A smartphone algorithm with inter-phone repeatability tests

Sensors and Actuators B: Chemical 196, 156-160 DOI: 10.1016/j.snb.2014.01.077

Citation Report

#	Article	IF	CITATIONS
2	Mechanism of multiple grating formation in high-energy recording of holographic sensors. Applied Physics Letters, 2014, 105, .	1.5	21
3	Mobile App-Based Quantitative Scanometric Analysis. Analytical Chemistry, 2014, 86, 11966-11971.	3.2	44
4	Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor. Nano Letters, 2014, 14, 3587-3593.	4.5	103
5	Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chemical Reviews, 2014, 114, 10654-10696.	23.0	166
6	Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation. ACS Applied Materials & Interfaces, 2014, 6, 8903-8908.	4.0	34
7	A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity. Analytica Chimica Acta, 2014, 845, 15-22.	2.6	24
8	Patent protection and licensing in microfluidics. Lab on A Chip, 2014, 14, 2217.	3.1	33
9	Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps. Scientific Reports, 2015, 5, 11727.	1.6	13
10	A low cost design and fabrication method for developing a leak proof paper based microfluidic device with customized test zone. Biomicrofluidics, 2015, 9, 026502.	1.2	9
11	Point-of-Care Diagnostics. Springer Theses, 2015, , 1-25.	0.0	3
12	Portable computing for taking part of the lab to the sample types of applications. From hand held personal digital assistants to smart phones for mobile spectrometry. Proceedings of SPIE, 2015, , .	0.8	1
13	A smart phone-based robust correction algorithm for the colorimetric detection of Urinary Tract Infection. , 2015, 2015, 1251-4.		6
14	Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Applied Optics, 2015, 54, 9183.	2.1	93
15	Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta, 2015, 136, 204-209.	2.9	96
16	A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 51-57.	2.0	73
17	Photonic Nanosensor for Colorimetric Detection of Metal Ions. Analytical Chemistry, 2015, 87, 5101-5108.	3.2	82
18	Determination and analytical validation of creatinine content in serum using image analysis by multivariate transfer calibration procedures. Analytical Methods, 2015, 7, 6904-6910.	1.3	11
19	Entrepreneurship. Lab on A Chip, 2015, 15, 3638-3660.	3.1	28

#	Article	IF	CITATIONS
20	Enzyme Induced Stiffening of Nanoparticle–Hydrogel Composites with Structural Color. ACS Nano, 2015, 9, 8004-8011.	7.3	51
21	Fundamentals of Holographic Sensing. Springer Theses, 2015, , 27-51.	0.0	8
22	Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Analyst, The, 2015, 140, 4105-4113.	1.7	35
23	An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chemistry, 2015, 184, 23-29.	4.2	91
24	Development of a Gas-Diffusion Microfluidic Paper-Based Analytical Device (μPAD) for the Determination of Ammonia in Wastewater Samples. Analytical Chemistry, 2015, 87, 4621-4626.	3.2	91
25	Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta, 2015, 899, 23-56.	2.6	220
26	Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry. Analytical Chemistry, 2015, 87, 9170-9178.	3.2	108
27	The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine. Biosensors and Bioelectronics, 2015, 74, 1029-1037.	5.3	111
28	Bioart. Trends in Biotechnology, 2015, 33, 724-734.	4.9	34
29	Contact Lens Sensors in Ocular Diagnostics. Advanced Healthcare Materials, 2015, 4, 792-810.	3.9	361
30	Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry, 2015, 87, 19-41.	3.2	1,002
31	Clinical laboratory data: acquire, analyze, communicate, liberate. Clinica Chimica Acta, 2015, 438, 186-194.	0.5	12
32	Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis. Biomedical Optics Express, 2016, 7, 5294.	1.5	65
33	Application of a Smartphone Metabolomics Platform to the Authentication of <i>Schisandra sinensis</i> . Phytochemical Analysis, 2016, 27, 199-205.	1.2	6
34	Art on the Nanoscale and Beyond. Advanced Materials, 2016, 28, 1724-1742.	11.1	37
35	Development of smart phone tools for printed diagnostics: Challenges and solutions. , 2016, , .		2
36	mHealth dipstick analyzer for monitoring of pregnancy complications. , 2016, , .		3
37	Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors and Actuators B: Chemical, 2016, 232, 462-468.	4.0	76

