Anomalous Band Gap Behavior in Mixed Sn and Pb Perc Absorption Spectrum in Solar Cells

Journal of the American Chemical Society 136, 8094-8099 DOI: 10.1021/ja5033259

Citation Report

#	Article <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
3	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>G</mml:mi><mml:mi>Wband gap of the hybrid organic-inorganic perovskite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml: Effect of action activity to complete the period of the period of</mml: </mml:msub></mml:mrow></mml:math </mml:mi></mml:mrow>	1.1	126
5	Effect of spin-orbit interaction, semicore electrons, an. Physical Review B, 2014, 90, . Crystal structures of isotypic poly[bis(benzimidazolium) [tetra-μ-iodido-stannate(II)]] and poly[bis(5,6-difluorobenzimidazolium) [tetra-μ-iodido-stannate(II)]]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 178-182.	0.2	9
6	Tuning the near-gap electronic structure of tin-halide and lead-halide perovskites via changes in atomic layering. Physical Review B, 2014, 90, .	1.1	39
7	Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society, 2014, 136, 16411-16419.	6.6	383
8	Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?. APL Materials, 2014, 2, .	2.2	264
9	Sn-doped TiO ₂ nanorod arrays and application in perovskite solar cells. RSC Advances, 2014, 4, 64001-64005.	1.7	90
10	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	5.2	147
11	Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4175-4186.	2.1	227
12	Air-Stable Molecular Semiconducting lodosalts for Solar Cell Applications: Cs ₂ SnI ₆ as a Hole Conductor. Journal of the American Chemical Society, 2014, 136, 15379-15385.	6.6	560
13	Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH ₂ CHî€NH ₂ Pbl ₃ . Journal of Materials Chemistry A, 2014, 2, 17115-17121.	5.2	174
14	Continuing to soar. Nature Materials, 2014, 13, 845-846.	13.3	200
15	Binaryâ€Metal Perovskites Toward Highâ€Performance Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 6454-6460.	11.1	295
16	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale, 2014, 6, 12287-12297.	2.8	120
17	Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2014, 2, 19598-19603.	5.2	186
18	Twisted by DNA. Nature Materials, 2014, 13, 846-848.	13.3	8
20	Photocurrent Enhancement of Formamidinium Lead Trihalide Mesoscopic Perovskite Solar Cells with Large Size TiO2 Nanoparticles. Chemistry Letters, 2015, 44, 1619-1621.	0.7	8
21	Alternative, Lead-free, Hybrid Organic–Inorganic Perovskites for Solar Applications: A DFT Analysis. Chemistry Letters, 2015, 44, 826-828.	0.7	65
22	Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 2015, 8, 3012-3028.	3.6	109

#	Article	IF	CITATIONS
23	Syntheses, Crystal Structures, and Photocatalytic Properties of Polymeric Iodoargentates [TM(2,2â€bipy) ₃]Ag ₃ I ₅ (TM = Mn, Fe, Co, Ni, Zn). European Journal of Inorganic Chemistry, 2015, 2015, 4412-4419.	1.0	30
24	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
25	Tin―and Leadâ€Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. Advanced Energy Materials, 2015, 5, 1501119.	10.2	197
27	A panchromatic hybrid crystal of iodoplumbate nanowires and J-aggregated naphthalene diimides with long-lived charge-separated states. Dalton Transactions, 2015, 44, 5957-5960.	1.6	76
28	A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Physical Chemistry Chemical Physics, 2015, 17, 17679-17687.	1.3	43
29	A lead-halide perovskite molecular ferroelectric semiconductor. Nature Communications, 2015, 6, 7338.	5.8	538
30	Tunable Optical Properties and Charge Separation in CH ₃ NH ₃ Sn _{<i>x</i>} Pb _{1–<i>x</i>} I ₃ /TiO _{ Planar Perovskites Cells. Journal of the American Chemical Society, 2015, 137, 8227-8236.}	2 6/sub>-E	gaaqq
31	2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. Journal of the American Chemical Society, 2015, 137, 7843-7850.	6.6	1,818
32	An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells. Nano Energy, 2015, 15, 670-678.	8.2	79
33	Enhanced Performance of Perovskite CH ₃ NH ₃ PbI ₃ Solar Cell by Using CH ₃ NH ₃ I as Additive in Sequential Deposition. ACS Applied Materials & Interfaces, 2015, 7, 12937-12942.	4.0	80
34	Electronic and optical properties of mixed Sn–Pb organohalide perovskites: a first principles investigation. Journal of Materials Chemistry A, 2015, 3, 9208-9215.	5.2	170
35	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
36	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
37	Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals. ACS Nano, 2015, 9, 2948-2959.	7.3	252
38	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 898-907.	2.1	266
39	Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.	5.8	784
40	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
41	Coâ€Adsorbents: A Key Component in Efficient and Robust Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 588-599.	3.6	52

#	ARTICLE	IF	CITATIONS
42	New insights into organic–inorganic hybrid perovskite CH ₃ NH ₃ Pbl ₃ nanoparticles. An experimental and theoretical study of doping in Pb ²⁺ sites with Sn ²⁺ , Sr ²⁺ , Cd ²⁺ and Ca ²⁺ . Nanoscale, 2015, 7, 6216-6229.	2.8	216
43	Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 2015, 44, 10582-10593.	1.6	154
44	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
45	Uncovering the Veil of the Degradation in Perovskite CH ₃ NH ₃ PbI ₃ upon Humidity Exposure: A First-Principles Study. Journal of Physical Chemistry Letters, 2015, 6, 3289-3295.	2.1	171
46	Solvent-assisted growth of organic–inorganic hybrid perovskites with enhanced photovoltaic performances. Solar Energy Materials and Solar Cells, 2015, 143, 360-368.	3.0	14
47	New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure. Journal of Solid State Chemistry, 2015, 230, 143-148.	1.4	25
48	Formamidinium tin-based perovskite with low E _g for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 14996-15000.	5.2	449
49	Transparent conducting oxide free backside illuminated perovskite solar cells. Applied Physics Letters, 2015, 107, .	1.5	11
50	TlHgInS ₃ : An Indirect-Band-Gap Semiconductor with X-ray Photoconductivity Response. Chemistry of Materials, 2015, 27, 5417-5424.	3.2	17
51	Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. Journal of Physical Chemistry Letters, 2015, 6, 3082-3090.	2.1	257
52	Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A, 2015, 3, 18809-18828.	5.2	232
53	lodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15996-16004.	5.2	134
54	First principles study on the electronic and optical properties of B-site ordered double perovskite Sr2MMoO6 (M=Mg, Ca, and Zn). Solid State Communications, 2015, 213-214, 19-23.	0.9	26
55	Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules. IEEE Journal of Photovoltaics, 2015, 5, 1087-1092.	1.5	109
56	Recent Progress on Holeâ€Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500213.	10.2	418
57	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	18.7	725
58	Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9308-9316.	5.2	85
59	Recent Progress of Innovative Perovskite Hybrid Solar Cells. Israel Journal of Chemistry, 2015, 55, 966-977.	1.0	34

#	Article	IF	CITATIONS
60	Degradation by Exposure of Coevaporated CH ₃ NH ₃ PbI ₃ Thin Films. Journal of Physical Chemistry C, 2015, 119, 23996-24002.	1.5	112
61	A Liquid Junction Photoelectrochemical Solar Cell Based on p-Type MeNH ₃ Pbl ₃ Perovskite with 1.05 V Open-Circuit Photovoltage. Journal of the American Chemical Society, 2015, 137, 14758-14764.	6.6	52
62	Two Types of 2D Layered Iodoargentates Based on Trimeric [Ag ₃ 1 ₇] Secondary Building Units and Hexameric [Ag ₆ 1 ₁₂] Ternary Building Units: Syntheses, Crystal Structures, and Efficient Visible Light Responding Photocatalytic Properties. Inorganic Chemistry, 2015, 54, 10593-10603.	1.9	94
63	Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24791-24798.	4.0	168
64	Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2015, 6, 4463-4469.	2.1	103
65	Fabrication and Properties of High-Efficiency Perovskite/PCBM Organic Solar Cells. Nanoscale Research Letters, 2015, 10, 1020.	3.1	61
66	Organic Solar Cells. , 2015, , 75-100.		0
67	<i>GW</i> Band Structures and Carrier Effective Masses of CH ₃ NH ₃ Pbl ₃ and Hypothetical Perovskites of the Type APbl ₃ : A = NH ₄ , PH ₄ , ASH ₄ , and SbH ₄ . Journal of Physical Chemistry C. 2015, 119, 25209-25219.	1.5	144
68	Low-Dimensional Hybrid Cuprous Halides Directed by Transition Metal Complex: Syntheses, Crystal Structures, and Photocatalytic Properties. Crystal Growth and Design, 2015, 15, 5416-5426.	1.4	65
69	Investigation on optoelectronic characteristics of porous silicon/TiO ₂ /CH ₃ NH ₃ PbI ₃ /graphene heterostructure light-emitting diodes prepared by spin-coating. Proceedings of SPIE, 2015, , .	0.8	1
70	Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH ₃ NH ₃ Sn _{1–<i>x</i>} Pb _{<i>x</i>} I ₃ . Journal of Physical Chemistry Letters, 2015, 6, 3503-3509.	2.1	202
71	Technical and economic assessment of perovskite solar cells for large scale manufacturing. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	41
72	Revealing the role of Pb ²⁺ in the stability of organic–inorganic hybrid perovskite CH ₃ NH ₃ Pb _{1â^x} Cd _x I ₃ : an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 23886-23896.	1.3	38
73	Solvent-Mediated Crystallization of CH ₃ NH ₃ SnI ₃ Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 11445-11452.	6.6	598
74	The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Accounts of Chemical Research, 2015, 48, 2791-2802.	7.6	611
75	CH ₃ NH ₃ Sn _{<i>x</i>} Pb _{1–<i>x</i>} Br ₃ Hybrid Perovskite Solid Solution: Synthesis, Structure, and Optical Properties. Inorganic Chemistry, 2015, 54, 8893-8895.	1.9	55
76	Strain Tuning of Tin–Halide and Lead–Halide Perovskites: A First-Principles Atomic and Electronic Structure Study. Journal of Physical Chemistry C, 2015, 119, 22832-22837.	1.5	129
77	Organic Electronics Materials and Devices. , 2015, , .		35

#	Article	IF	CITATIONS
78	Material Innovation in Advancing Organometal Halide Perovskite Functionality. Journal of Physical Chemistry Letters, 2015, 6, 4862-4872.	2.1	37
79	Hybrid Inorganic–Organic Materials with an Optoelectronically Active Aromatic Cation: (C ₇ H ₇) ₂ SnI ₆ and C ₇ H ₇ PbI ₃ . Inorganic Chemistry, 2015, 54, 370-378.	1.9	86
80	Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells. Nano Letters, 2015, 15, 662-668.	4.5	145
81	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
82	Composition-Dependent Light-Induced Dipole Moment Change in Organometal Halide Perovskites. Journal of Physical Chemistry C, 2015, 119, 1253-1259.	1.5	53
83	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
84	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	5.2	1,114
85	Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap Perovskites. Advanced Energy Materials, 2015, 5, 1400960.	10.2	117
86	Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties. , 2016, , .		0
87	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
88	Understanding Interface Engineering for Highâ€₽erformance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	10.2	180
89	High Efficiency Pb–In Binary Metal Perovskite Solar Cells. Advanced Materials, 2016, 28, 6695-6703.	11.1	211
90	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ Pbl ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	10.2	196
91	Recent advances in lowâ€ŧoxic leadâ€free metal halide perovskite materials for solar cell application. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 392-398.	0.8	26
92	An easy method to modify PEDOT:PSS/perovskite interfaces for solar cells with efficiency exceeding 15%. RSC Advances, 2016, 6, 65594-65599.	1.7	31
93	Holeâ€Transporting Materials for Perovskite‣ensitized Solar Cells. Energy Technology, 2016, 4, 891-938.	1.8	50
94	Thermodynamic stability of mixed Pb:Sn methylâ€ammonium halide perovskites. Physica Status Solidi (B): Basic Research, 2016, 253, 1907-1915.	0.7	28
95	Optical analysis of CH ₃ NH ₃ Sn _x Pb _{1â^'x} I ₃ absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. Journal of Materials Chemistry A, 2016, 4, 11214-11221.	5.2	101

#	Article	IF	CITATIONS
96	Improving Film Formation and Photovoltage of Highly Efficient Invertedâ€īype Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers. Advanced Energy Materials, 2016, 6, 1502021.	10.2	152
97	Surface Analytical Investigation on Organometal Triiodide Perovskite. Materials Research Society Symposia Proceedings, 2016, 1735, 151.	0.1	0
98	Fabrication and characterization of bismuth ferrite as an electron transport layer in perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 602-605.	0.5	3
99	Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices. APL Materials, 2016, 4, .	2.2	58
100	Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. , 2016, , .		54
101	Electronic and optical properties of mixed perovskites CsSnxPb(1â°x)I3. AIP Advances, 2016, 6, 065213.	0.6	14
102	FA _{0.8} MA _{0.2} Sn _{<i>x</i>} Pb _{1–<i>x</i>} I ₃ Hybrid Perovskite Solid Solution: Toward Environmentally Friendly, Stable, and Near-IR Absorbing Materials. Inorganic Chemistry, 2016, 55, 12752-12757.	1.9	11
103	Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire. Journal of Physics: Conference Series, 2016, 739, 012098.	0.3	0
104	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie, 2016, 128, 12033-12037.	1.6	20
105	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	5.8	88
106	Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium,) Tj ETQq 2016, 240, 55-60.	0 0 0 rgBT 1.4	/Overlock 10 73
107	High Voltage in Hole Conductor Free Organo Metal Halide Perovskite Solar Cells. SpringerBriefs in Applied Sciences and Technology, 2016, , 45-50.	0.2	0
108	Hole Conductor Free Perovskite-based Solar Cells. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	7
109	Organo-Metal Lead Halide Perovskite Properties. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-4.	0.2	0
110	Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews, 2016, 116, 4558-4596.	23.0	2,147
111	Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials, 2016, 28, 2852-2867.	3.2	1,607
112	Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view. Physical Chemistry Chemical Physics, 2016, 18, 14408-14418.	1.3	74
113	Coordination engineering toward high performance organic–inorganic hybrid perovskites. Coordination Chemistry Reviews, 2016, 320-321, 53-65.	9.5	34

#	Article	IF	CITATIONS
114	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
115	First-principles investigation of a novel organic-inorganic strontium halide perovskites and CH ₃ NH ₃ Pb _{1-x} Sr _x I ₃ solid solution. Integrated Ferroelectrics, 2016, 175, 193-201.	0.3	1
116	Holeâ€Transport Materials for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 14522-14545.	7.2	786
117	Device simulation of lead-free CH ₃ NH ₃ Snl ₃ perovskite solar cells with high efficiency. Chinese Physics B, 2016, 25, 108802.	0.7	228
118	Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting Iodide Perovskites and Application in Planar Solar Cells. Chemistry of Materials, 2016, 28, 7781-7792.	3.2	228
119	Determination of bandgaps of photoactive materials in perovskite solar cells at high temperatures by in-situ temperature-dependent resistance measurement. Optoelectronics Letters, 2016, 12, 337-339.	0.4	2
120	Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells. Solar Energy, 2016, 139, 190-198.	2.9	25
121	Addictive-assisted construction of all-inorganic CsSnlBr ₂ mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 2016, 4, 17104-17110.	5.2	250
122	Tolerance Factors Revisited: Geometrically Designing the Ideal Environment for Perovskite Dopants. Journal of Physical Chemistry C, 2016, 120, 23293-23298.	1.5	20
123	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	5.2	143
124	Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Science Bulletin, 2016, 61, 1558-1562.	4.3	25
125	Hybrid Perovskite Nanoparticles for Highâ€Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Advanced Materials Interfaces, 2016, 3, 1600092.	1.9	71
126	Low-Dimensional Tin(II) lodide Perovskite Structures Templated by an Aromatic Heterocyclic Cation. Crystal Growth and Design, 2016, 16, 5230-5237.	1.4	8
127	Novel exciton dissociation behavior in tin-lead organohalide perovskites. Nano Energy, 2016, 27, 638-646.	8.2	28
128	APbI3 (AÂ=ÂCH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction. , 2016, , 223-253.		3
129	50% Snâ€Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%. Advanced Energy Materials, 2016, 6, 1601353.	10.2	154
130	Insight into the effect of ion source for the solution processing of perovskite films. RSC Advances, 2016, 6, 85026-85029.	1.7	9
131	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	11.1	636

