019, 158, 272-281.	1.4	28
750	Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158.	2.5	93
751	Fabrication of Photodiodes Based on Solution-Processed Perovskite Single Crystals. IEEE Transactions on Electron Devices, 2019, 66, 485-490.	1.6	7
752	Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden–Popper Faults in Cesium Lead Bromide Perovskite. Advanced Materials, 2019, 31, e1805047.	11.1	72
753	Merits and Challenges of Ruddlesden–Popper Soft Halide Perovskites in Electroâ€Optics and Optoelectronics. Advanced Materials, 2019, 31, e1803514.	11.1	82
754	High-symmetry tin(II) iodides as promising light absorbers for solar cells: A theoretical prediction. Computational Materials Science, 2019, 156, 246-251.	1.4	2
755	"Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803230.	11.1	345
756	Lead-free perovskite based bismuth for solar cells absorbers. Journal of Alloys and Compounds, 2019, 773, 796-801.	2.8	29
757	Bleifreie Halogenidâ€Perowskitâ€Nanokristalle: Kristallstrukturen, Synthese, StabilitÃæn und optische Eigenschaften. Angewandte Chemie, 2020, 132, 1042-1059.	1.6	22
758	Leadâ€Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angewandte Chemie - International Edition, 2020, 59, 1030-1046.	7.2	320
759	Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112141.	2.0	47
760	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
761	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	10.2	87
762	A Review on Reducing Grain Boundaries and Morphological Improvement of Perovskite Solar Cells from Methodology and Materialâ€Based Perspectives. Small Methods, 2020, 4, 1900569.	4.6	56
763	Verringerung schÃ ë licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€ S olarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
764	Free Carrier, Exciton, and Phonon Dynamics in Leadâ€Halide Perovskites Studied with Ultrafast Terahertz Spectroscopy. Advanced Optical Materials, 2020, 8, 1900783.	3.6	39
765	Solutionâ€Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials, 2020, 10, 1900903.	10.2	44

#	Article	IF	CITATIONS
766	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
767	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9
768	Enhancement in structural and optical properties of Cd doped hybrid organic-inorganic halide perovskite CH3NH3Pb1-xCdxI3 photo-absorber. Materials Chemistry and Physics, 2020, 241, 122387.	2.0	12
769	Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy, 2020, 67, 104267.	8.2	35
770	Twoâ€ŧerminal Perovskite silicon tandem solar cells with a highâ€Bandgap Perovskite absorber enabling voltages over 1.8ÂV. Progress in Photovoltaics: Research and Applications, 2020, 28, 99-110.	4.4	63
771	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	8.8	68
772	Defectâ€Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900529.	3.1	40
773	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	6.4	345
774	Influence of morphology on photoluminescence properties of methylammonium lead tribromide films. Journal of Luminescence, 2020, 220, 117033.	1.5	8
775	Designing solar-cell absorber materials through computational high-throughput screening*. Chinese Physics B, 2020, 29, 028803.	0.7	6
776	Bi ₃ TaO ₇ film: a promising photoelectrode for photoelectrochemical water splitting. Dalton Transactions, 2020, 49, 147-155.	1.6	11
777	Ferroelastic domains drive charge separation and suppress electron–hole recombination in all-inorganic halide perovskites: time-domain <i>ab initio</i> analysis. Nanoscale Horizons, 2020, 5, 683-690.	4.1	20
778	Elucidating the mechanisms underlying PCBM enhancement of CH3NH3PbI3 perovskite solar cells using GIXRD and XAFS. Journal of Materials Chemistry A, 2020, 8, 3145-3153.	5.2	17
779	Sacrificial additive-assisted film growth endows self-powered CsPbBr ₃ photodetectors with ultra-low dark current and high sensitivity. Journal of Materials Chemistry C, 2020, 8, 209-218.	2.7	28
780	Interface modification of sputtered NiO _x as the hole-transporting layer for efficient inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1972-1980.	2.7	66
781	Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1PbnI3n+1. Journal of Luminescence, 2020, 220, 116981.	1.5	6
782	Ferroelectricity in Ethylammonium Bismuth-Based Organic–Inorganic Hybrid: (C ₂ H ₅ NH ₃) ₂ [BiBr ₅]. Inorganic Chemistry, 2020, 59, 3417-3427.	1.9	37
783	Aurivillius Halide Perovskite: A New Family of Two-Dimensional Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2020, 124, 1788-1793.	1.5	13

#	Article	IF	CITATIONS
784	Insight into the Improved Phase Stability of CsPbI3 from First-Principles Calculations. ACS Omega, 2020, 5, 893-896.	1.6	34
785	Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1904347.	11.1	172
786	Bionic Detectors Based on Lowâ€Bandgap Inorganic Perovskite for Selective NIRâ€I Photon Detection and Imaging. Advanced Materials, 2020, 32, e1905362.	11.1	83
787	Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Applied Materials & Interfaces, 2020, 12, 2417-2423.	4.0	40
788	From Pb to Bi: A Promising Family of Pbâ€Free Optoelectronic Materials and Devices. Advanced Energy Materials, 2020, 10, 1902496.	10.2	108
789	Reconstructed transparent conductive layers of fluorine doped tin oxide for greatly weakened hysteresis and improved efficiency of perovskite solar cells. Chemical Communications, 2020, 56, 129-132.	2.2	5
790	Hysteresis effects on carrier transport and photoresponse characteristics in hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 1962-1971.	2.7	13
791	Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale, 2020, 12, 3686-3691.	2.8	35
792	Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr ₃ Films for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 1944-1952.	4.0	33
793	Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr ₃ Surfaces. Journal of Physical Chemistry C, 2020, 124, 1484-1491.	1.5	15
794	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	10.2	84
795	Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 698-705.	4.0	36
796	Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy and Environmental Science, 2020, 13, 1187-1196.	15.6	129
797	Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High-Performance Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 196-203.	7.3	64
798	Recent Developments in Leadâ€Free Double Perovskites: Structure, Doping, and Applications. Chemistry - an Asian Journal, 2020, 15, 242-252.	1.7	74
799	Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy, 2020, 68, 104321.	8.2	70
800	Inhomogeneous Doping of Perovskite Materials by Dopants from Hole-Transport Layer. Matter, 2020, 2, 261-272.	5.0	38
801	Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results in Physics, 2020, 16, 102839.	2.0	128

#	Article	IF	Citations
802	Crystallographic orientation and layer impurities in two-dimensional metal halide perovskite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 010801.	0.9	19
803	Radical Molecular Modulator for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2020, 8, 825.	1.8	9
804	Self-healing perovskite solar cells. Solar Energy, 2020, 209, 408-414.	2.9	41
805	Halide Perovskite Solar Cells with Biocompatibility. Advanced Energy and Sustainability Research, 2020, 1, 2000028.	2.8	10
806	ABX ₃ -type lead-free perovskites using superatom ions with tunable photovoltaic performances. Journal of Materials Chemistry A, 2020, 8, 21993-22000.	5.2	8
807	Reversible solid-state phase transitions in confined two-layer colloidal crystals. Colloid and Polymer Science, 2020, 298, 1611-1617.	1.0	0
808	Defect and interface engineering of highly efficient La2NiMnO6 planar perovskite solar cell: A theoretical study. Optical Materials, 2020, 108, 110453.	1.7	13
809	Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy and Environmental Science, 2020, 13, 4057-4086.	15.6	241
810	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
811	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	7.8	78
812	Control over Crystal Size in Vapor Deposited Metal-Halide Perovskite Films. ACS Energy Letters, 2020, 5, 710-717.	8.8	72
813	A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal of Materials Chemistry A, 2020, 8, 16166-16188.	5.2	130
814	Charge Transport Layer-Dependent Electronic Band Bending in Perovskite Solar Cells and Its Correlation to Light-Induced Device Degradation. ACS Energy Letters, 2020, 5, 2580-2589.	8.8	39
815	A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Scientific Reports, 2020, 10, 20097.	1.6	48
816	How the Structures and Properties of Pristine and Anion Vacancy Defective Organic–Inorganic Hybrid Double Perovskites MA ₂ AgIn(Br _{<i>x</i>} I _{1–<i>x</i>}) ₆ Vary with Br Content <i>x</i> . Journal of Physical Chemistry Letters, 2020, 11, 10315-10322.	2.1	6
817	Hierarchical Structures from Nanocrystalline Colloidal Precursors within Hybrid Perovskite Thin Films: Implications for Photovoltaics. ACS Applied Nano Materials, 2020, 3, 11701-11708.	2.4	7
818	Efficient Emission in Halide Layered Double Perovskites: The Role of Sb ³⁺ Substitution in Cs ₄ Cd _{1–<i>x</i>} Mn _{<i>x</i>} Bi ₂ Cl ₁₂ Phosphors. Journal of Physical Chemistry Letters, 2020, 11, 10362-10367.	2.1	26
819	Low Defect Density and Anisotropic Charge Transport Enhanced Photo Response in Pseudo-cubic Morphology of MAPbI ₃ Single Crystals. ACS Applied Energy Materials, 2020, 3, 10525-10532.	2.5	13

ARTICLE IF CITATIONS # Fabrication of Thin Films from Powdered Cesium Lead Bromide (CsPbBr₃) Perovskite 820 26 1.6 Quantum Dots for Coherent Green Light Emission. ACS Omega, 2020, 5, 30111-30122. Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. 1.5 Journal of Physical Chemistry C, 2020, 124, 24608-24615. Tin Oxynitride-Based Ferroelectric Semiconductors for Solar Energy Conversion Applications. 822 3.2 15 Chemistry of Materials, 2020, 32, 9542-9550. Atomic Model for Alkali Metal Passivation of Point Defects at Perovskite Grain Boundaries. ACS Energy Letters, 2020, 5, 3813-3820. Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite 824 11.7 152 Photovoltaics. Joule, 2020, 4, 1961-1976. <scp>Heterojunctionâ€Type</scp> Photocatalytic System Based on Inorganic Halide Perovskite <scp>CsPbBr₃</scp>^{â€}. Chinese Journal of Chemistry, 2020, 38, 1718-1722. 2.6 16 Nanoscale Studies at the Early Stage of Water-Induced Degradation of 826 CH₃NH₃Pbl₃Perovskite Films Used for Photovoltaic Applications. 2.4 5 ACS Applied Nano Materials, 2020, 3, 8268-8277. Searching for stable perovskite solar cell materials using materials genome techniques and 827 2.7 high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035. Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific 828 3.131 Defects. Solar Rrl, 2020, 4, 2000308. High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918. 1,480 A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. 830 11.7 111 Joule, 2020, 4, 1977-1987. Denatured M13 Bacteriophageâ€Templated Perovskite Solar Cells Exhibiting High Efficiency. Advanced 5.6 Science, 2020, 7, 2000782. Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy, 2020, 77, 832 8.2 24 105182. Electronic and Optical Modulation of Metal-Doped Hybrid Organic–Inorganic Perovskites Crystals by 2.5 Post-Treatment Control. ACS Applied Energy Materials, 2020, 3, 7500-7511. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. 834 307 8.8 ACS Energy Letters, 2020, 5, 2742-2786. Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS₃ (A =) Tj ETQq0 0 0 ggBT /Overlock 10 Tf 836

837	Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of Power Sources, 2020, 479, 229077.	4.0	10
-----	--	-----	----

#	Article	IF	CITATIONS
838	The Emergence of Halide Layered Double Perovskites. ACS Energy Letters, 2020, 5, 3591-3608.	8.8	88
839	Electronic and geometrical parametrization of the role of organic/inorganic cations on the photovoltaic perovskite band gap. Physical Chemistry Chemical Physics, 2020, 22, 27757-27769.	1.3	7
840	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
841	Leadâ€halides Perovskite Visible Light Photoredox Catalysts for Organic Synthesis. Chemical Record, 2020, 20, 1181-1197.	2.9	10
842	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	7.8	17
843	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002176.	11.1	55
844	Effect of Polyethylene Glycol Incorporation in Electron Transport Layer on Photovoltaic Properties of Perovskite Solar Cells. Nanomaterials, 2020, 10, 1753.	1.9	12
845	Defect Dynamics in MAPbI ₃ Polycrystalline Films: The Trapping Effect of Grain Boundaries. Helvetica Chimica Acta, 2020, 103, e2000110.	1.0	10
846	Perovskite Solar Cells: Stable under Space Conditions. Solar Rrl, 2020, 4, 2000447.	3.1	14
847	TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18549-18557.	1.8	25
848	Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy and Environmental Science, 2020, 13, 4691-4716.	15.6	47
849	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
850	Phenomenological mechanisms of hybrid organic–inorganic perovskite thin film deposition by RIR-MAPLE. Journal of Applied Physics, 2020, 128, 105303.	1.1	3
851	3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance. Materials, 2020, 13, 3868.	1.3	25
852	Recent Progress in Metal Halide Perovskiteâ€Based Tandem Solar Cells. Advanced Materials, 2020, 32, e2002228.	11.1	39
853	Hot Carrier Cooling and Recombination Dynamics of Chlorine-Doped Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 8430-8436.	2.1	11
854	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
855	Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Scientific Reports, 2020, 10, 14391.	1.6	78

