Palladium atalyzed Oxidative Carbonylation of <i>N βâ€Lactams

Angewandte Chemie - International Edition 53, 2443-2446 DOI: 10.1002/anie.201309081

Citation Report

#	Article	IF	CITATIONS
1	A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides. Chemical Communications, 2014, 50, 14775-14777.	4.1	30
2	Fourâ€Component Synthesis of βâ€Enaminone and Pyrazole through Phosphineâ€Free Palladiumâ€Catalyzed Cascade Carbonylation. ChemCatChem, 2014, 6, 2560-2566.	3.7	27
3	Palladium-Catalyzed C(sp ²)–H Pyridocarbonylation of <i>N</i> -Aryl-2-aminopyridines: Dual Function of the Pyridyl Moiety. Organic Letters, 2014, 16, 2748-2751.	4.6	81
4	Pd-Catalyzed Chemoselective Carbonylation of Aminophenols with Iodoarenes: Alkoxycarbonylation vs Aminocarbonylation. Journal of the American Chemical Society, 2014, 136, 16970-16973.	13.7	107
5	Selective Palladium-Catalyzed Aminocarbonylation of 1,3-Dienes: Atom-Efficient Synthesis of β,γ-Unsaturated Amides. Journal of the American Chemical Society, 2014, 136, 16039-16043.	13.7	90
6	Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Organic Chemistry, 2014, 79, 11246-11253.	3.2	50
7	A straightforward approach to 2-azetidinones from imines and carboxylic acids using dimethyl sulfoxide and acetic anhydride. Tetrahedron Letters, 2014, 55, 5354-5357.	1.4	26
8	Rhodium-Catalyzed Oxygenative [2 + 2] Cycloaddition of Terminal Alkynes and Imines for the Synthesis of β-Lactams. Organic Letters, 2014, 16, 2482-2485.	4.6	56
10	A Convenient Palladium atalyzed Carbonylative Suzuki Coupling of Aryl Halides with Formic Acid as the Carbon Monoxide Source. Chemistry - A European Journal, 2015, 21, 17650-17656.	3.3	84
11	Palladiumâ€Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions. Advanced Materials, 2015, 27, 7025-7042.	21.0	115
12	Palladiumâ€Catalyzed Carbonylative Cyclization of Arenes by CH Bond Activation with DMF as the Carbonyl Source. Chemistry - A European Journal, 2015, 21, 16370-16373.	3.3	76
13	Oxidative Coupling between Methylarenes and Ammonia: A Direct Approach to Aromatic Primary Amides. Advanced Synthesis and Catalysis, 2015, 357, 2566-2570.	4.3	25
14	Palladiumâ€Catalyzed Oneâ€Pot Carbonylative Sonogashira Reaction Employing Formic acid as the CO Source. Chemistry - an Asian Journal, 2015, 10, 1870-1873.	3.3	74
15	Four-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2015, 27, 87-115.	0.5	1
16	Metal-free, visible-light-mediated transformation of aryl diazonium salts and (hetero)arenes: an efficient route to aryl ketones. Green Chemistry, 2015, 17, 3733-3736.	9.0	72
17	Palladiumâ€Catalyzed Alkoxy―and Aminocarbonylation of αâ€Halomethyl Oxime Ethers: Synthesis of 1,3â€Alkoxyimino Esters and 1,3â€Alkoxyimino Amides. Advanced Synthesis and Catalysis, 2015, 357, 430-442.	4.3	5
18	Palladium-Catalyzed Intermolecular Aminocarbonylation of Alkenes: Efficient Access of β-Amino Acid Derivatives. Journal of the American Chemical Society, 2015, 137, 2480-2483.	13.7	127
19	Palladium-Catalyzed Carbonylative Cyclization of Aryl Alkenes/Alkenols: A New Reaction Mode for the Synthesis of Electron-Rich Chromanes. Organic Letters, 2015, 17, 1240-1243.	4.6	40

#	Article	IF	CITATIONS
20	(E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation. Chemical Communications, 2015, 51, 3247-3250.	4.1	67
21	Palladium-Catalyzed Carbonylation of Indoles for Synthesis of Indol-3-yl Aryl Ketones. ACS Catalysis, 2015, 5, 1210-1213.	11.2	60