#	Article	IF	CITATIONS
38	Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst, The, 2016, 141, 4749-4756.	1.7	153
39	Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Analytical and Bioanalytical Chemistry, 2016, 408, 3389-3393.	1.9	16
40	Enzyme-Based Test Strips for Visual or Photographic Detection and Quantitation of Gaseous Sulfur Mustard. Analytical Chemistry, 2016, 88, 6044-6049.	3.2	36
41	Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab on A Chip, 2016, 16, 2069-2078.	3.1	34
42	The chromatic variance matrix in digital image based methods for the potential evaluation as quantitative procedures. Chemometrics and Intelligent Laboratory Systems, 2016, 157, 29-34.	1.8	1
43	Smartphone-based urine strip analysis. , 2016, , .		9
44	Determination of phosphate concentration in glaucoma eye drops commercially available in Spain. Archivos De La Sociedad Espanola De Oftalmologia, 2016, 91, 363-371.	0.1	3
45	Illumination and device independence for colorimetric detection of urinary biomarkers with smartphone. , 2016, 2016, 5184-5187.		10
46	An eHealth android application for mobile analysis of microplate assays. , 2016, , .		2
47	Development of a novel smartphone-based application for accurate and sensitive on-field hemoglobin measurement. RSC Advances, 2016, 6, 104067-104072.	1.7	12
48	Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones. Scientific Reports, 2016, 6, 27529.	1.6	30
49	<i>Morpho</i> Butterflyâ€Inspired Nanostructures. Advanced Optical Materials, 2016, 4, 497-504.	3.6	46
50	Android Mobile Informatics Application for some Hereditary Diseases and Disorders (AMAHD): A complementary framework for medical practitioners and patients. Informatics in Medicine Unlocked, 2016, 2, 38-69.	1.9	9
51	Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends in Biotechnology, 2016, 34, 909-921.	4.9	180
52	Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosensors and Bioelectronics, 2016, 78, 290-299.	5.3	35
53	Determinación de la concentración de fosfatos en los colirios antiglaucomatosos comercializados en España. Archivos De La Sociedad Espanola De Oftalmologia, 2016, 91, 363-371.	0.1	4
54	Paper-based analytical devices for environmental analysis. Analyst, The, 2016, 141, 1874-1887.	1.7	238
55	Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones. ACS Nano, 2016, 10, 3102-3113.	7.3	110

# 56	ARTICLE Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.	IF 7.3	Citations
57	Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing. Biotechnology Advances, 2016, 34, 291-304.	6.0	72
58	Assessment of colorimetric amplification methods in a paper-based immunoassay for diagnosis of malaria. Lab on A Chip, 2016, 16, 1374-1382.	3.1	76
59	Smartphone-Based Urine Reagent Strip Test in the Emergency Department. Telemedicine Journal and E-Health, 2016, 22, 534-540.	1.6	13
60	Photonic hydrogel sensors. Biotechnology Advances, 2016, 34, 250-271.	6.0	157
61	Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method. Food Analytical Methods, 2016, 9, 1046-1052.	1.3	5
62	Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics, 2016, 75, 273-284.	5.3	514
63	Green Determination of Total Iron in Water by Digital Image Colorimetry. Analytical Letters, 2017, 50, 173-185.	1.0	32
64	Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. Journal of Biophotonics, 2017, 10, 623-633.	1.1	37
65	Smartphone-based low light detection for bioluminescence application. Scientific Reports, 2017, 7, 40203.	1.6	65
66	Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab on A Chip, 2017, 17, 1206-1249.	3.1	345
67	Paper-based microfluidic system for tear electrolyte analysis. Lab on A Chip, 2017, 17, 1137-1148.	3.1	111
68	Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles. Scientific Reports, 2017, 7, 41557.	1.6	10
69	Design of smartphone-based spectrometer to assess fresh meat color. , 2017, , .		2
70	Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips. Nanoscale Research Letters, 2017, 12, 291.	3.1	48
71	Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing. Analytical Chemistry, 2017, 89, 611-615.	3.2	79
72	Smart Forensic Phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors and Actuators B: Chemical, 2017, 243, 221-225.	4.0	72
73	Determination of allura red dye in hard candies by using digital images obtained with a mobile phone and N-PLS. Chemometrics and Intelligent Laboratory Systems, 2017, 167, 44-49.	1.8	23