#	Article	IF	CITATIONS
856	Potassium doping-induced variations in the structures and photoelectric properties of a MAPbl ₃ perovskite and a MAPbl ₃ /TiO ₂ junction. Physical Chemistry Chemical Physics, 2020, 22, 20553-20561.	1.3	6
857	Impacts of carrier trapping and ion migration on charge transport of perovskite solar cells with TiO _x electron transport layer. RSC Advances, 2020, 10, 28083-28089.	1.7	4
858	Octahedron rotation evolution in 2D perovskites and its impact on optoelectronic properties: the case of Ba–Zr–S chalcogenides. Materials Horizons, 2020, 7, 2985-2993.	6.4	11
859	Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical Society, 2020, 142, 21595-21614.	6.6	32
860	Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Materials, 2020, 12, .	3.8	88
861	Regulating off-centering distortion maximizes photoluminescence in halide perovskites. National Science Review, 2021, 8, nwaa288.	4.6	70
862	Room-temperature Magnetoresistance in Hybrid Halide Perovskites: Effect of Spin-Orbit Coupling. Physical Review Applied, 2020, 14, .	1.5	3
863	Perovskite quantum dot solar cells: Mapping interfacial energetics for improving charge separation. Nano Energy, 2020, 78, 105319.	8.2	31
864	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	11.1	39
865	Minimizing Defect States in Lead Halide Perovskite Solar Cell Materials. Applied Sciences (Switzerland), 2020, 10, 3061.	1.3	37
866	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
867	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 26050-26059.	4.0	26
868	Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Applied Materials & Interfaces, 2020, 12, 26776-26811.	4.0	89
869	Pbâ€Based Halide Perovskites: Recent Advances in Photo(electro)catalytic Applications and Looking Beyond. Advanced Functional Materials, 2020, 30, 1909667.	7.8	77
870	The Performance Improvement of Using Hole Transport Layer with Lithium and Cobalt for Inverted Planar Perovskite Solar Cell. Coatings, 2020, 10, 354.	1.2	5
871	Elastic and electronic origins of strain stabilized photovoltaic γ-CsPbl ₃ . Physical Chemistry Chemical Physics, 2020, 22, 12706-12712.	1.3	21
872	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5.2	149
873	Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002333.	11.1	48

#	Article	IF	CITATIONS
874	Asymmetric Benzotrithiophene-Based Hole Transporting Materials Provide High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, , .	4.0	8
875	Green perovskite light-emitting diodes with simultaneous high luminance and quantum efficiency through charge injection engineering. Science Bulletin, 2020, 65, 1832-1839.	4.3	24
876	Understanding the role of Sn substitution and Pb-â—; in enhancing the optical properties and solar cell efficiency of CH(NH ₂) ₂ Pb _{1â^'xâ^'y} Sn _x â—; _y Br ₃ . Journal of Materials Chemistry C, 2020, 8, 10362-10368.	2.7	13
877	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	4.0	68
878	Reversible Release and Fixation of Bromine in Vacancyâ€Ordered Bromide Perovskites. Energy and Environmental Materials, 2020, 3, 535-540.	7.3	23
879	Theoretical Design for the Non-Toxic and Earth-Abundant Perovskite Solar Cell Absorber Materials. Frontiers in Materials, 2020, 7, .	1.2	3
880	Post-treatment techniques for high-performance perovskite solar cells. MRS Bulletin, 2020, 45, 431-438.	1.7	11
882	Type-II band alignment AlN/InSe van der Waals heterostructure: Vertical strain and external electric field. Applied Surface Science, 2020, 528, 146782.	3.1	26
883	Hybrid 2D [Pb(CH ₃ NH ₂)I ₂] _{<i>n</i>} Coordination Polymer Precursor for Scalable Perovskite Deposition. ACS Energy Letters, 2020, 5, 2305-2312.	8.8	18
884	<i>Ab Initio</i> Discovery of Stable Double Perovskite Oxides Na ₂ BIO ₆ (B = Bi,) Tj ETQo	1 1 0.784 2.1	-314 rgBT /C
885	Pin-Hole-Free, Homogeneous, Pure CsPbBr3 Films on Flat Substrates by Simple Spin-Coating Modification. Frontiers in Energy Research, 2020, 8, .	1.2	5
886	All-inorganic perovskite CsPbI2Br as a promising photovoltaic absorber: a first-principles study. Journal of Chemical Sciences, 2020, 132, 1.	0.7	8
887	Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy, 2020, 76, 104999.	8.2	20
888	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
889	Exciton Character and Highâ€Performance Stimulated Emission of Hybrid Lead Bromide Perovskite Polycrystalline Film. Advanced Optical Materials, 2020, 8, 1902026.	3.6	22
890	Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 3533-3539.	1.0	36
891	Insights into Twinning Formation in Cubic and Tetragonal Multi-cation Mixed-Halide Perovskite. , 2020, 2, 415-424.		17
892	A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020, 201, 227-246.	2.9	243

	CITATION	CITATION REPORT	
#	ARTICLE	IF	Citations
893	Photoinduced Anion Segregation in Mixed Halide Perovskites. Trends in Chemistry, 2020, 2, 282-301.	4.4	141
894	Reducing lead toxicity in the methylammonium lead halide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">MAPbl <mml:mn> 3 </mml:mn> </mml:mi </mml:msub> : Why Sn substitution should be preferred to Pb vacancy for optimum solar cell efficiency. Physical Review B,</mml:math 	1.1	25
895	First-principles calculations on CuInSe ₂ /AlP heterostructures. Journal of Materials Chemistry C, 2020, 8, 4732-4742.	2.7	7
896	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. Nano Letters, 2020, 20, 3718-3727.	4.5	65
897	Role of Exciton Binding Energy on LO Phonon Broadening and Polaron Formation in (BA)2PbI4 Ruddlesden–Popper Films. Journal of Physical Chemistry C, 2020, 124, 9496-9505.	1,5	18
898	Degradation Mechanism of Perovskite Lightâ€Emitting Diodes: An In Situ Investigation via Electroabsorption Spectroscopy and Device Modelling. Advanced Functional Materials, 2020, 30, 1910464.	7.8	41
899	Solution preparation of molybdenum oxide on graphene: a hole transport layer for efficient perovskite solar cells with a 1.12ÂV high open-circuit voltage. Journal of Materials Science: Materials in Electronics, 2020, 31, 6248-6254.	1.1	10
900	Back-interface regulation for carbon-based perovskite solar cells. Carbon, 2020, 168, 372-391.	5.4	33
901	Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells. ACS Photonics, 2020, 7, 1893-1907.	3.2	34
902	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
903	Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy. Nature Communications, 2020, 11, 3308.	5.8	53
904	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	1.3	10
905	Easy Strategy to Enhance Thermal Stability of Planar PSCs by Perovskite Defect Passivation and Low-Temperature Carbon-Based Electrode. ACS Applied Materials & Interfaces, 2020, 12, 32536-32547.	4.0	28
906	Automated Scalable Spray Coating of SnO ₂ for the Fabrication of Lowâ€Temperature Perovskite Solar Cells and Modules. Energy Technology, 2020, 8, 1901284.	1.8	34
907	Recent Progress on Cu 2 BaSn(S x Se 1– x) 4 : From Material to Solar Cell Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000060.	0.8	4
908	A study of structural and dielectric properties of Ba2+ doped CH3NH3PbI3 crystals. SN Applied Sciences, 2020, 2, 1.	1.5	4
909	Improving electron extraction ability and suppressing recombination of planar perovskite solar cells with the triple cascade electron transporting layer. Solar Energy Materials and Solar Cells, 2020, 208, 110419.	3.0	5
910	Suppression of Iodide Ion Migration via Sb ₂ S ₃ Interfacial Modification for Stable Inorganic Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 12867-12873.	4.0	32

ARTICLE IF CITATIONS # Mixed-Cation Mixed-Metal Halide Perovskites for Photovoltaic Applications: A Theoretical Study. ACS 911 13 1.6 Omega, 2020, 5, 4347-4351. Formation of stable 2D methylammonium antimony iodide phase for lead-free perovskite-like solar 2.3 cells^{*}. JPhys Energy, 2020, 2, 024007. 913 Quest for Lead-Free Perovskite-Based Solar Cells., 2020, , . 0 Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar 914 cells. Superlattices and Microstructures, 2020, 140, 106463. Narrowing band gap and enhanced visible-light absorption of metal-doped non-toxic CsSnCl₃ metal halides for potential optoelectronic applications. RSC Advances, 2020, 10, 915 1.7 54 7817-7827. Dominant effect of the grain size of the MAPbI₃ perovskite controlled by the surface roughness of TiO₂ on the performance of perovskite solar cells. CrystEngComm, 2020, 22, 1.3 2718-2727. The phototransport in halide perovskites: From basic physics to applications. Journal of Applied 917 1.1 5 Physics, 2020, 127, 085103. Insight into the topological phase and elastic properties of halide perovskites CsSnX3 (X = I, Br, Cl) 918 1.1 38 under hydrostatic pressures. Journal of Applied Physics, 2020, 127, . Enhancing photoluminescence quantum efficiency of metal halide perovskites by examining 919 2.2 22 luminescence-limiting factors. APL Materials, 2020, 8, . Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Science Advances, 2020, 6, eaaw7453. Strategies for Improving the Stability of Tinâ€Based Perovskite (ASnX₃) Solar Cells. 921 123 5.6 Advanced Science, 2020, 7, 1903540. An Effective Strategy for Photoelectric Performance Enhancement of 2D Perovskite via Halogenating Organic Cation: A Theoretical Prediction. Physica Status Solidi (B): Basic Research, 2020, 257, 1900599. Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their 923 3.0 27 application in solar cells. Solar Energy Materials and Solar Cells, 2020, 210, 110478. Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of 924 1.2 Chemical Physics, 2020, 152, 064707. Structural stability and optoelectronic properties of tetragonal MAPbI₃ under strain. 925 19 1.3 Nanotechnology, 2020, 31, 225204. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115. Ambient Condition Mg²⁺ Doping Producing Highly Luminescent Green- and Violet-Emitting Perovskite Nanocrystals with Reduced Toxicity and Enhanced Stability. Journal of Physical Chemistry 927 2.193 Letters, 2020, 11, 1178-1188. Highly (100)-oriented CH3NH3PbI3 thin film fabricated by bar-coating method and its additive effect of ammonium chloride. Solar Energy Materials and Solar Cells, 2020, 208, 110409.

#	Article	IF	CITATIONS
929	α-CsPbI ₃ Nanocrystals by Ultraviolet Light-Driven Oriented Attachment. Journal of Physical Chemistry Letters, 2020, 11, 913-919.	2.1	15
930	Interface Engineering of Airâ€Stable nâ€Doping Fullereneâ€Modified TiO ₂ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901964.	1.9	32
932	Soft Lattice and Defect Covalency Rationalize Tolerance of β sPbl ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie - International Edition, 2020, 59, 6435-6441.	7.2	147
933	Mechanism for tunable broadband white photoluminescence of one-dimensional (C4N2H14)2Pb1-xMnxBr4 perovskite microcrystals. Journal of Luminescence, 2020, 221, 117045.	1.5	16
934	Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Materials, 2020, 13, 210.	1.3	23
935	Hybrid Al2O3-CH3NH3Pbl3 Perovskites towards Avoiding Toxic Solvents. Materials, 2020, 13, 243.	1.3	4
936	Soft Lattice and Defect Covalency Rationalize Tolerance of βâ€CsPbl ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie, 2020, 132, 6497-6503.	1.6	8
937	Polyaromatic Nanotweezers on Semiconducting Carbon Nanotubes for the Growth and Interfacing of Lead Halide Perovskite Crystal Grains in Solar Cells. Chemistry of Materials, 2020, 32, 5125-5133.	3.2	45
938	Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7, 1901-1911.	6.4	68
939	Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13, 1156-1161.	5.8	17
940	Effect of deposition method on the structural and optical properties of CH3NH3PbI3 perovskite thin films. Optical Materials, 2020, 103, 109836.	1.7	64
941	Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.	6.6	57
942	Frenkel–Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid organic–inorganic perovskites. Journal of Chemical Physics, 2020, 152, 144702.	1.2	8
943	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	1.9	34
944	Fabrication and TCAD validation of ambient air-processed ZnO NRs/CH3NH3PbI3/spiro-OMeTAD solar cells. Superlattices and Microstructures, 2020, 143, 106540.	1.4	12
945	An Environmentally Stable Organic–Inorganic Hybrid Perovskite Containing Py Cation with Low Trap-State Density. Crystals, 2020, 10, 272.	1.0	7
946	Electrochemical Deposition of Organometallic Halide Perovskite Single-Crystal Particles with Density Gradients and Their Stability, Fluorescence, and Photoelectrochemical Properties. Journal of Physical Chemistry C, 2020, 124, 10659-10668.	1.5	10
947	Discovery of Novel Two-Dimensional Photovoltaic Materials Accelerated by Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 3075-3081.	2.1	35

