Facile Chemoenzymatic Strategies for the Synthesis and <i>S</i>â€Adenosylâ€<scp>L</scp>â€Methionine Anal

Angewandte Chemie - International Edition 53, 3965-3969 DOI: 10.1002/anie.201308272

Citation Report

#	Article	IF	CITATIONS
1	Enzymatic Methylation and Structure–Activityâ€Relationship Studies on Polycarcin V, a Gilvocarcinâ€Type Antitumor Agent. ChemBioChem, 2014, 15, 2729-2735.	1.3	8
2	Large-Scale, Protection-Free Synthesis of Se-Adenosyl-I-selenomethionine Analogues and Their Application as Cofactor Surrogates of Methyltransferases. Organic Letters, 2014, 16, 3056-3059.	2.4	48
3	Getting a handle on peptides. Nature Chemistry, 2014, 6, 1037-1038.	6.6	1
4	Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase s <scp>MAT</scp> from <i>SulfolobusÂsolfataricus</i> . FEBS Journal, 2014, 281, 4224-4239.	2.2	36
5	Indimicins A–E, Bisindole Alkaloids from the Deep-Sea-Derived <i>Streptomyces</i> sp. SCSIO 03032. Journal of Natural Products, 2014, 77, 1887-1892.	1.5	49
6	Enzymatic Allylation of Catechols. Chemistry Letters, 2015, 44, 949-951.	0.7	1
7	Regiocomplementary Oâ€Methylation of Catechols by Using Threeâ€Enzyme Cascades. ChemBioChem, 2015, 16, 2576-2579.	1.3	37
8	Rationally engineered variants of S-adenosylmethionine (SAM) synthase: reduced product inhibition and synthesis of artificial cofactor homologues. Chemical Communications, 2015, 51, 3637-3640.	2.2	40
9	Emerging Enzymes for ATP Regeneration in Biocatalytic Processes. ChemBioChem, 2015, 16, 380-386.	1.3	149
10	A comprehensive review of glycosylated bacterial natural products. Chemical Society Reviews, 2015, 44, 7591-7697.	18.7	347
12	An efficient method for the synthesis of selenium modified nucleosides: its application in the synthesis of Se-adenosyl- <scp>l</scp> -selenomethionine (SeAM). Organic and Biomolecular Chemistry, 2015, 13, 9405-9417.	1.5	9
13	Cytotoxic Indolocarbazoles from <i>Actinomadura melliaura</i> ATCC 39691. Journal of Natural Products, 2015, 78, 1723-1729.	1.5	37
14	Site-specific bioalkylation of rapamycin by the RapM 16-O-methyltransferase. Chemical Science, 2015, 6, 2885-2892.	3.7	47
15	Opportunities for enzyme catalysis in natural product chemistry. Tetrahedron, 2015, 71, 1473-1508.	1.0	43
16	Loop dynamics of thymidine diphosphate-rhamnose 3′-O-methyltransferase (CalS11), an enzyme in calicheamicin biosynthesis. Structural Dynamics, 2016, 3, 012004.	0.9	5
17	Characterisation of the Broadly-Specific O-Methyl-transferase JerF from the Late Stages of Jerangolid Biosynthesis. Molecules, 2016, 21, 1443.	1.7	6
18	Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chemical Biology, 2016, 11, 2484-2491.	1.6	36
19	Eine biokatalytische Kaskade für die vielseitige Eintopfâ€Modifizierung von mRNA ausgehend von Methioninanaloga. Angewandte Chemie, 2016, 128, 1951-1954.	1.6	28

