Mouse liver repopulation with hepatocytes generated fr

Nature

508, 93-97

DOI: 10.1038/nature13020

Citation Report

#	Article	IF	CITATIONS
1	Bioartificial livers <i>in vitro</i> and <i>in vivo</i> : tailoring biocomponents to the expanding variety of applications. Expert Opinion on Biological Therapy, 2014, 14, 1745-1760.	1.4	39
2	New Methods in Tissue Engineering: Improved Models for Viral Infection. Annual Review of Virology, 2014, 1, 475-499.	3.0	23
3	Chemical approaches to cell reprogramming. Current Opinion in Genetics and Development, 2014, 28, 50-56.	1.5	46
4	Functional Characteristics of Reversibly Immortalized Hepatic Progenitor Cells Derived from Mouse Embryonic Liver. Cellular Physiology and Biochemistry, 2014, 34, 1318-1338.	1.1	54
5	Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Research, 2014, 13, 404-412.	0.3	123
6	Knocking on the door to successful hepatocyte transplantation. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 277-278.	8.2	14
7	Regenerative Cell Therapy for Corneal Endothelium. Current Ophthalmology Reports, 2014, 2, 81-90.	0.5	27
8	Cell and tissue engineering for liver disease. Science Translational Medicine, 2014, 6, 245sr2.	5. 8	247
9	Cell therapy to remove excess copper in Wilson's disease. Annals of the New York Academy of Sciences, 2014, 1315, 70-80.	1.8	32
10	Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12193-12198.	3.3	220
11	Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Research, 2014, 13, 144-153.	0.3	59
12	Shortcut Route for Generation of Functional Hepatocyte Cells from Human Skin Allogenically for Autologous Treatment of Chronic Liver Diseases. Journal of Clinical and Experimental Hepatology, 2014, 4, 74-78.	0.4	3
13	Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell, 2014, 14, 561-574.	5 . 2	463
14	Artificial Liver. Clinical Gastroenterology and Hepatology, 2014, 12, 1439-1442.	2.4	14
15	Reviews and Perspectives. Canadian Journal of Psychiatry, 2014, 59, 1-2.	0.9	5
16	Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Scientific Reports, 2015, 5, 15706.	1.6	23
17	Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Research and Therapy, 2015, 6, 49.	2.4	21
18	Direct reprogramming of somatic cells: an update. Biomedical Research and Therapy, 2015, 2, .	0.3	2

#	ARTICLE	IF	CITATIONS
19	Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology, 2015, 62, 303-311.	3.6	42
20	Microbialâ€derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells–derived and fetal hepatocytes. Hepatology, 2015, 62, 265-278.	3.6	76
21	Direct Induction of Neural Stem Cells from Somatic Cells. , 2015, , 103-106.		0
22	Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. International Journal of Molecular Sciences, 2015, 16, 20873-20895.	1.8	4
23	Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Laboratory Investigation, 2015, 95, 684-696.	1.7	66
24	Repairing organs: lessons from intestine and liver. Trends in Genetics, 2015, 31, 344-351.	2.9	27
25	Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochemical and Biophysical Research Communications, 2015, 463, 699-705.	1.0	28
26	Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nature Protocols, 2015, 10, 959-973.	5 . 5	46
27	Enhancing the functional maturity of induced pluripotent stem cell–derived human hepatocytes by controlled presentation of cell–cell interactions in vitro. Hepatology, 2015, 61, 1370-1381.	3.6	171
28	Hepatic Progenitor Cell Transplantation. , 2015, , 279-299.		O
29	Current progress in xenotransplantation and organ bioengineering. International Journal of Surgery, 2015, 13, 239-244.	1,1	24
30	Microengineered Liver Tissues for Drug Testing. Journal of the Association for Laboratory Automation, 2015, 20, 216-250.	2.8	92
31	Tissue Engineering and Regenerative Medicine in Basic Research: A Year in Review of 2014. Tissue Engineering - Part B: Reviews, 2015, 21, 167-176.	2.5	12
32	Direct Lineage Reprogramming: Strategies, Mechanisms, and Applications. Cell Stem Cell, 2015, 16, 119-134.	5.2	350
34	Concise Review: Cell Therapies for Hereditary Metabolic Liver Diseasesâ€"Concepts, Clinical Results, and Future Developments. Stem Cells, 2015, 33, 1055-1062.	1.4	34
35	Tissue Engineering and Regenerative Medicine in Applied Research: A Year in Review of 2014. Tissue Engineering - Part B: Reviews, 2015, 21, 177-186.	2.5	17
36	Noninvasive 3â€dimensional imaging of liver regeneration in a mouse model of hereditary tyrosinemia type 1 using the sodium iodide symporter gene. Liver Transplantation, 2015, 21, 442-453.	1.3	20
37	Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nature Biotechnology, 2015, 33, 769-774.	9.4	124