22	Palladium-Catalyzed Oxidative Carbonylation of Aromatic C–H Bonds of <i>N</i> -Alkylanilines with CO and Alcohols for the Synthesis of <i>o</i> -Aminobenzoates. Journal of Organic Chemistry, 2015, 80, 1258-1263.	3.2	49
23	Synthesis of 3-bromosubstituted pyrroles via palladium-catalyzed intermolecular oxidative cyclization of bromoalkynes with N-allylamines. Chemical Communications, 2015, 51, 5894-5897.	4.1	26
24	Rh-Catalyzed Construction of Quinolin-2(1 <i>H</i>)-ones via C–H Bond Activation of Simple Anilines with CO and Alkynes. Journal of the American Chemical Society, 2015, 137, 9246-9249.	13.7	138
25	Ring closing metathesis reactions of α-methylene-β-lactams: application to the synthesis of a simplified phyllostictine analogue with herbicidal activity. Organic and Biomolecular Chemistry, 2015, 13, 7655-7663.	2.8	14
26	Synthesis of oxazoles by silver catalysed oxidative decarboxylation–cyclization of α-oxocarboxylates and isocyanides. Chemical Communications, 2015, 51, 10524-10527.	4.1	34
27	Palladium/Copper-Catalyzed Aerobic Oxidative C–H Carbonylation for the Synthesis of <i>o</i> -Aminobenzoates. Organic Letters, 2015, 17, 1397-1400.	4.6	42
28	Direct oxidative amidation between methylarenes and amines in water. Green Chemistry, 2015, 17, 2741-2744.	9.0	44
29	Diversityâ€Oriented Synthesis of βâ€Lactams and γâ€Lactams by Postâ€Ugi Nucleophilic Cyclization: Lewis Acid as Regioselective Switch. European Journal of Organic Chemistry, 2015, 2015, 3957-3962.	^S 2.4	34
30	Palladium atalyzed Hydroaminocarbonylation of Alkenes with Amines: A Strategy to Overcome the Basicity Barrier Imparted by Aliphatic Amines. Angewandte Chemie - International Edition, 2015, 54, 7657-7661.	13.8	131
31	Rh(I)-Catalyzed Hydroamidation of Olefins via Selective Activation of N–H Bonds in Aliphatic Amines. Journal of the American Chemical Society, 2015, 137, 6053-6058.	13.7	74
32	Pd/C-catalyzed carbonylative C–H activation with DMF as the CO source. Tetrahedron Letters, 2015, 56, 6413-6416.	1.4	43
33	Synthesis of Functionalized Heterocycles via Oxidative Carbonylation. Topics in Heterocyclic Chemistry, 2015, , 121-166.	0.2	2
35	A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale, 2015, 7, 16381-16388.	5.6	65
36	Synthesis of Indolizine Derivatives by Pd-Catalyzed Oxidative Carbonylation. Organic Letters, 2015, 17, 4526-4529.	4.6	52
38	From Anilines to Isatins: Oxidative Palladium atalyzed Double Carbonylation of CH Bonds. Angewandte Chemie - International Edition, 2015, 54, 1893-1896.	13.8	109
39	Synthesis of α-Methylene-β-Lactams via PPh ₃ -Catalyzed Umpolung Cyclization of Propiolamides. Journal of Organic Chemistry, 2015, 80, 628-633.	3.2	34

#	Article	IF	Citations
40	Efficient Synthesis of Frutinoneâ€A and Its Derivatives through Palladium atalyzed CH Activation/Carbonylation. Chemistry - an Asian Journal, 2015, 10, 878-881.	3.3	25
42	Copper atalyzed Carbonylative Coupling of Cycloalkanes and Amides. Angewandte Chemie - International Edition, 2016, 55, 7227-7230.	13.8	84
43	Palladium atalyzed Aminocarbonylation of Allylic Alcohols. Chemistry - A European Journal, 2016, 22, 10050-10056.	3.3	28
44	Copper atalyzed Carbonylative Coupling of Cycloalkanes and Amides. Angewandte Chemie, 2016, 128, 7343-7346.	2.0	67
45	From Aryl Iodides to 1,3-Dipoles: Design and Mechanism of a Palladium Catalyzed Multicomponent Synthesis of Pyrroles. Journal of the American Chemical Society, 2016, 138, 7315-7324.	13.7	67