#	Article	IF	CITATIONS
132	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
133	Stable Lowâ€Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Advanced Materials, 2016, 28, 8990-8997.	11.1	302
134	Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Letters, 2016, 16, 5866-5874.	4.5	501
135	Exploring a Leadâ€free Semiconducting Hybrid Ferroelectric with a Zeroâ€Dimensional Perovskiteâ€like Structure. Angewandte Chemie - International Edition, 2016, 55, 11854-11858.	7.2	128
136	Transition metal complex directed lead bromides with tunable structures and visible light driven photocatalytic properties. Dalton Transactions, 2016, 45, 19389-19398.	1.6	50
137	Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fillâ€Factor Solar Cells. Advanced Materials, 2016, 28, 9839-9845.	11.1	150
138	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	6.6	362
139	New advances in small molecule hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2016, 27, 1293-1303.	4.8	22
140	Highly Efficient pâ€iâ€n Perovskite Solar Cells Utilizing Novel Lowâ€Temperature Solutionâ€Processed Hole Transport Materials with Linear Ï€â€Conjugated Structure. Small, 2016, 12, 4902-4908.	5.2	53
141	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
142	Photovoltaic Diode Effect Induced by Positive Bias Poling of Organic Layerâ€Mediated Interface in Perovskite Heterostructure αâ€HC(NH ₂) ₂ PbI ₃ /TiO ₂ . Advanced Materials Interfaces, 2016, 3, 1600267.	1.9	9
143	Stable Tin Chloride Perovskite Sensitized Silver Doped Titania Nanosticks Photoanode Solar Cells with Different Hole Transport Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 981-990.	1.9	2
144	Lochtransportmaterialien für Perowskitâ€ s olarzellen. Angewandte Chemie, 2016, 128, 14740-14764.	1.6	72
145	Optimization of Lead-free Organic–inorganic Tin(II) Halide Perovskite Semiconductors by Scanning Electrochemical Microscopy. Electrochimica Acta, 2016, 220, 205-210.	2.6	47
146	Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar		
	Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.	8.8	87
147		8.8 4.5	87 193
147 148	Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters, 2016, 1, 956-962.		

#	Article	IF	CITATIONS
150	Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells. Solar Energy, 2016, 139, 475-483.	2.9	32
151	Facet-dependent photovoltaic efficiency variations in single grains of hybrid halideÂperovskite. Nature Energy, 2016, 1, .	19.8	308
152	Highly Efficient Perovskite Solar Cells with Substantial Reduction of Lead Content. Scientific Reports, 2016, 6, 35705.	1.6	86
153	Exploring the Effects of the Pb ²⁺ Substitution in MAPbI ₃ on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4353-4357.	2.1	79
154	Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1, .	23.3	1,173
155	Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354, 861-865.	6.0	1,107
156	Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry A, 2016, 4, 17939-17945.	5.2	151
157	Role of Tin Chloride in Tin-Rich Mixed-Halide Perovskites Applied as Mesoscopic Solar Cells with a Carbon Counter Electrode. ACS Energy Letters, 2016, 1, 1086-1093.	8.8	82
158	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
159	Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 2016, 28, 923-929.	11.1	257
160	Bandgap Engineering of Leadâ€Halide Perovskiteâ€Type Ferroelectrics. Advanced Materials, 2016, 28, 2579-2586.	11.1	298
161	Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO ₂ Films. Advanced Materials, 2016, 28, 2964-2970.	11.1	144
162	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	23.0	1,343
163	The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Sciences, 2016, 59, 989-1006.	2.0	33
164	Hydrophobic coating over a CH ₃ NH ₃ PbI ₃ absorbing layer towards air stable perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 6848-6854.	2.7	47
165	Syntheses, structures, surface photovoltage and luminescent properties of a novel lead(II) coordination polymer containing anthracene chromophore. Inorganic Chemistry Communication, 2016, 70, 99-102.	1.8	3
166	Design and Prominent Dielectric Properties of a Layered Phase-Transition Crystal: (Cyclohexylmethylammonium) ₂ CdCl ₄ . Crystal Growth and Design, 2016, 16, 3912-3916.	1.4	24
167	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	8.2	35

# 168	ARTICLE Surface Doping of Sn in Orthorhombic CH3NH3PbI3 for Potential Perovskite Solar Cells: First Principles Study. Surface and Coatings Technology, 2016, 306, 285-289.	IF 2.2	CITATIONS
169	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
170	Halide Perovskites: Poor Man's Highâ€Performance Semiconductors. Advanced Materials, 2016, 28, 5778-5793.	11.1	339
171	Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates, 2016, 42, 625-639.	1.3	11
172	Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 802-812.	3.2	128
173	N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability. Journal of Materials Chemistry A, 2016, 4, 2419-2426.	5.2	100
174	Syntheses, crystal structures and photocatalytic properties of four hybrid iodoargentates with zero- and two-dimensional structures. CrystEngComm, 2016, 18, 427-436.	1.3	73
175	Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 166-173.	1.5	208
176	Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH ₃ NH ₃ PbI ₃ Perovskite under Ambient Conditions. Chemistry of Materials, 2016, 28, 303-311.	3.2	173
177	Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb ²⁺ with Ge ²⁺ . Nanoscale, 2016, 8, 1503-1512.	2.8	247
178	Low-temperature solution processable n–i–p perovskite solar cell. Japanese Journal of Applied Physics, 2016, 55, 04EA01.	0.8	3
179	Deciphering Halogen Competition in Organometallic Halide Perovskite Growth. Journal of the American Chemical Society, 2016, 138, 5028-5035.	6.6	92
180	Fabrication of lead halide perovskite solar cells by annealing spin-coated PbI2thin films in CH3NH3I vapor. Japanese Journal of Applied Physics, 2016, 55, 02BF11.	0.8	4
181	Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 2016, 4, 4353-4364.	5.2	56
182	Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale, 2016, 8, 7621-7630.	2.8	65
183	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5569-5577.	5.2	92
184	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	1.5	72
185	Thermodynamic Origin of Photoinstability in the CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Hybrid Halide Perovskite Alloy. Journal of Physical Chemistry Letters, 2016, 7, 1083-1087.	2.1	298

# 186	ARTICLE High-efficiency bulk heterojunction memory devices fabricated using organometallic halide perovskite:poly(N-vinylcarbazole) blend active layers. Dalton Transactions, 2016, 45, 484-488.	IF 1.6	Citations 36
187	Allâ€Vacuumâ€Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%. Advanced Materials, 2017, 29, 1605290.	11.1	321
188	Perovskite nanocrystals: synthesis, properties and applications. Science Bulletin, 2017, 62, 369-380.	4.3	96
189	Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. Journal of Physical Chemistry C, 2017, 121, 1562-1568.	1.5	166
190	High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH ₃ -(CH ₂) ₄ -NH ₃]CuCl ₄ . Journal of Physical Chemistry Letters, 2017, 8, 500-506.	2.1	65
191	Leadâ€Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. Advanced Materials, 2017, 29, 1605005.	11.1	568
192	Interfacial electronic structures revealed at the rubrene/CH ₃ NH ₃ PbI ₃ interface. Physical Chemistry Chemical Physics, 2017, 19, 6546-6553.	1.3	50
193	Controllable Crystallization of CH ₃ NH ₃ Sn _{0.25} Pb _{0.75} I ₃ Perovskites for Hysteresisâ€Free Solar Cells with Efficiency Reaching 15.2%. Advanced Functional Materials, 2017, 27, 1605469.	7.8	84
194	CH ₃ NH ₃ PbI ₃ perovskite:poly(N-vinylcarbazole) blends for broadband optical limiting. RSC Advances, 2017, 7, 1809-1813.	1.7	13
195	High efficiency planar Sn–Pb binary perovskite solar cells: controlled growth of large grains via a one-step solution fabrication process. Journal of Materials Chemistry C, 2017, 5, 2360-2367.	2.7	60
196	Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry A, 2017, 5, 3578-3588.	5.2	62
197	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
198	Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34, 392-398.	8.2	162
199	Simulation design of P–l–N-type all-perovskite solar cells with high efficiency. Chinese Physics B, 2017, 26, 028803.	0.7	38
200	The impact of Pd on the light harvesting in hybrid organic-inorganic perovskite for solar cells. Nano Energy, 2017, 34, 141-154.	8.2	28
201	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
202	SrCl ₂ Derived Perovskite Facilitating a High Efficiency of 16% in Hole onductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606608.	11.1	135
203	Cesium lead iodide solar cells controlled by annealing temperature. Physical Chemistry Chemical Physics, 2017, 19, 6257-6263.	1.3	82

#	Article	IF	CITATIONS
204	Highly Emissive Divalent-Ion-Doped Colloidal CsPb _{1–<i>x</i>} M _{<i>x</i>} Br ₃ Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society, 2017, 139, 4087-4097.	6.6	590
205	Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Advanced Energy Materials, 2017, 7, 1602400.	10.2	130
206	Physical vapor deposition of methylammonium tin iodide thin films. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600796.	0.8	7
207	Low-toxic metal halide perovskites: opportunities and future challenges. Journal of Materials Chemistry A, 2017, 5, 11436-11449.	5.2	123
208	The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Applied Catalysis B: Environmental, 2017, 207, 335-346.	10.8	165
209	Multichannel Interdiffusion Driven FASnI ₃ Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Leadâ€Free Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606964.	11.1	137
210	Development of organic-inorganic tin halide perovskites: A review. Solar Energy, 2017, 149, 54-59.	2.9	67
211	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
212	Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA _{1â°'x} MA _x SnBr ₃ mixed system. Journal of Materials Chemistry A, 2017, 5, 9391-9395.	5.2	65
213	Hybrid perovskite solar cells: <i>In situ</i> investigation of solution-processed PbI ₂ reveals metastable precursors and a pathway to producing porous thin films. Journal of Materials Research, 2017, 32, 1899-1907.	1.2	26
214	Cu–In Halide Perovskite Solar Absorbers. Journal of the American Chemical Society, 2017, 139, 6718-6725.	6.6	316
215	Annealing Induced Re-crystallization in CH3NH3PbI3â^'xClx for High Performance Perovskite Solar Cells. Scientific Reports, 2017, 7, 46724.	1.6	53
216	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	1.5	24
217	Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials, 2017, 9, e373-e373.	3.8	145
218	Halide Perovskites for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 1999-2011.	2.1	47
219	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	10.2	195
220	Current Advancements in Material Research and Techniques Focusing on Lead-free Perovskite Solar Cells. Chemistry Letters, 2017, 46, 1276-1284.	0.7	35
221	Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700216.	10.2	128

#	Article	IF	CITATIONS
222	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} 1 ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	7.8	103
223	Realizing a new class of hybrid organic–inorganic multifunctional perovskite. Journal of Materials Chemistry A, 2017, 5, 10640-10650.	5.2	26
224	B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Letters, 2017, 2, 1190-1196.	8.8	99
225	Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36, 213-222.	8.2	100
226	Degradation in perovskite solar cells stored under different environmental conditions. Journal Physics D: Applied Physics, 2017, 50, 325105.	1.3	19
227	Rotational Energy Barriers and Relaxation Times of the Organic Cation in Cubic Methylammonium Lead/Tin Halide Perovskites from First Principles. Journal of Physical Chemistry C, 2017, 121, 14051-14059.	1.5	21
228	Comparison studies of hybrid lead halide [MPb ₂ X ₇] ^{2â^'} (M = Cu, Ag;) Tj E Transactions, 2017, 46, 9235-9244.	ETQq0 0 0 1.6	rgBT /Overlo 35
229	[C ₅ H ₁₂ N]CdCl ₃ : an ABX ₃ perovskite-type semiconducting switchable dielectric phase transition material. Inorganic Chemistry Frontiers, 2017, 4, 1485-1492.	3.0	44
230	Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 2017, 5, 15124-15129.	5.2	213
231	Molecular Selfâ€Assembly Fabrication and Carrier Dynamics of Stable and Efficient CH ₃ NH ₃ Pb _(1â^'<i>x</i>) Sn _{<i>x</i>} I ₃ Perovskite Solar Cells. ChemSusChem, 2017, 10, 3839-3845.	3.6	28
232	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
233	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
234	Improved electronic transport properties of tin-halide perovskites. Solar Energy Materials and Solar Cells, 2017, 170, 8-12.	3.0	14
235	Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.	8.3	204
236	Enhanced Crystalline Phase Purity of CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl <i>_x</i> Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23141-23151.	4.0	41
237	Low-temperature processed compact layer for perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2017, 235, 640-645.	2.6	14
238	A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11518-11549.	5.2	463
239	Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Letters, 2017, 17, 3231-3237.	4.5	149

#	Article	IF	CITATIONS
240	Fast Fabrication of a Stable Perovskite Solar Cell with an Ultrathin Effective Novel Inorganic Hole Transport Layer. Langmuir, 2017, 33, 3624-3634.	1.6	22
241	FAPb _{1â^'x} Sn _x I ₃ mixed metal halide perovskites with improved light harvesting and stability for efficient planar heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 9097-9106.	5.2	56
242	Addressing Toxicity of Lead: Progress and Applications of Lowâ€Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
243	Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption. Journal of the American Chemical Society, 2017, 139, 5015-5018.	6.6	288
244	Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference. ACS Energy Letters, 2017, 2, 857-861.	8.8	25
245	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	2.7	90
246	Solution processing of air-stable molecular semiconducting iodosalts, Cs ₂ SnI _{6â``x} Br _x , for potential solar cell applications. Sustainable Energy and Fuels, 2017, 1, 710-724.	2.5	174
247	Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry A, 2017, 5, 11450-11461.	5.2	153
248	Synthesis, Crystal Structures, Optical Properties, and Phase Transitions of the Layered Guanidinium-Based Hybrid Perovskites [C(NH2)3]2MI4;M= Sn, Pb. European Journal of Inorganic Chemistry, 2017, 2017, 1120-1126.	1.0	59
249	Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics. Chemical Physics, 2017, 485-486, 22-28.	0.9	12
250	Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy and Environmental Science, 2017, 10, 236-246.	15.6	230
251	Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells. RSC Advances, 2017, 7, 10118-10123.	1.7	19
252	Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties. Journal of Materials Chemistry A, 2017, 5, 21919-21925.	5.2	35
253	The Potential of Multijunction Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2506-2513.	8.8	272
254	Colloidal Synthesis of Air-Stable Alloyed CsSn _{1–<i>x</i>} Pb _{<i>x</i>} I ₃ Perovskite Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2017, 139, 16708-16719.	6.6	314
255	Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics. ACS Energy Letters, 2017, 2, 2531-2539.	8.8	116
256	Ba2+ Doped CH3NH3PbI3 to Tune the Energy State and Improve the Performance of Perovskite Solar Cells. Electrochimica Acta, 2017, 254, 165-171.	2.6	44
257	Perovskite Solar Cells Go Lead Free. Joule, 2017, 1, 659-664.	11.7	305