#	Article	IF	Citations
38	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	13.5	206
39	Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nature Biotechnology, 2015, 33, 761-768.	9.4	100
40	Regulation of hepatocyte identity and quiescence. Cellular and Molecular Life Sciences, 2015, 72, 3831-3851.	2.4	38
41	Cell therapy for liver diseases: current medicine and future promises. Expert Review of Gastroenterology and Hepatology, 2015, 9, 837-850.	1.4	1
42	Cell therapy for liver disease: From liver transplantation to cell factory. Journal of Hepatology, 2015, 62, S157-S169.	1.8	242
43	New Tools in Experimental Cellular Therapy for the Treatment of Liver Diseases. Current Transplantation Reports, 2015, 2, 202-210.	0.9	12
44	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	5,2	133
45	Transcription factor-mediated reprograming of fibroblasts to hepatocyte-like cells. European Journal of Cell Biology, 2015, 94, 603-610.	1.6	21
46	Hepatic progenitor cells up their game in the therapeutic stakes. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 610-611.	8.2	4
47	Mouse Models of Hepatitis B Virus Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021477.	2.9	23
48	Bioengineering for Organ Transplantation: Progress and Challenges. Bioengineered, 2015, 6, 257-261.	1.4	28
49	Human stem cell-based disease modeling: prospects and challenges. Current Opinion in Cell Biology, 2015, 37, 84-90.	2.6	31
50	Innovative Medicine., 2015,,.		17
51	MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. Journal of Hepatology, 2015, 62, 101-110.	1.8	35
52	Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Therapy, 2015, 22, 163-171.	2.3	27
53	Reprogramming of mesenchymal stem cells by oncogenes. Seminars in Cancer Biology, 2015, 32, 18-31.	4.3	17
54	Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Scientific Reports, 2014, 4, 5290.	1.6	58
55	From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1-E20.	1.8	30