46	Highly Ligand-Controlled Regioselective Pd-Catalyzed Aminocarbonylation of Styrenes with Aminophenols. Journal of the American Chemical Society, 2016, 138, 6629-6635.	13.7	137
47	Selective Palladiumâ€Catalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie, 2016, 128, 13742-13746.	2.0	26
48	Selective Palladium atalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie - International Edition, 2016, 55, 13544-13548.	13.8	75
49	Iridiumâ€Catalyzed Carbonylative Synthesis of Halogenâ€Containing Quinolinâ€2(1 <i>H</i>)â€ones from Internal Alkynes and Simple Anilines. Advanced Synthesis and Catalysis, 2016, 358, 3350-3354.	4.3	30
50	Pd-Catalyzed C(sp ²)–H carbonylation of 2-benzylpyridines for the synthesis of pyridoisoquinolinones. Chemical Communications, 2016, 52, 12873-12876.	4.1	23
51	Palladium-Catalyzed Carbonylative Cyclization of Amines via γ-C(sp ³)–H Activation: Late-Stage Diversification of Amino Acids and Peptides. ACS Catalysis, 2016, 6, 6868-6882.	11.2	121
52	Palladium-Catalyzed <i>Ortho</i> -Selective C–H Oxidative Carbonylation of <i>N</i> -Substituted Anilines with CO and Primary Amines for the Synthesis of <i>o</i> -Aminobenzamides. Organic Letters, 2016, 18, 4634-4637.	4.6	26
53	Aerobic Oxidative Carbonylation of Enamides by Merging Palladium with Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7088-7092.	3.2	63
54	C8–H bond activation vs. C2–H bond activation: from naphthyl amines to lactams. Chemical Communications, 2016, 52, 13307-13310.	4.1	41
55	Rhodium-Catalyzed NH-Indole-Directed C–H Carbonylation with Carbon Monoxide: Synthesis of 6 <i>H</i> -Isoindolo[2,1- <i>a</i>]indol-6-ones. Journal of Organic Chemistry, 2016, 81, 12135-12142.	3.2	47
56	Palladium-Catalyzed, Multicomponent Approach to β-Lactams via Aryl Halide Carbonylation. Journal of Organic Chemistry, 2016, 81, 12106-12115.	3.2	27
57	Palladium(II) Acetateâ€Catalyzed Dual C–H Functionalization and C–C Bond Formation: A Domino Reaction for the Synthesis of Functionalized (<i>E</i>)â€Bisindoleâ€2â€ones from Diarylbutâ€2â€ynediamides. Advanced Synthesis and Catalysis, 2016, 358, 3534-3540.	4.3	19
58	Synthesis of Fluorineâ€Containing Exoalkylidene Î²â€Łactams. European Journal of Organic Chemistry, 2016, 2016, 556-561.	2.4	14

#	Article	IF	CITATIONS
59	One-pot conversion of carbamates of unsaturated Î ² -aminoesters into unsaturated Î ² -lactams by use of trimethylsilyl iodide. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1375-1379.	1.6	3
60	Nickelâ€Catalyzed Oxidative Câ^'H/Nâ^'H Isocyanide Insertion: An Efficient Synthesis of Iminoisoindolinone Derivatives. Chemistry - an Asian Journal, 2016, 11, 1664-1667.	3.3	45
61	Palladium-catalyzed alkoxycarbonylation of aryl halides with phenols employing formic acid as the CO source. Catalysis Science and Technology, 2016, 6, 3099-3107.	4.1	59
62	A new direct synthesis of α-methylene- and α-alkylidene-β-lactams. Tetrahedron Letters, 2016, 57, 1990-1993.	1.4	9
63	[bmlm]OH-catalyzed amidation of azides and aldehydes: an efficient route to amides. Green Chemistry, 2016, 18, 2604-2608.	9.0	14
64	Rhodium-Catalyzed Cyclocarbonylation of Ketimines via C–H Bond Activation. Organometallics, 2016, 35, 1480-1487.	2.3	53
65	Palladium-catalyzed hydroaminocarbonylation of alkenes with amines promoted by weak acid. Tetrahedron Letters, 2016, 57, 383-386.	1.4	21