#	Article	IF	CITATIONS
74	Smartphone-based colorimetric detection via machine learning. Analyst, The, 2017, 142, 2434-2441.	1.7	88
75	Augmented Reality for Real-Time Detection and Interpretation of Colorimetric Signals Generated by Paper-Based Biosensors. ACS Sensors, 2017, 2, 848-853.	4.0	39
76	Low-cost embossed-paper micro-channels for spontaneous capillary flow. Sensors and Actuators B: Chemical, 2017, 248, 395-401.	4.0	18
77	Small camera as a handheld colorimetric tool in the analytical chemistry. Chemical Papers, 2017, 71, 1553-1561.	1.0	22
78	Smartphone-Enabled Detection Strategies for Portable PCR–Based Diagnostics. Methods in Molecular Biology, 2017, 1571, 251-266.	0.4	10
79	Smartphone-Based Rapid Screening of Urinary Biomarkers. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 455-463.	2.7	25
80	Detection of ultraviolet B radiation with internal smartphone sensors. Instrumentation Science and Technology, 2017, 45, 618-638.	0.9	12
81	Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 2017, 9, 579-585.	1.3	48
82	Flexible and disposable paper- and plastic-based gel micropads for nematode handling, imaging, and chemical testing. APL Bioengineering, 2017, 1, 016102.	3.3	6
83	Paper-based assays for urine analysis. Biomicrofluidics, 2017, 11, 051501.	1.2	56
84	Enhanced anti-counterfeiting measures for additive manufacturing: coupling lanthanide nanomaterial chemical signatures with blockchain technology. Journal of Materials Chemistry C, 2017, 5, 9570-9578.	2.7	100
85	Slipdisc: a versatile sample preparation platform for point of care diagnostics. RSC Advances, 2017, 7, 35048-35054.	1.7	14
86	Paper–Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine. Analytical Chemistry, 2017, 89, 13160-13166.	3.2	113
87	Sensitive and reliable paper-based glucose sensing mechanisms with smartphone readout using the <i>L</i> * <i>a</i> * <i>b</i> * color space. Analytical Methods, 2017, 9, 6698-6704.	1.3	16
88	Portable detection of trace metals in airborne particulates and sediments <i>via μ</i> PADs and smartphone. Biomicrofluidics, 2017, 11, 064101.	1.2	16
89	Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control, 2017, 82, 227-232.	2.8	101
90	Advances in point-of-care technologies for molecular diagnostics. Biosensors and Bioelectronics, 2017, 98, 494-506.	5.3	129
91	Mobile nucleic acid amplification testing (mobiNAAT) for Chlamydia trachomatis screening in hospital emergency department settings. Scientific Reports, 2017, 7, 4495.	1.6	56