#	Article	IF	CITATIONS
948	Surface Engineering of Allâ€Inorganic Perovskite Quantum Dots with Quasi Coreâ^'Shell Technique for Highâ€Performance Photodetectors. Advanced Materials Interfaces, 2020, 7, 2000360.	1.9	34
949	Charge localization control of electron–hole recombination in multilayer two-dimensional Dion〓Jacobson hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 9168-9176.	5.2	38
950	Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. Journal of Energy Chemistry, 2021, 55, 265-271.	7.1	50
951	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie - International Edition, 2021, 60, 9772-9788.	7.2	11
952	Highâ€Performance Quasiâ€2D Perovskite/Singleâ€Walled Carbon Nanotube Phototransistors for Lowâ€Cost and Sensitive Broadband Photodetection. Small Structures, 2021, 2, 2000084.	6.9	26
953	Molecularâ€Level Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity. Small Methods, 2021, 5, e2000834.	4.6	30
954	Effect of pressure on the mechanical, electronic and optical characters of CsSnBr ₃ and CsSnI ₃ : <i>ab-initio</i> study. Modern Physics Letters B, 2021, 35, 2150056.	1.0	11
955	Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 219-229.	2.5	19
956	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.	6.9	43
957	Perovskite Nanocrystalsâ€Based Heterostructures: Synthesis Strategies, Interfacial Effects, and Photocatalytic Applications. Solar Rrl, 2021, 5, 2000419.	3.1	20
958	Structural, electronic and optical properties of lead-free antimony-copper based hybrid double perovskites for photovoltaics and optoelectronics by first principles calculations. Computational Materials Science, 2021, 186, 110009.	1.4	30
959	Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials, 2021, 20, 55-61.	13.3	126
960	Hybrid structure of ionic liquid and ZnO nano clusters for potential application in dye-sensitized solar cells. Journal of Molecular Liquids, 2021, 322, 114538.	2.3	22
961	Recent advances in resistive random access memory based on lead halide perovskite. InformaÄnÃ- Materiály, 2021, 3, 293-315.	8.5	70
962	In CH ₃ NH ₃ PbI ₃ Perovskite Film, the Surface Termination Layer Dominates the Moisture Degradation Pathway. Chemistry - A European Journal, 2021, 27, 3729-3736.	1.7	10
963	Exotic Structural and Optoelectronic Properties of Layered Halide Double Perovskite Polymorphs. Advanced Functional Materials, 2021, 31, 2008620.	7.8	5
964	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
965	Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Research, 2021, 14, 1210-1217.	5.8	58

#	Article	IF	CITATIONS
966	The effects of cation and halide anion on the electronic and optical properties of Ti-based double perovskite: A first-principles calculations. Journal of Physics and Chemistry of Solids, 2021, 150, 109852.	1.9	9
967	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .	1.0	15
968	Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 199-211.	2.5	29
969	Structural Properties and Stability of Inorganic CsPbl ₃ Perovskites. Small Structures, 2021, 2, 2000089.	6.9	39
970	Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule, 2021, 5, 467-480.	11.7	245
971	Insights into Large cale Fabrication Methods in Perovskite Photovoltaics. Advanced Energy and Sustainability Research, 2021, 2, 2000046.	2.8	27
972	Enhanced efficiency and stability of planar perovskite solar cells using SnO2:InCl3 electron transport layer through synergetic doping and passivation approaches. Chemical Engineering Journal, 2021, 407, 127997.	6.6	65
973	Design of Low Crystallinity Spiro-Typed Hole Transporting Material for Planar Perovskite Solar Cells to Achieve 21.76% Efficiency. Chemistry of Materials, 2021, 33, 285-297.	3.2	57
974	Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). Materials Science in Semiconductor Processing, 2021, 122, 105484.	1.9	67
975	Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angewandte Chemie, 2021, 133, 9856-9872.	1.6	0
976	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
977	The Dion–Jacobson perovskite CsSbCl ₄ : a promising Pb-free solar-cell absorber with optimal bandgap â^¼1.4 eV, strong optical absorption â^¼10 ⁵ cm ^{â°'1} , and large power-conversion efficiency above 20%. Journal of Materials Chemistry A, 2021, 9, 16436-16446.	5.2	13
978	SMART Perovskite Growth: Enabling a Larger Range of Process Conditions. ACS Energy Letters, 2021, 6, 650-658.	8.8	14
979	4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cell. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, , 199.	0.6	1
980	Room Temperature Processed Double Electron Transport Layers for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 329.	1.9	9
981	Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X = Cl, Br, I) for energy applications. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	46
982	Perovskite solar cells: A review of architecture, processing methods, and future prospects. , 2021, , 375-412.		6
983	The nonlinear optical transition bleaching in tellurene. Nanoscale, 2021, 13, 15882-15890.	2.8	10

#	Article	IF	CITATIONS
984	Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustainable Energy and Fuels, 2021, 5, 1255-1279.	2.5	14
985	<i>Ab initio</i> nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale, 2021, 13, 10239-10265.	2.8	70
986	Room-temperature synthesis, growth mechanisms and opto-electronic properties of organic–inorganic halide perovskite CH ₃ NH ₃ PbX ₃ (X = I, Br, and) Tj ET	QqD30 0 rg	ßÐ/Overlock
987	Pressureâ€Induced Perovskiteâ€toâ€nonâ€Perovskite Phase Transition in CsPbBr 3. Helvetica Chimica Acta, 2021, 104, e2000222.	1.0	8
988	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
989	First-principles study of defect control in thin-film solar cell materials. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	17
990	ZnS/CdX (X = S, Se, Te) core/shell nanowires: an attempt at tuning the electronic bandgaps and SQ efficiencies. Journal of Materials Chemistry C, 2021, 9, 6605-6617.	2.7	4
991	Recent progress in tin-based perovskite solar cells. Energy and Environmental Science, 2021, 14, 1286-1325.	15.6	257
992	High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor Deposition. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.1	3
993	Challenges in tin perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23413-23427.	1.3	27
994	Compositional engineering solutions for decreasing trap state density and improving thermal stability in perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 14047-14064.	2.7	11
995	Radiation hardness and abnormal photoresponse dynamics of the CH ₃ NH ₃ PbI ₃ perovskite photodetector. Journal of Materials Chemistry C, 2021, 9, 2095-2105.	2.7	11
996	Understanding liquefaction in halide perovskites upon methylamine gas exposure. RSC Advances, 2021, 11, 20423-20428.	1.7	1
997	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021, 49, 123-144.	8.3	57
998	Tuning Ionic and Electronic Conductivities in the "Hollow―Perovskite { <i>en</i> }MAPbI ₃ . Chemistry of Materials, 2021, 33, 719-726.	3.2	24
999	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	2.8	47
1000	Research Progress of Composition and Structure Design in Perovskites for High Performance Light-emitting Diodes. Acta Chimica Sinica, 2021, 79, 223.	0.5	4
1001	Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale, 2021, 13, 746-752.	2.8	12

#	Article	IF	CITATIONS
1002	Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Material Advances, 2021, 2021, .	4.7	43
1003	Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nature Energy, 2021, 6, 194-202.	19.8	52
1004	The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied Sciences (Switzerland), 2021, 11, 1453.	1.3	11
1005	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
1006	Carbon Nanoparticles as Versatile Auxiliary Components of Perovskiteâ€Based Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2010768.	7.8	31
1007	Methylammonium Chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors. Journal of Materials Science, 2021, 56, 9242-9253.	1.7	11
1008	Achieving Optical Gain of the CsPbBr ₃ Perovskite Quantum Dots and Influence of the Variable Stripe Length Method. ACS Omega, 2021, 6, 5297-5309.	1.6	21
1009	Use of Sodium Diethyldithiocarbamate to Enhance the Openâ€Circuit Voltage of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000811.	3.1	5
1010	Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden–Popper perovskite photodetectors. Nanotechnology, 2021, 32, 185203.	1.3	10
1011	3D structure–property correlations of electronic and energy materials by tomographic atomic force microscopy. Applied Physics Letters, 2021, 118, .	1.5	11
1012	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	8.8	81
1013	Lead-Free Metal Halide Perovskites for Hydrogen Evolution from Aqueous Solutions. Nanomaterials, 2021, 11, 433.	1.9	22
1014	Recent progress in two-dimensional Ruddlesden–Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	2.0	19
1015	Investigation of Defectâ€Tolerant Perovskite Solar Cells with Longâ€Term Stability via Controlling the Selfâ€Doping Effect. Advanced Energy Materials, 2021, 11, 2100555.	10.2	38
1016	DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chemical Physics Letters, 2021, 766, 138347.	1.2	68
1017	Effects of Fe doping on the visible light absorption and bandgap tuning of lead-free (CsSnCl3) and lead halide (CsPbCl3) perovskites for optoelectronic applications. AIP Advances, 2021, 11, .	0.6	20
1018	Role and Contribution of Polymeric Additives in Perovskite Solar Cells: Crystal Growth Templates and Grain Boundary Passivators. Solar Rrl, 2021, 5, 2000783.	3.1	35
1019	Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance. Advanced Science, 2021, 8, 2004593.	5.6	57

#	Article	IF	CITATIONS
1020	Three-dimensional self-attaching perovskite quantum dots/polymer platform for efficient solar-driven CO2 reduction. Materials Today Physics, 2021, 17, 100358.	2.9	11
1021	Elucidating the Role of Ion Migration and Band Bending in Perovskite Solar Cell Function at Grain Boundaries via Multimodal Nanoscale Mapping. Advanced Materials Interfaces, 2021, 8, 2001992.	1.9	13
1022	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	1.5	16
1023	Understanding the "Molten Salt―Synthesis of MAPbI ₃ – Characterization of New Lead(II)â€Ammine Complexes as Intermediates. European Journal of Inorganic Chemistry, 2021, 2021, 1490-1497.	1.0	7
1024	Green Solvent-Based Perovskite Precursor Development for Ink-Jet Printed Flexible Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 3920-3930.	3.2	23
1025	Tin Oxide Electronâ€ S elective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005504.	11.1	196
1026	Lead-free and electron transport layer-free perovskite yarns: Designed for knitted solar fabrics. Chemical Engineering Journal, 2021, 410, 128384.	6.6	15
1027	Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS Applied Materials & Interfaces, 2021, 13, 16567-16575.	4.0	10
1028	Solution and <scp>Solidâ€Phase</scp> Growth of Bulk Halide Perovskite Single Crystals. Chinese Journal of Chemistry, 2021, 39, 1353-1363.	2.6	9
1029	A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications. Molecules, 2021, 26, 2010.	1.7	23
1030	Characterization on Highly Efficient Perovskite Solar Cells Made from One tep and Two tep Solution Processes. Solar Rrl, 2021, 5, 2100109.	3.1	3
1031	Investigation of the Surface Passivation Effect on the Optical Properties of CsPbBr3 Perovskite Quantum Dots. Surfaces and Interfaces, 2021, 23, 100948.	1.5	15
1032	Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Frontiers of Optoelectronics, 2021, 14, 252-259.	1.9	66
1033	Band-Edge Orbital Engineering of Perovskite Semiconductors for Optoelectronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 4227-4239.	2.1	50
1034	Guanidinium tin halide perovskites: structural, electronic, and thermodynamic properties by quantum chemical study. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1035	Encapsulated Passivation of Perovskite Quantum Dot (CsPbBr3) Using a Hot-Melt Adhesive (EVA-TPR) for Enhanced Optical Stability and Efficiency. Crystals, 2021, 11, 419.	1.0	8
1036	High-Performance Photodetectors Based on Nanostructured Perovskites. Nanomaterials, 2021, 11, 1038.	1.9	27
1037	Quantum Dots for Photovoltaics: A Tale of Two Materials. Advanced Energy Materials, 2021, 11, 2100354.	10.2	77

ARTICLE IF CITATIONS Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells 1038 4.0 20 and Modules. ACS Applied Materials & amp; Interfaces, 2021, 13, 18724-18732. Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on 8.1 Progress in Physics, 2021, 84, 046401 Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by 1040 correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light: Science and 7.7 34 Applications, 2021, 10, 84. A DFT study of the electronic structure, optical, and thermoelectric properties of halide perovskite KGel3-xBrx materials: photovoltaic applications. Applied Physics A: Materials Science and Processing, 1041 1.1 39 2021, 127, 1 Crystal structure of the high-temperature polymorph of C(NH2)3PbI3 and its thermal decomposition. 1042 2.8 3 Journal of Alloys and Compounds, 2021, 864, 158104. Effect of the structure of lead iodine perovskites on the photovoltaic efficiencies. Journal of Physics and Chemistry of Solids, 2021, 152, 109958. 1043 Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide 1044 11.7 91 perovskite solar cells. Joule, 2021, 5, 1246-1266. Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, 1045 11.1 138 e2005000. Spatiodynamics, Photodynamics, and Their Correlation in Hybrid Perovskites. Chemistry of Materials, 1046 3.2 7 2021, 33, 3524-3533. 1047 Progress of Perovskite Solar Modules. Advanced Energy and Sustainability Research, 2021, 2, 2000051. 2.8 Ion exchange for halide perovskite: From nanocrystal to bulk materials. Nano Select, 2021, 2, 1048 21 1.9 2040-2060. Pressure induced semiconductor to metal phase transition in cubic CsSnBr3 perovskite. AIP Advances, 1049 0.6 29 2021, 11, . Surfactantâ€Free, Oneâ€Step Synthesis of Leadâ€Free Perovskite Hollow Nanospheres for Trace CO 1050 11.1 18 Detection. Advanced Materials, 2021, 33, e2100674. Small grains as recombination hot spots in perovskite solar cells. Matter, 2021, 4, 1683-1701. 5.0 Efficient Direct Band Gap Photovoltaic Material Predicted <i>Via</i> Doping Double Perovskites 1052 1.5 37 Cs₂AgBiX₆ (X = Cl, Br). Journal of Physical Chemistry C, 2021, 125, 10868-10875. SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications. Environment, Development and Sustainability, 2022, 24, 77-111. The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and 1054 10.2 66 their Halide Derivatives. Advanced Energy Materials, 2022, 12, 2100499. Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical 2.1 Chemistry Letters, 2021, 12, 4882-4901.

