Mechanism of Activation of Protein Kinase JAK2 by the

Science 344, 1249783 DOI: 10.1126/science.1249783

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Analysis of GH Receptor Conformational Changes by Split Luciferase Complementation. Molecular Endocrinology, 2014, 28, 1807-1819.	3.7	11
2	Differential effects of STAT proteins on growth hormone-mediated IGF-I gene expression. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E847-E855.	1.8	14
3	Frontiers Commentary on Tallet et al. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer. Frontiers in Endocrinology, 2014, 5, 88.	1.5	0
4	Intracellular Signaling Transduction Pathways Triggered by a Well-Known Anti-GHR Monoclonal Antibody, Mab263, in Vitro and in Vivo. International Journal of Molecular Sciences, 2014, 15, 20538-20554.	1.8	6
5	How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms?. Hematology American Society of Hematology Education Program, 2014, 2014, 268-276.	0.9	33
6	Gathering Support for Critical Mass: Interleukin 4 Receptor Signaling Requires Clustering in Endosomes. Biophysical Journal, 2014, 107, 2479-2480.	0.2	0
7	A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors. Jak-stat, 2014, 3, e29569.	2.2	19
8	New Tricks for an Old Dimer. Science, 2014, 344, 703-704.	6.0	10
9	Of cytokine receptor scissors, grasping bacterial hands, and movement across the blood–brain barrier. Journal of General Physiology, 2014, 144, 5-6.	0.9	0
10	Insulin Receptor Activation with Transmembrane Domain Ligands. Journal of Biological Chemistry, 2014, 289, 19769-19777.	1.6	42
12	Dimerization-induced allostery in protein kinase regulation. Trends in Biochemical Sciences, 2014, 39, 475-486.	3.7	80
13	The molecular regulation of Janus kinase (JAK) activation. Biochemical Journal, 2014, 462, 1-13.	1.7	251
14	Dimerization of the EphA1 Receptor Tyrosine Kinase Transmembrane Domain: Insights into the Mechanism of Receptor Activation. Biochemistry, 2014, 53, 6641-6652.	1.2	43
15	Activation of transmembrane cellâ€surface receptors via a common mechanism? The "rotation modelâ€. BioEssays, 2015, 37, 959-967.	1.2	64
16	Solution structure of the transmembrane domain of the mouse erythropoietin receptor in detergent micelles. Scientific Reports, 2015, 5, 13586.	1.6	21
17	Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget, 2015, 6, 24750-24779.	0.8	115
18	New insights in prolactin: pathological implications. Nature Reviews Endocrinology, 2015, 11, 265-275.	4.3	178
19	Tuning Cytokine Receptor Signaling by Re-orienting Dimer Geometry with Surrogate Ligands. Cell, 2015, 160, 1196-1208.	13.5	138

#	Article	IF	CITATIONS
20	Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. Journal of Cell Biology, 2015, 209, 579-593.	2.3	103
21	Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood, 2015, 125, 3388-3392.	0.6	65
22	Human β-Cell Proliferation and Intracellular Signaling: Part 3. Diabetes, 2015, 64, 1872-1885.	0.3	120
23	Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. Journal of the American Chemical Society, 2015, 137, 15676-15679.	6.6	49
24	Identifying growth hormone-regulated enhancers in the <i>Igf1</i> locus. Physiological Genomics, 2015, 47, 559-568.	1.0	17
25	Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochemical Journal, 2015, 468, 495-506.	1.7	68
26	Living Large: What Mouse Models Reveal about Growth Hormone and Obesity. Energy Balance and Cancer, 2015, , 65-95.	0.2	4
27	Residue 146 regulates prolactin receptor folding, basal activity and ligand-responsiveness: Potential implications in breast tumorigenesis. Molecular and Cellular Endocrinology, 2015, 401, 173-188.	1.6	14
28	An RPTPα/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Molecular Biology of the Cell, 2015, 26, 1249-1262.	0.9	39
29	JAK2 activation by growth hormone and other cytokines. Biochemical Journal, 2015, 466, 1-11.	1.7	103
30	Ten things you should know about protein kinases: <scp>IUPHAR R</scp> eview 14. British Journal of Pharmacology, 2015, 172, 2675-2700.	2.7	270
31	Rewriting the mechanism of JAK2 activation. Cell Cycle, 2015, 14, 285-286.	1.3	7
32	Going for broke: targeting the human cancer pseudokinome. Biochemical Journal, 2015, 465, 195-211.	1.7	31
33	The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. British Journal of Cancer, 2015, 113, 365-371.	2.9	460
34	The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opinion on Therapeutic Targets, 2015, 19, 1229-1244.	1.5	54
35	Status of long-acting-growth hormone preparations — 2015. Growth Hormone and IGF Research, 2015, 25, 201-206.	0.5	61
36	Rapid method for growth hormone receptor exon 3 delete (GHRd3) SNP genotyping from archival human placental samples. Endocrine, 2015, 49, 643-652.	1.1	3
37	Virulence Regulation with Venus Flytrap Domains: Structure and Function of the Periplasmic Moiety of the Sensor-Kinase BvgS. PLoS Pathogens, 2015, 11, e1004700.	2.1	51