#	Article	IF	CITATIONS
258	Ultrasensitive flexible broadband photodetectors achieving pA scale dark current. Npj Flexible Electronics, 2017, 1, .	5.1	41
259	ABX3 Perovskites for Tandem Solar Cells. Joule, 2017, 1, 769-793.	11.7	176
260	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	2.7	138
261	Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. ACS Energy Letters, 2017, 2, 2159-2165.	8.8	351
262	Ligand-Free, Quantum-Confined Cs ₂ Snl ₆ Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 7901-7907.	3.2	98
263	New insights into the electronic structures and optical properties in the orthorhombic perovskite MAPbl ₃ : a mixture of Pb and Ge/Sn. New Journal of Chemistry, 2017, 41, 11413-11421.	1.4	27
264	Novel Three-Dimensional Semiconducting Materials Based on Hybrid d ¹⁰ Transition Metal Halogenides as Visible Light-Driven Photocatalysts. Inorganic Chemistry, 2017, 56, 10962-10970.	1.9	62
265	Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Materials, 2017, 9, e431-e431.	3.8	44
266	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	7.8	148
267	Stability Issues of Inorganic/Organic Hybrid Lead Perovskite Solar Cells. Series on Chemistry, Energy and the Environment, 2017, , 147-178.	0.3	1
268	Materials chemistry approaches to the control of the optical features of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20561-20578.	5.2	35
269	Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Scientific Reports, 2017, 7, 7843.	1.6	61
270	Minute-Scale Degradation and Shift of Valence-Band Maxima of (CH ₃ NH ₃)SnI ₃ and HC(NH ₂) ₂ SnI ₃ Perovskites upon Air Exposure. Journal of Physical Chemistry C, 2017, 121, 19650-19656.	1.5	44
271	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
272	Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. Nano Letters, 2017, 17, 5140-5147.	4.5	78
273	High Quality Hybrid Perovskite Semiconductor Thin Films with Remarkably Enhanced Luminescence and Defect Suppression via Quaternary Alkyl Ammonium Salt Based Treatment. Advanced Materials Interfaces, 2017, 4, 1700562.	1.9	32
274	In situ recycle of Pbl ₂ as a step towards sustainable perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 1022-1033.	4.4	42
275	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 12658-12662.	7.2	69

#	Article	IF	CITATIONS
276	Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Idealâ€Bandgap Perovskite Solar Cells. Angewandte Chemie, 2017, 129, 12832-12836.	1.6	3
277	Tuning Charge Carrier Types, Superior Mobility and Absorption in Lead-free Perovskite CH3NH3Gel3: Theoretical Study. Electrochimica Acta, 2017, 247, 891-898.	2.6	56
278	Monovalent Cation Doping of CH ₃ NH ₃ PbI ₃ for Efficient Perovskite Solar Cells. Journal of Visualized Experiments, 2017, , .	0.2	20
279	Lowâ€Temperature Softâ€Cover Deposition of Uniform Largeâ€Scale Perovskite Films for Highâ€Performance Solar Cells. Advanced Materials, 2017, 29, 1701440.	11.1	74
280	Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Advanced Materials, 2017, 29, 1702140.	11.1	278
281	Mixedâ€Organicâ€Cation Tin Iodide for Leadâ€Free Perovskite Solar Cells with an Efficiency of 8.12%. Advanced Science, 2017, 4, 1700204.	5.6	404
282	New insights into a first principle calculation and experimental study of Sn-Pb-Ge ternary-metal perovskites for potential photovoltaic application. Materials Science in Semiconductor Processing, 2017, 68, 159-164.	1.9	5
283	Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide. Journal of Materials Chemistry A, 2017, 5, 18044-18052.	5.2	88
284	Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy and Environmental Science, 2017, 10, 1983-1993.	15.6	192
285	Metal halide perovskite tandem and multiple-junction photovoltaics. Nature Reviews Chemistry, 2017, 1,	13.8	344
286	The First Moleculeâ€Based Blueâ€Light Opticalâ€Dielectric Switching Material in Both Hybrid Bulk Crystal and Flexible Thin Film Forms. Advanced Optical Materials, 2017, 5, 1700743.	3.6	14
287	Theoretical Study on Rotational Controllability of Organic Cations in Organic–Inorganic Hybrid Perovskites: Hydrogen Bonds and Halogen Substitution. Journal of Physical Chemistry C, 2017, 121, 26188-26195.	1.5	19
288	Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1704418.	11.1	133
289	Multifunctional Material with Efficient Optoelectronic Integrated Molecular Switches Based on a Flexible Thin Film/Crystal. Inorganic Chemistry, 2017, 56, 14477-14485.	1.9	23
290	High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale, 2017, 9, 18535-18545.	2.8	57
291	Perovskite solar cells with CuI inorganic hole conductor. Japanese Journal of Applied Physics, 2017, 56, 08MC04.	0.8	18
292	Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. Journal of the American Chemical Society, 2017, 139, 11117-11124.	6.6	570
293	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. ACS Applied Materials & Interfaces, 2017, 9, 23624-23634.	4.0	8

#	Article	IF	CITATIONS
294	Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine. ACS Applied Materials & Interfaces, 2017, 9, 22432-22439.	4.0	47
295	Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. Journal of Alloys and Compounds, 2017, 695, 555-560.	2.8	39
296	Effects of polysilaneâ€doped spiroâ€OMeTAD hole transport layers on photovoltaic properties. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600591.	0.8	13
297	Synthesis, structure, optical, and thermal properties of diallylammonium hexabromostannate(IV) hybrid. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 58-63.	0.8	5
298	High Openâ€Circuit Voltages in Tinâ€Rich Lowâ€Bandgap Perovskiteâ€Based Planar Heterojunction Photovoltaics. Advanced Materials, 2017, 29, 1604744.	11.1	212
299	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	2.2	357
300	Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrxI1â^xx)3 Crystals Synthesized via a Solvothermal Method. Scientific Reports, 2017, 7, 17695.	1.6	18
301	Research following Pb Perovskite Solar Cells. Electrochemistry, 2017, 85, 222-225.	0.6	13
302	Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials, 2017, 10, 837.	1.3	30
303	Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap. , 0, , .		1
304	Integration of Electrochemical Capacitors on Silicon Photovoltaic Modules for Rapid-Response Power Buffering. , 2017, , .		6
305	Recent Research Progress on Lead-free or Less-lead Perovskite Solar Cells. International Journal of Electrochemical Science, 2017, , 4915-4927.	0.5	2
306	Opto-electronic analysis of promising photovoltaic Cs <inf>2</inf> PdCl <inf>4</inf> Br <inf>2</inf> : An upcoming perovskite material. , 2017, , .		0
307	Third-Generation-Sensitized Solar Cells. , 0, , .		9
308	Photovoltaic Systems. , 2017, , 149-160.		0
310	The Deposition of (CH3NH3)2Pb(SCN)2I2 thin films and their application in perovskites solar cells. Polyhedron, 2018, 145, 16-21.	1.0	13
311	Room temperature preparation of δ-phase CsSn1â^'xPbxI3 films for hole–transport in solid-state dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 7811-7819.	1.1	0
312	Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone Radical with Improved Trap Passivation Capabilities. Advanced Functional Materials, 2018, 28, 1707444.	7.8	94

#	Article	IF	CITATIONS
313	Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5507-5537.	5.2	104
314	Two new 3-D cadmium bromoplumbates: the only example of heterometallic bromoplumbate based on crown [Cd(Pb ₄ O ₄)Br ₂] clusters. Dalton Transactions, 2018, 47, 4833-4839.	1.6	9
315	Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties. Journal of Physical Chemistry C, 2018, 122, 5940-5947.	1.5	104
316	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
317	Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy and Environmental Science, 2018, 11, 1688-1709.	15.6	266
318	Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC Advances, 2018, 8, 14025-14030.	1.7	37
319	Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic–Inorganic Hybrid Perovskite Photovoltaic Absorber. ACS Applied Materials & Interfaces, 2018, 10, 15920-15925.	4.0	30
320	A Biopolymer Heparin Sodium Interlayer Anchoring TiO ₂ and MAPbI ₃ Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706924.	11.1	199
321	Perovskite solar cells: must lead be replaced – and can it be done?. Science and Technology of Advanced Materials, 2018, 19, 425-442.	2.8	151
322	A review of perovskite solar cells with a focus on wire-shaped devices. Renewable Energy Focus, 2018, 25, 17-23.	2.2	9
323	High switchable dielectric phase transition originating from distortion in inorganic–organic hybrid materials (H ₂ dabco-C ₂ H ₅) [M ^{II} Cl ₄] (M =) Tj ET	Ծ գ &Օ Օ rք	gB 1 1/Overlocl
324	How SnF ₂ Impacts the Material Properties of Lead-Free Tin Perovskites. Journal of Physical Chemistry C, 2018, 122, 13926-13936.	1.5	179
325	Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy, 2018, 48, 543-550.	8.2	19
326	Direct observation of cation-exchange in liquid-to-solid phase transformation in FA _{1â^{~^}x} MA _x PbI ₃ based perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9081-9088.	5.2	35
327	Near ultra-violet to mid-visible band gap tuning of mixed cation Rb _x Cs _{1â^²x} PbX ₃ (X = Cl or Br) perovskite nanoparticles. Nanoscale, 2018, 10, 6060-6068.	2.8	82
328	Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X = Cl, Br): A probe from density functional theory (DFT). Solar Energy, 2018, 162, 336-343.	2.9	123
329	Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. Advanced Energy Materials, 2018, 8, 1703178.	10.2	98
330	Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 620-627.	2.1	88

#	Article	IF	CITATIONS
331	Lowâ€Bandgap Methylammoniumâ€Rubidium Cation Snâ€Rich Perovskites for Efficient Ultraviolet–Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2018, 28, 1706068.	7.8	70
332	Superfast Roomâ€Temperature Activation of SnO ₂ Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics. Advanced Materials, 2018, 30, 1704825.	11.1	73
333	Electrodeposition of organic–inorganic tri-halide perovskites solar cell. Journal of Power Sources, 2018, 378, 717-731.	4.0	36
334	Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Scientific Reports, 2018, 8, 2511.	1.6	13
335	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1–<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	3.2	93
336	Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. Chemistry - A European Journal, 2018, 24, 8708-8716.	1.7	26
337	Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. Advanced Materials, 2018, 30, 1705298.	11.1	44
338	Largeâ€Grain Tinâ€Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique. Advanced Materials, 2018, 30, 1705998.	11.1	116
339	Giant Twoâ€Photon Absorption in Mixed Halide Perovskite CH ₃ NH ₃ Pb _{0.75} Sn _{0.25} I ₃ Thin Films and Application to Photodetection at Optical Communication Wavelengths. Advanced Optical Materials, 2018, 6, 1700819.	3.6	44
340	Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	44
341	First-principles calculation study of electronic structures and magnetic properties of Mn-doped perovskite crystals for solar cell applications. Japanese Journal of Applied Physics, 2018, 57, 02CE04.	0.8	10
342	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	3.6	114
343	Impact of Bi ³⁺ Heterovalent Doping in Organic–Inorganic Metal Halide Perovskite Crystals. Journal of the American Chemical Society, 2018, 140, 574-577.	6.6	181
344	Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%. Nanoscale, 2018, 10, 3245-3253.	2.8	33
345	Preparation and in-system study of SnCl ₂ precursor layers: towards vacuum-based synthesis of Pb-free perovskites. RSC Advances, 2018, 8, 67-73.	1.7	26
346	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	7.1	90
347	Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9220-9227.	5.2	55
348	Origin of Pronounced Nonlinear Band Gap Behavior in Lead–Tin Hybrid Perovskite Alloys. Chemistry of Materials, 2018, 30, 3920-3928.	3.2	166

#	Article	IF	CITATIONS
349	Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure. Nano Letters, 2018, 18, 3600-3607.	4.5	114
350	Optical and Electrical Properties of Perovskite Variant (CH ₃ NH ₃) ₂ SnI ₆ . Journal of Physical Chemistry C, 2018, 122, 10749-10754.	1.5	45
351	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	11.1	106
352	Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	31
353	Atomic and Electronic Structure of Two-Dimensional Inorganic Halide Perovskites A _{<i>n</i>+1} M <i>_n</i> X _{3<i>n</i>+1} (<i>n</i> = 1–6, A = Cs, M = Pb) T	ijĔŢĢqŨŎ	0 rgBT /Over
354	122, 7464-7473. Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase. ACS Applied Energy Materials, 2018, 1, 1534-1539.	2.5	49
355	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	2.8	146
356	First-Principles Modeling of Bismuth Doping in the MAPbl ₃ Perovskite. Journal of Physical Chemistry C, 2018, 122, 14107-14112.	1.5	64
357	Vertical Organic–Inorganic Hybrid Perovskite Schottky Junction Transistors. Advanced Electronic Materials, 2018, 4, 1800039.	2.6	15
358	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide. RSC Advances, 2018, 8, 11455-11461.	1.7	4
359	Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals. Chemical Communications, 2018, 54, 3640-3643.	2.2	58
360	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund LeistungsfA¤igkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	1.6	37
361	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	7.2	413
362	Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 2018, 5, 559-576.	4.6	49
363	New class of lead free perovskite material for low-cost solar cell application. Materials Research Bulletin, 2018, 97, 572-577.	2.7	55
364	The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Applied Surface Science, 2018, 429, 9-15.	3.1	45
365	Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180, 350-357.	3.0	60
366	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 2471-2489.	8.2	109

#	Article	IF	Citations
367	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	7.1	38
368	Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs ₂ BB′X ₆ : B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. Journal of Physical Chemistry C, 2018, 122, 158-170.	1.5	114
369	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	5.6	329
370	Leadâ€Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?. Advanced Science, 2018, 5, 1700331.	5.6	233
371	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	2.5	209
372	Opto-electronic Analysis of Cs <inf>2</inf> PdCl <inf>2</inf> Br <inf>4</inf> Perovskites Compounds for Photovoltaic Applications. , 2018, , .		1
373	Perovskite-Structured Photovoltaic Materials. , 2018, , .		3
374	Dynamic Disorder, Band Gap Widening, and Persistent Near-IR Photoluminescence up to At Least 523 K in ASnl ₃ Perovskites (A = Cs ⁺ , CH ₃ NH ₃ ⁺) Tj ET 26353-26361.	Qq1_1 0.7	′84314 rgBT∣ 26
375	Dopant Control of Electron–Hole Recombination in Cesium–Titanium Halide Double Perovskite by Time Domain Ab Initio Simulation: Codoping Supersedes Monodoping. Journal of Physical Chemistry Letters, 2018, 9, 6907-6914.	2.1	24
376	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	19.8	422
377	Research progress of low-dimensional metal halide perovskites for lasing applications. Chinese Physics B, 2018, 27, 114209.	0.7	10
378	First-Principle Insights of Electronic and Optical Properties of Cubic Organic–Inorganic MAGe _{<i>x</i>} Pb _(1–<i>x</i>) I ₃ Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2018, 122, 28245-28255.	1.5	34
379	Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskites: Structural and electronic properties. APL Materials, 2018, 6, .	2.2	15
380	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	11.1	198
383	Major Impediment to Highly Efficient, Stable and Low-Cost Perovskite Solar Cells. Metals, 2018, 8, 964.	1.0	26
384	Compositional engineering of tin-lead halide perovskites for efficient and stable low band gap solar cells. , 2018, , .		7
385	Phase Transitions of Formamidinium Lead Iodide Perovskite under Pressure. Journal of the American Chemical Society, 2018, 140, 13952-13957.	6.6	78
386	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201