#	Article	IF	Citations
56	Novel strategies for liver therapy using stem cells. Gut, 2015, 64, 1-4.	6.1	42
57	Cell sources for regenerative medicine of the liver and endoderm organs: strategies and perspectives. Stem Cell Investigation, 2016, 3, 91-91.	1.3	2
58	$\langle i \rangle$ In Vivo $\langle i \rangle$ Expression of Reprogramming Factors Increases Hippocampal Neurogenesis and Synaptic Plasticity in Chronic Hypoxic-Ischemic Brain Injury. Neural Plasticity, 2016, 2016, 1-11.	1.0	16
59	Stem Cell Therapies for Treatment of Liver Disease. Biomedicines, 2016, 4, 2.	1.4	34
60	Liver-Regenerative Transplantation: Regrow and Reset. American Journal of Transplantation, 2016, 16, 1688-1696.	2.6	39
61	Assessing the therapeutic potential of labâ€made hepatocytes. Hepatology, 2016, 64, 287-294.	3.6	46
62	Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Scientific Reports, 2016, 6, 31460.	1.6	29
63	Direct reprogramming and biomaterials for controlling cell fate. Biomaterials Research, 2016, 20, 39.	3.2	11
64	Human induced pluripotent stem cells: A disruptive innovation. Current Research in Translational Medicine, 2016, 64, 91-96.	1.2	18
65	Enhanced direct conversion of fibroblasts into hepatocyte-like cells by Kdm2b. Biochemical and Biophysical Research Communications, 2016, 474, 97-103.	1.0	10
66	New tools for experimental diabetes research: Cellular reprogramming and genome editing. Upsala Journal of Medical Sciences, 2016, 121, 146-150.	0.4	3
67	Chemical transdifferentiation: closer to regenerative medicine. Frontiers of Medicine, 2016, 10, 152-165.	1.5	10
68	Natural and induced direct reprogramming: mechanisms, concepts and general principles â€" from the worm to vertebrates. Current Opinion in Genetics and Development, 2016, 40, 154-163.	1.5	7
69	Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue and Cell, 2016, 48, 475-487.	1.0	9
70	Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development (Cambridge), 2016, 143, 2696-2705.	1.2	67
71	Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chemical Biology, 2016, 23, 893-916.	2.5	43
72	Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix—A Comparative Analysis of Bioartificial Liver Microenvironments. Stem Cells Translational Medicine, 2016, 5, 1257-1267.	1.6	95
73	Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells, 2016, 34, 1421-1426.	1.4	36

#	Article	IF	CITATIONS
74	In Situ Pluripotency Factor Expression Promotes Functional Recovery From Cerebral Ischemia. Molecular Therapy, 2016, 24, 1538-1549.	3.7	13
75	InÂVivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 2016, 91, 728-738.	3.8	131
76	Conversion of Human Gastric Epithelial Cells to Multipotent Endodermal Progenitors using Defined Small Molecules. Cell Stem Cell, 2016, 19, 449-461.	5.2	71
77	Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation. Scientific Reports, 2016, 6, 19069.	1.6	54
78	Contribution of dermal-derived mesenchymal cells during liver repair in two different experimental models. Scientific Reports, 2016, 6, 25314.	1.6	9
80	Emerging advancements in liver regeneration and organogenesis as tools for liver replacement. Current Opinion in Organ Transplantation, 2016, 21, 581-587.	0.8	15
81	Generation of a Humanized Mouse Liver Using Human Hepatic Stem Cells. Journal of Visualized Experiments, $2016, \ldots$	0.2	2
82	Regulation of Human Pluripotent Stem Cell-Derived Hepatic Cell Phenotype by Three-Dimensional Hydrogel Models. Tissue Engineering - Part A, 2016, 22, 971-984.	1.6	20
83	Human Pluripotent Stem Cells: Myths and Future Realities for Liver Cell Therapy. Cell Stem Cell, 2016, 18, 703-706.	5.2	14
84	Cell therapy in chronic liver disease. Current Opinion in Gastroenterology, 2016, 32, 1.	1.0	35
85	Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 349-370.	1.0	28
86	Stage-specific regulation of the WNT/ \hat{l}^2 -catenin pathway enhances differentiation of hESCs into hepatocytes. Journal of Hepatology, 2016, 64, 1315-1326.	1.8	75
87	Human pancreatic beta-like cells converted from fibroblasts. Nature Communications, 2016, 7, 10080.	5.8	119
88	A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discovery Today, 2016, 21, 250-263.	3.2	61
89	Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1. Journal of Biological Chemistry, 2017, 292, 4755-4763.	1.6	15
90	A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Research, 2017, 27, 386-401.	5.7	20
91	Reprogramming cell fates by small molecules. Protein and Cell, 2017, 8, 328-348.	4.8	82
92	Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein and Cell, 2017, 8, 273-283.	4.8	15