	CITATION	REPORT	
#	Article	IF	CITATIONS
38	Juxtamembrane contribution to transmembrane signaling. Biopolymers, 2015, 104, 317-322.	1.2	11
39	Thermodynamic and kinetic characterization of transmembrane helix association. Physical Chemistry Chemical Physics, 2015, 17, 1390-1398.	1.3	25
40	Early T Cell Activation: Integrating Biochemical, Structural, and Biophysical Cues. Annual Review of Immunology, 2015, 33, 539-561.	9.5	125
41	The βc receptor family – Structural insights and their functional implications. Cytokine, 2015, 74, 247-258.	1.4	65
42	Drug Resistance Resulting from Kinase Dimerization Is Rationalized by Thermodynamic Factors Describing Allosteric Inhibitor Effects. Cell Reports, 2015, 12, 1939-1949.	2.9	37
43	Structure of Full-Length Human PDGFRÎ ² Bound to Its Activating Ligand PDGF-B as Determined by Negative-Stain Electron Microscopy. Journal of Molecular Biology, 2015, 427, 3921-3934.	2.0	37
44	Growth hormone binding protein – Physiological and analytical aspects. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 671-683.	2.2	30
45	JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica, 2015, 100, 1240-1253.	1.7	55
46	Deregulated JAK/STAT signalling in lymphomagenesis, and its implications for the development of new targeted therapies. Blood Reviews, 2015, 29, 405-415.	2.8	38
47	Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. International Journal of Biochemistry and Cell Biology, 2015, 68, 101-108.	1.2	31
48	Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. Cell Reports, 2015, 11, 1184-1192.	2.9	20
49	Development and characterization of a novel GHR antibody antagonist, GF185. International Journal of Biological Macromolecules, 2015, 79, 864-870.	3.6	3
51	Mechanisms of Jak/STAT Signaling in Immunity and Disease. Journal of Immunology, 2015, 194, 21-27.	0.4	440
52	Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annual Review of Immunology, 2015, 33, 139-167.	9.5	204
53	Structural Biology of JAK/STAT Cytokines and Their Receptors. , 2016, , 124-133.		0
54	IL-10. , 2016, , 544-553.		0
55	The Blockade of IL6 Counterparts the Osmolar Stress-Induced Apoptosis in Human Conjunctival Epithelial Cells. Journal of Ophthalmology, 2016, 2016, 1-7.	0.6	5
56	Principles of Hormone Action. , 2016, , 18-48.		4

#	Article	IF	CITATIONS
57	Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. International Journal of Molecular Sciences, 2016, 17, 655.	1.8	34
58	Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling. Structure, 2016, 24, 1271-1281.	1.6	46
59	The JAK–STAT–SOCS Signaling Cascade. , 2016, , 136-152.		4
60	A combined computational and structural model of the full-length human prolactin receptor. Nature Communications, 2016, 7, 11578.	5.8	52
61	Revisiting the scissorâ€like mechanism of activation for the erythropoietin receptor. FEBS Letters, 2016, 590, 3083-3088.	1.3	3
62	Different intracellular signalling properties induced by human and porcine growth hormone. General and Comparative Endocrinology, 2016, 229, 67-73.	0.8	6
63	Pathogenesis of Myeloproliferative Disorders. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 101-126.	9.6	38
64	Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood, 2016, 127, 1307-1316.	0.6	224
65	Crystal Structure of a Complex of the Intracellular Domain of Interferon λ Receptor 1 (IFNLR1) and the FERM/SH2 Domains of Human JAK1. Journal of Molecular Biology, 2016, 428, 4651-4668.	2.0	37
66	Neuroprotective effects of nitidine in Parkinson's disease models through inhibiting microglia activation: role of the Jak2–Stat3 pathway. RSC Advances, 2016, 6, 71328-71337.	1.7	21
67	Glycosylation-Dependent IFN-Î ³ R Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016, 166, 920-934.	13.5	110
68	Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Current Opinion in Structural Biology, 2016, 39, 115-123.	2.6	22
69	Homeoviscous Adaptation and the Regulation of Membrane Lipids. Journal of Molecular Biology, 2016, 428, 4776-4791.	2.0	301
70	Defining human insulin-like growth factor I gene regulation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E519-E529.	1.8	18
71	Understanding singleâ€pass transmembrane receptor signaling from a structural viewpoint—what are we missing?. FEBS Journal, 2016, 283, 4424-4451.	2.2	49
72	Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. Journal of the American Chemical Society, 2016, 138, 10611-10622.	6.6	103
73	Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers. Molecular Endocrinology, 2016, 30, 290-301.	3.7	3
74	A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6649-E6658.	3.3	40