#	Article	IF	CITATIONS
387	A New Type of Three-Dimensional Hybrid Polymeric Haloplumbate Based on Rare High-Nuclear Heterometallic Clusters. Inorganic Chemistry, 2018, 57, 12860-12868.	1.9	31
388	Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. ACS Energy Letters, 2018, 3, 2701-2707.	8.8	176
389	Structural Phase Transition and Switchable Dielectric Properties of a Unique Two-Dimensional Organic–Inorganic Hybrid Perovskite Compound [C ₆ H ₁₁ NH ₂ CH ₃] ₄ Pb ₃ I _{10Crystal Growth and Design, 2018, 18, 7316-7322.}	sub>.	34
390	Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Lowâ€Bandgap Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1804603.	7.8	87
391	Control of π–π Stacking of Dithienopyrrole-Based, Hole-Transporting Materials via Lateral Substituents for High-Efficiency Perovskite Solar Cells. ACS Photonics, 2018, 5, 4694-4701.	3.2	21
393	A computational approach to interface engineering of lead-free CH ₃ NH ₃ SnI ₃ highly-efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 25683-25692.	1.3	62
394	Integrating Ultrathin Bulkâ€Heterojunction Organic Semiconductor Intermediary for Highâ€Performance Lowâ€Bandgap Perovskite Solar Cells with Low Energy Loss. Advanced Functional Materials, 2018, 28, 1804427.	7.8	111
395	Lead-free CH3NH3SnBr3-xlx perovskite quantum dots for mesoscopic solar cell applications. Electrochimica Acta, 2018, 282, 807-812.	2.6	40
396	Photovoltaics and Nanotechnology as Alternative Energy. Environmental Chemistry for A Sustainable World, 2018, , 211-241.	0.3	1
397	Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal, 2018, 24, 12183-12205.	1.7	138
398	A Review on Halide Perovskites as Color Conversion Layers in White Light Emitting Diode Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800120.	0.8	73
399	Electronic and optical properties of CH3NH3Pb1-xAgxI3from the first-principles calculations. Journal of Renewable and Sustainable Energy, 2018, 10, 033504.	0.8	4
400	Triiodide-Induced Band-Edge Reconstruction of a Lead-Free Perovskite-Derivative Hybrid for Strong Light Absorption. Chemistry of Materials, 2018, 30, 4081-4088.	3.2	52
401	Organic–Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses. Advanced Materials, 2018, 30, e1704002.	11.1	205
402	Exploring the Limits of Three-Dimensional Perovskites: The Case of FAPb _{1–<i>x</i>} Sn _{<i>x</i>} Br ₃ . ACS Energy Letters, 2018, 3, 1353-1359.	8.8	31
403	Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH ₃ NH ₃)SbSI ₂ . Journal of Physical Chemistry Letters, 2018, 9, 3829-3833.	2.1	24
404	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
405	Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS Nano, 2018, 12, 7301-7311.	7.3	101

# 406	ARTICLE Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials, 2018, 2018, 1-15.	IF 1.5	Citations 224
407	Ion Migration in Hybrid Perovskites. , 2018, , 163-196.		10
408	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e180101	.65.2	111
409	Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites. Advanced Functional Materials, 2018, 28, 1802803.	7.8	63
410	A step towards environmental benign Mg/Pb based binary metal mixed halide perovskite material. Solar Energy, 2018, 170, 769-779.	2.9	20
411	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. Solar Energy, 2018, 173, 407-424.	2.9	56
412	Stability of Perovskites at the Surface Analytic Level. Journal of Physical Chemistry Letters, 2018, 9, 4657-4666.	2.1	17
413	Ultrasensitive Perovskite Photodetectors by Co Partially Substituted Hybrid Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 12055-12060.	3.2	18
414	Cs ₂ PbI ₂ Cl ₂ , All-Inorganic Two-Dimensional Ruddlesden–Popper Mixed Halide Perovskite with Optoelectronic Response. Journal of the American Chemical Society, 2018, 140, 11085-11090.	6.6	167
415	Lewisâ€Adduct Mediated Grainâ€Boundary Functionalization for Efficient Idealâ€Bandgap Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2018, 8, 1800997.	10.2	93
416	High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing. Journal of Materials Chemistry A, 2018, 6, 16347-16354.	5.2	44
417	Scaling limits to large area perovskite solar cell efficiency. Progress in Photovoltaics: Research and Applications, 2018, 26, 659-674.	4.4	31
418	(1,4-Butyldiammonium)CdBr ₄ : a layered organic–inorganic hybrid perovskite with a visible-blind ultraviolet photoelectric response. Inorganic Chemistry Frontiers, 2018, 5, 2450-2455.	3.0	17
419	Optical absorption coefficient red shift effect of iodine vacancy in MAPbI3. Computational Materials Science, 2018, 154, 138-142.	1.4	0
420	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	2.5	58
421	Perovskite/Perovskite/Silicon Monolithic Triple-Junction Solar Cells with a Fully Textured Design. ACS Energy Letters, 2018, 3, 2052-2058.	8.8	87
422	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
423	Long Carrier Lifetimes in PbI ₂ -Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2018, 3, 1868-1874.	8.8	54

#	Article	IF	CITATIONS
424	Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3, 828-838.	19.8	716
425	Probing the structure–property–composition relationship in organic–inorganic tri-halide perovskites. Physical Chemistry Chemical Physics, 2018, 20, 20489-20496.	1.3	2
426	Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination. Advanced Materials, 2018, 30, e1803703.	11.1	65
427	Compositionâ€Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement. Advanced Functional Materials, 2018, 28, 1803130.	7.8	121
428	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	3.1	17
429	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	10.2	192
430	Inorganic p-type semiconductors and carbon materials based hole transport materials for perovskite solar cells. Chinese Chemical Letters, 2018, 29, 1242-1250.	4.8	37
431	Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. Journal of Materials Chemistry A, 2018, 6, 17426-17436.	5.2	33
432	Cu(In,Sn)Se2 thin films for absorption of energy from infrared radiation. Chinese Journal of Physics, 2018, 56, 2022-2030.	2.0	2
433	Enhanced Photovoltaic Performance of Perovskite Solar Cells by Tuning Alkaline Earth Metal-Doped Perovskite-Structured Absorber and Metal-Doped TiO ₂ Hole Blocking Layer. ACS Applied Energy Materials, 2018, 1, 4849-4859.	2.5	13
434	Role of an external electric field on hybrid halide perovskite CH3NH3PbI3 band gaps. Scientific Reports, 2018, 8, 12492.	1.6	15
435	Hybrid Halide Perovskites: Fundamental Theory and Materials Design. , 2018, , 1-30.		5
436	Composition Engineering in Two-Dimensional Pb–Sn-Alloyed Perovskites for Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21343-21348.	4.0	23
437	Tailoring the Band Gap in 3D Hybrid Perovskites by Substitution of the Organic Cations: (CH ₃ NH ₃) _{1â^2<i>y</i>} (NH ₃ (CH ₂) _{2(0≤i>yâ‰e.25). Chemistry - A European Journal, 2018, 24, 9075-9082.})>aMartikasub∶	> ∄ 2/sub>)<≲
438	Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22143-22155.	4.0	27
439	High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule, 2018, 2, 1421-1436.	11.7	173
440	Low-bandgap mixed tin–lead iodide perovskite with large grains for high performance solar cells. Journal of Materials Chemistry A, 2018, 6, 13090-13095.	5.2	47
441	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49

#	Article	IF	CITATIONS
442	Nonlinear Band Gap Tunability in Selenium–Tellurium Alloys and Its Utilization in Solar Cells. ACS Energy Letters, 2019, 4, 2137-2143.	8.8	49
443	Bandgap Tuning of Silver Bismuth Iodide via Controllable Bromide Substitution for Improved Photovoltaic Performance. ACS Applied Energy Materials, 2019, 2, 5356-5362.	2.5	23
444	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	2.1	60
445	Vertically Oriented Bil ₃ Template Featured Bil ₃ /Polymer Heterojunction for High Photocurrent and Long-Term Stable Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 32509-32516.	4.0	27
446	Band Gap Engineering in Cs ₂ (Na _{<i>x</i>} Ag _{1–<i>x</i>})BiCl ₆ Double Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 5173-5181.	2.1	109
447	Photophysics of lead-free tin halide perovskite films and solar cells. APL Materials, 2019, 7, .	2.2	32
448	Carbon nanotubes in hybrid photovoltaics: dye sensitized and perovskites solar cells. , 2019, , 201-248.		1
449	Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11
450	Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin, 2019, 64, 1399-1401.	4.3	66
451	Strain Relaxation and Light Management in Tin–Lead Perovskite Solar Cells to Achieve High Efficiencies. ACS Energy Letters, 2019, 4, 1991-1998.	8.8	114
452	Snâ€₽b Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells. Chinese Journal of Chemistry, 2019, 37, 1031-1035.	2.6	12
453	Recycling of Perovskite Films: Route toward Cost-Efficient and Environment-Friendly Perovskite Technology. ACS Omega, 2019, 4, 11880-11887.	1.6	54
454	Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI ₃ films. Nanoscale, 2019, 11, 14276-14284.	2.8	51
455	Relativistic DFT-1/2 Calculations Combined with a Statistical Approach for Electronic and Optical Properties of Mixed Metal Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 4245-4251.	2.1	20
456	The Future Is Blue (LEDs): Why Chemistry Is the Key to Perovskite Displays. Chemistry of Materials, 2019, 31, 6003-6032.	3.2	91
457	Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18626-18633.	5.2	33
458	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
459	First-principles insights of electronic and optical properties of Zn-doped CH3NH3PbI3 for photovoltaic applications. Applied Physics Express, 2019, 12, 082011.	1.1	6

#	Article	IF	CITATIONS
460	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
461	Thermodynamic Stability and Structural Insights for CH3NH3Pb1â^'xSixI3, CH3NH3Pb1â^'xGexI3, and CH3NH3Pb1â^'xSnxI3 Hybrid Perovskite Alloys: A Statistical Approach from First Principles Calculations. Scientific Reports, 2019, 9, 11061.	1.6	14
462	Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer. ACS Energy Letters, 2019, 4, 1784-1790.	8.8	76
463	Perovskite Light-Emitting Diodes Based on FAPb _{1â^²} <i> _x </i> Sn <i> _x </i> Br ₃ Nanocrystals Synthesized at Room Temperature. IEEE Nanotechnology Magazine, 2019, 18, 1050-1056.	1.1	12
464	Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding. Materials Research Express, 2019, 6, 116571.	0.8	17
465	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
466	Dependence of material properties and photovoltaic performance of triple cation tin perovskites on the iodide to bromide ratio. Monatshefte Für Chemie, 2019, 150, 1921-1927.	0.9	10
467	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388.	2.1	46
468	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	4.0	17
469	Hole Localization Inhibits Charge Recombination in Tin–Lead Mixed Perovskites: Time–Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 6604-6612.	2.1	21
470	Dual-Source Coevaporation of Low-Bandgap FA _{1–<i>x</i>} Cs _{<i>x</i>} Sn _{1–<i>y</i>} Pb _{<i>y</i>} I _{3 Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 2748-2756.}	<b 818b>	43
471	The complete mitogenome of <i>Microhyla fissipes</i> (Anura: Microhylidae) and phylogenetic analysis using GenBank data mining. Mitochondrial DNA Part B: Resources, 2019, 4, 3049-3050.	0.2	1
472	Internal and external pressure in cubic perovskites: electronic structure effects and systematic accuracy from first principles. Electronic Structure, 2019, 1, 035001.	1.0	6
473	2D-3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells. Nano Energy, 2019, 66, 104099.	8.2	63
474	Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic–Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies. Journal of Physical Chemistry C, 2019, 123, 23323-23333.	1.5	15
475	Comparison of Induction Chemotherapy Versus Adjuvant Chemotherapy in Locally Advanced Nasopharyngeal Carcinoma Treated with IMRT and Concurrent Cisplatin. International Journal of Radiation Oncology Biology Physics, 2019, 105, E388.	0.4	Ο
476	Modeling of a high performance bandgap graded Pb-free HTM-free perovskite solar cell. EPJ Applied Physics, 2019, 87, 10101.	0.3	22
477	A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity. Journal of Materials Science: Materials in Electronics, 2019, 30, 18452-18461.	1.1	9

			2
#	ARTICLE	IF	CITATIONS
478	Off-Stoichiometric Methylammonium Iodide Passivated Large-Grain Perovskite Film in Ambient Air for Efficient Inverted Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 39882-39889.	4.0	50
479	Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. Journal of Power Sources, 2019, 440, 227157.	4.0	24
480	Charge-Carrier Cooling and Polarization Memory Loss in Formamidinium Tin Triiodide. Journal of Physical Chemistry Letters, 2019, 10, 6038-6047.	2.1	16
481	Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 2019, 48, 2011-2038.	18.7	526
482	Advances in modelling and simulation of halide perovskites for solar cell applications. JPhys Energy, 2019, 1, 022001.	2.3	53
483	A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss. Materials Chemistry Frontiers, 2019, 3, 496-504.	3.2	20
484	Intermolecular electronic and photochromic behaviors of halocadmate hybrids. Dyes and Pigments, 2019, 162, 815-820.	2.0	12
485	Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites. ACS Energy Letters, 2019, 4, 615-621.	8.8	51
486	Impact of the Solvation State of Lead Iodide on Its Two tep Conversion to MAPbI ₃ : An In Situ Investigation. Advanced Functional Materials, 2019, 29, 1807544.	7.8	45
487	Enhancing charge transport in an organic photoactive layer <i>via</i> vertical component engineering for efficient perovskite/organic integrated solar cells. Nanoscale, 2019, 11, 4035-4043.	2.8	22
488	First-Principles Modeling of Lead-Free Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2019, 123, 3795-3800.	1.5	18
489	B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. Journal of Materials Chemistry C, 2019, 7, 2781-2808.	2.7	124
490	Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science, 2019, 199, 388-397.	1.9	28
491	Role of carbon nanodots in defect passivation and photo-sensitization of mesoscopic-TiO2 for perovskite solar cells. Carbon, 2019, 146, 388-398.	5.4	33
492	Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface. Journal of Materials Chemistry A, 2019, 7, 5779-5793.	5.2	40
493	Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193, 107-132.	3.0	135
494	Transition metal complex dye-sensitized 3D iodoplumbates: syntheses, structures and photoelectric properties. Chemical Communications, 2019, 55, 6874-6877.	2.2	40
495	A polyaspartic acid sodium interfacial layer enhances surface trap passivation in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 23895-23903.	5.2	37

IF CITATIONS ARTICLE # Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy, 2019, 63, 103825. 496 8.2 49 Efficient and Stable Perovskite Solar Cell Achieved with Bifunctional Interfacial Layers. ACS Applied Materials & amp; Interfaces, 2019, 11, 25218-25226. Electronic Structures and Magnetic Properties of Transition Metal Doped CsPbI3 Perovskite 498 0.2 9 Compounds by First-Principles Calculation. Physics of the Solid State, 2019, 61, 1074-1085. Perovskite solar cells., 2019,, 417-446. First-principles study on the electronic properties of perovskites MASnaPb(1â€â´â€a)XbY(3â€â´â€b) (X, Yâ€=â€Cl, Br, I) Results in Physics, 2019, 14, 102408. 500