#	Article	IF	CITATIONS
92	Mobile phone-based biosensing: An emerging "diagnostic and communication―technology. Biosensors and Bioelectronics, 2017, 92, 549-562.	5.3	214
93	Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Critical Reviews in Analytical Chemistry, 2017, 47, 138-153.	1.8	162
94	mHealth Dipstick Analyzer for Monitoring of Pregnancy Complications. IEEE Sensors Journal, 2017, 17, 7311-7316.	2.4	17
95	Transistors as an Emerging Platform for Portable Amplified Biodetection in Preventive Personalized Pointâ€ofâ€Care Testing. , 2017, , .		1
96	Histogram analysis for smartphone-based rapid hematocrit determination. Biomedical Optics Express, 2017, 8, 3317.	1.5	30
97	Colorimetric analysis of saliva–alcohol test strips by smartphone-based instruments using machine-learning algorithms. Applied Optics, 2017, 56, 84.	2.1	79
98	Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging. Review of Scientific Instruments, 2018, 89, 015003.	0.6	9
99	Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. Environmental Science & Technology, 2018, 52, 3567-3573.	4.6	68
100	In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. TrAC - Trends in Analytical Chemistry, 2018, 105, 137-165.	5.8	51
101	Kidney Smartphone Diagnostics. Methods in Molecular Biology, 2018, 1735, 487-498.	0.4	3
102	Hormonal Smartphone Diagnostics. Methods in Molecular Biology, 2018, 1735, 505-515.	0.4	5
103	Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-11.	2.2	51
104	A selective colorimetric sensing strategy for cysteine based on an indicator-displacement mechanism. New Journal of Chemistry, 2018, 42, 4324-4330.	1.4	12
105	Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Convergence, 2018, 5, 14.	6.3	43
106	Smartphone-based colorimetric determination of sulfadiazine and sulfasalazine in pharmaceutical and veterinary formulations. Instrumentation Science and Technology, 2018, 46, 656-675.	0.9	22
107	Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Analytical and Bioanalytical Chemistry, 2018, 410, 5353-5371.	1.9	76
108	Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sensors and Actuators B: Chemical, 2018, 255, 1967-1973.	4.0	87
109	Smartphoneâ€based colorimetric chiral recognition of ibuprofen using aptamersâ€capped gold nanoparticles. Electrophoresis, 2018, 39, 486-495.	1.3	22

ARTICLE IF CITATIONS # Combining and complementing technology with good nursing care. British Journal of Cardiac 110 0.0 0 Nursing, 2018, 13, 578-579. From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS Central Science, 2018, 4, 5.3 140 1600-1616. 112 Mellitus., 2018,,. 1 Color Space Transformation-Based Smartphone Algorithm for Colorimetric Urinalysis. ACS Omega, 2018, 3, 12141-12146. Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in 114 1.4 33 oral fluid. Biomedical Microdevices, 2018, 20, 89. Paper transducers to detect plasmon variations in colorimetric nanoparticle biosensors. Sensors and 4.0 Actuators B: Chemical, 2018, 270, 327-332. Policy Considerations for Mobile Biosensors. ACS Sensors, 2018, 3, 1059-1068. 116 4.0 17 Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. 0.8 Analytical Sciences, 2018, 34, 19-31. Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based 118 2.6 28 microfluidics. Analytica Chimica Acta, 2018, 1044, 110-118. An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time. Expert 4.4 Systems With Applications, 2018, 114, 65-77. Wearables in Medicine. Advanced Materials, 2018, 30, e1706910. 120 11.1 358 Low-power, low-cost urinalysis system with integrated dipstick evaluation and microscopic analysis. 3.1 Lab on A Chip, 2018, 18, 2111-2123. Electrochromic, Closed-Bipolar Electrodes Employing Aptamer-Based Recognition for Direct 122 3.2 30 Colorimetric Sensing Visualization. Analytical Chemistry, 2019, 91, 11467-11473. Development of an environmental health tool linking chemical exposures, physical location and lung 1.2 16 function. BMC Public Health, 2019, 19, 854. Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate 124 2.6 43 pesticides on a smart phone. Analytica Chimica Acta, 2019, 1092, 126-131. Cell phone based colorimetric analysis for point-of-care settings. Analyst, The, 2019, 144, 1935-1947. 33 A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally 126 4.0 29 initiated RAFT-mediated graft copolymerization. Sensors and Actuators B: Chemical, 2019, 296, 126653. Lateral and Vertical Flow Assays for Pointâ€ofâ€Care Diagnostics. Advanced Healthcare Materials, 2019, 8, e1900244.