#	Article	IF	CITATIONS
75	Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix. Biochemical Journal, 2016, 473, 1579-1591.	1.7	39
76	The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway?. Neuroscience, 2016, 330, 205-218.	1.1	122
77	Multi-organ Site Metastatic Reactivation Mediated by Non-canonical Discoidin Domain Receptor 1 Signaling. Cell, 2016, 166, 47-62.	13.5	194
78	The growth hormone receptor. Growth Hormone and IGF Research, 2016, 28, 6-10.	0.5	97
79	His499 Regulates Dimerization and Prevents Oncogenic Activation by Asparagine Mutations of the Human Thrombopoietin Receptor. Journal of Biological Chemistry, 2016, 291, 2974-2987.	1.6	29
80	Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Review of Endocrinology and Metabolism, 2016, 11, 197-207.	1.2	8
81	ldentification of Polymorphisms in the Rabbit Growth Hormone Receptor (<i>GHR</i>) Gene and Association with Finishing Weight in a Commercial Meat Rabbit Line. Animal Biotechnology, 2016, 27, 77-83.	0.7	8
82	The Impact of Adipose Tissue on Insulin Resistance in Acromegaly. Trends in Endocrinology and Metabolism, 2016, 27, 226-237.	3.1	59
83	Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure, 2016, 24, 7-24.	1.6	131
84	Cytokine Receptors and Their Ligands. , 2016, , 22-36.		0
84 85	Cytokine Receptors and Their Ligands. , 2016, , 22-36. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55.	1.6	0 36
	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular	1.6	
85	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent		36
85 86	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone. Molecular and Cellular Biology, 2016, 36, 50-69. Lessons learned from studies with the growth hormone receptor. Growth Hormone and IGF Research,	1.1	36 39
85 86 87	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone. Molecular and Cellular Biology, 2016, 36, 50-69. Lessons learned from studies with the growth hormone receptor. Growth Hormone and IGF Research, 2016, 28, 21-25.	1.1 0.5	36 39 13
85 86 87 88	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone. Molecular and Cellular Biology, 2016, 36, 50-69. Lessons learned from studies with the growth hormone receptor. Growth Hormone and IGF Research, 2016, 28, 21-25. Tyrosine kinase 2 â€" Surveillant of tumours and bona fide oncogene. Cytokine, 2017, 89, 209-218. STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney	1.1 0.5 1.4	36 39 13 45
85 86 87 88 89	Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Molecular and Cellular Endocrinology, 2016, 432, 44-55. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone. Molecular and Cellular Biology, 2016, 36, 50-69. Lessons learned from studies with the growth hormone receptor. Growth Hormone and IGF Research, 2016, 28, 21-25. Tyrosine kinase 2 – Surveillant of tumours and bona fide oncogene. Cytokine, 2017, 89, 209-218. STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney International, 2017, 91, 575-586. Self-Assembly of Human Profilin-1 Detected by Carr–Purcell–Meiboom–Gill Nuclear Magnetic	1.1 0.5 1.4 2.6	36 39 13 45 41

#	Article	IF	CITATIONS
93	JAK–STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs, 2017, 77, 521-546.	4.9	711
94	HiJAKing the epigenome in leukemia and lymphoma. Leukemia and Lymphoma, 2017, 58, 2540-2547.	0.6	3
95	Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. Cellular and Molecular Life Sciences, 2017, 74, 2525-2535.	2.4	115
96	The 20 kDa and 22 kDa forms of human growth hormone (hGH) exhibit different intracellular signalling profiles and properties. General and Comparative Endocrinology, 2017, 248, 49-54.	0.8	10
97	The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochemical Society Transactions, 2017, 45, 665-681.	1.6	71
98	The New Genomics: What Molecular Databases Can Tell Us About Human Population Variation and Endocrine Disease. Endocrinology, 2017, 158, 2035-2042.	1.4	2
100	Prolactin. , 2017, , 129-161.		7
101	Generic membrane-spanning features endow IRE1α with responsiveness to membrane aberrancy. Molecular Biology of the Cell, 2017, 28, 2318-2332.	0.9	38
102	Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. , 2017, 179, 111-126.		57
103	Tumour-Derived Human Growth Hormone As a Therapeutic Target in Oncology. Trends in Endocrinology and Metabolism, 2017, 28, 587-596.	3.1	31
104	Mechanisms and consequences of Jak–STAT signaling in the immune system. Nature Immunology, 2017, 18, 374-384.	7.0	870
105	Nuclear Import of JAK1 Is Mediated by a Classical NLS and Is Required for Survival of Diffuse Large B-cell Lymphoma. Molecular Cancer Research, 2017, 15, 348-357.	1.5	14
106	The role of growth hormone receptor in \hat{I}^2 cell function. Growth Hormone and IGF Research, 2017, 36, 30-35.	0.5	10
107	MECHANISMS IN ENDOCRINOLOGY: Clinical and pharmacogenetic aspects of the growth hormone receptor polymorphism. European Journal of Endocrinology, 2017, 177, R309-R321.	1.9	11
108	Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Scientific Reports, 2017, 7, 4572.	1.6	14
109	Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer. Biophysical Journal, 2017, 113, 381-392.	0.2	9
110	Subdomain 2, Not the Transmembrane Domain, Determines the Dimerization Partner of Growth Hormone Receptor and Prolactin Receptor. Endocrinology, 2017, 158, 3235-3248.	1.4	12
111	Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms. Cancer Science, 2017, 108, 1907-1912.	1.7	18