501	Leadâ€Free Perovskites: Metals Substitution towards Environmentally Benign Solar Cell Fabrication. ChemSusChem, 2019, 12, 4116-4139.	3.6	36
502	Reduced open-circuit voltage loss for highly efficient low-bandgap perovskite solar cells <i>via</i> suppression of silver diffusion. Journal of Materials Chemistry A, 2019, 7, 17324-17333.	5.2	37
503	CZTSe Kesterite as an Alternative Hole Transport Layer for MASnI3 Perovskite Solar Cells. Journal of Electronic Materials, 2019, 48, 5723-5733.	1.0	62
504	Large Conjugated Organic Cations Sensitized Hybrid Lead Halides as Visible Light Driven Photocatalysts. Crystal Growth and Design, 2019, 19, 4564-4570.	1.4	30
505	Industrial Opportunities and Challenges for Perovskite Photovoltaic Technology. Solar Rrl, 2019, 3, 1900144.	3.1	52
506	On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7, 16285-16293.	5.2	64
507	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	1.0	89
509	Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers. ACS Applied Materials & Interfaces, 2019, 11, 23152-23159.	4.0	89
510	Manipulation of Crystal Structures and Properties by the Variation of Halides for Two Organic–Inorganic Hybrids [(C ₆ H ₁₅ ClNO) ₂ CoX ₄] (X =) Tj	E T(2 q11(D. ø 84314 i
511	Twoâ€īerminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives. Solar Rrl, 2019, 3, 1900080.	3.1	55
512	Absolute energy level positions in tin- and lead-based halide perovskites. Nature Communications, 2019, 10, 2560.	5.8	381
513	Structural and photovoltaic properties of perovskite solar cells with addition of ammonium iodide. AIP Conference Proceedings, 2019, , .	0.3	3
514	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials. 2019. 31. e1806671.	11.1	134

# 515	ARTICLE Ethylenediammonium-Based "Hollow―Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with	IF 6.6	Citations 93
516	Higher Efficiency and Stability. Journal of the American Chemical Society, 2019, 141, 8627-8637. Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 525-546.	1.0	12
517	Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.	10.2	325
518	Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475-479.	6.0	781
519	Photovoltaic Performance of Lead-Less Hybrid Perovskites from Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 12638-12646.	1.5	39
520	Black Phosphorus Quantum Dots Induced Highâ€Quality Perovskite Film for Efficient and Thermally Stable Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900132.	3.1	49
521	Bismuthâ€Based Perovskiteâ€Inspired Solar Cells: In Situ Diagnostics Reveal Similarities and Differences in the Film Formation of Bismuth―and Leadâ€Based Films. Solar Rrl, 2019, 3, 1800305.	3.1	41
522	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
523	Huge Photostability Enhancement in Bismuth-Doped Methylammonium Lead Iodide Hybrid Perovskites by Light-Induced Transformation. Chemistry of Materials, 2019, 31, 3662-3671.	3.2	16
524	A Semiconducting Organic–Inorganic Hybrid Metal Halide with Switchable Dielectric and High Phase Transition Temperature. Journal of Physical Chemistry C, 2019, 123, 9364-9370.	1.5	32
525	Quasiparticle <i>GW</i> Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CH ₃ NH ₃ Gel ₃ for Photovoltaic Applications. ACS Omega, 2019, 4, 5661-5669.	1.6	24
526	Synthesis, Hirshfeld surface analysis, optical and electronic properties of the functional hybrid perovskite [NH ₃ –(CH ₂) ₂ –NH ₃] CdCl ₄ : a combined experimental and theoretical study. Materials Research Express, 2019, 6, 076301.	0.8	4
527	Hybrid Charge-Transfer Semiconductors: (C ₇ H ₇)Sbl ₄ , (C ₇ H ₇)Bil ₄ , and Their Halide Congeners. Inorganic Chemistry, 2019, 58, 5818-5826.	1.9	37
528	Enhancing surface stabilization of CH3NH3PbI3 perovskite by Cl and Br doping: First-principles study. Journal of Applied Physics, 2019, 125, 115302.	1.1	7
529	Wide range tuning of band gap energy of A3B2X9 perovskite-like halides. Scripta Materialia, 2019, 166, 107-111.	2.6	34
530	Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide. Chemistry of Materials, 2019, 31, 3599-3612.	3.2	37
531	Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 6936-6946.	1.1	12
532	Tunable Halide Perovskites for Miniaturized Solidâ€State Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47

#	Article	IF	CITATIONS
533	Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019, 422, 138-144.	4.0	37
534	From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1790-1798.	2.1	72
535	Band alignment of Pb–Sn mixed triple cation perovskites for inverted solar cells with negligible hysteresis. Journal of Materials Chemistry A, 2019, 7, 9154-9162.	5.2	54
536	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
537	Stable Sn ²⁺ doped FAPbI ₃ nanocrystals for near-infrared LEDs. Chemical Communications, 2019, 55, 5451-5454.	2.2	21
538	Stable and Efficient Perovskite Solar Cell with Metal Oxide Transport Layers. , 2019, , .		2
539	Correlation between the morphology and the opto-electronic and electrical properties of organometallic halide perovskite (CH3NH3MH3) thin films. Materials Research Express, 2019, 6, 076431.	0.8	1
540	Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 387-403.	2.4	17
541	A 3D Iodoplumbate Semiconducting Open Framework with Visibleâ€lightâ€induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 2086-2090.	1.7	19
542	Efficient air-stable perovskite solar cells with a (FAI) _{0.46} (MAI) _{0.40} (MABr) _{0.14} (PbI ₂) _{0.86} (PbB active layer fabricated <i>via</i> a vacuum flash-assisted method under RH > 50%. RSC Advances, 2019. 9. 10148-10154.	r _{2< 1.7}	/suþ>) ₍
543	Dual Interfacial Design for Efficient CsPbI ₂ Br Perovskite Solar Cells with Improved Photostability. Advanced Materials, 2019, 31, e1901152.	11.1	328
544	Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI3 perovskite thin films. APL Materials, 2019, 7, .	2.2	18
545	Effect of organic cation states on electronic properties of mixed organic–inorganic halide perovskite clusters. Physical Chemistry Chemical Physics, 2019, 21, 8161-8169.	1.3	10
546	Lowâ€Bandgap Mixed Tinâ€Lead Perovskites and Their Applications in Allâ€Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	7.8	133
547	Inverted Perovskite Photovoltaics Using Flame Spray Pyrolysis Solution Based CuAlO ₂ /Cu–O Hole-Selective Contact. ACS Applied Energy Materials, 2019, 2, 2276-2287.	2.5	29
548	Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Letters, 2019, 11, 16.	14.4	238
549	Improved photovoltaic performance and device stability of planar heterojunction perovskite solar cells using TiO2 and TiO2 mixed with AgInS2 quantum dots as dual electron transport layers. Organic Electronics, 2019, 69, 26-33.	1.4	9
550	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	23.0	2,009

	CITATION R	EPORT	
# 551	ARTICLE Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	IF 23.0	CITATIONS
552	Slow Carrier Cooling in Hybrid Pb–Sn Halide Perovskites. ACS Energy Letters, 2019, 4, 736-740.	8.8	36
553	Strategies for Modifying TiO ₂ Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4586-4618.	3.2	83
554	Simulation and Modeling of Graded Band-Gap Perovskite Solar Cells. , 2019, , .		0
555	Spacer layer design for efficient fully printable mesoscopic perovskite solar cells. RSC Advances, 2019, 9, 29840-29846.	1.7	14
556	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	5.2	116
557	3D low toxicity Cu–Pb binary perovskite films and their photoluminescent/photovoltaic performance. Journal of Materials Chemistry A, 2019, 7, 27225-27235.	5.2	34
558	Crystal and Band-Gap Engineering of One-Dimensional Antimony/Bismuth-Based Organic–Inorganic Hybrids. Inorganic Chemistry, 2019, 58, 16346-16353.	1.9	20
559	A semiconducting organic–inorganic hybrid ([BrCH ₂ CH ₂ N(CH ₃) ₃] ₂ ⁺ [CuBr <s with switchable dielectric properties derived from an unusual piston-like displacive movement. Journal of Materials Chemistry C, 2019, 7, 14294-14300.</s 	sub34 <td>b>]^{2â^'}</td>	b>] ^{2â^'}
560	Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers. Journal of Physical Chemistry C, 2019, 123, 31279-31285.	1.5	26
561	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	19.8	736
562	Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nature Energy, 2019, 4, 939-947.	19.8	235
563	Inorganic halide perovskite materials and solar cells. APL Materials, 2019, 7, .	2.2	21
564	Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 2019, 48, 517-539.	18.7	196
565	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	10.2	67
566	Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb–Ba Cations for High-Performance Photovoltaic Applications. Journal of Physical Chemistry Letters, 2019, 10, 59-66.	2.1	44
567	Enhancing the photovoltaic performance of perovskite solar cells by potassium ions doping. Journal of Materials Science: Materials in Electronics, 2019, 30, 2057-2066.	1.1	10
568	Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice. Advanced Materials, 2019, 31, e1802697.	11.1	37

#	Article	IF	CITATIONS
569	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	3.0	5
570	Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society, 2019, 141, 1171-1190.	6.6	999
571	Reducing Saturationâ€Current Density to Realize Highâ€Efficiency Lowâ€Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803135.	10.2	255
572	Mixed Lead–Tin Halide Perovskites for Efficient and Wavelengthâ€Tunable Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1806105.	11.1	66
573	Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy, 2019, 56, 770-791.	8.2	85
574	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	23.0	1,131
575	Energy Level Tuning of PEDOT:PSS for High Performance Tin‣ead Mixed Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800256.	3.1	56
576	Lead and HTM Free Stable Twoâ€Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie, 2019, 131, 1084-1088.	1.6	22
577	Lead and HTM Free Stable Twoâ€Ðimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie - International Edition, 2019, 58, 1072-1076.	7.2	96
578	Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Solar Energy, 2019, 179, 298-306.	2.9	60
579	SnO ₂ â€Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Solar Rrl, 2019, 3, 1800292.	3.1	80
580	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.	11.7	177
581	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
582	Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 4041-4055.	1.1	7
583	Solution-processed conductive interconnecting layer for highly-efficient and long-term stable monolithic perovskite tandem solar cells. Nano Energy, 2019, 55, 354-367.	8.2	47
584	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	23.0	454
585	A comparative study of different ETMs in perovskite solar cell with inorganic copper iodide as HTM. Optik, 2019, 178, 958-963.	1.4	93
586	Flexible Perowskit‧olarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27

#	Article	IF	CITATIONS
587	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
588	Tripyridineâ€Derivativeâ€Derived Semiconducting Iodoâ€Argentate/Cuprate Hybrids with Excellent Visibleâ€Lightâ€Induced Photocatalytic Performance. Chemistry - an Asian Journal, 2019, 14, 269-277.	1.7	22
589	Polyiodide Hybrid Perovskites: A Strategy To Convert Intrinsic 2D Systems into 3D Photovoltaic Materials. ACS Applied Energy Materials, 2019, 2, 477-485.	2.5	19
590	Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158.	2.5	93
591	Recent Advances in Energetics and Stability of Metal Halide Perovskites for Optoelectronic Applications. Advanced Materials Interfaces, 2019, 6, 1801351.	1.9	29
592	Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells. Electrochimica Acta, 2019, 293, 211-219.	2.6	56
593	lodoplumbates from 1D chain to 2D layer: Syntheses, crystal structures, and photocatalytic properties of organic hybrid lead iodides with diammonium structural templating. Inorganica Chimica Acta, 2019, 484, 104-110.	1.2	5
594	Evaluation of the photovoltaic performance and the stability of the FTO/b-TiO2/mp-TiO2/CH3NH3[LaxPb1-x]I3/NiO/Au at various La ions content. Optik, 2019, 178, 29-35.	1.4	2
595	"Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803230.	11.1	345
596	Effects of Mn, Cl co-doping on the structure and photoluminescence properties of novel walnut-shape MAPb0.95Mn0.05I3-xClx films. Ceramics International, 2019, 45, 468-473.	2.3	4
597	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
598	Hydrogen evolution reaction electrocatalysis trends of confined gallium phosphide with substitutional defects. International Journal of Hydrogen Energy, 2020, 45, 23928-23936.	3.8	10
599	Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability. Organic Electronics, 2020, 77, 105406.	1.4	24
600	Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 2020, 10, 1902584.	10.2	124
601	Present Status and Research Prospects of Tinâ€based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900310.	3.1	60
602	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
603	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
604	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24

#	Article	IF	CITATIONS
605	Bowing of transport gap in hybrid halide perovskite alloys (CH3NH3Sn1â^xPbxI3): Which band is responsible?. Applied Physics Letters, 2020, 116, 012104.	1.5	12
606	Ambient blade coating of mixed cation, mixed halide perovskites without dripping: <i>in situ</i> investigation and highly efficient solar cells. Journal of Materials Chemistry A, 2020, 8, 1095-1104.	5.2	68
607	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
608	A double hole-transport layer strategy toward efficient mixed tin-lead iodide perovskite solar cell. Solar Energy Materials and Solar Cells, 2020, 207, 110351.	3.0	25
609	Bionic Detectors Based on Lowâ€Bandgap Inorganic Perovskite for Selective NIRâ€I Photon Detection and Imaging. Advanced Materials, 2020, 32, e1905362.	11.1	83
610	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	8.3	26
611	Machine Learning Stability and Bandgaps of Leadâ€Free Perovskites for Photovoltaics. Advanced Theory and Simulations, 2020, 3, 1900178.	1.3	39
612	A novel ferroelectric based on quinuclidine derivatives. Chinese Chemical Letters, 2020, 31, 1686-1689.	4.8	12
613	Trioctylphosphine Oxide Acts as Alkahest for SnX ₂ /PbX ₂ : A General Synthetic Route to Perovskite ASn _{<i>x</i>} Pb _{1–<i>x</i>} X ₃ (A = Cs, FA, MA; X =) T	j හැQq0 0	0аgBT /Оve
614	Enhanced <i>V</i> _{OC} of two-dimensional Ruddlesden–Popper perovskite solar cells using binary synergetic organic spacer cations. Physical Chemistry Chemical Physics, 2020, 22, 54-61.	1.3	15
615	Structural phase transition, electrical and semiconducting properties in a leadâ€free 2D hybrid perovskiteâ€like compound: [Clâ€{CH 2) 2 â€NH 3] 2 [CuCl 4]. Applied Organometallic Chemistry, 2020, 34, e5293.	1.7	10
616	Effect of atomic configuration on band gap behaviour in CH3NH3Sn Pb1â^'l3 perovskites. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126173.	0.9	7
617	Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903085.	10.2	49
618	The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. JPhys Energy, 2020, 2, 022001.	2.3	76
619	\$1.34~mu\$ m Q-Switched Nd:YVO ₄ Laser Based on Perovskite Film Saturable Absorber. IEEE Photonics Technology Letters, 2020, 32, 3-6.	1.3	8
620	Polarons in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1902748.	10.2	84

Bandgap tuning and compositional exchange for lead halide perovskite materials., 2020, , 1-22.