#		IF	CITATIONS
π 128	Smartphone with optical, physical, and electrochemical nanobiosensors. Journal of Industrial and	2.9	53
	Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose		
129	monitoring. Analytical and Bioanalytical Chemistry, 2019, 411, 4919-4928.	1.9	121
130	Wearable biosensors for healthcare monitoring. Nature Biotechnology, 2019, 37, 389-406.	9.4	1,895
131	Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosensors and Bioelectronics, 2019, 132, 17-37.	5.3	249
132	Smartphone-Based Point-of-Care Technologies for Mobile Healthcare. , 2019, , 27-79.		7
133	TBM-App: a clinical decision support system for tuberculous meningitis. Procedia Computer Science, 2019, 164, 565-572.	1.2	1
134	Assay Type Detection Using Advanced Machine Learning Algorithms. , 2019, , .		18
135	SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. Sensors, 2019, 19, 4935.	2.1	17
136	Point-of-care colorimetric analysis through smartphone video. Sensors and Actuators B: Chemical, 2019, 282, 225-231.	4.0	45
137	Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC - Trends in Analytical Chemistry, 2019, 110, 393-400.	5.8	81
138	The geek and the chemist: Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sensors and Actuators B: Chemical, 2019, 282, 559-566.	4.0	19
139	A rapid real-time quantification in hybrid paper-polymer centrifugal optical devices. Biosensors and Bioelectronics, 2019, 126, 200-206.	5.3	9
140	A smartphone-based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants. Sensors and Actuators B: Chemical, 2019, 283, 524-531.	4.0	16
141	A sensor-centric survey on the development of smartphone measurement and sensing systems. Measurement: Journal of the International Measurement Confederation, 2019, 135, 572-592.	2.5	52
142	Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays. Expert Systems With Applications, 2020, 139, 112843.	4.4	20
143	Smartphones for rapid kits. , 2020, , 89-102.		2
144	Development and application of a primer and reference assessment tool for neonatal abstinence syndrome: A phase I pilot study. Contemporary Clinical Trials Communications, 2020, 17, 100494.	0.5	6
145	A 3D printed centrifugal microfluidic platform for automated colorimetric urinalysis. Microsystem Technologies, 2020, 26, 291-299.	1.2	8

#	Article	IF	CITATIONS
146	Smartphone-based lateral flow imaging system for detection of food-borne bacteria E.coli O157:H7. Journal of Microbiological Methods, 2020, 168, 105800.	0.7	43
147	Holographic Sensors. , 2020, , 165-190.		5
148	Advances in imaging-assisted sensing techniques for heavy metals in water: Trends, challenges, and opportunities. TrAC - Trends in Analytical Chemistry, 2020, 123, 115758.	5.8	34
149	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	3.1	27
150	Smartphoneâ€Based Luminescent Thermometry via Temperatureâ€Sensitive Delayed Fluorescence from Gd ₂ O ₂ S:Eu ³⁺ . Advanced Optical Materials, 2020, 8, 2000507.	3.6	35
151	Advancing Biosensors with Machine Learning. ACS Sensors, 2020, 5, 3346-3364.	4.0	307
152	Recent Developments in the Field of Explosive Trace Detection. ACS Nano, 2020, 14, 10804-10833.	7.3	110
153	Pathological test type and chemical detection using deep neural networks: a case study using ELISA and LFA assays. Journal of Enterprise Information Management, 2023, 36, 790-817.	4.4	3
154	Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab on A Chip, 2020, 20, 3970-3979.	3.1	49
155	1 Personalized medicine. , 2020, , 1-14.		0
156	A convenient and rapid method for detecting d-glucose in honey used smartphone. Food Chemistry, 2020, 331, 127348.	4.2	10
157	Accurate device-independent colorimetric measurements using smartphones. PLoS ONE, 2020, 15, e0230561.	1.1	24
158	Cerium metal organic framework mediated molecular threading for point-of-care colorimetric assays. Biosensors and Bioelectronics, 2020, 165, 112406.	5.3	24
159	Open software platform for automated analysis of paper-based microfluidic devices. Scientific Reports, 2020, 10, 11284.	1.6	14
160	Adapting smartphone app used in water testing, for soil nutrient analysis. Computers and Electronics in Agriculture, 2020, 175, 105532.	3.7	7
161	Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chemical Society Reviews, 2020, 49, 1812-1866.	18.7	310
162	A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification. Nanoscale Research Letters, 2020, 15, 10.	3.1	32
163	From Sophisticated Analysis to Colorimetric Determination: Smartphone Spectrometers and Colorimetry. , 0, , .		10