#	Article	IF	CITATIONS
112	Manganese―and 1â€methylâ€4â€phenylpyridiniumâ€induced neurotoxicity display differences in morphological electrophysiological and genomeâ€wide alterations: implications for idiopathic Parkinson's disease. Journal of Neurochemistry, 2017, 143, 334-358.	, 2.1	14
113	Growth Hormone. , 2017, , 85-127.		5
114	Versican G1 domain enhances adenoviral-mediated transgene expression and can be modulated by inhibitors of the Janus kinase (JAK)/STAT and Src family kinase pathways. Journal of Biological Chemistry, 2017, 292, 14381-14390.	1.6	4
115	Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes. Domestic Animal Endocrinology, 2017, 61, 39-47.	0.8	12
116	Receptor lipid nanodomain partitioning and signaling. Cell Cycle, 2017, 16, 237-238.	1.3	3
117	Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 561-576.	1.4	72
118	Growth Hormone, Prolactin, and Placental Lactogen in the Fetus and Newborn. , 2017, , 1470-1476.e1.		1
119	The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions. Frontiers in Endocrinology, 2017, 8, 71.	1.5	81
120	STAT Transcription Factors in T Cell Control of Health and Disease. International Review of Cell and Molecular Biology, 2017, 331, 123-180.	1.6	38
121	Erythropoietin Receptor Structural Domains. Vitamins and Hormones, 2017, 105, 1-17.	0.7	2
122	Steering of carcinoma progression by the YIN/YANG interaction of STAT1/STAT3. BioScience Trends, 2017, 11, 1-8.	1.1	27
123	The ethanol extraction of prepared <i>Psoralea corylifolia</i> induces apoptosis and autophagy and alteres genes expression assayed by cDNA microarray in human prostate cancer PCâ€3 cells. Environmental Toxicology, 2018, 33, 770-788.	2.1	24
124	The Pseudokinase Domain of <i>Saccharomyces cerevisiae</i> Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3: Genes, Genomes, Genetics, 2018, 8, 1943-1957.	0.8	16
125	Inhibitors of the JAK/STAT Pathway, with a Focus on Ruxolitinib and Similar Agents. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 107-134.	0.1	1
126	<i>Cichlasoma dimerus</i> responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis. Aquaculture Nutrition, 2018, 24, 1234-1243.	1.1	10
127	A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene, 2018, 37, 489-501.	2.6	39
128	Nicorandil and theophylline can protect experimental rats against complete Freund's adjuvant-induced rheumatoid arthritis through modulation of JAK/STAT/RANKL signaling pathway. European Journal of Pharmacology, 2018, 822, 177-185.	1.7	23
129	Human Placental Growth Hormone Variant in Pathological Pregnancies. Endocrinology, 2018, 159, 2186-2198.	1.4	24

#	Article	IF	CITATIONS
130	Structural basis of the signal transduction via transmembrane domain of the human growth hormone receptor. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1410-1420.	1.1	28
131	Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Molecular Metabolism, 2018, 11, 113-128.	3.0	79
132	Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028514.	2.3	28
133	STAT5a and STAT6 gene expression levels in multiple sclerosis patients. Cytokine, 2018, 106, 108-113.	1.4	20
134	Role of protein dynamics in transmembrane receptor signalling. Current Opinion in Structural Biology, 2018, 48, 74-82.	2.6	26
135	Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. ELife, 2018, 7, .	2.8	46
136	Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 2504.	2.2	23
137	Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. Science Advances, 2018, 4, eaat3834.	4.7	39
138	Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Experimental and Therapeutic Medicine, 2018, 16, 3275-3285.	0.8	28
139	The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 2018, 27, 1984-2009.	3.1	485
140	The roles of <scp>SOCS</scp> 3 and <scp>STAT</scp> 3 in bacterial infection and inflammatory diseases. Scandinavian Journal of Immunology, 2018, 88, e12727.	1.3	76
141	Actionable Activating Oncogenic ERBB2/HER2 Transmembrane and Juxtamembrane Domain Mutations. Cancer Cell, 2018, 34, 792-806.e5.	7.7	102
142	Mapping Determinants of Cytokine Signaling via Protein Engineering. Frontiers in Immunology, 2018, 9, 2143.	2.2	20
143	Reply: A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain, 2018, 141, e81-e81.	3.7	4
144	Cytokine Receptors. Endocrinology, 2018, , 157-185.	0.1	6
145	Obesity and the Growth Hormone Axis. , 2018, , 321-344.		0
146	Inhibition of JAK2/STAT3 signaling suppresses bone marrow stromal cells proliferation and osteogenic differentiation, and impairs bone defect healing. Biological Chemistry, 2018, 399, 1313-1323.	1.2	36
147	Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Frontiers in Endocrinology, 2017, 8, 361.	1.5	69