#	Article	IF	CITATIONS
93	Regenerative Medicine and the Biliary Tree. Seminars in Liver Disease, 2017, 37, 017-027.	1.8	23
94	A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue. Nature Communications, 2017, 8, 14662.	5.8	30
95	Liver Regeneration., 2017,, 113-123.		7
96	Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine. Accounts of Chemical Research, 2017, 50, 1202-1211.	7.6	15
97	Towards understanding transcriptional networks in cellular reprogramming. Current Opinion in Genetics and Development, 2017, 46, 1-8.	1.5	3
98	Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion. Cell Research, 2017, 27, 709-712.	5.7	42
99	Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Research, 2017, 45, 5198-5207.	6.5	80
100	Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. Scientific Reports, 2017, 7, 44498.	1.6	8
101	Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis, 2017, 13, 16-27.	0.4	36
102	Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials, 2017, 119, 53-67.	5.7	10
103	Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation, 2017, 98, 25-34.	1.0	7
104	Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Science Translational Medicine, 2017, 9, .	5.8	91
106	Fah Knockout Animals as Models for Therapeutic Liver Repopulation. Advances in Experimental Medicine and Biology, 2017, 959, 215-230.	0.8	26
107	Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Scientific Reports, 2017, 7, 3484.	1.6	24
108	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	5.8	133
109	Bioengineering considerations in liver regenerative medicine. Journal of Biological Engineering, 2017, 11, 46.	2.0	21
110	Lipopolysaccharide/Toll-like receptor 4 signaling pathway involved Qingdu decoction treating severe liver injury merging with endotoxemia. Journal of Traditional Chinese Medicine = Chung I Tsa Chih Ying Wen Pan / Sponsored By All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine, 2017, 37, 371-377.	0.4	1
111	TET-Catalyzed 5-Hydroxymethylation Precedes HNF4A Promoter Choice during Differentiation of Bipotent Liver Progenitors. Stem Cell Reports, 2017, 9, 264-278.	2.3	34

#	ARTICLE	IF	CITATIONS
112	Simple Maturation of Direct-Converted Hepatocytes Derived from Fibroblasts. Tissue Engineering and Regenerative Medicine, 2017, 14, 579-586.	1.6	4
113	Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell, 2017, 20, 41-55.	5. 2	187
114	Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatology International, 2017, 11, 54-69.	1.9	37
115	Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells, 2017, 35, 42-50.	1.4	98
116	Isolation, Characterization and Cold Storage of Cells Isolated from Diseased Explanted Livers. International Journal of Artificial Organs, 2017, 40, 294-306.	0.7	3
117	Support of the failing liver. , 2017, , 1181-1188.e3.		0
118	A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Reports, 2018, 22, 2190-2205.	2.9	145
119	Understanding Liver Regeneration. American Journal of Pathology, 2018, 188, 1316-1327.	1.9	106
120	Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of Forming Gut and Liver Organoids. Stem Cell Reports, 2018, 10, 780-793.	2.3	60
121	Biotechnology Challenges to InÂVitro Maturation of Hepatic Stem Cells. Gastroenterology, 2018, 154, 1258-1272.	0.6	78
122	Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Scientific Reports, 2018, 8, 1634.	1.6	17
123	Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cellular and Molecular Life Sciences, 2018, 75, 1587-1612.	2.4	55
124	Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Research and Therapy, 2018, 9, 58.	2.4	67
125	Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes. Cytotherapy, 2018, 20, 95-107.	0.3	38
126	<scp>CD</scp> 29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Diseases, 2018, 24, 561-572.	1.5	37
127	Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell, 2018, 175, 1591-1606.e19.	13.5	505
128	Cell Culture Bioprocess Technology: Biologics and Beyond. Learning Materials in Biosciences, 2018, , 1-21.	0.2	1
129	Nonintegrating Direct Conversion Using mRNA into Hepatocyte-Like Cells. BioMed Research International, 2018, 2018, 1-8.	0.9	2