66	Palladium-catalyzed carbonylative C–H activation of arenes with norbornene as the coupling partner. Journal of Organometallic Chemistry, 2016, 803, 9-12.	1.8	23
67	Reactions of Haloalkynes. Springer Briefs in Molecular Science, 2016, , 9-76.	0.1	1
68	Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source. Coordination Chemistry Reviews, 2017, 336, 43-53.	18.8	119
69	Pd/Cu-Catalyzed aerobic oxidative aromatic C–H bond activation/N-dealkylative carbonylation towards the synthesis of phenanthridinones. Chemical Communications, 2017, 53, 1908-1911.	4.1	34
70	Transition-Metal-Free β-C–H Bond Carbonylation of Enamides or Amides with a Trifluoromethyl Group as CO Surrogate for the Synthesis of 1,3-Oxazin-6-ones. Organic Letters, 2017, 19, 1330-1333.	4.6	30
71	Ligand- and Additive-Controlled Pd-Catalyzed Aminocarbonylation of Alkynes with Aminophenols: Highly Chemo- and Regioselective Synthesis of α,β-Unsaturated Amides. ACS Catalysis, 2017, 7, 2220-2229.	11.2	64
72	Palladium-Catalyzed Oxidative Carbonylation of Aryl Hydrazines with CO and O ₂ at Atmospheric Pressure. Journal of Organic Chemistry, 2017, 82, 4970-4976.	3.2	31
73	Ruthenium-Catalyzed Carbonylation of Oxalyl Amide-Protected Benzylamines with Isocyanate as the Carbonyl Source. Journal of Organic Chemistry, 2017, 82, 6831-6839.	3.2	41
74	Role of Transition Metal Reagents in \hat{l}^2 -Lactam Synthesis: New Paradigms. , 2017, , 41-71.		0
75	Palladium-catalyzed intermolecular carbonylative cross-coupling of heteroaryl C(sp2)–H bonds with amines: an efficient strategy for oxidative aminocarbonylation of azoles. Chemical Communications, 2017, 53, 6914-6917.	4.1	18
76	Addition of carbamoylsilane to isatins: Highly efficient synthesis of 3-hydroxy-3-aminocarbonyl-2-oxindoles derivatives. Tetrahedron Letters, 2017, 58, 2636-2639.	1.4	4

#	ARTICLE	IF	CITATIONS
77	Cobalt carbonyl-catalyzed carbonylation of functionalized aziridines to versatile β-lactam building blocks. Organic and Biomolecular Chemistry, 2017, 15, 4816-4821.	2.8	21
78	Metal-free radical oxidative alkoxycarbonylation and imidation of alkanes. Chemical Communications, 2017, 53, 6852-6855.	4.1	19
79	Pd/Cu-catalyzed dual C–H bond carbonylation towards the synthesis of fluorazones. Chemical Communications, 2017, 53, 4354-4357.	4.1	30
80	Palladium-catalyzed highly regioselective hydroaminocarbonylation of aromatic alkenes to branched amides. Organic and Biomolecular Chemistry, 2017, 15, 2910-2913.	2.8	25
81	Carbonylation of Aziridines as a Powerful Tool for the Synthesis of Functionalized Î²â€Łactams. European Journal of Organic Chemistry, 2017, 2017, 5943-5960.	2.4	29
82	From Ketones, Amines, and Carbon Monoxide to 4-Quinolones: Palladium-Catalyzed Oxidative Carbonylation. Organic Letters, 2017, 19, 6432-6435.	4.6	37
83	Rh-catalyzed aerobic oxidative cyclization of anilines, alkynes, and CO. Chemical Science, 2017, 8, 6266-6273.	7.4	32
84	Palladium-Catalyzed Intermolecular Oxidative Cyclization of Allyltosylamides with AcOH: Assembly of 3-Pyrrolin-2-ones. Journal of Organic Chemistry, 2017, 82, 8191-8198.	3.2	10
85	Manganeseâ€Catalyzed Carbonylative Annulations for Redoxâ€Neutral Lateâ€Stage Diversification. Angewandte Chemie - International Edition, 2018, 57, 5384-5388.	13.8	35
86	Palladium-Catalyzed Direct C–H Carbonylation of Free Primary Benzylamines: A Synthesis of Benzolactams. Organic Letters, 2018, 20, 2595-2598.	4.6	60