#	Article	IF	CITATIONS
148	The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Frontiers in Endocrinology, 2018, 9, 35.	1.5	188
149	Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy?. International Journal of Molecular Sciences, 2018, 19, 375.	1.8	38
150	Treatment with Growth Hormone for Adults with Growth Hormone Deficiency Syndrome: Benefits and Risks. International Journal of Molecular Sciences, 2018, 19, 893.	1.8	52
151	Proposed Molecular and miRNA Classification of Gastric Cancer. International Journal of Molecular Sciences, 2018, 19, 1683.	1.8	64
152	Growth Hormone Receptor Mutations Related to Individual Dwarfism. International Journal of Molecular Sciences, 2018, 19, 1433.	1.8	39
153	"Do We Know Jack―About JAK? A Closer Look at JAK/STAT Signaling Pathway. Frontiers in Oncology, 2018, 8, 287.	1.3	283
154	Differential tissue response to growth hormone in mice. FEBS Open Bio, 2018, 8, 1146-1154.	1.0	7
155	The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine, 2019, 118, 48-63.	1.4	145
156	Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia, 2019, 33, 122-131.	3.3	54
157	Brazilian multicenter study on pegvisomant treatment in acromegaly. Archives of Endocrinology and Metabolism, 2019, 63, 328-336.	0.3	16
158	Reply: Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain, 2019, 142, e60-e60.	3.7	3
159	Is there a role for prostanoid-mediated inhibition of IL-6 <i>trans</i> -signalling in the management of pulmonary arterial hypertension?. Biochemical Society Transactions, 2019, 47, 1143-1156.	1.6	8
160	Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers, 2019, 11, 1394.	1.7	17
161	Oncogenic basic amino acid insertions at the extracellular juxtamembrane region of IL7RA cause receptor hypersensitivity. Blood, 2019, 133, 1259-1263.	0.6	6
162	Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine and Growth Factor Reviews, 2019, 47, 1-20.	3.2	11
163	Pathogenesis and Diagnosis of Growth Hormone Deficiency in Adults. New England Journal of Medicine, 2019, 380, 2551-2562.	13.9	97
164	Zinc ions increase GH signaling ability through regulation of available plasma membraneâ€localized GHR. Journal of Cellular Physiology, 2019, 234, 23388-23397.	2.0	6
165	From Molecular Classification to Targeted Therapy for Gastric Cancer in the Precision Medicine Era. Current Clinical Pathology, 2019, , 155-172.	0.0	0

# 166	ARTICLE Structural Investigation of Human Prolactin Receptor Transmembrane Domain Homodimerization in a Membrane Environment through Multiscale Simulations. Journal of Physical Chemistry B, 2019, 123, 4858-4866.	IF 1.2	CITATIONS 3
167	Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Molecular and Cellular Endocrinology, 2019, 492, 110445.	1.6	8
168	Renin-angiotensin system promotes colonic inflammation by inducing T _H 17 activation via JAK2/STAT pathway. American Journal of Physiology - Renal Physiology, 2019, 316, G774-G784.	1.6	36
169	Myometrial Transcriptional Signatures of Human Parturition. Frontiers in Genetics, 2019, 10, 185.	1.1	41
170	Prolactin — a pleiotropic factor in health and disease. Nature Reviews Endocrinology, 2019, 15, 356-365.	4.3	148
171	Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocrine Reviews, 2019, 40, 476-505.	8.9	32
172	Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling. Journal of Allergy and Clinical Immunology, 2019, 144, 224-235.	1.5	17
173	Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. Journal of Neuroimmunology, 2019, 330, 96-107.	1.1	20
174	Growth Hormone's Links to Cancer. Endocrine Reviews, 2019, 40, 558-574.	8.9	80
176	Emerging technologies in protein interface engineering for biomedical applications. Current Opinion in Biotechnology, 2019, 60, 82-88.	3.3	7
177	Targeting growth hormone function: strategies and therapeutic applications. Signal Transduction and Targeted Therapy, 2019, 4, 3.	7.1	74
178	Fast-diffusing p75 ^{NTR} monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21563-21572.	3.3	45
179	Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Cancers, 2019, 11, 1701.	1.7	10
180	A Tug of War: DNA-Sensing Antiviral Innate Immunity and Herpes Simplex Virus Type I Infection. Frontiers in Microbiology, 2019, 10, 2627.	1.5	35
181	Comparative transcriptomic analysis of surf clams (Paphia undulate) infected with two strains of Vibrio spp. reveals the identity of key immune genes involved in host defense. BMC Genomics, 2019, 20, 988.	1.2	7
182	Deleterious and Oncogenic Mutations in the IL7RA. Cancers, 2019, 11, 1952.	1.7	12
183	Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine, 2019, 124, 154569.	1.4	47
184	Atomistic mechanism of the constitutive activation of PDGFRA via its transmembrane domain. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 82-95.	1.1	8