#	Article	IF	CITATIONS
164	Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. Sensors, 2020, 20, 1951.	2.1	119
165	Paper as a Substrate and an Active Material in Paper Electronics. ACS Applied Electronic Materials, 2021, 3, 30-52.	2.0	48
166	Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mi>μ</mml:mi></mml:math> PAD. Sensors and Actuators B: Chemical, 2021, 329, 129037.	4.0	68
167	A rapid and highly sensitive paper-based colorimetric device for the on-site screening of ammonia gas. Analyst, The, 2021, 146, 2919-2927.	1.7	10
168	Quantitative UV-C dose validation with photochromic indicators for informed N95 emergency decontamination. PLoS ONE, 2021, 16, e0243554.	1.1	11
169	Innovative Mobile Device for Human Health Monitoring. Lecture Notes in Networks and Systems, 2021, , 3-15.	0.5	0
170	Analysis of lesional color to differentiate infantile hemangiomas from portâ€wine birthmarks in infants less than 3 months old: A pilot study. Pediatric Dermatology, 2021, 38, 585-590.	0.5	3
171	Food Sensors: Challenges and Opportunities. Advanced Materials Technologies, 2021, 6, 2001242.	3.0	49
172	Cantilever-Based Sensor Utilizing a Diffractive Optical Element with High Sensitivity to Relative Humidity. Sensors, 2021, 21, 1673.	2.1	9
173	Organic nanocrystal enrichment in paper microfluidic analysis. Sensors and Actuators B: Chemical, 2021, 333, 129548.	4.0	9
174	Scaling the Analytical Information Given by Several Types of Colorimetric and Spectroscopic Instruments Including Smartphones: Rules for Their Use and Establishing Figures of Merit of Solid Chemosensors. Analytical Chemistry, 2021, 93, 6043-6052.	3.2	10
175	A Portable Smartphone-based Platform with an Offline Image-processing Tool for the Rapid Paper-based Colorimetric Detection of Glucose in Artificial Saliva. Analytical Sciences, 2021, 37, 561-567.	0.8	20
176	Cerium Oxide Nanoparticle-Containing Colorimetric Contact Lenses for Noninvasively Monitoring Human Tear Glucose. ACS Applied Nano Materials, 2021, 4, 5198-5210.	2.4	16
177	Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sensors, 2021, 6, 1731-1744.	4.0	38
178	Smartphone-based technique for the determination of a titration equivalence point from an RGB linear-segment curve with an example application to miniaturized titration of sodium chloride injections. Talanta, 2021, 233, 122602.	2.9	15
179	Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Talanta, 2021, 229, 122298.	2.9	10
180	Quantitative Point-of-Care Colorimetric Assay Modeling Using a Handheld Colorimeter. ACS Omega, 2021, 6, 22439-22446.	1.6	7
181	Fluorescence measurements, imaging and counting by a smartphone. , 2021, , 57-72.		2