ARTICLE IF CITATIONS Navigating grain boundaries in perovskite solar cells. Matter, 2021, 4, 1442-1445. 5.0 12 1056 Alternative Loneâ€Pair ns²â€Cationâ€Based Semiconductors beyond Lead Halide Perovskites for 11.1 34 Optoelectronic Applications. Advanced Materials, 2021, 33, e2008574. Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide 1058 1.5 3 Perovskites. Journal of Physical Chemistry C, 2021, 125, 12355-12365. First-Principles Insights into the Stability Difference between ABX₃Halide Perovskites and Their A₂BX₆ Variants. Journal of Physical Chemistry C, 2021, 125, 9688-9694. In the Quest of Lowâ€Frequency Impedance Spectra of Efficient Perovskite Solar Cells. Energy 1060 1.8 16 Technology, 2021, 9, 2100229. Additiveâ€Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101394. 10.2 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 1062 3.1 8 2100191. Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Science China Materials, 1063 3.5 2021, 64, 2976-2986. Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation 1064 2.8 6 in perovskite photovoltaics. Cell Reports Physical Science, 2021, 2, 100450. The critical role of composition-dependent intragrain planar defects in the performance of 19.8 144 MA1–xFAxPbI3 perovskite solar cells. Nature Energy, 2021, 6, 624-632. Stability of Perovskite Thin Films under Working Condition: Biasâ€Dependent Degradation and Grain 1066 7.8 28 Boundary Effects. Advanced Functional Materials, 2021, 31, 2103894. B-Site Columnar-Ordered Halide Double Perovskites: Theoretical Design and Experimental Verification. 6.6 Journal of the American Chemical Society, 2021, 143, 10275-10281. Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of 1068 5.6 23 Environmentalâ€Dependent Impedance Spectroscopy. Advanced Science, 2021, 8, e2002510. Synthetic approaches for thin-film halide double perovskites. Matter, 2021, 4, 1801-1831. 1069 5.0 Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. 1070 5.838 Nature Communications, 2021, 12, 3527. Characterizations and Understanding of Additives Induced Passivation Effects in Narrow-Bandgap 1071 Sn–Pb Alloyed Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 12560-12567. Are Shockley-Read-Hall and ABC models valid for lead halide perovskites?. Nature Communications, 1072 5.841 2021, 12, 3329. Deepâ€Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to 24 Attain High Efficiency over 23%. ChemSusChem, 2021, 14, 3182-3189.

#	Article	IF	CITATIONS
1074	Marked Passivation Effect of Naphthaleneâ€1,8â€Dicarboximides in Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008405.	11.1	116
1075	Perovskite Solar Cells with Polyaniline Hole Transport Layers Surpassing a 20% Power Conversion Efficiency. Chemistry of Materials, 2021, 33, 4679-4687.	3.2	34
1076	Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm ² Active Area. ACS Applied Materials & amp; Interfaces, 2021, 13, 29576-29584.	4.0	22
1077	Electric-Field-Induced Ion Migration Behavior in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 7106-7112.	2.1	10
1078	Unveiling Crystal Orientation in Quasiâ€2D Perovskite Films by In Situ GIWAXS for Highâ€Performance Photovoltaics. Small, 2021, 17, e2100972.	5.2	23
1079	First-Principles Study of Mn-Doped and Nb-Doped CsPbCl ₃ Monolayers as an Absorber Layer in Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 7319-7327.	2.1	15
1080	Effects of pressure on narrowing the band gap, visible light absorption, and semi-metallic transition of lead-free perovskite CsSnBr3 for optoelectronic applications. Journal of Physics and Chemistry of Solids, 2021, 154, 110083.	1.9	33
1081	The Role of Grain Boundaries in Charge Carrier Dynamics in Polycrystalline Metal Halide Perovskites. European Journal of Inorganic Chemistry, 2021, 2021, 3519-3527.	1.0	7
1082	ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES. Surface Review and Letters, 2021, 28, 2140010.	0.5	1
1084	Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration Using Copolymer Grain Encapsulation. Chemistry of Materials, 2021, 33, 6120-6135.	3.2	22
1085	Interfacial Defects Change the Correlation between Photoluminescence, Ideality Factor, and Open ircuit Voltage in Perovskite Solar Cells. Small, 2021, 17, e2101839.	5.2	16
1086	Synergistic Effect of Codoped Nickel Oxide Hole–Transporting Layers for Highly Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100243.	3.1	8
1087	Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations. Multiscale Science and Engineering, 2021, 3, 205.	0.9	0
1088	Electronic structure transition of cubic CsSnCl3 under pressure: effect of rPBE and PBEsol functionals and GW method. Heliyon, 2021, 7, e07796.	1.4	7
1089	Bandgap Tuning in BaZrS ₃ Perovskite Thin Films. ACS Applied Electronic Materials, 2021, 3, 3306-3312.	2.0	31
1090	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	5.8	10
1091	Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surfaces and Interfaces, 2021, 25, 101287.	1.5	15
1092	s–p Mixing in Stereochemically Active Lone Pairs Drives the Formation of 1D Chains of Lead Bromide Square Pyramids. Inorganic Chemistry, 2021, 60, 12676-12680.	1.9	3

#	Article	IF	CITATIONS
1093	Thickness control and photovoltaic properties of CH ₃ NH ₃ PbI ₃ bar-coated thin film. Japanese Journal of Applied Physics, 2022, 61, SB1032.	0.8	7
1094	Bandgap engineering and thermodynamic stability of oxyhalide and chalcohalide antiperovskites. Ceramics International, 2021, 47, 32634-32640.	2.3	9
1095	Charge Trapping Dynamics Revealed in CH ₃ NH ₃ PbI ₃ by Ultrafast Multipulse Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 18834-18840.	1.5	2
1096	Unusual defect properties in multivalent perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cs</mml:mi><mml:m mathvariant="normal">I<mml:mn>6</mml:mn></mml:m </mml:msub></mml:mrow> : A first-principles study. Physical Review Materials. 2021. 5.</mml:math 	n>20.9	l:mˈn >
1097	Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasiâ€2D Perovskites for Efficient Green Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2102246.	11.1	88
1098	In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide Perovskite-Based Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34171-34179.	4.0	4
1099	Study of optical and thermoelectric properties of ZYbI3 (Z = Rb, Cs) for solar cells and renewable energy; Modelling by density functional theory. Journal of Physics and Chemistry of Solids, 2021, 155, 110117.	1.9	18
1100	Study of the solar perovskite CsMBr3 (M=Pb or Ge) photovoltaic materials: Band-gap engineering. Solid State Sciences, 2021, 118, 106679.	1.5	20
1101	Intrinsic point defects in halide double perovskite Cs2NaBiCl6 insight from first-principles. Thin Solid Films, 2021, 732, 138781.	0.8	4
1102	xmlns:mml="http://www.w3.org/1998/Math/MathML [®] > <mml:mrow> <mml:mrow> <mml:mo> (</mml:mo> <mml:m mathvariant="normal">I <mml:mn>3</mml:mn> <mml:msub> <mml:mi> Cl</mml:mi> <mr< td=""><td>i>MVil:mn>2<td>nl:mi><mral nml:mn></mral </td></td></mr<></mml:msub></mml:m </mml:mrow></mml:mrow>	i>MVil:mn>2 <td>nl:mi><mral nml:mn></mral </td>	nl:mi> <mral nml:mn></mral

# 1111	ARTICLE Common Defects Accelerate Charge Carrier Recombination in CsSnl ₃ without Creating Mid-Gap States. Journal of Physical Chemistry Letters, 2021, 12, 8699-8705.	IF 2,1	CITATIONS 31
1112	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%. Advanced Energy Materials, 2021, 11, 2101221.	10.2	20
1113	Direct Deposition of Nonaqueous SnO2 Dispersion by Blade Coating on Perovskites for the Scalable Fabrication of p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	12
1114	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
1115	Photoinduced Dynamic Defects Responsible for the Giant, Reversible, and Bidirectional Light-Soaking Effect in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9328-9335.	2.1	13
1116	Strain engineering in metal halide perovskite materials and devices: Influence on stability and optoelectronic properties. Chemical Physics Reviews, 2021, 2, .	2.6	23
1117	Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6512-6517.	1.0	5
1118	Advances in surface passivation of perovskites using organic halide salts for efficient and stable solar cells. Surfaces and Interfaces, 2021, 26, 101420.	1.5	10
1119	Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Physica B: Condensed Matter, 2021, 618, 413187.	1.3	47
1120	ns2-containing vacancy-ordered double perovskites for optoelectronic applications: A first-principles investigation. Solid State Communications, 2021, 337, 114462.	0.9	1
1121	VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021, 267, 108033.	3.0	2,308
1122	Advances and Challenges in Tin Halide Perovskite Nanocrystals. , 2021, 3, 1541-1557.		12
1123	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	2.9	17
1124	Efficient colorful perovskite solar cells designed by 2D and 3D ordered titania inverse opals. Journal of Power Sources, 2021, 512, 230488.	4.0	5
1125	Design of (C3N2H5)(1-)Cs PbI3 as a novel hybrid perovskite with strong stability and excellent photoelectric performance: A theoretical prediction. Solar Energy Materials and Solar Cells, 2021, 233, 111401.	3.0	7
1126	Lead fixation by spider web-like porphyrin polymer for stable and clean perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132405.	6.6	15
1127	Light illumination and temperature-induced current–voltage hysteresis in single-crystal perovskite photodiodes. CrystEngComm, 2021, 23, 1663-1670.	1.3	9
1128	Lead‣ess Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000616.	3.1	25

#	Article	IF	CITATIONS
1129	Investigation of random lasing from all-inorganic halide perovskite quantum dots prepared under ambient conditions. Nanoscale, 2021, 13, 3246-3251.	2.8	14
1130	Energetic and electronic properties of CsPbBr ₃ surfaces: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 7145-7152.	1.3	22
1131	Inner Strain Regulation in Perovskite Single Crystals through Fine-Tuned Halide Composition. Crystal Growth and Design, 2021, 21, 1741-1750.	1.4	14
1132	Narrowing bandgap and enhanced mechanical and optoelectronic properties of perovskite halides: Effects of metal doping. AIP Advances, 2021, 11, .	0.6	37
1133	Influence of molybdenum and technetium doping on visible light absorption, optical and electronic properties of lead-free perovskite CsSnBr ₃ for optoelectronic applications. RSC Advances, 2021, 11, 2405-2414.	1.7	23
1134	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155
1135	The structural stability and defect-tolerance of ionic spinel semiconductors for high-efficiency solar cells. Journal of Materials Chemistry A, 2021, 9, 14566-14575.	5.2	6
1136	Precise incorporation of transition metals into organolead oxyhalide crystalline materials for photocatalysis. Dalton Transactions, 2021, 50, 11360-11364.	1.6	1
1137	Recent Progress in Designing Halide-Perovskite-Based System for the Photocatalytic Applications. Frontiers in Chemistry, 2020, 8, 613174.	1.8	6
1138	Bandâ€Tail Recombination in Hybrid Lead Iodide Perovskite. Advanced Functional Materials, 2017, 27, 1700860.	7.8	127
1139	Air Stable, Highâ€Efficiency, Ptâ€Based Halide Perovskite Solar Cells with Long Carrier Lifetimes. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000182.	1.2	39
1140	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	3.1	32
1141	Computational Modeling and the Design of Perovskite Solar Cells. , 2019, , 1-16.		2
1142	Magnetic, Electronic, and Optical Properties of Perovskite Materials. Materials Horizons, 2020, , 43-59.	0.3	6
1143	Exploring performances of hybrid perovskites tin-based photovoltaic solar cells: Non-equilibrium Green's functions and macroscopic approaches. Physica B: Condensed Matter, 2020, 591, 412247.	1.3	13
1144	Enhancing Chemical Stability and Suppressing Ion Migration in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells <i>via</i> Direct Backbone Attachment of Polyesters on Grain Boundaries. Chemistry of Materials, 2020, 32, 5104-5117.	3.2	64
1145	Characterization of Capacitance, Transport and Recombination Parameters in Hybrid Perovskite and Organic Solar Cells. RSC Energy and Environment Series, 2016, , 57-106.	0.2	9
1146	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6

#	Article	IF	CITATIONS
1147	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2
1148	Effects of Cr- and Mn-alloying on the band gap tuning, and optical and electronic properties of lead-free CsSnBr ₃ perovskites for optoelectronic applications. RSC Advances, 2020, 10, 43660-43669.	1.7	26
1149	Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives A _l Cu _m X _n (A = Rb and Cs; X = Cl, Br, and l). Journal of Semiconductors, 2020, 41, 052201.	2.0	11
1150	Exchange striction driven magnetodielectric effect and potential photovoltaic effect in polar CaOFeS. Physical Review Materials, 2017, 1, .	0.9	15
1151	Intrinsic point defects and intergrowths in layered bismuth triiodide. Physical Review Materials, 2018, 2, .	0.9	12
1152	Stabilization and self-passivation of symmetrical grain boundaries by mirror symmetry breaking. Physical Review Materials, 2019, 3, .	0.9	7
1153	Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3, .	0.9	20
1154	Very high oscillator strength in the band-edge light absorption of zincblende, chalcopyrite, kesterite, and hybrid perovskite solar cell materials. Physical Review Materials, 2020, 4, .	0.9	5
1155	Phase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study. Physical Review Materials, 2020, 4, .	0.9	17
1156	Stability, electronic, and optical properties of lead-free halide double perovskites <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo> (<td>l:mo><mm< td=""><td>nl:msub><rnr< td=""></rnr<></td></mm<></td></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math 	l:mo> <mm< td=""><td>nl:msub><rnr< td=""></rnr<></td></mm<>	nl:msub> <rnr< td=""></rnr<>