#	Article	IF	CITATIONS
185	JAK Inhibitors Suppress Innate Epigenetic Reprogramming: a Promise for Patients with Sjögren's Syndrome. Clinical Reviews in Allergy and Immunology, 2020, 58, 182-193.	2.9	32
186	The potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology, 2020, 60, 41-56.	4.3	226
187	T618I CSF3R mutations in chronic neutrophilic leukemia induce oncogenic signals through aberrant trafficking and constitutive phosphorylation of the O-glycosylated receptor form. Biochemical and Biophysical Research Communications, 2020, 523, 208-213.	1.0	11
188	Lactobacillus rhamnosus GG–induced Expression of Leptin in the Intestine Orchestrates Epithelial Cell Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 627-639.	2.3	22
189	Classical and novel GH receptor signaling pathways. Molecular and Cellular Endocrinology, 2020, 518, 110999.	1.6	21
190	The CD28 Transmembrane Domain Contains an Essential Dimerization Motif. Frontiers in Immunology, 2020, 11, 1519.	2.2	21
191	JAK2-STAT5 signaling is insensitive to porcine growth hormone (pCH) in hepatocytes of neonatal pig. Animal Cells and Systems, 2020, 24, 69-78.	0.8	3
192	Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals, 2020, 10, 2107.	1.0	23
193	Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Frontiers in Endocrinology, 2020, 11, 597573.	1.5	30
194	Kaempferol Promotes Glucose Uptake in Myotubes through a JAK2-Dependent Pathway. Journal of Agricultural and Food Chemistry, 2020, 68, 13720-13729.	2.4	10
195	Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Frontiers in Molecular Biosciences, 2020, 7, 129.	1.6	15
196	Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Frontiers in Immunology, 2020, 11, 1424.	2.2	60
197	Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach. Journal of Chemical Physics, 2020, 153, 041101.	1.2	42
198	The peptide encoded by a novel putative IncRNA HBVPTPAP inducing the apoptosis of hepatocellular carcinoma cells by modulating JAK/STAT signaling pathways. Virus Research, 2020, 287, 198104.	1.1	21
199	MLAA-34 knockdown shows enhanced antitumor activity via JAK2/STAT3 signaling pathway in acute monocytic leukemia. Journal of Cancer, 2020, 11, 6768-6781.	1.2	2
200	Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells, 2020, 9, 2297.	1.8	61
201	Aggressive NK Cell Leukemia: Current State of the Art. Cancers, 2020, 12, 2900.	1.7	17
202	Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Communication and Signaling, 2020, 18, 132.	2.7	20

#	Article	IF	CITATIONS
203	A Mixture of Humulus japonicus Increases Longitudinal Bone Growth Rate in Sprague Dawley Rats. Nutrients, 2020, 12, 2625.	1.7	3
204	Experimentally Guided Computational Methods Yield Highly Accurate Insights into Transmembrane Interactions within the T Cell Receptor Complex. Journal of Physical Chemistry B, 2020, 124, 10303-10310.	1.2	1
205	Emerging Treatment Options in Inflammatory Bowel Disease: Janus Kinases, Stem Cells, and More. Digestion, 2020, 101, 69-82.	1.2	49
206	Yeast recombinant production of intact human membrane proteins with long intrinsically disordered intracellular regions for structural studies. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183272.	1.4	6
207	Regulation of gene expression by growth hormone. Molecular and Cellular Endocrinology, 2020, 507, 110788.	1.6	21
208	Renin Promotes STAT4 Phosphorylation to Induce IL-17 Production in Keratinocytes of Oral Lichen Planus. IScience, 2020, 23, 100983.	1.9	14
209	Detecting novel Indel variants within the <i>GHR</i> gene and their associations with growth traits in Luxi Blackhead sheep. Animal Biotechnology, 2022, 33, 214-222.	0.7	16
210	CP-25 alleviates antigen-induced experimental Sjögren's syndrome in mice by inhibiting JAK1-STAT1/2-CXCL13 signaling and interfering with B-cell migration. Laboratory Investigation, 2021, 101, 1084-1097.	1.7	8
211	Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Current Opinion in Structural Biology, 2020, 61, 191-197.	2.6	28
212	Divergent genes encoding the putative receptors for growth hormone and prolactin in sea lamprey display distinct patterns of expression. Scientific Reports, 2020, 10, 1674.	1.6	12
213	Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science, 2020, 367, 643-652.	6.0	123
214	There and Back Again: A Cytokine Receptor's Tail. HemaSphere, 2020, 4, e349.	1.2	2
215	Amyloid Beta Peptide Is an Endogenous Negative Allosteric Modulator of Leptin Receptor. Neuroendocrinology, 2021, 111, 370-387.	1.2	11
216	Genetic causes of growth hormone insensitivity beyond GHR. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 43-58.	2.6	13
217	GHR signalling: Receptor activation and degradation mechanisms. Molecular and Cellular Endocrinology, 2021, 520, 111075.	1.6	22
218	Aging-related modifications to G protein-coupled receptor signaling diversity. , 2021, 223, 107793.		12
219	Human growth disorders associated with impaired GH action: Defects in STAT5B and JAK2. Molecular and Cellular Endocrinology, 2021, 519, 111063.	1.6	16
220	Four-Color Single-Molecule Imaging with Engineered Tags Resolves the Molecular Architecture of Signaling Complexes in the Plasma Membrane. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
221	There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. Journal of Biological Chemistry, 2021, 296, 100705.	1.6	52
222	A novel peptide antagonist of the human growth hormone receptor. Journal of Biological Chemistry, 2021, 296, 100588.	1.6	5
223	Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?. BioEssays, 2021, 43, 2000268.	1.2	8
224	Mechanistic role of DANCR in the choreography of signaling pathways in different cancers: Spotlight on regulation of Wnt/Î2-catenin and JAK/STAT pathways by oncogenic long non-coding RNA. Non-coding RNA Research, 2021, 6, 29-34.	2.4	5
225	All-Atom Molecular Dynamics Elucidating Molecular Mechanisms of Single-Transmembrane Model Peptide Dimerization in a Lipid Bilayer. ACS Omega, 2021, 6, 11458-11465.	1.6	2
226	Chiral Selfâ€Sorting of Diformylated N â€Hetero―ortho â€phenylene Hexamers by Macrocyclization with Aromatic Diamines. European Journal of Organic Chemistry, 2021, 2021, 2736-2745.	1.2	0
228	Order and disorder—An integrative structure of the full-length human growth hormone receptor. Science Advances, 2021, 7, .	4.7	25
229	The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets, 2021, 32, 770-778.	1.1	23
230	Cysteine cross-linking in native membranes establishes the transmembrane architecture of Ire1. Journal of Cell Biology, 2021, 220, .	2.3	8
231	The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Experimental Neurology, 2021, 341, 113690.	2.0	41
232	NR1D1 suppressed the growth of ovarian cancer by abrogating the JAK/STAT3 signaling pathway. BMC Cancer, 2021, 21, 871.	1.1	14
233	Tyrosine kinases regulate chondrocyte hypertrophy: promising drug targets for Osteoarthritis. Osteoarthritis and Cartilage, 2021, 29, 1389-1398.	0.6	17
234	PIP2 promotes conformation-specific dimerization of the EphA2 membrane region. Journal of Biological Chemistry, 2021, 296, 100149.	1.6	21
235	Cytokine Receptors. , 2021, , .		1
236	Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics, 2021, 11, 8283-8300.	4.6	10
237	Cytokine Receptors. Endocrinology, 2016, , 1-29.	0.1	4
238	Structural Basis for Signaling Through Shared Common Î ³ Chain Cytokines. Advances in Experimental Medicine and Biology, 2019, 1172, 1-19.	0.8	3
239	Growth Hormone-Binding Proteinsâ~†. , 2014, , .		4