87	Manganeseâ€Catalyzed Carbonylative Annulations for Redoxâ€Neutral Lateâ€Stage Diversification. Angewandte Chemie, 2018, 130, 5482-5486.	2.0	12
88	A copper-catalyzed carbonylative four-component reaction of ethene and aliphatic olefins. Chemical Communications, 2018, 54, 1984-1987.	4.1	23
89	Recent advances in the development of polycyclic skeletons via Ugi reaction cascades. Molecular Diversity, 2018, 22, 503-516.	3.9	28
90	Selective formation of phthalimides from amines, aldehydes and CO by Pd-catalyzed oxidative C–H aminocarbonylation. Organic Chemistry Frontiers, 2018, 5, 1957-1961.	4.5	11
91	Synthesis of α-Methylene-β-lactams Enabled by Base-Promoted Intramolecular 1,2-Addition of N-Propiolamide and C–C Bond Migrating Cleavage of Aziridine. Organic Letters, 2018, 20, 2407-2411.	4.6	24
92	Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018, 83, 104-112.	3.2	30
93	Palladium catalyzed carbonylative annulation of the C(sp ²)–H bond of <i>N</i> ,1-diaryl-1 <i>H</i> -tetrazol-5-amines and <i>N</i> ,4-diaryl-4 <i>H</i> -triazol-3-amines to quinazolinones. Organic and Biomolecular Chemistry, 2018, 16, 8629-8638.	2.8	12
94	Pd-catalyzed carbonylation of aryl C–H bonds in benzamides with CO ₂ . Organic Chemistry Frontiers, 2018, 5, 2086-2090.	4.5	46

#	Article	IF	CITATIONS
95	Synthesis of Heterocycles by Palladium-Catalyzed Carbonylative Reactions. , 2018, , 55-127.		10
96	α-Tetrasubstituted Aldehydes through Electronic and Strain-Controlled Branch-Selective Stereoselective Hydroformylation. Journal of Organic Chemistry, 2018, 83, 10207-10220.	3.2	21
97	A Facile Direct Route to <i>N</i> â€(Un)substituted Lactams by Cycloamination of Oxocarboxylic Acids without External Hydrogen. ChemSusChem, 2019, 12, 3778-3784.	6.8	26
98	Access to Benzazepinones by Pd-Catalyzed Remote C–H Carbonylation of γ-Arylpropylamine Derivatives. Organic Letters, 2019, 21, 4345-4349.	4.6	16
99	Stereoselective Synthesis of Fully Substituted β-Lactams via Metal–Organo Relay Catalysis. Organic Letters, 2019, 21, 3804-3807.	4.6	25
100	Pd/Cu Cocatalyzed Oxidative Tandem C–H Aminocarbonylation and Dehydrogenation of Tryptamines: Synthesis of Carbolinones. Journal of Organic Chemistry, 2019, 84, 3357-3369.	3.2	26
101	Palladium-Catalyzed Enantioselective C–H Aminocarbonylation: Synthesis of Chiral Isoquinolinones. Organic Letters, 2019, 21, 1749-1754.	4.6	52
102	Catalytic Asymmetric Carbonylation of Prochiral Sulfonamides via C–H Desymmetrization. ACS Catalysis, 2019, 9, 1431-1436.	11.2	44
104	Efficient Synthesis of γâ€Lactones by Cobalt atalyzed Carbonylative Ring Expansion of Oxetanes under Syngas Atmosphere. ChemCatChem, 2020, 12, 5898-5902.	3.7	12
105	No Making Without Breaking: Nitrogen-Centered Carbonylation Reactions. ACS Catalysis, 2020, 10, 6510-6531.	11.2	91
106	Base-determinant chemodivergent transformations of chiral 2,3-dibromopropanamide derivative. Mendeleev Communications, 2020, 30, 313-314.	1.6	2
107	CO ₂ = CO + [O]: recent advances in carbonylation of C–H bonds with CO ₂ . Chemical Communications, 2020, 56, 8355-8367.	4.1	87
108	A general platinum-catalyzed alkoxycarbonylation of olefins. Chemical Communications, 2020, 56, 5235-5238.	4.1	27
109	Two-step continuous flow synthesis of amide via oxidative amidation of methylarene. Tetrahedron, 2020, 76, 131044.	1.9	2