#	Article	IF	CITATIONS
1165	Strong Fermi-level pinning at metal contacts to halide perovskites. Journal of Materials Chemistry C, 2021, 9, 15212-15220.	2.7	12
1166	Efficient passivation of DY center in CH3NH3PbBr3 by chlorine: Quantum molecular dynamics. Nano Research, 2022, 15, 2112-2122.	5.8	28
1167	Metal Halide Semiconductors beyond Lead-Based Perovskites for Promising Optoelectronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 10532-10550.	2.1	20
1168	Energetic Couplings in Ferroics. Advanced Electronic Materials, 2022, 8, 2100639.	2.6	3
1169	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
1170	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials, 2022, 34, e2104661.	11.1	37
1171	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	4.2	28
1172	Enhanced Performance and Stability of Carbon Counter Electrode-Based MAPbI ₃ Perovskite Solar Cells with <i>p</i> -Methylphenylamine Iodate Additives. ACS Applied Energy Materials, 2021, 4, 11314-11324.	2.5	4
1173	Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
1174	Atomic level insights intoÂmetal halide perovskiteÂmaterials by scanning tunneling microscopy and spectroscopy. Angewandte Chemie, 2022, 134, e202112352.	1.6	0
1175	Design Principles of Large Cation Incorporation in Halide Perovskites. Molecules, 2021, 26, 6184.	1.7	6
1176	Elastic, electronic, optical and thermoelectric properties of perovskite: BaTbO3. Materials Today Communications, 2021, 29, 102896.	0.9	4
1177	Orbitalâ~'energy splitting in Ruddlesdenâ ´'Popper layered halide perovskites for tunable optoelectronic properties. Journal of Power Sources, 2021, 514, 230546.	4.0	5
1178	Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy, 2021, 90, 106608.	8.2	71
1179	A new and simple method for simulation of lattice mismatch on the optical properties of solar cells: A combination of DFT and FDTD simulations. Solar Energy, 2021, 230, 166-176.	2.9	5
1180	Chapter 6. Structural, Electronic, and Optical Properties of Lead Halide Perovskites. RSC Energy and Environment Series, 2016, , 177-201.	0.2	0
1181	Alloys and Environmental Related Issues. , 2017, , 135-164.		0
1183	Current state and perspectives for organo-halide perovskite solar cells: Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotube. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2017. 20. 153-193.	0.1	0

#	Article	IF	CITATIONS
1184	Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 078801.	0.2	2
1185	Organometal halide perovskite-based optoelectronic devices. WEENTECH Proceedings in Energy, 2018, 4, 221-226.	0.0	0
1186	Intrinsic stability of organic-inorganic hybrid perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158804.	0.2	8
1187	Applications of Chalcogenides as Hole Transport Layers and Dopants in Perovskite Solar Cells. IFMBE Proceedings, 2020, , 177-180.	0.2	0
1188	Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective. , 2020, , .		0
1189	Characterization of the Σ5(210) / [001] Grain Boundary of Methyl-Ammonium Lead Triiodide Perovskite using Density Functional Theory. Transactions of the Materials Research Society of Japan, 2020, 45, 67-71.	0.2	0
1190	Defect Passivation through Cyclohexylethylamine Post-treatment for High-Performance and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12848-12857.	2.5	6
1191	Computational Modeling and the DesignÂofÂPerovskite Solar Cells. , 2020, , 2849-2864.		0
1192	Reconstruction of the (EMIm) <i>_x</i> MA _{1–<i>x</i>} Pb[(BF ₄) <i>_x</i> 1â€ Interlayer for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 727-733.	' <i>x</i> </td <td>/syb>]</td>	/syb>]
1193	1T-2H MoSe2 modified MAPbI3 for effective photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 893, 162329.	2.8	5
1194	Theoretical and computational study on defects of solar cell materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 177101.	0.2	3
1195	Optoelectronic and morphology properties of perovskite/silicon interface layer for tandem solar cell application. Surface and Interface Analysis, 2020, 52, 422-432.	0.8	6
1196	The g-factor anisotropy of trapped excitons in CH ₃ NH ₃ PbBr ₃ perovskite. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 167102.	0.2	0
1197	Research on Preparation and Application of Electron Transport Layer Based on SnO ₂ Colloid. Applied Physics, 2020, 10, 381-390.	0.0	0
1198	Photodetector based ZnONPs/BiFeO ₃ Ferroelectric Perovskite Heterojunction., 2021,,.		1
1203	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
1204	Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions. Journal of Physical Chemistry C, 2021, 125, 25316-25326.	1.5	6
1205	Opto-Electronic Properties of Methyl-Ammonium Lead Halide: A First Principle Approach. Journal of Physics: Conference Series, 2020, 1622, 012105.	0.3	0

#	Article	IF	CITATIONS
1206	OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Rb2SnBr6: A FIRST PRINCIPLES CALCULATIONS. , 2020, , 1-5.		3
1207	STRUCTURAL, MECHANICAL AND OPTOELECTRONIC STUDY OF DOUBLE PEROVSKITE Cs2SnBr6 USING FIRST PRINCIPLES CALCULATION. , 2020, , 6-9.		3
1208	Charge localization induced by reorientation of FA cations greatly suppresses nonradiative electron-hole recombination in FAPbI ₃ perovskites: A time-domain <i>Ab Initio</i> study. Chinese Journal of Chemical Physics, 2020, 33, 642-648.	0.6	1
1209	Theoretical study of structural, electronic, and optical properties of mixed chalcogenide-halide bismuth perovskites CH3NH3BiChl2 (Ch = S, Se, Te). Japanese Journal of Applied Physics, 2020, 59, 121002.	0.8	2
1210	Effect of methylene chain length of perovskite-type layered [NH3(CH2)nNH3]ZnCl4 (n = 2, 3, and 4) crystals on thermodynamic properties, structural geometry, and molecular dynamics. RSC Advances, 2021, 11, 37824-37829.	1.7	6
1211	Controllable vapor growth of CsPbBr ₃ /CdS 1D heterostructures with type-II band alignment for high-performance self-powered photodetector. CrystEngComm, 2022, 24, 275-283.	1.3	9
1212	Unraveling the effects of metal incorporation in cubic perovskite SrCoO3 by partially replacing Co atoms. Chemical Physics Letters, 2022, 786, 139208.	1.2	4
1213	Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Chemistry Reviews, 2022, 452, 214313.	9.5	37
1214	Updated Progresses in Perovskite Solar Cells. Chinese Physics Letters, 2021, 38, 107801.	1.3	11
1216	MXene-Based Materials for Solar Cell Applications. Nanomaterials, 2021, 11, 3170.	1.9	19
1217	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
1218	3D graphene-like semiconductor Ba2HfTe4 with electronic structure similar to graphene and bandgap close to silicon. Cell Reports Physical Science, 2021, 2, 100658.	2.8	4
1219	High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2. Journal of Colloid and Interface Science, 2022, 609, 547-556.	5.0	13
1220	Formamidinium dopant effects on double perovskite Cs 2 AgBiBr 6. International Journal of Quantum Chemistry, 2022, 122, e26846.	1.0	0
1221	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	7.1	6
1222	lon Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. Advanced Materials, 2022, 34, e2108102.	11.1	85
1223	Triphenylamineâ€Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells. Small, 2022, 18, e2104933.	5.2	6
1224	Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods. Computational Condensed Matter, 2022, 33, e00617.	0.9	15

#	Article	IF	CITATIONS
1227	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	1.9	20
1228	Recent Advances in Halide Perovskite-Based Nonvolatile Resistive Random-Access Memory. Journal of Electronic Materials, 2022, 51, 434-446.	1.0	5
1229	The hybrid halide perovskite: Synthesis strategies, fabrications, and modern applications. Ceramics International, 2022, 48, 7325-7343.	2.3	17
1230	Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots. Nanotechnology, 2022, 33, 085706.	1.3	1
1231	Physical properties of rare earth perovskites CeMO3 (M = Co, Cu) in the context of density functional theory. Materials Today Communications, 2021, 29, 102973.	0.9	7
1232	Silk Fibroin Induced Homeotropic Alignment of Perovskite Crystals Toward High Efficiency and Stability. SSRN Electronic Journal, 0, , .	0.4	0
1233	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
1234	Excited-State Dynamics in Metal Halide Perovskites: A Theoretical Perspective. , 2021, , 1-54.		0
1235	Photoluminescence enhancement study in a Bi-doped Cs ₂ AgInCl ₆ double perovskite by pressure and temperature-dependent self-trapped exciton emission. Dalton Transactions, 2022, 51, 2026-2032.	1.6	14
1236	Crystal structure, vibrational spectra, optical properties and thermal behavior of the 1D perovskite (2-amino-4-methylpyridinium)trichlorocadmate(II) (C6H9N2)1â^ž[CdCl3]. Journal of Coordination Chemistry, 0, , 1-13.	0.8	3
1237	Inorganic CsSnl ₃ Perovskite Solar Cells: The Progress and Future Prospects. Solar Rrl, 2022, 6, 2100841.	3.1	25
1238	Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 420-438.	7.1	27
1239	ITO/ZnO/CH3NH3PbI3/Ag Hetro-Structure based Photodetector. , 2020, , .		5
1240	Hydrogen-Iodide Bonding between Glycine and Perovskite Greatly Improve Moisture Stability for Binary PSCs. SSRN Electronic Journal, 0, , .	0.4	0
1241	Effects of Defect on Work Function and Energy Alignment of PbI ₂ : Implications for Solar Cell Applications. Chemistry of Materials, 2022, 34, 1020-1029.	3.2	20
1242	Segmented Highly Reversible Thermochromic Layered Perovskite [(CH ₂) ₂ (NH ₃) ₂]CuCl ₄ Crystal Coupled with an Inverse Magnetocaloric Effect. ACS Applied Electronic Materials, 2022, 4, 521-530.	2.0	11
1243	Effect of Iodine Octahedral Rotations on Dipole Ordering in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3. Journal of Physical Chemistry C, 2022, 126, 779-785.	1.5	2
1244	Characteristic Electronic Structure of SnO Film Showing High Hole Mobility. Journal of Physical Chemistry Letters, 2022, 13, 1165-1171.	2.1	5

#	Article	IF	CITATIONS
1245	On the optical anisotropy in 2D metal-halide perovskites. Nanoscale, 2022, 14, 752-765.	2.8	15
1246	Surface Passivation of MAPbBr ₃ Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance. ACS Applied Materials & Interfaces, 2022, 14, 10917-10926.	4.0	39
1247	Interactions between gas molecules and two-dimensional Ruddlesden–Popper halide perovskite. Journal of Applied Physics, 2022, 131, 025307.	1.1	2
1248	Oriented 2D Perovskite Wafers for Anisotropic Xâ€ray Detection through a Fast Tableting Strategy. Advanced Materials, 2022, 34, e2108020.	11.1	43
1249	Quantifying Efficiency Limitations in Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, e2108132.	11.1	44
1250	Defect tolerance in CsPbI ₃ : reconstruction of the potential energy landscape and band degeneracy in spin–orbit coupling. Journal of Materials Chemistry A, 2022, 10, 3018-3024.	5.2	9
1251	Theoretical Prediction of Mixed-Valence Layered Halide Perovskites Cs ₄ M(IV)M(II) ₂ X ₁₂ (M = Ge, Sn; X = Cl, Br). Journal of Physical Chemistry Letters, 2022, 13, 1077-1084.	2.1	3
1252	Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors. , 2022, , 35-58.		1
1253	Framework structure materials in photovoltaics based on perovskites 3D. , 2022, 5, .		0
1254	A comprehensive analysis of PV cell parameters with varying halides stoichiometry in mixed halide perovskite solar cells. Optical Materials, 2022, 123, 111905.	1.7	6
1255	Emergence of Deep Traps in Long-Term Thermally Stressed CH3NH3PbI3 Perovskite Revealed by Thermally Stimulated Currents. Journal of Physical Chemistry Letters, 2022, 13, 552-558.	2.1	6
1256	Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors. Journal of the American Chemical Society, 2022, 144, 1910-1920.	6.6	37
1257	Bifunctional Interfacial Regulation with 4â€(Trifluoromethyl) Benzoic Acid to Reduce the Photovoltage Deficit of MAPbI ₃ â€Based Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
1258	Regulating the phase stability and bandgap of quasi-2D Dion–Jacobson CsSnI ₃ perovskite <i>via</i> intercalating organic cations. Journal of Materials Chemistry A, 2022, 10, 3996-4005.	5.2	8
1259	Mechanical study of perovskite solar cells: opportunities and challenges for wearable power source. Optical Materials Express, 2022, 12, 772.	1.6	9
1260	A GGAÂ+ÂvdW study on electronic properties and optoelectronic functionality of Cd-doped tetragonal CH3NH3PbI3 for photovoltaics. Chemical Physics, 2022, 556, 111461.	0.9	1
1261	Interpretation of Rubidiumâ€Based Perovskite Recipes toward Electronic Passivation and Ionâ€Diffusion Mitigation. Advanced Materials, 2022, 34, e2109998.	11.1	29
1262	Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability. Nano Energy, 2022, 94, 106936.	8.2	25