# 240	ARTICLE Pituitary Physiology and Diagnostic Evaluation. , 2016, , 176-231.	IF	CITATIONS
241	Venous thrombosis of the liver: current and emerging concepts in management. Translational Research, 2020, 225, 54-69.	2.2	12
242	Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling?. Biochemical Society Transactions, 2020, 48, 2669-2689.	1.6	36
245	Recognition of sites of functional specialisation in all known eukaryotic protein kinase families. PLoS Computational Biology, 2018, 14, e1005975.	1.5	4
246	Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia. Oncotarget, 2014, 5, 9564-9576.	0.8	39
247	Polymorphisms in JAK2 Gene are Associated with Production Traits and Mastitis Resistance in Dairy Cattle. Annals of Animal Science, 2020, 20, 409-423.	0.6	4
248	Protein chip of Boletus speciosus Frost Polysaccharide Revealed the Molecular Mechanism of Antitumor and Immunostimulatory Activities on Macrophages. Indian Journal of Pharmaceutical Sciences, 2018, 80, .	1.0	2
249	Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF. ELife, 2014, 3, e05401.	2.8	67
250	Cellular Signalling and Photobiomodulation in Chronic Wound Repair. International Journal of Molecular Sciences, 2021, 22, 11223.	1.8	33
251	Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling. Nature Communications, 2021, 12, 6198.	5.8	20
252	Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor. Asian-Australasian Journal of Animal Sciences, 2016, 29, 1508-1514.	2.4	0
253	The Structure and Signaling Mechanisms of Type 1 Cytokine Receptors: A Brief Overview. Turkish Journal of Immunology, 2016, 3, 121-124.	0.1	1
254	Cytokine Receptors. Endocrinology, 2017, , 1-29.	0.1	1
255	Updates in Polycythemia Vera. Molecular Pathology Library, 2018, , 115-139.	0.1	0
257	Targeting Pathways in GI Malignancies. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 1-14.	0.2	0
259	Mice with gene alterations in the GH and IGF family. Pituitary, 2022, 25, 1-51.	1.6	21
260	Structural biology of cell surface receptors implicated in Alzheimer's disease. Biophysical Reviews, 2022, 14, 233-255.	1.5	5
261	Messing with βc: A unique receptor with many goals. Seminars in Immunology, 2021, 54, 101513.	2.7	2