#	Article	IF	CITATIONS
20	Effects of Activeâ€6ite Modification and Quaternary Structure on the Regioselectivity of Catecholâ€ <i>O</i> â€Methyltransferase. Angewandte Chemie - International Edition, 2016, 55, 2683-2687.	7.2	58
21	AdoMet analog synthesis and utilization: current state of the art. Current Opinion in Biotechnology, 2016, 42, 189-197.	3.3	66
22	DNA Labeling Using DNA Methyltransferases. Advances in Experimental Medicine and Biology, 2016, 945, 511-535.	0.8	5
23	A Biocatalytic Cascade for Versatile Oneâ€Pot Modification of mRNA Starting from Methionine Analogues. Angewandte Chemie - International Edition, 2016, 55, 1917-1920.	7.2	66
24	Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase. Organic and Biomolecular Chemistry, 2016, 14, 6189-6192.	1.5	20
25	Effects of Activeâ€5ite Modification and Quaternary Structure on the Regioselectivity of Catecholâ€ <i>O</i> â€Methyltransferase. Angewandte Chemie, 2016, 128, 2733-2737.	1.6	25
26	One-pot modification of 5â \in 2-capped RNA based on methionine analogs. Methods, 2016, 107, 3-9.	1.9	18
27	An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. Journal of the American Chemical Society, 2016, 138, 3038-3045.	6.6	49
28	Capturing Unknown Substrates via <i>in Situ</i> Formation of Tightly Bound Bisubstrate Adducts: <i>S</i> -Adenosyl-vinthionine as a Functional Probe for AdoMet-Dependent Methyltransferases. Journal of the American Chemical Society, 2016, 138, 2877-2880.	6.6	19
29	Probing Chromatin-modifying Enzymes with Chemical Tools. ACS Chemical Biology, 2016, 11, 689-705.	1.6	15
30	Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews, 2017, 117, 5619-5674.	23.0	281
31	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie, 2017, 129, 4095-4099.	1.6	42
32	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie - International Edition, 2017, 56, 4037-4041.	7.2	124
33	Recent advances in methyltransferase biocatalysis. Current Opinion in Chemical Biology, 2017, 37, 97-106.	2.8	90
34	Die Methyltransferaseâ€gesteuerte Markierung von Biomolekülen und ihre Anwendungen. Angewandte Chemie, 2017, 129, 5266-5285.	1.6	13
35	Identification and characterization of a biosynthetic gene cluster for tryptophan dimers in deep sea-derived Streptomyces sp. SCSIO 03032. Applied Microbiology and Biotechnology, 2017, 101, 6123-6136.	1.7	16
36	New insights into polyene macrolide biosynthesis in Couchioplanes caeruleus. Molecular BioSystems, 2017, 13, 866-873.	2.9	9
37	A Tandem Enzymatic sp ² â€Câ€Methylation Process: Coupling in Situ Sâ€Adenosylâ€ <scp>l</scp> â€Methionine Formation with Methyl Transfer. ChemBioChem, 2017, 18, 992-995.	1.3	27

ARTICLE IF CITATIONS # New AdoMet Analogues as Tools for Enzymatic Transfer of Photoâ€Crossâ€Linkers and Capturing 1.7 48 38 RNAâ€"Protein Interactions. Chemistry - A European Journal, 2017, 23, 5988-5993. Methyltransferaseâ€Directed Labeling of Biomolecules and its Applications. Angewandte Chemie -7.2 International Edition, 2017, 56, 5182-5200. Chemo-enzymatic modification of eukaryotic mRNA. Organic and Biomolecular Chemistry, 2017, 15, 40 1.5 10 278-284. A benzylic linker promotes methyltransferase catalyzed norbornene transfer for rapid bioorthogonal tetrazine ligation. Chemical Science, 2017, 8, 7947-7953. A Flexible Polyphosphateâ€Driven Regeneration System for Coenzymeâ€...A Dependent Catalysis. 42 1.8 32 ChemCatChem, 2017, 9, 4164-4168. An ortho C-methylation/O-glycosylation motif on a hydroxy-coumarin scaffold, selectively installed by biocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 7917-7924. 1.5 Deciphering Nature's Intricate Way of <i>N</i>,<i>S</i>-Dimethylating <scp>|</scp>-Cysteine: 44 1.2 17 Sequential Action of Two Bifunctional Adenylation Domains. Biochemistry, 2017, 56, 6087-6097. Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of 2.0 14 sugar-containing antibiotics. Biochemical Pharmacology, 2017, 134, 56-73. Enzymatic or In Vivo Installation of Propargyl Groups in Combination with Click Chemistry for the Enrichment and Detection of Methyltransferase Target Sites in RNA. Angewandte Chemie -7.2 82 46 International Edition, 2018, 57, 6342-6346. Enzymatischer oder In-vivo-Einbau von Propargylgruppen in Kombination mit Klick-Chemie zur Anreicherung und Detektion von Methyltransferase-Zielsequenzen in RNA. Angewandte Chemie, 2018, 1.6 130, 6451-6455. Reversible modification of DNA by methyltransferase-catalyzed transfer and light-triggered removal 48 2.2 42 of photo-caging groups. Chemical Communications, 2018, 54, 449-451. Chemistry and Properties of Indolocarbazoles. Chemical Reviews, 2018, 118, 9058-9128. 23.0 Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 50 Preparation, Assay, and Application of Chlorinase SalL for the Chemoenzymatic Synthesis of 0.4 S-Adenosyl-I-Methionine and Analogs. Methods in Enzymology, 2018, 604, 367-388. 53 Streamlined recycling of S-adenosylmethionine. Nature Catalysis, 2019, 2, 644-645. 16.1 7 S â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C ấ€Alkylation. Angewandte Chemie, 2019, 131, 17747-17752. <i>>S</i>>â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small 55 7.2 30 Molecule <i>C</i>á€Alkylation. Angewandte Chemie - International Edition, 2019, 58, 17583-17588.