#	Article	IF	CITATIONS
1263	Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today, 2022, 43, 101394.	6.2	58
1264	Collaborative strengthening by multi-functional molecule 3-thiophenboric acid for efficient and stable planar perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135134.	6.6	13
1265	Spontaneous moisture-driven formation of Cs2Pb1-xMxCl2l2 single crystals with MÂ=ÂBi, In, Ga and Cr. Journal of Crystal Growth, 2022, 584, 126584.	0.7	2
1266	All Green Solvent Engineering of Organic-Inorganic Hybrid Perovskite Layer for High-Performance Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1267	Structural, elastic and optoelectronic properties of inorganic cubic FrBX ₃ (B = Ge, Sn; X =) Tj ETQq0	0.0_rgBT / 1.7	Oygrlock 10

1268	Insight into the photoelectrical properties of metal adsorption on a two-dimensional organic–inorganic hybrid perovskite surface: theoretical and experimental research. RSC Advances, 2022, 12, 5595-5611.	1.7	0
1269	Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production. Journal of Physical Chemistry Letters, 2022, 13, 1806-1824.	2.1	7
1270	Recombination Pathways in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	20
1271	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	2.5	11
1272	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	8.8	43
1273	Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite. Nanomaterials, 2022, 12, 1002.	1.9	1
1274	Hydrophobic Graphene Quantum Dots for Defect Passivation and Enhanced Moisture Stability of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	11
1275	Manipulating Ion Migration and Interfacial Carrier Dynamics via Amino Acid Treatment in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 15840-15848.	4.0	20
1276	Hybrid Halide Perovskiteâ€Based Nearâ€Infrared Photodetectors and Imaging Arrays. Advanced Optical Materials, 2022, 10, .	3.6	35
1277	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	0.7	8
1278	Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. ACS Omega, 2022, 7, 10365-10371.	1.6	10
1279	Wideâ€Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells. Advanced Science, 2022, 9, e2105085.	5.6	60
1280	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by	8.8	24

#	Article	IF	CITATIONS
1281	Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants. Journal of Physical Chemistry C, 2022, 126, 5256-5264.	1.5	5
1282	Robust Design of High-Performance Optoelectronic Chalcogenide Crystals from High-Throughput Computation. Journal of the American Chemical Society, 2022, 144, 5878-5886.	6.6	21
1283	Preparation of Sb2Se3-based ceramics and glass-ceramics from native thin films deposited on Kapton foil. Ceramics International, 2022, 48, 17065-17075.	2.3	5
1284	A Ferroelectric p–i–n Heterostructure for Highly Enhanced Shortâ€Circuit Current Density and Selfâ€Powered Photodetection. Advanced Electronic Materials, 2022, 8, .	2.6	17
1285	Transversal Halide Motion Intensifies Bandâ€Toâ€Band Transitions in Halide Perovskites. Advanced Science, 2022, 9, e2200706.	5.6	12
1286	2D Graphene-Like Pb-Free Perovskite Semiconductor CsSb(Br _{1–<i>x</i>} I _{<i>x</i>}) ₄ with Quasi-linear Electronic Dispersion and Direct Bandgap Close to Germanium. ACS Applied Materials & Interfaces, 2022, , .	4.0	2
1287	Structural and optoelectronic properties of the Cs2InMCl6 (M: Sb, Bi, Ag) double perovskite compounds: A first-principles study. Computational Condensed Matter, 2022, 31, e00669.	0.9	4
1288	All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chemical Engineering Journal, 2022, 437, 135458.	6.6	28
1289	Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A= Rb) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
1290	Modeling of Hysteresis in Perovskite-Silicon Tandem Solar Cells. , 2021, , .		1
1291	Bandgap Correction and Spin-Orbit Coupling Induced Absorption Spectra of Dimethylammonium Lead Iodide for Solar Cell Absorber. Frontiers in Energy Research, 2021, 9, .	1.2	1
1292	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	11.1	31
1293	Cerium-based lead-free chalcogenide perovskites for photovoltaics. Physical Review B, 2021, 104, .	1.1	6
1294	Radical doped hole transporting material for high-efficiency and thermostable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 10604-10613.	5.2	13
1295	Solvent Effects on the Structural and Optical Properties of MAPbI3 Perovskite Thin Film for Photovoltaic Active Layer. Coatings, 2022, 12, 549.	1.2	3
1296	Analysis of the Photovoltaic Waste-Recycling Process in Polish Conditions—A Short Review. Sustainability, 2022, 14, 4739.	1.6	8
1297	Study of narrow band gap double perovskites (Sr/Ba)2BB'O6 (B = In, Tl, B' = Sb, Bi) for optical, thermoelectric, and mechanical properties. Materials Today Communications, 2022, 31, 103547.	0.9	9
1302	A nanofibrillar conjugated polymer film as an interface layer for high-performance CsPblBr ₂ solar cells with efficiency exceeding 11%. Sustainable Energy and Fuels, 2022, 6,	2.5	4

ARTICLE IF CITATIONS Inverse design of stable spinel compounds with high optical absorption <i>via</i> materials genome 1303 5.2 3 engineering. Journal of Materials Chemistry A, 2022, 10, 12503-12509. Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar 1304 1.4 cells. Organic Electronics, 2022, , 106544. Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics. 1305 0 0.7 Chinese Physics B, 2022, 31, 117803. Novel Agâ€Mesh Transparent Hybrid Electrodes for Highly Efficient and Mechanically Stable Flexible 1306 1.9 Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, . Entropy Stabilization Effects and Ion Migration in 3D "Hollow―Halide Perovskites. Journal of the 1307 6.6 18 American Chemical Society, 2022, 144, 8223-8230. An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPb13 perovskite solar 1308 5.0 26 cells. Matter, 2022, 5, 2209-2224 Stress and Defect Effects on Electron Transport Properties at SnO₂/Perovskite 1309 1.6 4 Interfaces: A First-Principles Insight. ACS Omega, 2022, 7, 16187-16196. A review on theoretical studies of structural and optoelectronic properties of<scp>FA</scp>â€based perovskite materials with a focus on <scp>FAPbl₃</scp>. International Journal of Energy Research, 2022, 46, 13117-13151. An Ab Initio Study of Clusters as Building Blocks for Crystals: From Prussian Blue Analogs to Hybrid 1311 0.7 1 Perovskites. Physica Status Solidi (B): Basic Research, 2022, 259, . Stability ascent in perovskite solar cells employing star poly(3-hexylthiophene)/quantum dot 1.4 nanostructures. Organic Electronics, 2022, 108, 106547. Morphological and functional characterizations of SnO₂ electron extraction layer on transparent conductive oxides in lead-halide perovskite solar cells. Applied Physics Letters, 2022, 120, 1313 1 1.5 191604. Unique Photoelectric Properties and Defect Tolerance of Lead-Free Perovskite Cs₃Cu₂I₅ with Highly Efficient Blue Emission. Journal of Physical 2.1 Chemistry Letters, 2022, 13, 4177-4183. Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes 1315 5.8 12 harnessing the diverse effects of ligands: A review. Nano Research, 2022, 15, 6449-6465. All-in-one strategy: overcome the challenges in the device enlargement of perovskite solar cells. 4.2 Science China Chemistry, 0, , 1. Thin film synthesis and violet-light emission of widegap Cu<sub>2</sub>Znl<sub>4</sub>. Journal of the Ceramic Society of Japan, 2022, 1317 0.51 130, 331-336. Nanoscale Encapsulation of Hybrid Perovskites Using Hybrid Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2022, 13, 4082-4089. Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. Cell 1319 2.8 9 Reports Physical Science, 2022, 3, 100890. Systematic Study of Perovskite Layers if Doped with Strong Oxidants. Solar Rrl, 0, , 2200159. 3.1

0						
CI	ΤΑΤ	101	ΝK	ΈP	O	SТ

#	Article	IF	CITATIONS
1321	Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl _{3-n} Br _n (n = 0, 1, 2, and 3) through altering the halide ratio. Physica Scripta, 2022, 97, 065704.	1.2	3
1322	First-principles study on the electronic structures and optical properties of Cs2XInCl6 (X= Ag, Na). Solid State Communications, 2022, 352, 114812.	0.9	5
1323	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics Reviews, 2022, 9, .	5.5	33
1324	Study of DMSO concentration on the optical and structural properties of perovskite CH3NH3PbI3 and its use in solar cells. Journal of Solid State Chemistry, 2022, 312, 123158.	1.4	6
1325	Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. Acta Materialia, 2022, 234, 118010.	3.8	6
1326	Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A= Rb and Cs). Physica B: Condensed Matter, 2022, 638, 413960.	1.3	12
1327	Investigation of electronic, optical and thermoelectric features of X2ScAgCl6 (X=K, Na) double perovskites for renewable energy applications. Journal of Solid State Chemistry, 2022, 312, 123179.	1.4	15
1328	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9, .	5.5	20
1329	Design and Simulation of High Efficiency Tin Halide Perovskite Solar Cell. , 2017, , .		8
1330	Fabrication of perovskite solar cells by reaction between spinâ€coated precursor films and CH ₃ NH ₃ I vapor. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600192.	0.8	0
1331	Investigation on the Facet-Dependent Anisotropy in Halide Perovskite Single Crystals. Journal of Physical Chemistry C, 2022, 126, 8906-8912.	1.5	7
1332	Ab-initio Study of structural, elastic, electronic and optical properties of hexahalometallate single crystals K2XBr6(X = Se, Pt). Scientific Reports, 2022, 12, 8345.	1.6	2
1333	Synergistic effect of two hydrochlorides resulting in significantly enhanced performance of tin-based perovskite solar cells with 3D to quasi-2D structural transition. Journal of Materials Chemistry A, 2022, 10, 14441-14450.	5.2	10
1334	Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cells. Frontiers in Photonics, 2022, 3, .	1.1	2
1335	Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.	4.2	5
1336	Core-twisted tetrachloroperylenediimide additives improve the crystallinity of perovskites to provide efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 243, 111779.	3.0	3
1337	Gadolinium-Doped Sno2 Electron Transfer Layer for Highly Efficient Planar Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1338	Experimental and theoretical investigations on fullerene (C ₆₀) induced compact CH ₃ NH ₃ Pbl ₃ perovskite thin films. Physica Scripta, 0, , .	1.2	2

#	Article	IF	CITATIONS
1339	Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X = Cl, Br) under pressure. Journal of Materials Science: Materials in Electronics, 2022, 33, 13860-13875.	1.1	13
1340	Efficient plasmon-enhanced perovskite solar cells by molecularly isolated gold nanorods. Journal of Energy Chemistry, 2022, , .	7.1	1
1341	Aqueous Precursor Driven Cs ₂ AgInCl ₆ Double Perovskite Nanocrystals Used as a Fluorescent Keypad Lock. ACS Applied Electronic Materials, 2022, 4, 2753-2759.	2.0	5
1342	Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6823-6832.	2.5	6
1343	DFT and TDDFT studies of structural, electronic and optical properties of the inorganic solar perovskites XPbBr ₃ (X = Li or Na). Phase Transitions, 2022, 95, 501-514.	0.6	17
1344	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
1345	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	15.6	181
1346	Appropriate third monovalent Aâ€site cation incorporation in formamidinium cesium lead iodide for defect passivation and efficiency improvement in perovskite solar cells. International Journal of Energy Research, 2022, 46, 15571-15588.	2.2	5
1347	Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. Journal of Physical Chemistry Letters, 2022, 13, 5946-5952.	2.1	18
1349	Inhibited exciton spontaneous emission in InGaAs/GaAs quantum well by the phase-related scattering field of gold nanoparticles. Applied Physics Letters, 2022, 120, 242102.	1.5	1
1350	Dimensionalityâ€Dependent Resistive Switching in 0D and 2D Cs ₃ Sb ₂ I ₉ : Energyâ€Efficient Synaptic Functions with the Layeredâ€Phase. Advanced Electronic Materials, 2022, 8, .	2.6	6
1351	Solution-processed quantum dot SnO2 as an interfacial electron transporter for stable fully-air-fabricated metal-free perovskite solar cells. Journal of Materiomics, 2022, 8, 1172-1183.	2.8	6
1352	Metal Halide Perovskite-Based Memristors for Emerging Memory Applications. Journal of Physical Chemistry Letters, 2022, 13, 5638-5647.	2.1	38
1353	Structural, Electronic, and Optical Properties of Ga-Based Lead-Free Mixed-Halide Perovskites Cs3Gal6-xBrx (0 ≤ ≤6) for Solar Cell Applications: A DFT Study. Physica B: Condensed Matter, 2022, 640, 414085.	1.3	1
1354	Hydrogen-iodide bonding between glycine and perovskite greatly improve moisture stability for binary PSCs. Organic Electronics, 2022, 108, 106573.	1.4	4
1355	A trifluorothymine interlayer reduces the degradation of perovskite and controls the cracks of hole transport layers. Journal of Materials Chemistry A, 2022, 10, 16080-16086.	5.2	4
1356	Pâ€25: <i>Student Poster:</i> Solutionâ€Processed CH ₃ NH ₃ Pbl ₃ /ZnO Phototransistor with High Photodetectivity. Digest of Technical Papers SID International Symposium, 2022, 53, 1130-1133.	0.1	0
1357	Hole Trapping in Halide Perovskites Induces Phase Segregation. Accounts of Materials Research, 2022, 3, 761-771.	5.9	38