9

# 623	ARTICLE Organic-inorganic metal halide perovskite tandem devices. , 2020, , 237-254.	IF	CITATIONS
624	Realizing High Efficiency over 20% of Lowâ€Bandgap Pb–Snâ€Alloyed Perovskite Solar Cells by In Situ Reduction of Sn ⁴⁺ . Solar Rrl, 2020, 4, 1900467.	3.1	65
625	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	1.3	24
626	Highly Efficient Sn–Pb Perovskite Solar Cell and Highâ€Performance Allâ€Perovskite Fourâ€Terminal Tandem Solar Cell. Solar Rrl, 2020, 4, 1900396.	3.1	30
627	The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance. Energies, 2020, 13, 2.	1.6	44
628	Tuning the Thermoelectric Performance of Hybrid Tin Perovskites by Air Treatment. Advanced Energy and Sustainability Research, 2020, 1, 2000033.	2.8	20
629	Structural Features and Optical Properties of CH3NH3Pb(1â^'x)SnxCl3 Thin-Film Perovskites for Photovoltaic Applications. Journal of Electronic Materials, 2020, 49, 7133-7143.	1.0	9
630	16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nature Communications, 2020, 11, 5254.	5.8	36
631	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	19.8	165
632	Optimization of Bulk Defects in Sn/Pb Mixed Perovskite Solar Cells Through Synergistic Effect of Potassium Thiocyanate. Solar Rrl, 2020, 4, 2000584.	3.1	31
633	Roles of Sn content in physical features and charge transportation mechanism of Pb-Sn binary perovskite solar cells. Solar Energy, 2020, 209, 590-601.	2.9	16
634	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research, 2020, 1, 63-76.	5.9	57
635	Reduced bandgap and enhanced <i>p</i> -type electrical conduction in Ag-alloyed Cu2O thin films. Journal of Applied Physics, 2020, 128, .	1.1	3
636	Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Applied Materials & Interfaces, 2020, 12, 49636-49647.	4.0	31
637	Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chemical Science, 2020, 11, 12139-12148.	3.7	22
638	Carbon Nanomaterials for Halide Perovskitesâ€Based Hybrid Photodetectors. Advanced Materials Technologies, 2020, 5, 2000643.	3.0	9
639	Formation of Stable Metal Halide Perovskite/Perovskite Heterojunctions. ACS Energy Letters, 2020, 5, 3443-3451.	8.8	35
640	Implicit Tandem Organic–Inorganic Hybrid Perovskite Solar Cells Based on Internal Dye Sensitization: Robotized Screening, Synthesis, Device Implementation, and Theoretical Insights. Journal of the American Chemical Society, 2020, 142, 18437-18448.	6.6	18

#	Article	IF	CITATIONS
641	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	3.1	14
642	Phonon, thermal, and thermo-optical properties of halide perovskites. Physical Chemistry Chemical Physics, 2020, 22, 26069-26087.	1.3	23
643	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	19.8	186
644	Formation of Color Centers in Lead Iodide Perovskites: Self-Trapping and Defects in the Bulk and Surfaces. Chemistry of Materials, 2020, 32, 6916-6924.	3.2	23
645	High-performance perovskite solar cell using photonic–plasmonic nanostructure. Scientific Reports, 2020, 10, 11248.	1.6	52
646	Unexpected bowing band evolution in an all-inorganic CsSn _{1â^'x} Pb _x Br ₃ perovskite. RSC Advances, 2020, 10, 26407-26413.	1.7	4
647	Efficient Carrier Multiplication in Low Band Gap Mixed Sn/Pb Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 6146-6149.	2.1	9
648	Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 2755-2761.	2.5	16
649	Atomistic Origins of Enhanced Band Gap, Miscibility, and Oxidation Resistance in α-CsPb1–xSnxl3 Mixed Perovskite. Journal of Physical Chemistry C, 2020, 124, 26124-26133.	1.5	12
650	Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment. Journal of Physical Chemistry C, 2020, 124, 27251-27266.	1.5	43
651	Pressing challenges of halide perovskite thin film growth. APL Materials, 2020, 8, .	2.2	42
652	How the Structures and Properties of Pristine and Anion Vacancy Defective Organic–Inorganic Hybrid Double Perovskites MA ₂ AgIn(Br _{<i>x</i>} Ia€" <i>x</i>) ₆ Vary with Br Content <i>x</i> . Journal of Physical Chemistry Letters, 2020, 11, 10315-10322.	2.1	6
653	Optoelectronic Properties of Mixed Sn/Pb Perovskite Solar Cells: The Study of Compressive Strain by Raman Modes. Journal of Physical Chemistry C, 2020, 124, 27136-27147.	1.5	21
654	Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate. Scientific Reports, 2020, 10, 18699.	1.6	28
655	Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3752-3772.	8.8	143
656	Microscopic Picture of Electron–Phonon Interaction in Two-Dimensional Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 9975-9982.	2.1	16
657	Triple-cation low-bandgap perovskite thin-films for high-efficiency four-terminal all-perovskite tandem solar cells. Journal of Materials Chemistry A, 2020, 8, 24608-24619.	5.2	26
658	Halide Perovskite Materials for Energy Storage Applications. Advanced Functional Materials, 2020, 30, 2003653.	7.8	63

#	Article	IF	CITATIONS
659	Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20%. ACS Energy Letters, 2020, 5, 2819-2826.	8.8	69
660	Inhibition of Phase Segregation in Cesium Lead Mixed-Halide Perovskites by B-Site Doping. IScience, 2020, 23, 101415.	1.9	18
661	Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance. Nano-Micro Letters, 2020, 12, 156.	14.4	47
662	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	6.6	103
663	First-principles study on structural, mechanical and optoelectronic properties of lead-free mixed Ge–Sn hybrid organic-inorganic perovskites. Solid State Communications, 2020, 320, 114024.	0.9	17
664	Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction. Nano Energy, 2020, 77, 105181.	8.2	34
665	Unique Behavior of Halide Double Perovskites with Mixed Halogens. ACS Applied Materials & Interfaces, 2020, 12, 37100-37107.	4.0	19
666	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	3.2	10
667	Electrochemical Deposition of CsPbBr ₃ Perovskite for Photovoltaic Devices with Robust Ambient Stability. ACS Applied Materials & Interfaces, 2020, 12, 50455-50463.	4.0	24
668	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
669	Modulating Charge Carrier Dynamics and Transfer via Surface Modifications in Organometallic Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 7886-7892.	2.1	11
670	Impact of Tin Fluoride Additive on the Properties of Mixed Tinâ€Lead Iodide Perovskite Semiconductors. Advanced Functional Materials, 2020, 30, 2005594.	7.8	48
671	Chemically driven superstructural ordering leading to giant unit cells in unconventional clathrates Cs8Zn18Sb28 and Cs8Cd18Sb28. Chemical Science, 2020, 11, 10255-10264.	3.7	9
672	NdCl ₃ Dose as a Universal Approach for High-Efficiency Perovskite Solar Cells Based on Low-Temperature-Processed SnO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2020, 12, 46306-46316.	4.0	28
673	Suppression of Oxidative Degradation of Tin–Lead Hybrid Organometal Halide Perovskite Solar Cells by Ag Doping. ACS Energy Letters, 2020, 5, 3285-3294.	8.8	38
674	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
675	Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy and Environmental Science, 2020, 13, 4691-4716.	15.6	47
676	Potassium doping-induced variations in the structures and photoelectric properties of a MAPbI ₃ perovskite and a MAPbI ₃ /TiO ₂ junction. Physical Chemistry Chemical Physics, 2020, 22, 20553-20561.	1.3	6

#	Article	IF	CITATIONS
677	¹¹³ Cd Solid-State NMR at 21.1 T Reveals the Local Structure and Passivation Mechanism of Cadmium in Hybrid and All-Inorganic Halide Perovskites. ACS Energy Letters, 2020, 5, 2964-2971.	8.8	20
678	First-principles study of the structural stability, electronic and optical properties of CH3-F NH3GeI3 (xÂ=Â0, 1, 2, 3) halide perovskites. Chemical Physics Letters, 2020, 761, 138020.	1.2	1
679	Modulation of strain, electric field and organic cation rotation on the band gap and electronic structures of organic-inorganic hybrid perovskite CH3NH3PbI3. Chinese Journal of Physics, 2020, 67, 559-568.	2.0	3
680	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	11.1	39
681	Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials, 2020, 10, 1904102.	10.2	321
682	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	5.2	56
683	Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces. Matter, 2020, 3, 433-448.	5.0	33
684	Advancing Tin Halide Perovskites: Strategies toward the ASnX ₃ Paradigm for Efficient and Durable Optoelectronics. ACS Energy Letters, 2020, 5, 2052-2086.	8.8	54
685	How the Mixed Cations (Guanidium, Formamidinium, and Phenylethylamine) in Tin Iodide Perovskites Affect Their Charge Carrier Dynamics and Solar Cell Characteristics. Journal of Physical Chemistry Letters, 2020, 11, 4043-4051.	2.1	19
686	Preventing phase segregation in mixed-halide perovskites: a perspective. Energy and Environmental Science, 2020, 13, 2024-2046.	15.6	221
687	Composition Engineering of Allâ€Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2020, 30, 2001764.	7.8	69
688	Contributions to Optical Properties and Efficiencies of Methyl–Ammonium Lead, Tin, and Germanium Iodide Perovskites. Journal of Physical Chemistry C, 2020, 124, 12305-12310.	1.5	6
689	Can perovskite inspired bismuth halide nanocrystals outperform their lead counterparts?. Journal of Materials Chemistry A, 2020, 8, 12951-12963.	5.2	13
690	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	5.2	23
691	Metal – organic hybrids of tin(IV) with tuneable band gap: Synthesis, spectral, single crystal X-ray structural, BVS and CSM analysis of morpholinium hexahalostannate(IV). Journal of Molecular Structure, 2020, 1218, 128489.	1.8	5
692	Tunable Wideâ€Bandgap Monohalide Perovskites. Advanced Optical Materials, 2020, 8, 2000423.	3.6	6
693	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	18.7	269
694	Understanding the role of Sn substitution and Pb-â-i in enhancing the optical properties and solar cell efficiency of CH(NH ₂) ₂ Pb _{1â^xâ^y} Sn _x â-i _y Br ₃ . Journal of Materials Chemistry C. 2020. 8, 10362-10368.	2.7	13

#	Article	IF	CITATIONS
695	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
696	Efficient Hybrid Mixedâ€Ion Perovskite Photovoltaics: In Situ Diagnostics of the Roles of Cesium and Potassium Alkali Cation Addition. Solar Rrl, 2020, 4, 2000272.	3.1	19
697	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	3.2	58
698	Improving Low-Bandgap Tin–Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing. ACS Energy Letters, 2020, 5, 1215-1223.	8.8	78
699	Three-Dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. Journal of the American Chemical Society, 2020, 142, 6625-6637.	6.6	82
700	Reducing lead toxicity in the methylammonium lead halide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MAPbl<mml:mn>3</mml:mn></mml:mi </mml:msub> : Why Sn substitution should be preferred to Pb vacancy for optimum solar cell efficiency. Physical Review B,</mml:math 	1.1	25
701	2020, 101, . Improved performance of lead-tin mixed perovskite solar cells with PEDOT:PSS treated by hydroquinone. Solar Energy, 2020, 201, 589-595.	2.9	17
702	Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu ₂ Cd <i>_x</i> Zn _{1–<i>x</i>} SnS ₄ for Achieving Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 17509-17518.	4.0	17
703	Choline Chloride-Modified SnO ₂ Achieving High Output Voltage in MAPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3504-3511.	2.5	57
704	Compositional Engineering for Compact Perovskite Absorber Fabrication Toward Efficient Photovoltaics. IEEE Journal of Photovoltaics, 2020, 10, 765-770.	1.5	1
705	Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097-1104.	6.0	669
706	Synthesis, crystal structures, high-temperatures phase transition, optic and electric properties of hybrid halogenometallates: [(CH3)3N(CH2)2Br]2[MIIBr4] (MÂ= Cu, Zn). Journal of Alloys and Compounds, 2020, 844, 156115.	2.8	8
707	Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport. Journal of the American Chemical Society, 2020, 142, 13030-13040.	6.6	198
708	Aryl Diammonium Iodide Passivation for Efficient and Stable Hybrid Organâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002366.	7.8	52
709	Role of Alkali-Metal Cations in Electronic Structure and Halide Segregation of Hybrid Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 34402-34412.	4.0	15
710	Aqueous solvent-regulated crystallization and interfacial modification in perovskite solar cells with enhanced stability and performance. Journal of Power Sources, 2020, 471, 228447.	4.0	13
712	Defect Energetics in Pseudo-Cubic Mixed Halide Lead Perovskites from First-Principles. Journal of Physical Chemistry C, 2020, 124, 16729-16738.	1.5	19
713	Mixed-Cation Mixed-Metal Halide Perovskites for Photovoltaic Applications: A Theoretical Study. ACS Omega, 2020, 5, 4347-4351.	1.6	13

#	Article	IF	CITATIONS
714	Enhanced photocurrent in heterostructures formed between CH ₃ NH ₃ PbI ₃ perovskite films and graphdiyne. Physical Chemistry Chemical Physics, 2020, 22, 6239-6246.	1.3	10
715	Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical Materials, 2020, 101, 109738.	1.7	277
716	Solutionâ€Processed Flexible Broadband Photodetectors with Solutionâ€Processed Transparent Polymeric Electrode. Advanced Functional Materials, 2020, 30, 1909487.	7.8	61
717	Colorâ€Tunable Photoluminescence and Whispering Gallery Mode Lasing of Alloyed CsPbCl _{3(1–} <i>_x</i> ₎ Br ₃ <i>_x</i> Microstructures. Advanced Materials Interfaces, 2020, 7, 1902126.	1.9	5
718	Effect of Sr substitution on the air-stability of perovskite solar cells. Ceramics International, 2020, 46, 14038-14047.	2.3	8
719	Toward stable and efficient Sn-containing perovskite solar cells. Science Bulletin, 2020, 65, 786-790.	4.3	21
720	Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Advanced Materials, 2020, 32, e1907392.	11.1	203
721	Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnl3) <i>x</i> (MAPbl3)1â^ <i>x</i> perovskite films and solar cells. Journal of Chemical Physics, 2020, 152, 064705.	1.2	26
722	A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 2020, 198, 665-688.	2.9	321
723	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. Journal of the American Chemical Society, 2020, 142, 4206-4212.	6.6	151
724	Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 3060-3068.	6.6	91
725	Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy and Environmental Science, 2020, 13, 685-743.	15.6	340
726	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi ore–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
727	Syntheses, crystal structures and visible light driven photocatalytic properties of organic-inorganic hybrid cuprous halides. Journal of Solid State Chemistry, 2020, 285, 121212.	1.4	1
728	Structure, electronic and optical properties of Cs2Ti(Br1-xYx)6 (Y = Cl, I; x = 0, 0.25, 0.5, 0.75, 1) perovskites: The first principles investigations. Journal of Solid State Chemistry, 2020, 284, 121213.	1.4	26
729	Large-Scale Synthesis of Uniform PbI ₂ (DMSO) Complex Powder by Solvent Extraction Method for Efficient Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 8233-8239.	4.0	22
730	Interface Engineering of Air‣table nâ€Doping Fullereneâ€Modified TiO ₂ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901964.	1.9	32
731	Secondary lateral growth of MAPbI ₃ grains for the fabrication of efficient perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3217-3225.	2.7	24

ARTICLE IF CITATIONS Efficient Nanorod Array Perovskite Solar Cells: A Suitable Structure for High Strontium Substitution 732 4.0 9 in Nature. ACS Applied Materials & amp; Interfaces, 2020, 12, 10515-10526. Effects of halogen substitutions on the properties of CH3NH3Sn0.5Pb0.5I3 perovskites. Computational 733 1.4 Materials Science, 2020, 177, 109576. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I_{1â⁻x}Br_x3</sub>alloy. Physical Chemistry Chemical Physics, 2020, 734 1.3 18 22, 11943-11955. Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy and Environmental Science, 2020, 13, 1776-1787. Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. 736 9.5 21 Coordination Chemistry Reviews, 2020, 415, 213316. Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells. Organic Electronics, 2020, 82, 105714. 1.4 Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite 738 Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 1.5 21 9611-9621. Organicâ€inorganic Hybrid ([BrCH₂CH₂N(CH₃)₃]⁺₂[CdBr₄]<sup>2 739 with Unusual Ferroelectric and Switchable Dielectric Bifunctional Properties over Different Temperature Range. Chemistry - an Asian Journal. 2020. 15. 1621-1626. Recent advances on synthesis and applications of lead- and tin-free perovskites. Journal of Alloys and 740 2.8 19 Compounds, 2020, 835, 155112. Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 741 5.6 129 1903389. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano 742 8.2 54 Energy, 2020, 74, 104846. Understanding the Film Formation Kinetics of Sequential Deposited Narrowâ€Bandgap Pb–Sn Hybrid 743 Perovskite Films. Advanced Energy Materials, 2020, 10, 2000566. Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093. 744 4.6 43 Investigation of structural, electronic, optical and thermoelectric properties of Ethylammonium tin iodide (CH3CH2NH3SnI3): An appropriate hybrid material for photovoltaic application. Materials Science in Semiconductor Processing, 2020, 115, 105111. 745 1.9 High-Temperature Switchable Dielectric of an Organic–Inorganic Hybrid Metal Halide with Four-fold 746 2.0 6 Cross-Linking Inorganic Anion Spiral Chains. ACS Applied Electronic Materials, 2020, 2, 1421-1425. Synergistic effect of MACl and DMF towards efficient perovskite solar cells. Organic Electronics, 2021, 88, 106005. 747 1.4 Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. 748 6.6 14 Chemical Engineering Journal, 2021, 420, 127579. Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX₃ (X=Cl, Br, and I) 749 1.6 Perovskite Nanocrystals. Angewandte Chemie, 2021, 133, 670-675.