#	ARTICLE	IF	CITATIONS
130	Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death and Disease, 2018, 9, 912.	2.7	64
131	Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells. PLoS ONE, 2018, 13, e0197046.	1.1	2
132	Wound healing, cellular regeneration and plasticity: the elegans way. International Journal of Developmental Biology, 2018, 62, 491-505.	0.3	11
133	Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Research and Therapy, 2018, 9, 5.	2.4	62
134	Exploration for Cell Sources for Liver Regenerative Medicine: "CLiP―as a Dawn of Cell Transplantation Therapy. , 2018, , 77-101.		0
135	Cellular trajectories and molecular mechanisms of iPSC reprogramming. Current Opinion in Genetics and Development, 2018, 52, 77-85.	1.5	42
136	Animal models to study bile acid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 895-911.	1.8	141
137	Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS ONE, 2019, 14, e0221085.	1.1	10
138	Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells, 2019, 8, 914.	1.8	25
139	Liver stem cells: Plasticity of the liver epithelium. World Journal of Gastroenterology, 2019, 25, 1037-1049.	1.4	19
140	Generation of functional human hepatocytes in vitro: current status and future prospects. Inflammation and Regeneration, 2019, 39, 13.	1.5	27
141	Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology, 2019, 71, 970-985.	1.8	176
142	Stem Cell-Related Studies and Stem Cell-Based Therapies in Liver Diseases. Cell Transplantation, 2019, 28, 1116-1122.	1.2	9
143	Expression of serine/threonine protein kinase SGK1F promotes an hepatoblast state in stem cells directed to differentiate into hepatocytes. PLoS ONE, 2019, 14, e0218135.	1.1	2
144	A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Research, 2019, 29, 696-710.	5.7	43
145	New Perspectives in Liver Transplantation: From Regeneration to Bioengineering. Bioengineering, 2019, 6, 81.	1.6	19
146	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	2.3	10
147	A DMSO-free hepatocyte maturation medium accelerates hepatic differentiation of HepaRG cells in vitro. Biomedicine and Pharmacotherapy, 2019, 116, 109010.	2.5	11

#	Article	IF	CITATIONS
148	Cell Therapy in Acute and Chronic Liver Disease. , 2019, , 781-797.		1
149	Partial reprogramming as a therapeutic approach for heart disease: A stateâ€ofâ€theâ€art review. Journal of Cellular Biochemistry, 2019, 120, 14247-14261.	1.2	1
150	Biofabrication of Autologous Human Hepatocytes for Transplantation: How Do We Get There?. Gene Expression, 2019, 19, 89-95.	0.5	3
151	Role of tenâ€eleven translocation proteins and 5â€hydroxymethylcytosine in hepatocellular carcinoma. Cell Proliferation, 2019, 52, e12626.	2.4	26
152	Three-dimensional biomimetic scaffolds for hepatic differentiation of size-controlled embryoid bodies. Journal of Materials Research, 2019, 34, 1371-1380.	1.2	4
153	Hepatocyte Transplantation: Quo Vadis?. International Journal of Radiation Oncology Biology Physics, 2019, 103, 922-934.	0.4	15
154	Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Experimental Cell Research, 2019, 379, 225-234.	1.2	2
155	Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. Tissue Engineering - Part A, 2019, 25, 688-692.	1.6	26
156	In Atp7bâ^'/â^' Mice Modeling Wilson's Disease Liver Repopulation With Bone Marrow-Derived Myofibroblasts or Inflammatory Cells and Not Hepatocytes Is Deleterious. Gene Expression, 2019, 19, 15-24.	0.5	1
157	Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. Journal of Molecular Cell Biology, 2019, 11, 489-495.	1.5	18
158	Hepatic Stem Cells. Methods in Molecular Biology, 2019, , .	0.4	1
159	Pharmacological Induction of a Progenitor State for the Efficient Expansion of Primary Human Hepatocytes. Hepatology, 2019, 69, 2214-2231.	3.6	22
160	Chemically Induced Liver Progenitors (CLiPs): A Novel Cell Source for Hepatocytes and Biliary Epithelial Cells. Methods in Molecular Biology, 2019, 1905, 117-130.	0.4	9
161	Altered expression and activity of phase I and II biotransformation enzymes in human liver cells by perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). Toxicology, 2020, 430, 152339.	2.0	38
162	Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Advanced Drug Delivery Reviews, 2020, 161-162, 124-144.	6.6	8
163	Two base pair deletion in IL2 receptor γ gene in NOD/SCID mice induces a highly severe immunodeficiency. Laboratory Animal Research, 2020, 36, 27.	1.1	3
164	Extensively expanded murineâ€induced hepatic stem cells maintain highâ€efficient hepatic differentiation potential for repopulation of injured livers. Liver International, 2020, 40, 2293-2304.	1.9	6
165	Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. Annals of Translational Medicine, 2020, 8, 566-566.	0.7	16