56	Specific Residues Expand the Substrate Scope and Enhance the Regioselectivity of a Plant O â€Methyltransferase. ChemCatChem, 2019, 11, 3227-3233.	1.8	10
----	--	-----	----

	CHAHON	REPORT	
#	Article	IF	CITATIONS
57	In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation. International Journal of Molecular Sciences, 2019, 20, 2299.	1.8	9
58	Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA. Current Opinion in Biotechnology, 2019, 55, 114-123.	3.3	22
59	Bisindole. , 2020, , 467-485.		1
60	Chemoâ€enzymatic treatment of RNA to facilitate analyses. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1561.	3.2	31
61	Lysine Ethylation by Histone Lysine Methyltransferases. ChemBioChem, 2020, 21, 392-400.	1.3	9
62	Characterization of TnmH as an <i>O</i> -Methyltransferase Revealing Insights into Tiancimycin Biosynthesis and Enabling a Biocatalytic Strategy To Prepare Antibody–Tiancimycin Conjugates. Journal of Medicinal Chemistry, 2020, 63, 8432-8441.	2.9	18
63	Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angewandte Chemie - International Edition, 2020, 59, 14950-14956.	7.2	39
64	Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angewandte Chemie, 2020, 132, 15060-15066.	1.6	21
65	Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late‣tage Functionalization. ChemBioChem, 2020, 21, 2890-2897.	1.3	29
66	Round, round we go – strategies for enzymatic cofactor regeneration. Natural Product Reports, 2020, 37, 1316-1333.	5.2	115
67	Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes. ACS Chemical Biology, 2020, 15, 695-705.	1.6	20
68	Nucleoside-modified AdoMet analogues for differential methyltransferase targeting. Chemical Communications, 2020, 56, 2115-2118.	2.2	27
69	Identification of a novel methyltransferase-type 12 protein from Haemonchus contortus and its effects on functions of goat PBMCs. Parasites and Vectors, 2020, 13, 154.	1.0	6
70	Engineered SAM Synthetases for Enzymatic Generation of AdoMet Analogs with Photocaging Groups and Reversible DNA Modification in Cascade Reactions. Angewandte Chemie - International Edition, 2021, 60, 480-485.	7.2	36
71	Maßgeschneiderte SAM‣ynthetasen zur enzymatischen Herstellung von AdoMetâ€Analoga mit Photoschutzgruppen und zur reversiblen DNAâ€Modifizierung in Kaskadenreaktionen. Angewandte Chemie, 2021, 133, 484-489.	1.6	5
72	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie - International Edition, 2021, 60, 4098-4103.	7.2	40
73	Die gerichtete Evolution einer Halogenidâ€Methyltransferase erlaubt die biokatalytische Synthese diverser SAMâ€Analoga. Angewandte Chemie, 2021, 133, 1547-1551.	1.6	16
74	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie, 2021, 133, 4144-4149.	1.6	11