#	Article	IF	CITATIONS
750	<scp>Firstâ€principles</scp> spectroscopic screening of hybrid perovskite (<scp> CH ₃ CH) Tj ETQ potential photovoltaic absorber. International Journal of Energy Research, 2021, 45, 908-919.</scp>	9q0 0 0 rgE 2.2	T /Overlock
751	Interfacial engineering in lead-free tin-based perovskite solar cells. Journal of Energy Chemistry, 2021, 57, 147-168.	7.1	55
752	Effects of guanidinium cations on structural, optoelectronic and photovoltaic properties of perovskites. Journal of Energy Chemistry, 2021, 58, 48-54.	7.1	21
753	Comparison of the effects of Sr2+ and Ca2+ substitution on the structural and electronic properties of the perovskites CH3NH3Pb1-Y I3 (Y Sr, Ca) by using the Density Functional Theory. Physica B: Condensed Matter, 2021, 600, 412579.	1.3	3
754	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics. Nano Energy, 2021, 81, 105634.	8.2	48
755	ASnX ₃ —Better than Pbâ€based Perovskite. Nano Select, 2021, 2, 159-186.	1.9	5
756	Perovskite-based tandem solar cells. Science Bulletin, 2021, 66, 621-636.	4.3	91
757	Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Science China Chemistry, 2021, 64, 218-227.	4.2	37
758	The effects of cation and halide anion on the electronic and optical properties of Ti-based double perovskite: A first-principles calculations. Journal of Physics and Chemistry of Solids, 2021, 150, 109852.	1.9	9
759	[(CH3)3N(CH2)2Br]2[CoBr4] halogenometallate complex: crystal structure, high-temperature reversible phase transition, electrical and optical properties. Journal of Molecular Structure, 2021, 1231, 129684.	1.8	7
760	High‣fficiency Tin Halide Perovskite Solar Cells: The Chemistry of Tin (II) Compounds and Their Interaction with Lewis Base Additives during Perovskite Film Formation. Solar Rrl, 2021, 5, .	3.1	50
761	First-principles calculations of structural, electronic, and optical properties of double perovskites Cs2Sn1-B l6 (BÂ=ÂSi, Ge; xÂ=Â0, 0.25, 0.50, 0.75, 1). Chemical Physics, 2021, 542, 111075.	0.9	11
762	Screening of perovskite materials for solar cell applications by first-principles calculations. Materials and Design, 2021, 198, 109387.	3.3	24
763	Additive engineering for Sn-based PSCs: Enhancement of open-circuit voltage and fill factor. Solar Energy, 2021, 214, 26-50.	2.9	9
764	Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via <scp>scaps</scp> simulation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	75
765	Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics. Coordination Chemistry Reviews, 2021, 429, 213633.	9.5	51
766	One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase. Materials Chemistry and Physics, 2021, 258, 123973.	2.0	25
767	Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX ₃ (X=Cl, Br, and I) Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 660-665.	7.2	55

#	Article	IF	CITATIONS
768	X-ray diffraction – A simplistic approach for perovskite based solar cells degradation studies. Materials Today: Proceedings, 2021, 35, 31-34.	0.9	3
769	Modeling and Simulation of Lead-Free Perovskite Solar Cell Using SCAPS-1D. East European Journal of Physics, 2021, , .	0.1	4
770	Toward highly efficient and stable Sn ²⁺ and mixed Pb ²⁺ /Sn ²⁺ based halide perovskite solar cells through device engineering. Energy and Environmental Science, 2021, 14, 3256-3300.	15.6	49
771	Recent progress of metal-halide perovskite-based tandem solar cells. Materials Chemistry Frontiers, 2021, 5, 4538-4564.	3.2	15
772	Perovskite solar cells: A review of architecture, processing methods, and future prospects. , 2021, , 375-412.		6
773	The role of sodium in stabilizing tin–lead (Sn–Pb) alloyed perovskite quantum dots. Journal of Materials Chemistry A, 2021, 9, 12087-12098.	5.2	9
774	Photon management to reduce energy loss in perovskite solar cells. Chemical Society Reviews, 2021, 50, 7250-7329.	18.7	83
775	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
776	Perovskite-Like Quantum Dots Designed for Advanced Optoelectronic Applications. Engineering Materials, 2021, , 83-108.	0.3	1
777	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
778	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
779	Influence of A site cation on nonlinear band gap dependence of 2D Ruddlesden–Popper A ₂ Pb _{1â^'x} Sn _x I ₄ perovskites. Materials Advances, 2021, 2, 5254-5261.	2.6	3
780	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
781	Blue-light-excited narrowing red photoluminescence in lead-free double perovskite Cs _{2â^'<i>x</i>} K _{<i>x</i>} Ag _{0.6} Na _{0.4} In _{0.8} Bi _{ with cryogenic effects. Inorganic Chemistry Frontiers, 2022, 9, 1879-1889.}	> 0. ∅	> £ l≺sub>6â
782	On the Investigation of Interface Defects of Solar Cells: Lead-Based vs Lead-Free Perovskite. IEEE Access, 2021, 9, 130221-130232.	2.6	46
783	Band-Gap Tuning in All-Inorganic CsPb <i>_x</i> Sn _{1–<i>x</i>} Br ₃ Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 4203-4210.	4.0	24
784	Low photoactive phase temperature all-inorganic, tin–lead mixed perovskite solar cell. RSC Advances, 2021, 11, 3264-3271.	1.7	6
785	Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1995-2000.	3.2	5

#	Article	IF	CITATIONS
786	Perovskite solar cells. , 2021, , 249-281.		5
787	The limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
788	Stable deep blue emission with unity quantum yield in organic–inorganic halide perovskite 2D nanosheets doped with cerium and terbium at high concentrations. Journal of Materials Chemistry C, 2021, 9, 2437-2454.	2.7	15
789	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	2.5	43
790	Preferred Film Orientation to Achieve Stable and Efficient Sn–Pb Binary Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 10822-10836.	4.0	16
791	An investigation of physical properties and photovoltaic performance of methylammonium lead-tin iodide (CH ₃ NH ₃ Sn ₁ -xPbxI ₃) solar cells. Microelectronics International, 2021, 38, 23-32.	0.4	0
792	Perovskite Solar Cells toward Eco-Friendly Printing. Research, 2021, 2021, 9671892.	2.8	18
793	Composition-Dependent Struggle between lodine and Tin Chemistry at the Surface of Mixed Tin/Lead Perovskites. ACS Energy Letters, 2021, 6, 969-976.	8.8	27
794	Monte-Carlo Study of Ion-Sputtering Parameters and Ab-Initio Calculations of Selected Perovskites for Solar-Powered Electricity. IOP Conference Series: Earth and Environmental Science, 2021, 655, 012061.	0.2	0
795	Recent advances in perovskite/organic integrated solar cells. Rare Metals, 2021, 40, 2763-2777.	3.6	26
796	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	8.8	81
797	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	10.2	57
798	Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Solar Energy, 2021, 217, 40-48.	2.9	146
800	Strain in perovskite solar cells: origins, impacts and regulation. National Science Review, 2021, 8, nwab047.	4.6	127
801	Design and simulation of high efficiency lead-free heterostructure perovskite solar cell using SCAPS-1D. Optik, 2021, 229, 166258.	1.4	54
802	Grain Boundary Passivation with Dion–Jacobson Phase Perovskites for Highâ€Performance Pb–Sn Mixed Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000681.	3.1	22
803	Comparative Study on the Performance of Different Leadâ€Based and Leadâ€Free Perovskite Solar Cells. Advanced Theory and Simulations, 2021, 4, 2100027.	1.3	39
804	Suppression of Nonradiative Recombination by Vacuumâ€Assisted Process for Efficient Leadâ€Free Tin Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100135.	1.9	20

#	Article	IF	Citations
" 805	Oneâ€Source Strategy Boosting Dopantâ€Free Hole Transporting Layers for Highly Efficient and Stable	7.8	50
805	CsPbl ₂ Br Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010696.	7.0	50
806	Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Research, 2021, 14, 3773-3794.	5.8	27
807	Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?. Journal of Materials Research, 2021, 36, 1794-1804.	1.2	20
808	Monolithic all-perovskite tandem solar cells: recent progress and challenges. Journal of the Korean Ceramic Society, 2021, 58, 399-413.	1.1	14
809	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	7.8	16
810	Emerging potential photovoltaic absorber hybrid halide perovskites (<scp> CH ₃ CH) Tj ETQq1 1 0. International Journal of Energy Research, 2021, 45, 15231-15244.</scp>	784314 rg 2.2	BT /Overlock 10
811	Suppressed Oxidation and Photodarkening of Hybrid Tin Iodide Perovskite Achieved with Reductive Organic Small Molecule. ACS Applied Energy Materials, 2021, 4, 4704-4710.	2.5	10
812	Assessment of Molecular Additives on the Lifetime of Carbon-Based Mesoporous Perovskite Solar Cells. Energies, 2021, 14, 1947.	1.6	4
813	Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS Applied Materials & Interfaces, 2021, 13, 16567-16575.	4.0	10
814	Structural phase transition, vibrational analysis, ionic conductivity and conduction mechanism studies in an organic-inorganic hybrid crystal: [N(CH3)3H]2CdCl4. Journal of Solid State Chemistry, 2021, 296, 122021.	1.4	15
815	High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter, 2021, 4, 1365-1376.	5.0	51
816	Review on persistent challenges of perovskite solar cells' stability. Solar Energy, 2021, 218, 469-491.	2.9	80
817	Chiral Perovskites for Nextâ€Generation Photonics: From Chirality Transfer to Chiroptical Activity. Advanced Materials, 2021, 33, e2005760.	11.1	107
818	Structural, Electronic, and Optical Properties of the Vacancy-Ordered Bismuth–Antimony Perovskites (CH3NH3)3(Bi1–xSbx)2I9. Journal of Physical Chemistry C, 2021, 125, 8938-8946.	1.5	5
819	The Fascinating Properties of Tin-Alloyed Halide Perovskites. ACS Energy Letters, 2021, 6, 1803-1810.	8.8	47
820	Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Applied Materials & Interfaces, 2021, 13, 17141-17157.	4.0	64
821	Charge Carrier Dynamics in Sn-Doped Two-Dimensional Lead Halide Perovskites Studied by Terahertz Spectroscopy. Frontiers in Energy Research, 2021, 9, .	1.2	6
822	Unified theory for light-induced halide segregation in mixed halide perovskites. Nature Communications, 2021, 12, 2687.	5.8	70

<u> </u>			~	
(15	ΓΔΤΙ	ON	Rep	OPT
			IVE F	

#	Article	IF	CITATIONS
823	Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D. Nanomaterials, 2021, 11, 1218.	1.9	81
824	A new lead free double perovskites K2Ti(Cl/Br)6; a promising materials for optoelectronic and transport properties; probed by DFT. Materials Chemistry and Physics, 2021, 264, 124435.	2.0	42
825	Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. Advanced Energy Materials, 2021, 11, 2100784.	10.2	35
826	Comparative performance analysis of mixed halide perovskite solar cells with different transport layers and back metal contacts. Semiconductor Science and Technology, 2021, 36, 065010.	1.0	22
827	Morphology evolution towards ultra-stable mixed tin-lead perovskite via compositional engineering. Solid State Sciences, 2021, 115, 106586.	1.5	6
828	Exploring inorganic and nontoxic double perovskites Cs2AgInBr6(1â^²x)Cl6x from material selection to device design in material genome approach. Journal of Alloys and Compounds, 2021, 862, 158575.	2.8	7
829	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
830	Real-Time Investigation of Sn(II) Oxidation in Pb-Free Halide Perovskites by X-ray Absorption and Mössbauer Spectroscopy. ACS Applied Energy Materials, 2021, 4, 4327-4332.	2.5	9
831	Improving Photovoltaic Performance of Pb‣ess Halide Perovskite Solar Cells by Incorporating Bulky Phenylethylammonium Cations. Energy Technology, 2021, 9, 2100176.	1.8	1
832	Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics, 2021, 15, 411-425.	15.6	195
833	Chemical Vapor Deposited Mixed Metal Halide Perovskite Thin Films. Materials, 2021, 14, 3526.	1.3	3
834	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials, 2021, 6, 986-1002.	23.3	121
835	Optoelectronic Properties of Tin–Lead Halide Perovskites. ACS Energy Letters, 2021, 6, 2413-2426.	8.8	72
836	Perovskite Quantum Dot Solar Cells: An Overview of the Current Advances and Future Perspectives. Solar Rrl, 2021, 5, 2100205.	3.1	12
837	Structural, morphological and thermodynamic parameters investigation of tunable MAPb1â^'xCdxBr3–2xI2x hybrid perovskite. Journal of Alloys and Compounds, 2021, 866, 158936.	2.8	13
838	Unveiling Roles of Tin Fluoride Additives in Highâ€Efficiency Lowâ€Bandgap Mixed Tinâ€Lead Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101045.	10.2	101
839	Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Solar Energy, 2021, 221, 99-108.	2.9	68
840	Synthesis, Thermal Analysis, Optical, Electric Properties and Conduction Mechanism of Hybrid Halogenometallates: [N(C ₂ H ₅) ₄] ₂ CoCl ₄ . Journal of the Physical Society of Japan, 2021, 90, 074709.	0.7	2