ARTICLE IF CITATIONS Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and 182 1.7 50 management of diabetes. Analyst, The, 2021, 146, 2784-2806. Holographic pH Sensors. Springer Theses, 2015, , 53-83. 184 Holographic Metal Ion Sensors. Springer Theses, 2015, , 85-99. 0.0 9 Holographic Glucose Sensors. Springer Theses, 2015, , 101-134. 185 Mobile Medical Applications. Springer Theses, 2015, , 135-148. 186 0.0 20 The Prospects for Holographic Sensors. Springer Theses, 2015, , 149-162. 188 Photonic Materials for Holographic Sensing. Springer Series in Materials Science, 2016, , 315-359. 0.4 9 An Automated Colourimetric Test by Computational Chromaticity Analysis: A Case Study of Tuberculosis Test. Advances in Intelligent Systems and Computing, 2017, , 313-320. 190 Paper-Based Sensors for Biomedical Applications., 2019, , 355-376. 6 Programmable fluid transport on photolithographically micropatterned cloth devices: Towards the development of facile, multifunctional colorimetric diagnostic platforms. Sensors and Actuators B: Chemical, 2018, 255, 2416-2430. Rapid Detection of Mobilized Colistin Resistance using a Nucleic Acid Based Lab-on-a-Chip Diagnostic 192 1.6 33 System. Scientific Reports, 2020, 10, 8448. Deep Learning based Colorimetric Classification of Glucose with Au-Ag nanoparticles using Smartphone., 2020, , . Self-Referencing Method for Relative Color Intensity Analysis Using Mobile-Phone. Optics and 196 0.3 1 Photonics Journal, 2018, 08, 264-275. Pico-watt radiant flux detection by smartphone., 2016, , . Estimation of coloration and luminous transmittance of eyewear filters using a digital camera and 198 0.9 0 white paper. Applied Optics, 2019, 58, 3354. Mechanical structures for smart-phone enabled sensing. International Journal on Smart Sensing and 199 Intelligent Systems, 2014, 7, 1-5. Long-term stable, high accuracy, and visual detection platform for In-field analysis of nitrite in food 200 based on colorimetric test paper and deep convolutional neural networks. Food Chemistry, 2022, 373, 4.2 9 131593. Quantitative pH Determination Based on the Dominant Wavelength Analysis of Commercial Test Strips. 3.2 Analytical Chemistry, 2021, 93, 15452-15458.

#	Article	IF	CITATIONS
202	Smartphone-Based Device for Colorimetric Detection of MicroRNA Biomarkers Using Nanoparticle-Based Assay. Sensors, 2021, 21, 8044.	2.1	12
203	Non-enzymatic colorimetric glucose detection based on Au/Ag nanoparticles using smartphone and machine learning. Analytical Sciences, 2022, 38, 347-358.	0.8	10
204	A Systematic Review of Healthcare Provider-Targeted Mobile Applications to Screen for, Diagnose, or Monitor Non-Communicable Diseases in Low- and Middle-Income Countries. SSRN Electronic Journal, 0, , .	0.4	0
205	Lab-in-a-Cup (LiC): An autonomous fluidic device for daily urinalysis using smartphone. Sensors and Actuators B: Chemical, 2022, 355, 131336.	4.0	13
206	Applications of nanotechnology in smart textile industry: A critical review. Journal of Advanced Research, 2022, 38, 55-75.	4.4	98
207	Colorimetric Measurements of Vegetable Oils by Smartphone-Based Image Analysis. Proceedings of the Latvian Academy of Sciences, 2022, 76, 110-115.	0.0	0
208	Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Scientific Reports, 2022, 12, 3775.	1.6	43
209	Wearable transdermal microneedle patch based on photonic crystal hydrogel for glucose monitoring. Chinese Journal of Analytical Chemistry, 2022, 50, 100054.	0.9	8
210	The Current State of Optical Sensors in Medical Wearables. Biosensors, 2022, 12, 217.	2.3	35
211	Reversible photonic hydrogel sensors via holographic interference lithography. Biosensors and Bioelectronics, 2022, 207, 114206.	5.3	10
213	Holographic Sensors. , 2022, , .		0
214	Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors. ACS Omega, 2022, 7, 17723-17731.	1.6	8
215	Smartphone-Based Colorimetric Analysis of Urine Test Strips for At-Home Prenatal Care. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-9.	2.2	9
216	A free customizable tool for easy integration of microfluidics and smartphones. Scientific Reports, 2022, 12, .	1.6	13
217	An Automated Toolchain for Camera-Enabled Sensing of Drinking Water Chlorine Residual. ACS ES&T Engineering, 2022, 2, 1697-1708.	3.7	4
218	Digital Colorimetry in Chemical and Pharmaceutical Analysis. Moscow University Chemistry Bulletin, 2022, 77, 61-67.	0.2	2
219	Real-Time and Rapid Food Quality Monitoring Using Smart Sensory Films with Image Analysis and Machine Learning. ACS Food Science & Technology, 2022, 2, 1123-1134.	1.3	4
220	An advantageous analytical method for the determination of fluoride in saliva exploiting smartphone-based digital-image colorimetry. Chemical Papers, 2022, 76, 6215-6221.	1.0	4