#	Article	IF	CITATIONS
262	The JAK/STAT signaling pathway: from bench to clinic. Signal Transduction and Targeted Therapy, 2021, 6, 402.	7.1	636
263	Integration of Transcriptome and Methylome Highlights the Roles of Cell Cycle and Hippo Signaling Pathway in Flatfish Sexual Size Dimorphism. Frontiers in Cell and Developmental Biology, 2021, 9, 743722.	1.8	14
264	Inhibitors of Ebolavirus targeting innate immune evasion. Annual Reports in Medicinal Chemistry, 2021, , 153-174.	0.5	0
265	Deletion of Smooth Muscle Lethal Giant Larvae 1 Promotes Neointimal Hyperplasia in Mice. Frontiers in Pharmacology, 2022, 13, 834296.	1.6	0
266	Phenotypes Associated with Down Syndrome and Causative Genes. , 0, , .		0
267	Diagnosis and Treatment of Acromegaly: An Update. Mayo Clinic Proceedings, 2022, 97, 333-346.	1.4	26
268	Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. Cell Reports Methods, 2022, 2, 100165.	1.4	27
269	Effectiveness of Recombinant Human Growth Hormone Therapy for Children With Phelan-McDermid Syndrome: An Open-Label, Cross-Over, Preliminary Study. Frontiers in Psychiatry, 2022, 13, 763565.	1.3	3
270	Efficacy of using zinc oxide nanoparticle as a substitute to antibiotic growth promoter and zinc sulphate for growth performance, antioxidant capacity, immunity and intestinal barrier function in broilers. Italian Journal of Animal Science, 2022, 21, 562-576.	0.8	8
271	Regulation of Cell-Signaling Pathways by Berbamine in Different Cancers. International Journal of Molecular Sciences, 2022, 23, 2758.	1.8	6
272	Evaluating the use of JAK inhibitors in inflammatory connective tissue diseases in pediatric patients: an update. Expert Review of Clinical Immunology, 2022, 18, 263-272.	1.3	2
273	The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biological Trace Element Research, 2023, 201, 539-548.	1.9	19
274	Implications of Evolving Disease Classification for Drug Approval in Juvenile Idiopathic Arthritis. Paediatric Drugs, 2022, 24, 185-191.	1.3	1
275	Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science, 2022, 376, 163-169.	6.0	78
276	GROWTH HORMONE'S INTRACELLULAR SIGNALING: CURRENT VIEW, PHYSIOLOGICAL EFFECTS, FORWARDLOOKING ASSESSEMENT. Bulletin of Problems Biology and Medicine, 2022, 1, 39.	0.0	0
277	Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods in Enzymology, 2022, 667, 455-505.	0.4	0
285	Impact of Interferon Alpha/Beta in the Management of Chronic Myeloproliferative Disorders. , 0, , .		0
286	Leptin and its relationship with magnesium biomarkers in women with obesity. BioMetals, 2022, 35, 689-697.	1.8	3

#	Article	IF	CITATIONS
287	Mutations in GHR and IGF1R Genes as a Potential Reason for the Lack of Catch-Up Growth in SGA Children. Genes, 2022, 13, 856.	1.0	4
288	Cytokine Receptors and their Ligands. , 2022, , .		1
289	Mechanism, regulation, and inhibition of alkaloids in cancer therapy targeting JAK/STAT pathway. , 2022, , 247-270.		1
291	Small molecules to regulate the CH/IGF1 axis by inhibiting the growth hormone receptor synthesis. Frontiers in Endocrinology, 0, 13, .	1.5	5
292	STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Seminars in Cancer Biology, 2022, 86, 84-106.	4.3	31
293	Disruption of Growth Hormone Receptor Signaling Abrogates Hepatocellular Carcinoma Development. Journal of Hepatocellular Carcinoma, 0, Volume 9, 823-837.	1.8	8
294	Emerging principles of cytokine pharmacology and therapeutics. Nature Reviews Drug Discovery, 2023, 22, 21-37.	21.5	41
295	Blockade of growth hormone receptor signaling by using pegvisomant: A functional therapeutic strategy in hepatocellular carcinoma. Frontiers in Oncology, 0, 12, .	1.3	9
296	microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Frontiers in Cellular and Infection Microbiology, 0, 12,	1.8	2
297	Pseudokinase NRP1 facilitates endocytosis of transferrin in the African trypanosome. Scientific Reports, 2022, 12, .	1.6	1
298	The expression of apoptosis related genes in HK-2 cells overexpressing PPM1K was determined by RNA-seq analysis. Frontiers in Genetics, 0, 13, .	1.1	2
299	The effect of growth hormone-induced cellular behavior and signaling properties on induced cellular senescence in human mesenchymal stem cells. Tissue and Cell, 2022, 79, 101963.	1.0	0
300	Atypical STAT5B deficiency, severe short stature and mild immunodeficiency associated with a novel homozygous STAT5B Variant. Molecular and Cellular Endocrinology, 2023, 559, 111799.	1.6	1
301	Identification of prolactin receptor variants with diverse effects on receptor signalling. Journal of Molecular Endocrinology, 2023, 70, .	1.1	2
303	Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis. Molecules, 2023, 28, 67.	1.7	3
305	The JAK–STAT–SOCS Signaling Cascade. , 2016, , 162-179.		0
306	Growth Hormone. , 2022, , 91-129.		0
307	Signal Transducer and Activator of Transcription as a Potential Therapeutic Target in Breast Cancer. , 2023, , .		1

#	Article	IF	CITATIONS
308	Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. , 2023, 244, 108383.		10
309	JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. International Journal of Molecular Sciences, 2023, 24, 6805.	1.8	4
310	Prolactin. , 2022, , 131-172.		1
311	Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. Journal of Translational Medicine, 2023, 21, .	1.8	4
312	Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules, 2023, 28, 2231.	1.7	5