#	Article	IF	Citations
1358	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	8.1	13
1359	Dopant compensation in p-type doped MAPb _{1â^'} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	1.5	0
1360	Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells. Polymers, 2022, 14, 2748.	2.0	2
1361	Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8034-8041.	2.5	10
1362	Perovskite-perovskite junctions for optoelectronics: Fundamentals, processing, and applications. Matter, 2022, 5, 2086-2118.	5.0	8
1363	Revisiting the Iodine Vacancy Surface Defects to Rationalize Passivation Strategies in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6694-6700.	2.1	15
1364	Aspects of optical and thermal performances in flexible perovskite solar cells made of nanomaterials with potential for development of vehicle-integrated photovoltaics. Materials Today: Proceedings, 2022, 66, 3163-3167.	0.9	3
1365	Optoelectronic properties of nanostructured Sb2Se3 films synthesized by electrodeposition method: Effect of Zn concentrations. Sensors and Actuators A: Physical, 2022, 344, 113750.	2.0	4
1366	Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Research, 2022, 15, 9368-9376.	5.8	19
1367	First principles prediction of the carrier mobilities and optical properties of strained lead free perovskite Cs2SnX6(X=Cl, Br). Solid State Communications, 2022, 353, 114868.	0.9	0
1368	High efficiency stable planar perovskite solar cells via heavy water additive. Solar Energy Materials and Solar Cells, 2022, 245, 111861.	3.0	2
1369	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
1370	Influence of spin–orbit coupling and biaxial strain on the inorganic lead iodide perovskites, APbI3 (A =) Tj ETQq	0 0 0 rgB ⁻ 1.9 rgB ⁻	[/Qverlock 1
1371	Probing Strain-Induced Effects on Performance of Low-Dimensional Hybrid Perovskites for Solar Energy Harvesting. ACS Applied Materials & amp; Interfaces, 2022, 14, 34603-34611.	4.0	3
1372	Twoâ€Dimensional Perovskites with Tunable Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2022, 32, .	7.8	16
1373	Effects of transition metal doping on CsGeBr3 perovskite: First-principles study. AIP Advances, 2022, 12,	0.6	1
1374	Probing the Surface and Bulk Electrical Response of MAPbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2022, 126, 12399-12404.	1.5	5
1375	Tuning the Band Gap in the Halide Perovskite CsPbBr ₃ through Sr Substitution. ACS Applied Materials & Interfaces, 2022, 14, 34884-34890.	4.0	11

	CHAHON REP		
#	Article	IF	CITATIONS
1376	Life on the Urbach Edge. Journal of Physical Chemistry Letters, 2022, 13, 7702-7711.	2.1	40
1377	First-principles calculations to investigate switching from semiconducting to metallic with enhanced mechanical and optoelectronic properties of CsPbCl ₃ under pressure. International Journal of Materials Research, 2022, 113, 833-846.	0.1	2
1378	Reversible Phase Transition for Durable Formamidiniumâ€Đominated Perovskite Photovoltaics. Advanced Materials, 2022, 34, .	11.1	7
1379	Metal Halide Perovskite Nanowires: Synthesis, Integration, Properties, and Applications in Optoelectronics. Advanced Energy Materials, 2023, 13, .	10.2	18
1380	Sn/Ge Substitution in ((C _{<i>n</i>} H _{2<i>n</i>–1} NH ₃) ₂ Pbl ₄ ;) Tj ETQq Journal of Physical Chemistry C, 2022, 126, 13957-13966.	100 rgB	T /Overlock
1381	First-principles studies on electronic and optical properties of formate-doped organic-inorganic perovskites MAPbI3. Solar Energy Materials and Solar Cells, 2022, 246, 111941.	3.0	5
1382	Gadolinium-doped SnO2 electron transfer layer for highly efficient planar perovskite solar cells. Journal of Power Sources, 2022, 544, 231870.	4.0	17
1383	lodide and charge migration at defective surfaces of methylammonium lead triiodide perovskites: The role of hydrogen bonding. Applied Surface Science, 2022, 604, 154501.	3.1	2
1384	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	1.1	1
1385	Pressure induced band gap shifting from ultra-violet to visible region of RbSrCl ₃ perovskite. Materials Research Express, 2022, 9, 095902.	0.8	7
1386	Impact of Co2+ on the magneto-optical response of MAPbBr3: An inspective study of doping and quantum confinement effect. Materials Today Physics, 2022, 27, 100843.	2.9	3
1387	Solvent engineering for two-dimensional perovskite of guanidium lead iodide. Synthetic Metals, 2022, 291, 117175.	2.1	3
1388	Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138962.	6.6	14
1389	A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX ₃ (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Advances, 2022, 12, 23704-23717.	1.7	12
1390	Modulation of electronic bandgaps and subsequent implications on SQ efficiencies <i>via</i> strain engineering in ultrathin SnX (X = S, Se) nanowires. Journal of Materials Chemistry C, 0, , .	2.7	0
1391	Strain Regulating Mechanical Stability and Photoelectric Properties of Ch3nh3pbi3 Containing the Asymmetric Ch3nh3 Cations. SSRN Electronic Journal, 0, , .	0.4	0
1392	Spiers Memorial Lecture: Next generation chalcogenide-based absorbers for thin-film solar cells. Faraday Discussions, 0, 239, 9-37.	1.6	10
1393	Two-dimensional IV–VA ₃ monolayers with enhanced charge mobility for high-performance solar cells. Physical Chemistry Chemical Physics, 2022, 24, 20694-20700.	1.3	2

#	Article	IF	CITATIONS
1394	Passivation of Positively Charged Cationic Defects in Perovskite with Nitrogen-Donor Crown Ether Enabling Efficient Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
1395	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	15.6	16
1396	Anti-perovskite carbides Ca ₆ CSe ₄ and Sr ₆ CSe ₄ for photovoltaics with similar optoelectronic properties to MAPbI ₃ . Journal of Materials Chemistry A, 2022, 10, 21540-21550.	5.2	3
1397	Chiral 2D organic–inorganic hybrid perovskites based on <scp>l</scp> -histidine. Dalton Transactions, 2022, 51, 16536-16544.	1.6	2
1398	Fabrication of efficient and stable perovskite solar cells in open air through adopting a dye interlayer. Sustainable Energy and Fuels, 2022, 6, 4275-4284.	2.5	2
1399	First-principles study of detrimental iodine vacancy in lead halide perovskite under strain and electron injection. Applied Physics Letters, 2022, 121, .	1.5	9
1400	Design of Organic–Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications. Journal of the American Chemical Society, 2022, 144, 16656-16666.	6.6	13
1401	A Review of Metal-Free Organic Halide Perovskite: Future Directions for the Next Generation of Solar Cells. Energy & Fuels, 2022, 36, 10702-10720.	2.5	18
1402	Recent Progress on Heterojunction Engineering in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	23
1403	High grain boundary recombination velocity in polycrystalline metal halide perovskites. Science Advances, 2022, 8, .	4.7	21
1404	Progress and Perspective on Inorganic CsPbI ₂ Br Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	39
1405	Recent advances in lead-free based perovskite solar cells on optoelectronic properties, stability and economic feasibility. Journal of Instrumentation, 2022, 17, P09034.	0.5	0
1406	Control of Hot Carrier Cooling in Lead Halide Perovskites by Point Defects. Journal of the American Chemical Society, 2022, 144, 18126-18134.	6.6	15
1407	Fluorination of Carbazole-Based Polymeric Hole-Transporting Material Improves Device Performance of Perovskite Solar Cells with Fill Factor up to 82%. ACS Applied Energy Materials, 2022, 5, 12049-12058.	2.5	5
1408	Perovskites for Photoabsorbers and Solar Cells and Comparison with 3D MAPbI3. Solar, 2022, 2, 385-400.	0.9	5
1409	Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite n-i-p solar cell. Materials Today: Proceedings, 2022, 71, 195-201.	0.9	53
1410	Reduced interfacial recombination in perovskite solar cells by structural engineering simulation. Journal of Optics (United Kingdom), 2022, 24, 115901.	1.0	4
1411	Designing Materials: Perovskites As Construction Kits. Frontiers for Young Minds, 0, 10, .	0.8	0

#	Article	IF	CITATIONS
1412	Lowâ€Temperature Preparation of Highâ€Quality Perovskite Polycrystalline Films via Crystallization Kinetics Engineering. ChemPhysChem, 2023, 24, .	1.0	1
1413	Strain regulating mechanical stability and photoelectric properties of CH3NH3PbI3 containing the asymmetric CH3NH3 cations. Materials Today Communications, 2022, 33, 104527.	0.9	1
1414	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
1415	New two-dimensional Ge–Sb–Te semiconductors with high photovoltaic performance for solar energy conversion. Journal of Materials Chemistry C, 2022, 10, 16813-16821.	2.7	2
1416	Strain-driven tunability of the optical, electronic, and mechanical properties of lead-free inorganic CsGeCl ₃ perovskites. Physica Scripta, 2022, 97, 125817.	1.2	5
1417	Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 47872-47881.	4.0	13
1418	Chemiâ€Mechanically Peeling the Unstable Surface States of αâ€FAPbI ₃ . Small, 2022, 18, .	5.2	6
1419	Surface Characterization of the Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Thin Films. Small, 0, , 2204271.	5.2	1
1420	A Wide Bandgap Halide Perovskite Based Selfâ€Powered Blue Photodetector with 84.9% of External Quantum Efficiency. Advanced Materials, 2022, 34, .	11.1	6
1421	Metal Halide Perovskite/Electrode Contacts in Chargeâ€Transportingâ€Layerâ€Free Devices. Advanced Science, 2022, 9, .	5.6	11
1422	Anti-solvent treatment time approach to high efficiency perovskite solar cells with temperature of coating environmental. Solar Energy Materials and Solar Cells, 2023, 250, 112054.	3.0	6
1423	Research progress of ABX ₃ -type lead-free perovskites for optoelectronic applications: materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 27585-27605.	1.3	6
1424	Exploring the structural, electronic, optical, and thermoelectric properties of potassium-based double perovskites K2AgXI6 (XÂ=ÂSb, Bi) compounds: A DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116122.	1.7	7
1425	Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance. Materials, 2022, 15, 7859.	1.3	10
1426	Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nature Reviews Materials, 2023, 8, 89-108.	23.3	125
1427	Recent Advancements in Halide and Oxide Double Perovskites as HeterogeneousÂPhotocatalysts for Solar-Driven Photocatalytic Water Splitting and CO ₂ Reduction. , 2023, 01, .		1
1428	Bandgap tuning and thermoelectric characteristics of Sc-based double halide perovskites K2ScAgZ6 (Z) Tj ETQqC	0.0 rgBT 1.9	Oyerlock 10

1429	Efficient Perovskite Solar Cells with Cesium Acetate-Modified TiO ₂ Electron Transport Layer. Journal of Physical Chemistry C, 2022, 126, 19963-19970.	1.5	5	3
------	---	-----	---	---

#	Article	IF	CITATIONS
1430	On the Stability of Potential Photovoltaic Absorber In ₅ S ₄ . Journal of Physical Chemistry C, 2022, 126, 19971-19977.	1.5	1
1431	Numerical simulation of highly efficient double perovskite solar cell using SCAPS-1D. Materials Today: Proceedings, 2023, 73, 584-589.	0.9	6
1432	Solution-processed ZnO nanoparticles (NPs)/CH3NH3PbI3/PTB7/MoO3/Ag inverted structure based UV–visible-Near Infrared (NIR) broadband photodetector. Optical Materials, 2023, 135, 113290.	1.7	10
1433	Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025.	2.7	3
1434	Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environmental Research, 2023, 219, 115066.	3.7	6
1435	Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews, 2022, 51, 10016-10063.	18.7	11
1436	Bionic Levodopa-Modified TiO ₂ for Preparation of Perovskite Solar Cells with Efficiency over 23%. ACS Sustainable Chemistry and Engineering, 2022, 10, 16055-16063.	3.2	3
1437	Onsite and intersite electronic correlations in the Hubbard model for halide perovskites. Physical Review B, 2022, 106, .	1.1	8
1438	Role of Heterocyclic Organic Compounds on the Optoelectronic Properties of Halide Perovskite Single Crystals. ACS Applied Energy Materials, 2022, 5, 14732-14738.	2.5	4
1439	Atomistic Description of the Impact of Spacer Selection on Two-Dimensional (2D) Perovskites: A Case Study of 2D Ruddlesden–Popper CsPbl ₃ Analogues. Journal of Physical Chemistry Letters, 2022, 13, 12090-12098.	2.1	4
1440	A Review on Halide Perovskite-Based Photocatalysts: Key Factors and Challenges. ACS Applied Energy Materials, 2022, 5, 14605-14637.	2.5	16
1441	Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis. ACS Applied Materials & Interfaces, 2022, 14, 55753-55761.	4.0	13
1442	Progress and Prospects of Nanoscale Emitter Technology for AR/VR Displays. Advanced Materials Technologies, 2023, 8, .	3.0	5
1443	Combinatorial Vacuumâ€Deposition of Wide Bandgap Perovskite Films and Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	4
1444	Separate observation of surface passivation and linking effects of oleylamine alkylamine ligands on metal-halide perovskite films. Organic Electronics, 2023, 114, 106731.	1.4	3
1445	Recent Advances on Nanocrystals Embedding for High Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	6
1446	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
1447	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25