#	Article	IF	Citations
166	Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand?. Cells, 2020, 9, 566.	1.8	14
168	Generation of keratinocyte stemâ€like cells from human fibroblasts via a direct reprogramming approach. Biotechnology Progress, 2020, 36, e2961.	1.3	5
169	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14 , $1296-1318$.	7.3	39
170	Hepatic tissue engineering., 2020,, 737-753.		3
171	Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 131-158.	1.6	22
172	The science and engineering of stem cellâ€derived organoidsâ€examples from hepatic, biliary, and pancreatic tissues. Biological Reviews, 2021, 96, 179-204.	4.7	13
173	Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Systems, 2021, 12, 41-55.e11.	2.9	59
174	Integrated Isogenic Human Induced Pluripotent Stem Cell–Based Liver and Heart Microphysiological Systems Predict Unsafe Drug–Drug Interaction. Frontiers in Pharmacology, 2021, 12, 667010.	1.6	29
175	Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 28-36.	2.3	4
177	Generation of hepatocyte-like cells from human urinary epithelial cells and the role of autophagy during direct reprogramming. Biochemical and Biophysical Research Communications, 2020, 527, 723-729.	1.0	8
180	Engrafted human stem cell–derived hepatocytes establish an infectious HCV murine model. Journal of Clinical Investigation, 2014, 124, 4953-4964.	3.9	131
181	Derivation of Patient Specific Pluripotent Stem Cells Using Clinically Discarded Cumulus Cells. PLoS ONE, 2016, 11, e0165715.	1.1	2
182	Cell Sources, Liver Support Systems and Liver Tissue Engineering: Alternatives to Liver Transplantation. International Journal of Stem Cells, 2015, 8, 36-47.	0.8	59
183	Direct Reprogramming to Human Induced Neuronal Progenitors from Fibroblasts of Familial and Sporadic Parkinson's Disease Patients. International Journal of Stem Cells, 2019, 12, 474-483.	0.8	14
184	Reprogrammed Cell?based Therapy for Liver Disease: From Lab to Clinic. Journal of Renal and Hepatic Disorders, 2017, 1, 20-28.	0.1	1
185	Induction of Hepatocyte Differentiation in Human Pluripotent Stem Cells. Journal of Gastroenterology and Hepatology Research, 2015, 4, 1627-1639.	0.2	2
186	Cell therapy from bench to bedside: Hepatocytes from fibroblasts - the truth and myth of transdifferentiation. World Journal of Gastroenterology, 2015, 21, 6427.	1.4	8
187	Maturity of associating liver partition and portal vein ligation for staged hepatectomy-derived liver regeneration in a rat model. World Journal of Gastroenterology, 2018, 24, 1107-1119.	1.4	10