#	Article	IF	CITATIONS
221	Smartphone-Based Colorimetric Detection System with the Same Colorimetric Results for Any Smartphone in Any Location. SSRN Electronic Journal, 0, , .	0.4	0
222	Progress in smartphone-enabled aptasensors. Biosensors and Bioelectronics, 2022, 215, 114509.	5.3	16
223	Deepâ€Learningâ€Based Microscopic Imagery Classification, Segmentation, and Detection for the Identification of 2D Semiconductors. Advanced Theory and Simulations, 2022, 5, .	1.3	6
224	An automated lateral flow assay identification framework: Exploring the challenges of a wearable lateral flow assay in mobile application. Expert Systems With Applications, 2022, 210, 118471.	4.4	5
225	Microscopic Image Deblurring by a Generative Adversarial Network for 2D Nanomaterials: Implications for Wafer-Scale Semiconductor Characterization. ACS Applied Nano Materials, 2022, 5, 12855-12864.	2.4	3
226	Photonic Crystals and Their Analogues as Tools for Chemical Analysis. Journal of Analytical Chemistry, 2022, 77, 1215-1235.	0.4	3
227	A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection. Biosensors, 2022, 12, 1008.	2.3	5
228	QRsens: Dual-purpose quick response code with built-in colorimetric sensors. Sensors and Actuators B: Chemical, 2023, 376, 133001.	4.0	12
229	Colorimetric biosensor based on smartphone: State-of-art. Sensors and Actuators A: Physical, 2023, 349, 114056.	2.0	13
230	Moving toward smart biomedical sensing. Biosensors and Bioelectronics, 2023, 223, 115009.	5.3	11
231	Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchemical Journal, 2023, 186, 108345.	2.3	1
232	Machine Learning-Enabled Biosensors in Clinical Decision Making. , 2023, , 163-194.		0
233	Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Critical Reviews in Analytical Chemistry, 0, , 1-19.	1.8	8
234	Maximum likelihood factor analysis for resolution of noisy smartphone based diffuse reflectance data from CdS pigments. Chemometrics and Intelligent Laboratory Systems, 2023, 237, 104818.	1.8	0
235	Can Canthaxanthin Intensify The Color of the Blood Swordtail <i>Xiphophorus helleri</i> ?. Journal of Fish Biology, 0, , .	0.7	0
239	Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Advances, 2023, 13, 22973-22997.	1.7	3
241	Urine color analysis based on a computer vision system: A review. AIP Conference Proceedings, 2023, , .	0.3	0