110	Nickel(II) Catalyzed Hydroboration: A Route to Selective Reduction of Aldehydes and <i>N</i> â€Allylimines. European Journal of Inorganic Chemistry, 2020, 2020, 1877-1884.	2.0	10
111	Computational determination of the mechanism of the Pd-catalyzed formation of isatoic anhydrides from <i>o</i> -haloanilines, CO, and CO ₂ . Dalton Transactions, 2021, 50, 14453-14461.	3.3	1
112	Ruthenium(<scp>II</scp>) atalyzed CH/NH Carbonylative Cyclization of <scp>2â€Aryl</scp> Quinazolinones with Isocyanates as <scp>CO</scp> Surrogates. Bulletin of the Korean Chemical Society, 2021, 42, 542-547.	1.9	8
113	BrĂ,nsted Acid Organocatalyzed Three-Component Hydroamidation Reactions of Vinyl Ethers. Journal of Organic Chemistry, 2021, 86, 4171-4181.	3.2	2

#	Article	IF	CITATIONS
114	Synthesis of Arylidene-β-lactams via <i>exo</i> -Selective Matsuda-Heck Arylation of Methylene-β-lactams. Journal of Organic Chemistry, 2021, 86, 8786-8796.	3.2	7
115	One-Pot Construction of Diverse β-Lactam Scaffolds via the Green Oxidation of Amines and Its Application to the Diastereoselective Synthesis of β-Amino Acids. Journal of Organic Chemistry, 2021, 86, 11571-11582.	3.2	13
116	Anti-Metatype Antibody Screening, Sandwich Immunoassay Development, and Structural Insights for β-Lactams Based on Penicillin Binding Protein. Molecules, 2021, 26, 5569.	3.8	2
117	Theoretical study of the mechanism of palladium-catalyzed hydroaminocarbonylation of styrene with ammonium chloride. Computational and Theoretical Chemistry, 2020, 1191, 113040.	2.5	4
118	Recent Advances on the Synthesis of <i>\hat{l}^2</i> -Lactams by Involving Carbon Monoxide. Chinese Journal of Organic Chemistry, 2021, 41, 3448.	1.3	6
120	Reactions of 2,3-Dibromo-2-methylpropanamides Promoted by Potassium tert-Butoxide. Russian Journal of Organic Chemistry, 2021, 57, 1643-1649.	0.8	1
121	Electrochemical-induced benzyl C–H amination towards the synthesis of isoindolinones <i>via</i> aroyloxy radical-mediated C–H activation. Green Chemistry, 2022, 24, 1445-1450.	9.0	20
122	Cobalt-Catalyzed Four-Component Carbonylation of Methylarenes with Ethylene and Alcohols. Journal of Organic Chemistry, 2022, 87, 6371-6377.	3.2	9
123	Palladium-Catalyzed Denitrogenative Carbonylation of Benzotriazoles with Cr(CO) ₆ as the Carbonyl Source. Organometallics, 2022, 41, 1731-1737.	2.3	8
124	An Update on Oxidative C–H Carbonylation with CO. ACS Catalysis, 2022, 12, 7470-7485.	11.2	32
125	CF ₃ SO ₂ Na-Mediated Five-Component Carbonylation of Triarylboroxines with TMSCF ₃ and THF/LiOH/Nal to Give Aroyloxyalkyl lodides. Journal of Organic Chemistry, 2022, 87, 9635-9644.	3.2	2
126	The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coordination Chemistry Reviews, 2023, 475, 214900.	18.8	15
127	Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones. Organic Chemistry Frontiers, 0, , .	4.5	0
129	Synthesis of α-CF ₃ Amides via Palladium-Catalyzed Carbonylation of 2-Bromo-3,3,3-trifluoropropene. ACS Omega, 2023, 8, 7128-7134.	3.5	3
131	Titanium-Catalyzed Intermolecular Hydroaminoalkylation of Terminal Alkynes. Synthesis, 0, , .	2.3	1
132	Access to Amino Lactones through Palladium-Catalyzed Oxyamination with Aromatic Amines as the Nitrogen Source. ACS Catalysis, 2023, 13, 11339-11344.	11.2	5
133	Palladium atalyzed Oxidative Carbonylation of Diarylamines for the Synthesis of Acridone Derivatives. Asian Journal of Organic Chemistry, 0, , .	2.7	0