#	Article	IF	CITATIONS
75	Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angewandte Chemie - International Edition, 2021, 60, 1524-1527.	7.2	54
76	A bicyclic <i>S</i> -adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chemical Biology, 2021, 2, 883-891.	2.0	24
77	Precise identification of an RNA methyltransferase's substrate modification site. Chemical Communications, 2021, 57, 2499-2502.	2.2	7
78	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	18.7	175
80	Enzymkatalysierte spÃæ Modifizierungen: Besser spÃæals nie. Angewandte Chemie, 2021, 133, 16962-16993.	1.6	11
81	Enzymatic Lateâ€Stage Modifications: Better Late Than Never. Angewandte Chemie - International Edition, 2021, 60, 16824-16855.	7.2	75
82	From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. ChemBioChem, 2021, 22, 2584-2590.	1.3	15
83	Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications. Current Opinion in Biotechnology, 2021, 69, 290-298.	3.3	11
84	Profiling and Validation of Live ell Protein Methylation with Engineered Enzymes and Methionine Analogues. Current Protocols, 2021, 1, e213.	1.3	2
85	Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. Bioresources and Bioprocessing, 2021, 8, .	2.0	16
86	Identification of methionine adenosyltransferase with high diastereoselectivity for biocatalytic synthesis of (S)-S-adenosyl-I-methionine and exploring its relationship with fluorinated biosynthetic pathway. Enzyme and Microbial Technology, 2021, 150, 109881.	1.6	0
87	Accessing Nature's diversity through metabolic engineering and synthetic biology. F1000Research, 2016, 5, 397.	0.8	39
88	Propargylic <i>Se</i> -adenosyl- <scp></scp> -selenomethionine: A Chemical Tool for Methylome Analysis. Accounts of Chemical Research, 2021, 54, 3818-3827.	7.6	15
89	From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water. Advanced Synthesis and Catalysis, 0, , .	2.1	5
90	Visibleâ€Light Removable Photocaging Groups Accepted by MjMAT Variant: Structural Basis and Compatibility with DNA and RNA Methyltransferases. ChemBioChem, 2022, 23, e202100437.	1.3	9
91	Enzyme alchemy: cell-free synthetic biochemistry for natural products. Emerging Topics in Life Sciences, 2019, 3, 529-535.	1.1	3
92	Factors Associated with Duration of Rehabilitation Among Older Adults with Prolonged Hospitalization. Journal of the American Geriatrics Society, 2021, 69, 1035-1044.	1.3	1
93	Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. ChemPlusChem, 2022, 87, .	1.3	10

#	Article	IF	CITATIONS
94	New Trends and Future Opportunities in the Enzymatic Formation of Câ^'C, Câ^'N, and Câ^'O bonds. ChemBioChem, 2022, 23, .	1.3	17
95	Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. Jacs Au, 2021, 1, 2349-2360.	3.6	9
96	Substrate Profiling of Anion Methyltransferases for Promiscuous Synthesis of <i>S</i> â€Adenosylmethionine Analogs from Haloalkanes. ChemBioChem, 2022, 23, .	1.3	20
97	Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angewandte Chemie, 0, , .	1.6	2
98	Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angewandte Chemie - International Edition, 2022, , .	7.2	10
99	Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases. Molecular Biology, 2022, 56, 229-250.	0.4	15
100	Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Research, 2022, 50, 4216-4245.	6.5	9
101	Methyltransferases: Functions and Applications. ChemBioChem, 2022, 23, .	1.3	36
102	Biocatalytic Friedelâ€Crafts Reactions. ChemCatChem, 2022, 14, .	1.8	11
103	Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catalysis, 2022, 12, 10742-10763.	5.5	8
104	Selective Biocatalytic Nâ \in Methylation of Unsaturated Heterocycles. Angewandte Chemie, O, , .	1.6	0
105	Selective Biocatalytic <i>N</i> â€Methylation of Unsaturated Heterocycles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
106	A Vitamin B ₂ â€Photocatalysed Approach to Methionine Analogues. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
107	A vitamin B2â€photocatalysed approach to methionine analogues. Angewandte Chemie, 0, , .	1.6	0
108	Enzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications. ACS Catalysis, 2022, 12, 14130-14139.	5.5	1
109	DNA Labeling Using DNA Methyltransferases. Advances in Experimental Medicine and Biology, 2022, , 535-562.	0.8	2
110	Synthetic application of chalcogenonium salts: beyond sulfonium. Organic and Biomolecular Chemistry, 2023, 21, 223-236.	1.5	7
111	Sequence-specific DNA labelling for fluorescence microscopy. Biosensors and Bioelectronics, 2023, 230, 115256.	5.3	1

#	Article	IF	CITATIONS
113	Comparative <i>S</i> -adenosyl- <scp>l</scp> -methionine analogue generation for selective biocatalytic Friedel-Crafts alkylation. Chemical Communications, 2023, 59, 5463-5466.	2.2	0