#	Article	IF	CITATIONS
1448	Printable high-efficiency organic ionic photovoltaic materials discovered by high-throughput first-principle calculations. IScience, 2022, 25, 105639.	1.9	0
1449	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
1450	Low-cost novel X-shaped hole transport materials for efficient perovskite solar cells: Molecular modelling of the core and schiff base effects on photovoltaic and photophysical properties. Materials Chemistry and Physics, 2023, 296, 127188.	2.0	4
1451	Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances. Energies, 2023, 16, 889.	1.6	10
1452	Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl ₃ (A = K, Rb, and Cs). Japanese Journal of Applied Physics, 2023, 62, 011002.	0.8	18
1453	Wideâ€Bandgap Perovskite Solar Cell Using a Fluorideâ€Assisted Surface Gradient Passivation Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	41
1454	Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive. Small, 2023, 19, .	5.2	3
1455	A DFT Study of Alkaline Earth Metal-Doped FAPbI3 (111) and (100) Surfaces. Molecules, 2023, 28, 372.	1.7	0
1456	Stacking Interactions and Photovoltaic Performance of Cs ₂ AgBiBr ₆ Perovskite. Solar Rrl, 2023, 7, .	3.1	4
1457	Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals. Nano Research, 2023, 16, 5572-5591.	5.8	7
1458	Electronic effect of substituents on the charge-transfer dynamics at the CsPbBr ₃ perovskite–small molecule interface. Physical Chemistry Chemical Physics, 0, , .	1.3	2
1459	Wideâ€Bandgap Perovskite Solar Cell Using a Fluorideâ€Assisted Surface Gradient Passivation Strategy. Angewandte Chemie, 2023, 135, .	1.6	0
1460	Insights into the relationship between ferroelectric and photovoltaic properties in CsGel ₃ for solar energy conversion. RSC Advances, 2023, 13, 1955-1963.	1.7	4
1461	Band gap tuning of non-toxic Sr-based perovskites CsSrX3 (XÂ=ÂCl, Br) under pressure for improved optoelectronic applications. Materials Today Communications, 2023, 34, 105188.	0.9	10
1462	Intrinsic defects at the interface of the FAPbI ₃ /MAPbI ₃ superlattice: insight from first-principles calculations. Physical Chemistry Chemical Physics, 2023, 25, 6369-6379.	1.3	3
1463	Potential of AMnO ₃ (A=Ca, Sr, Ba, La) as Active Layer in Inorganic Perovskite Solar Cells. ChemPhysChem, 2023, 24, .	1.0	2
1464	Halide perovskite photoelectric artificial synapses: materials, devices, and applications. Nanoscale, 2023, 15, 4653-4668.	2.8	10
1465	A Comprehensive Analysis of Ecoâ€Friendly Cs ₂ SnI ₆ Based Tin Halide Perovskite Solar Cell through Device Modeling. Advanced Theory and Simulations, 2023, 6, .	1.3	11

	CITATION	I REPORT	
#	Article	IF	CITATIONS
1466	The effect of temperature and distance of hot airflow on the quality of MAPbCl3 thin films grown by sol–gel deposition. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1467	Solvent bath annealing-induced liquid phase Ostwald ripening enabling efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 4780-4788.	5.2	6
1468	Doping Strategies for Promising Organic–Inorganic Halide Perovskites. Small, 2023, 19, .	5.2	8
1469	Two-dimensional semiconducting Cu(<scp>i</scp>)/Sb(<scp>iii</scp>) bimetallic hybrid iodides with a double perovskite structure and photocurrent response. Nanoscale, 2023, 15, 5265-5273.	2.8	1
1470	å‰ç"µåŠå⁻¼ä¼2"ææ–™çš"ç†è®ºè®¾è®¡. Chinese Science Bulletin, 2023, , .	0.4	0
1471	Perovskite solar cells. , 2023, , 129-156.		0
1472	Stable perovskite solar cells with 22% efficiency enabled by inhibiting migration/loss of iodide ions. Physical Chemistry Chemical Physics, 2023, 25, 6955-6962.	1.3	4
1473	Slot-die coating fabrication of perovskite solar cells toward commercialization. Journal of Alloys and Compounds, 2023, 942, 169104.	2.8	7
1474	Halide perovskites and high-pressure technologies: a fruitful encounter. Materials Chemistry Frontiers, 2023, 7, 2102-2119.	3.2	2
1475	Effects of drying time on the formation of merged and soft MAPbI ₃ grains and their photovoltaic responses. Nanoscale Advances, 2023, 5, 2190-2198.	2.2	6
1476	A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu ₂ FeSnS ₄ as charge transport layers. New Journal of Chemistry, 2023, 47, 8602-8624.	1.4	36
1477	High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nature Photonics, 2023, 17, 315-323.	15.6	26
1478	Charting Ba-Based Double Perovskite Oxides for Visible-Light-Driven Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2023, 127, 3968-3976.	1,5	5
1479	Benzyl Alcohol Photo-oxidation Based on Molecular Electronic Transitions in Metal Halide Perovskites. ACS Photonics, 2023, 10, 772-779.	3.2	1
1480	Enhanced photovoltaic properties of halide perovskites due to multi-centered X–B–X bonding and p–p orbital coupling. Journal of Applied Physics, 2023, 133, 115701.	1.1	0
1481	Study of digital and analog resistive switching memories based on methylammonium lead iodide (MAPbl ₃) perovskite by experiments and DFT calculations. Journal Physics D: Applied Physics, 2023, 56, 215301.	1.3	3
1482	Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215073.	9.5	19
1483	Effect of Cu doping on structural, electronic and thermoelectric properties of double perovskite Cs2NaVCl6. Computational Condensed Matter, 2023, 35, e00803.	0.9	2

#	Article	IF	CITATIONS
1484	A comparative study of cubic methylammonium lead iodide (CH3NH3PbI3) perovskite by using density functional theory. Materials Today Communications, 2023, 35, 105814.	0.9	1
1485	SnO2 electron transport layer modified by F/N-doped graphdiyne and in situ XRD and in situ XAFS exploration on its effect on perovskite active layer. Nano Today, 2023, 50, 101852.	6.2	5
1486	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. Materials Today Chemistry, 2023, 30, 101511.	1.7	1
1487	Study on carrier dynamics of perovskite solar cells via transient absorption. Journal of Alloys and Compounds, 2023, 952, 170051.	2.8	3
1488	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
1489	Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H ₂ O Vapor Sorption. Angewandte Chemie, 2023, 135, .	1.6	0
1490	2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser and Photonics Reviews, 2023, 17, .	4.4	10
1491	Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chemical Reviews, 2023, 123, 1207-1261.	23.0	41
1492	First principles insight into band gap tuning in bismuth based double perovskites X2NaBiCl6 (XÂ=ÂCs, Rb,) Tj ETQ	998.9 0 rgl	3T ₃ /Overlock
1493	Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rashba Splitting, and Exciton Binding Energy. Journal of Physical Chemistry Letters, 2023, 14, 1592-1603.	2.1	15
1494	Prominent Free Charges Tunneling Through Organic Interlayer of 2D Perovskites. Advanced Materials, 2023, 35, .	11.1	5
1495	Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts. Materials Today Chemistry, 2023, 29, 101387.	1.7	22
1496	An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Scientific Reports, 2023, 13, .	1.6	102
1497	Study on low hydrostatic pressure-dependent optoelectronic, mechanical, and anisotropic properties of heavy thallium perovskites TIPbX3 (X = Cl, Br). Journal of Materials Research, 2023, 38, 2007-2017.	1.2	4
1498	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
1499	Achieving Efficient Lightâ€Emitting Diodes by Controlling Phase Distribution of Quasiâ€2D Perovskites. Advanced Electronic Materials, 2023, 9, .	2.6	5
1500	Challenges and Perspectives toward Future Wideâ€Bandgap Mixedâ€Halide Perovskite Photovoltaics. Advanced Energy Materials, 2023, 13, .	10.2	29
1501	Theoretical Study of Bromide Mixed-RbPbI3 Towards Optoelectronic Applications. Journal of	1.0	1

#	Article	IF	CITATIONS
1502	Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic–Inorganic Dion–Jacobson Perovskites. Journal of the American Chemical Society, 2023, 145, 5297-5309.	6.6	24
1503	Optical Absorption and Secondâ€Harmonic Generation in VioletÂPhosphorene: Experimental and Theoretical Aspects. Advanced Optical Materials, 2023, 11, .	3.6	5
1504	Eu ³⁺ -Bi ³⁺ Codoping Double Perovskites for Single-Component White-Light-Emitting Diodes. Energy Material Advances, 2023, 4, .	4.7	2
1505	Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Solar Energy, 2023, 253, 563-583.	2.9	14
1506	Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process. Chemical Engineering Journal, 2023, 462, 142328.	6.6	10
1508	Solvent engineering of MAPbI ₃ perovskite thick film for a direct X-ray detector. Nanoscale, 2023, 15, 6664-6672.	2.8	1
1509	Surface energy and surface stability of cesium tin halide perovskites: a theoretical investigation. Physical Chemistry Chemical Physics, 2023, 25, 10583-10590.	1.3	4
1510	Toward a Diagnostic Method for Efficient Perovskite Solar Cells Based on Equivalent Circuit Parameters. Journal of Physical Chemistry C, 2023, 127, 5663-5675.	1.5	2
1511	Efficient Yellow Emission and Near-Unified Photoluminescence Quantum Yield of Sb ³⁺ in a One-Dimensional Confinement Cadmium Chloride Lattice. ACS Applied Electronic Materials, 2023, 5, 2365-2374.	2.0	4
1512	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	12
1513	Effects of Solvent Vapor Atmosphere on Photovoltaic Performance of Perovskite Solar Cells. Crystals, 2023, 13, 549.	1.0	1
1514	Strong Electron–Phonon Coupling Induced Selfâ€Trapped Excitons in Double Halide Perovskites. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3
1515	Buried interface passivation strategies for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 8573-8598.	5.2	10
1516	Fluorinated- and non-fluorinated-diarylamine-Zn(<scp>ii</scp>) and Cu(<scp>ii</scp>) phthalocyanines as symmetrical <i>vs.</i> asymmetrical hole selective materials. Journal of Materials Chemistry C, 2023, 11, 8243-8253.	2.7	3
1517	Selfâ€Tracking Solar Concentrator with Absorption of Diffuse Sunlight. Advanced Optical Materials, 0,	3.6	0
1518	Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films. Nanomaterials, 2023, 13, 1245.	1.9	1
1519	Can Nitride Perovskites Provide the Same Superior Optoelectronic Properties as Lead Halide Perovskites?. ACS Energy Letters, 2023, 8, 2051-2057.	8.8	4
1520	Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60.		0

# 1521	ARTICLE Lead-free Metal Halide Perovskites for Solar Energy. , 2023, , 189-222.	IF	CITATIONS 0
1522	Theoretical insights into the amplified optical gain of hexagonal germanium by strain engineering. RSC Advances, 2023, 13, 11324-11336.	1.7	Ο
1524	An atomistic modeling study of high-throughput RVO3(R=La, Nd) perovskites for efficient solar energy conversion materials. Physica B: Condensed Matter, 2023, 660, 414879.	1.3	4
1525	Improved Optical Efficiencies of Perovskite Thin Film Solar Cells by Randomly Distributed Ag Nanoparticles. Plasmonics, 0, , .	1.8	0
1526	Optically Pumped Polaritons in Perovskite Light-Emitting Diodes. ACS Photonics, 2023, 10, 1349-1355.	3.2	2
1527	Inhibiting Interfacial Diffusion in Heterojunction Perovskite Solar Cells by Replacing Lowâ€Đimensional Perovskite with Uniformly Anchored Quaternized Polystyrene. Small, 2023, 19, .	5.2	8
1528	Operando Characterizations of Light-Induced Junction Evolution in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 20909-20916.	4.0	1
1529	Defect Origin of the Light-Soaking Effects in Hybrid Perovskite Solar Cells. , 2023, , 239-263.		1
1530	Aggregationâ€induced Emission Materials for Highâ€efficiency Perovskite Solar Cells. ChemPhysChem, 2023, 24, .	1.0	0
1532	Two-Dimensional Metal Halides for X-Ray Detection Applications. Nano-Micro Letters, 2023, 15, .	14.4	17
1546	Review of recent trends and architecture developments of perovskite solar cells. AIP Conference Proceedings, 2023, , .	0.3	0
1566	Photovoltaic Performance of FAPbl ₃ Perovskite Is Hampered by Intrinsic Quantum Confinement. ACS Energy Letters, 2023, 8, 2543-2551.	8.8	2
1583	Safety Detection System of Perovskite Battery Materials Based on Intelligent Identification Algorithm. Lecture Notes in Mechanical Engineering, 2023, , 475-484.	0.3	0
1585	Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7, 632-652.	13.8	36
1592	Halide perovskite micro and nano lasers. , 2023, , 219-255.		0
1662	Interaction mechanism between water molecules and perovskites. Materials Chemistry Frontiers, 0, , .	3.2	0
1664	Studying the Optoelectronic Properties of NaSnCl3 Solar PV Material: A Step Towards Sustainable Development. Lecture Notes in Electrical Engineering, 2024, , 363-369.	0.3	0
1679	Comparative Analysis of White-Light Absorption Efficiency in Multi-Dimensional Perovskites. , 2023, , .		1

#	Article	IF	CITATIONS
1698	Review on Characteristics, Scalable Fabrication, Advancing Strategies, and Recent Enhancements in High-Performance Perovskite Photovoltaic Cells. , 2024, , .		0
1705	Photovoltaic Systems. , 2024, , 495-557.		0