#	Article	IF	CITATIONS
188	Modeling Liver Diseases Using Induced Pluripotent Stem Cell (Ipsc)-Derived Hepatocytes. Journal of Stem Cell Research $\&$ Therapy, 2014, 04, .	0.3	1
189	Role of liver stem cells in hepatocarcinogenesis. World Journal of Stem Cells, 2014, 6, 579.	1.3	7
190	Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World Journal of Transplantation, 2020, 10, 64-78.	0.6	7
191	Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. ELife, $2019, 8, .$	2.8	46
192	Direct reprogramming of human Sertoli cells into male germline stem cells with the self-renewal and differentiation potentials via overexpressing DAZL/DAZ2/BOULE genes. Stem Cell Reports, 2021, 16, 2798-2812.	2.3	7
193	Liverâ€humanized mice: A translational strategy to study metabolic disorders. Journal of Cellular Physiology, 2021, , .	2.0	4
194	Bewertung von artifiziellen »totipotenten« Stammzellen aus naturwissenschaftlicher und medizinischer Sicht., 2014,, 67-78.		0
196	Cell-Based Regenerative Therapy for Liver Disease. , 2015, , 327-339.		0
197	Directed Differentiation of Human Pluripotent Stem Cells into Lung and Airway Epithelial Cells. Pancreatic Islet Biology, 2015, , 265-285.	0.1	0
200	Genomic Medicine and Lipid Metabolism. , 2016, , 99-118.		0
201	Transdifferentiation: A Lineage Instructive Approach Bypassing Roadways of Induced Pluripotent Stem Cell (iPSC)., 2017,, 123-142.		0
207	Direct induction of neural cells from somatic cells. , 2020, , 179-185.		0
208	Cell Therapy for Liver Disease: From Promise to Reality. Seminars in Liver Disease, 2020, 40, 411-426.	1.8	2
209	Stem cell-derived liver cells for drug testing and disease modeling. Discovery Medicine, 2015, 19, 349-58.	0.5	49
210	Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium. Iranian Journal of Pharmaceutical Research, 2019, 18, 286-295.	0.3	3
211	Aquaporin 9 induction in human iPSCâ€derived hepatocytes facilitates modeling of ornithine transcarbamylase deficiency. Hepatology, 2022, 76, 646-659.	3.6	12
212	Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy, 2022, , .	0.3	3
213	Cell maturation: Hallmarks, triggers, and manipulation. Cell, 2022, 185, 235-249.	13.5	42

#	Article	IF	CITATIONS
214	HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells, 2022, 11, 1194.	1.8	3
215	Chemical Pretreatment Activated a Plastic State Amenable to Direct Lineage Reprogramming. Frontiers in Cell and Developmental Biology, 2022, 10, 865038.	1.8	6
216	Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review. Cells, 2022, 11, 1998.	1.8	2
217	Regenerative medicine technologies applied to transplant medicine. An update. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	7
218	Modelling urea cycle disorders using iPSCs. Npj Regenerative Medicine, 2022, 7, .	2.5	8
219	Parabolic relationship between SMAD3 expression level and the reprogramming efficiency of goat induced mammary epithelial cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
220	A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Communications Biology, 2022, 5, .	2.0	3
221	Generation of mitochondria-rich kidney organoids from expandable intermediate mesoderm progenitors reprogrammed from human urine cells under defined medium. Cell and Bioscience, 2022, 12, .	2.1	4
222	Advancements in MAFLD Modeling with Human Cell and Organoid Models. International Journal of Molecular Sciences, 2022, 23, 11850.	1.8	4
223	Functional hepatobiliary organoids recapitulate liver development and reveal essential drivers of hepatobiliary cell fate determination., 2022, 1, 345-358.		5
224	Self-Assembled Matrigel-Free iPSC-Derived Liver Organoids Demonstrate Wide-Ranging Highly Differentiated Liver Functions. Stem Cells, 2023, 41, 126-139.	1.4	6
225	Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells, 2023, 12, 529.	1.8	2
226	Bio-Artificial Liver Support System: A Prospective Future Therapy. Livers, 2023, 3, 65-75.	0.8	3
227	Robust protein-based engineering of hepatocyte-like cells from human mesenchymal stem cells. Hepatology Communications, 2023, 7, e0051-e0051.	2.0	1
228	Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair. Stem Cells Translational Medicine, 0, , .	1.6	1
229	Adipose-derived stem cells show hepatic differentiation potential and therapeutic effect in rats with acute liver failure. Acta Biochimica Et Biophysica Sinica, 2023, 55, 601-612.	0.9	2