#	Article	IF	Citations
841	Surface Defect Passivation of Pb–Snâ€Alloyed Perovskite Film by 1,3â€Propanediammonium lodide toward Highâ€Performance Photovoltaic Devices. Solar Rrl, 2021, 5, 2100299.	3.1	7
842	Light emission from halide perovskite semiconductors: bulk crystals, thin films, and nanocrystals. Journal Physics D: Applied Physics, 2021, 54, 383001.	1.3	17
843	Nontoxic and Less Toxic Hybrid Perovskites: a Synergistic Strategy for Sustainable Photovoltaic Devices. Solar Rrl, 2021, 5, 2100212.	3.1	10
844	Bulk Rashba Effect Splitting and Suppression in Polymorphs of Metal Iodine Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 7245-7251.	2.1	9
845	New <scp>leadâ€free</scp> double perovskites <scp> X ₂ GeI ₆ </scp> (XÂ=ÂK, Rb,) 1 of Energy Research, 2021, 45, 19645-19652.	j ETQq0 0 2.2	0 rgBT /Ovei 20
846	Modulated Crystallization and Reduced <i>V</i> _{OC} Deficit of Mixed Lead–Tin Perovskite Solar Cells with Antioxidant Caffeic Acid. ACS Energy Letters, 2021, 6, 2907-2916.	8.8	68
847	Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions. Advanced Energy Materials, 2021, 11, 2101447.	10.2	52
848	A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations. Journal of Materials Science: Materials in Electronics, 2021, 32, 18466-18511.	1.1	8
849	Origin of anomalous band-gap bowing in two-dimensional tin-lead mixed perovskite alloys. Physical Review B, 2021, 104, .	1.1	9
850	Crystal Chemical Insights on Lead Iodide Perovskites Doping from Revised Effective Radii of Metal Ions. , 2021, 3, 1377-1384.		3
851	Lead-free perovskites: growth, properties, and applications. Science China Materials, 2021, 64, 2889-2914.	3.5	12
852	Highly Emissive and Stable Cs ₂ AgInCl ₆ Double Perovskite Nanocrystals by Bi ³⁺ Doping and Potassium Bromide Surface Passivation. Journal of Physical Chemistry C, 2021, 125, 18372-18379.	1.5	15
853	Perovskite based gas sensors: thin-film versus capillary-filled microchannel designs. , 2021, , .		0
854	Perovskite/silicon tandem photovoltaics: Technological disruption without business disruption. Applied Physics Letters, 2021, 119, .	1.5	22
855	Construction of 1D perovskite nanowires by Urotropin passivation towards efficient and stable perovskite solar cell. Solar Energy Materials and Solar Cells, 2021, 227, 111119.	3.0	18
856	Sb3+-Doped dual-phase perovskite nanocrystals with strong green luminescence and excellent Water and thermal stability. Materials Research Bulletin, 2021, 140, 111296.	2.7	11
857	Metal Halide Perovskites for Solar Fuel Production and Photoreactions. Journal of Physical Chemistry Letters, 2021, 12, 8292-8301.	2.1	17
858	(INVITED) New Strategies for Solar Cells Beyond the Visible Spectral Range. Optical Materials: X, 2021, 11, 100083.	0.3	7

#	ARTICLE	IF	CITATIONS
859	Stable and sensitive tin-lead perovskite photodetectors enabled by azobenzene derivative for near-infrared acousto-optic conversion communications. Nano Energy, 2021, 86, 106113.	8.2	68
860	Electronic and Optical Properties of C4N2H14-Based Lead-Less Halide Perovskites Investigated by First Principles. Journal of Physical Chemistry C, 2021, 125, 19445-19454.	1.5	0
861	A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Optical and Quantum Electronics, 2021, 53, 1.	1.5	25
862	Progress of Pbâ€Sn Mixed Perovskites for Photovoltaics: AÂReview. Energy and Environmental Materials, 2022, 5, 370-400.	7.3	20
863	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	1.7	19
864	Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D. Optik, 2021, 248, 168060.	1.4	53
865	Origin of bandgap bowing in Cs2Na1â^'x Ag x BiCl6 double perovskite solid-state alloys: a paradigm through scanning tunneling spectroscopy. Journal of Physics Condensed Matter, 2021, 33, 485701.	0.7	4
866	Common Defects Accelerate Charge Carrier Recombination in CsSnl ₃ without Creating Mid-Gap States. Journal of Physical Chemistry Letters, 2021, 12, 8699-8705.	2.1	31
867	Passively Q-switched Tm:YAP laser with a lead zirconate titanate saturable absorber. Applied Optics, 2021, 60, 8097.	0.9	6
868	Magnetic Properties in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films by Mn Doping. Journal of Physical Chemistry C, 2021, 125, 20104-20112.	1.5	12
869	Hot carrier redistribution, electron-phonon interaction, and their role in carrier relaxation in thin film metal-halide perovskites. Physical Review Materials, 2021, 5, .	0.9	8
870	Analysis of Hybrid Hetero-Homo Junction Lead-Free Perovskite Solar Cells by SCAPS Simulator. Energies, 2021, 14, 5741.	1.6	33
871	A Narrow Bandgap of 2D Ruddlesdenâ€Popper Bilayer Perovskite with Giant Entropy Change and Photoluminescence. Chemistry - A European Journal, 2021, 27, 15716-15721.	1.7	12
872	Solution-processable infrared photodetectors: Materials, device physics, and applications. Materials Science and Engineering Reports, 2021, 146, 100643.	14.8	49
873	Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy, 2021, 88, 106219.	8.2	20
874	Guanidinium cation passivated Pb-Cu alloyed perovskite for efficient low-toxicity solar cells. Applied Surface Science, 2021, 567, 150778.	3.1	6
875	The structural, electronic and optical properties of all-inorganic CsPb1â^'Sn Br3 perovskite: A theoretical study. Computational and Theoretical Chemistry, 2021, 1205, 113444.	1.1	2
876	Efficient photocatalytic toluene selective oxidation over Cs3Bi1.8Sb0.2Br9 Nanosheets: Enhanced charge carriers generation and C–H bond dissociation. Chemical Engineering Science, 2022, 247, 116983.	1.9	32

#	Article	IF	Citations
877	Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. Journal of Energy Chemistry, 2022, 65, 371-404.	7.1	36
878	Effects of Co2+doping and magnetic field actions on the stability and efficiency of perovskite solar cells and their mechanisms. Journal of Alloys and Compounds, 2022, 891, 161910.	2.8	3
879	Metal Oxides for Perovskite Solar Cells. , 2021, , 197-233.		3
880	Unraveling the compositional heterogeneity and carrier dynamics of alkali cation doped 3D/2D perovskites with improved stability. Materials Advances, 2021, 2, 1253-1262.	2.6	23
881	Leadâ€Less Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000616.	3.1	25
882	Electronic Structure and Thermoelectric Properties of Semiconductors K ₂ GeSiX ₆ (X=F, Cl, Br and I) Compounds: Ab-Initio Investigation. Spin, 2021, 11, .	0.6	4
883	Synthesis of two-dimensional phenylethylamine tin–lead halide perovskites with bandgap bending behavior. Nanoscale Advances, 2021, 3, 3875-3880.	2.2	7
884	Lead-Free Perovskite Materials for Solar Cells. Nano-Micro Letters, 2021, 13, 62.	14.4	175
885	Isosymmetric compression of cubic halide perovskites \$\$mathrm{ABX}_{3}\$\$ (\$\$A=K, Rb, Cs\$\$;) Tj ETQq0 0 0 r Applied Sciences, 2021, 3, 1.	rgBT /Over 1.5	lock 10 Tf 50 11
886	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
887	Recent Development of Organic-Inorganic Perovskite-Based Tandem Solar Cells. Solar Rrl, 2017, 1, 1700045.	3.1	32
888	Perovskite Photovoltaics: From Laboratory to Industry. Springer Series in Optical Sciences, 2020, , 219-255.	0.5	9
889	Hybrid Halide Perovskites: Fundamental Theory and Materials Design. , 2020, , 295-324.		2
890	Magnetic, Electronic, and Optical Properties of Perovskite Materials. Materials Horizons, 2020, , 43-59.	0.3	6
891	Exploring performances of hybrid perovskites tin-based photovoltaic solar cells: Non-equilibrium Green's functions and macroscopic approaches. Physica B: Condensed Matter, 2020, 591, 412247.	1.3	13
892	Stable lead-free perovskite solar cells: A first-principles investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118493.	2.0	7
893	An Emerging All-Inorganic CsSn _{<i>x</i>} Pb _{1–<i>x</i>} Br ₃ (0 â‰₱Tj ETQ Properties. Journal of Physical Chemistry C, 2020, 124, 13434-13446.	1.5 q0 0 0 rgB	T /Overlock 16
894	Lead Free Two-Dimensional Mixed Tin and Germanium Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2021, 125, 74-81.	1.5	29

#	Article	IF	CITATIONS
895	Surface-Activated Corrosion in Tin–Lead Halide Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3344-3351.	8.8	55
896	Chapter 8. First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects. RSC Energy and Environment Series, 2016, , 234-296.	0.2	2
897	CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells. Inorganic Materials Series, 2019, , 153-192.	0.5	6
898	Solar energy storage in a Cs ₂ AgBiBr ₆ halide double perovskite photoelectrochemical cell. Chemical Communications, 2020, 56, 7329-7332.	2.2	10
899	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
900	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	1.3	44
901	Lead-free metal-halide double perovskites: from optoelectronic properties to applications. Nanophotonics, 2021, 10, 2181-2219.	2.9	33
902	Advances in Dion-Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics, 2021, 10, 2069-2102.	2.9	38
903	The effect of divalent europium doping on stability and electronic properties of CH ₃ NH ₃ PbI ₃ : a theoretical investigation. Applied Physics Express, 2020, 13, 101001.	1.1	2
904	Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038401.	0.2	16
905	Lead-lean and MA-free perovskite solar cells with an efficiency over 20%. Joule, 2021, 5, 2904-2914.	11.7	39
906	The Future of Hybrid and Inorganic Perovskite Materials: Technology Forecasting. Energy Technology, 2021, 9, 2100376.	1.8	2
907	Electronic and optical properties of bulk and surface of CsPbBr3 inorganic halide perovskite a first principles DFT 1/2 approach. Scientific Reports, 2021, 11, 20622.	1.6	35
908	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Advanced Materials, 2022, 34, e2104661.	11.1	37
909	Highâ€Performance Tin–Lead Mixedâ€Perovskite Solar Cells with Vertical Compositional Gradient. Advanced Materials, 2022, 34, e2107729.	11.1	88
910	Tin-based perovskite solar cells: Further improve the performance of the electron transport layer-free structure by device simulation. Solar Energy, 2021, 230, 345-354.	2.9	32
911	Technological Progress Towards Commercialization of Organometal Halide Perovskite Solar Cells. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 776-791.	0.0	1
912	Comparison of the sensitized and heterojunction solar cells based on the Sn/Pb alloy perovskites. , 2015, , .		0

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
913	3.éžPbç³»ãfšãfãf−ã,¹ã,«ã,ãf^åž‹å¤é™1⁄2é›»æ±ã®ç"ç©¶é−‹ç™ºå‹•å'. Electrochemistry, 2016, 84, 449-453.	0.6	0
914	Progress in Pb-free and less-Pb organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 028801.	0.2	4
915	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0
916	Research progress of solution processed all-inorganic perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158806.	0.2	4
917	Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells. Ceramist, 2019, 22, 146-169.	0.0	1
918	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
919	Investigation of Cation Exchange Behaviors of FAxMA1â^'xPbI3 Films Using Dynamic Spin-Coating. Materials, 2021, 14, 6422.	1.3	0
921	The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dionâ^'Jacobson Perovskites with Aromatic Spacers. Journal of Physical Chemistry Letters, 2021, 12, 10325-10332.	2.1	23
922	Progress in Perovskite Solar Cells towards Commercialization—A Review. Materials, 2021, 14, 6569.	1.3	10
923	Polyvinylpyrrolidone capped electrospun CH3NH3PbCl3 perovskite film as the electron transport layer in perovskite solar cell application. Solar Energy, 2021, 230, 390-400.	2.9	8
924	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. , 2020, , 259-281.		1
925	Transmission of Sound via a Perovskite Solar Cell. International Journal of Energy, 2020, 14, 83-87.	0.1	0
926	Methylhydrazinium lead iodide – one dimensional chain phase with excitonic absorption and large energy band gap. Journal of Molecular Structure, 2022, 1249, 131660.	1.8	8
927	Effect of the decrease of Pb concentration on the properties of pentarnary mixed-halide perovskites CsPb8-xSnxlBr2 and CsPb8-xSnxl2Br (1â‰竊‰尋) for solar-cell applications: A DFT study. Journal of Physics and Chemistry of Solids, 2022, 161, 110429.	1.9	3
928	Two-dimensional nanomaterials and their derivatives for laser protection. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184201.	0.2	4
936	Efficient Zn-Alloyed Low-Toxicity Quasi-Two-Dimensional Pure-Red Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 55412-55419.	4.0	3
939	Strategies for chemical vapor deposition of two-dimensional organic-inorganic halide perovskites. IScience, 2021, 24, 103486.	1.9	11
940	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection. Advanced Materials, 2022, 34, e2106160.	11.1	18

#	Article	IF	CITATIONS
941	Studying the influence of heat treatment on structural and morphological properties of thin CH3NH3PbI3-xClx films prepared by spin coating method. AIP Conference Proceedings, 2021, , .	0.3	1
942	Broadband light emitting zero-dimensional antimony and bismuth-based hybrid halides with diverse structures. Journal of Materials Chemistry C, 2021, 9, 15942-15948.	2.7	18
943	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
944	Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites. Chemistry - A European Journal, 2022, 28, .	1.7	18
945	Study on bandgap predications of ABX3-type perovskites by machine learning. Organic Electronics, 2022, 101, 106426.	1.4	21
946	Numerical investigation of solar cells based on hybrid organic cation perovskite with inorganic HTL via SCAPS-1D. Chinese Journal of Physics, 2022, 76, 94-109.	2.0	19
947	Aryl quaternary ammonium modulation for perovskite solar cells with improved efficiency and stability. Nano Energy, 2022, 94, 106922.	8.2	18
948	Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 420-438.	7.1	27
949	Review of current progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 330-386.	7.1	65
950	Structural Dynamics of Metal Halide Perovskites during Photoinduced Halide Segregation. ACS Applied Materials & Interfaces, 2022, 14, 4335-4343.	4.0	13
951	Efficient and Stable Methylammonium-Free Tin-Lead Perovskite Solar Cells with Hexaazatrinaphthylene-Based Hole-Transporting Materials. ACS Applied Materials & Interfaces, 2022, 14, 6852-6858.	4.0	13
952	Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 038801.	0.2	0
953	Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. Journal of Physical Chemistry C, 2022, 126, 2184-2198.	1.5	40
954	Recent Progress and Future Prospects for Light Management of Allâ€Perovskite Tandem Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	16
955	Design and Comparative Performance Analysis of Highâ€Efficiency Leadâ€Based and Leadâ€Free Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	15
956	Investigation of Double-Layered Pb-Sn Perovskite Absorbers: Formation, Structure, Band Alignment, and Stability. Journal of Physical Chemistry C, 2022, 126, 1623-1634.	1.5	3
957	Framework structure materials in photovoltaics based on perovskites 3D. , 2022, 5, .		0
958	Recent Advances of Monolithic <scp>Allâ€Perovskite</scp> Tandem Solar Cells: From Materials to Devices. Chinese Journal of Chemistry, 2022, 40, 856-871.	2.6	11

#	Article	IF	CITATIONS
959	Monolithic Allâ€Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses. Advanced Materials, 2022, 34, e2110053.	11.1	36
960	A GGAÂ+ÂvdW study on electronic properties and optoelectronic functionality of Cd-doped tetragonal CH3NH3PbI3 for photovoltaics. Chemical Physics, 2022, 556, 111461.	0.9	1
961	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	2.6	17
962	Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7796-7804.	4.0	53
963	Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Letters, 2022, 7, 966-974.	8.8	111
964	Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: Theoretical insights. Optical Materials, 2022, 125, 112057.	1.7	18
965	Towards Up-Scaling the 4-Terminal All-Perovskite Tandem Solar Modules on Flexible Substrates. SSRN Electronic Journal, 0, , .	0.4	0
966	SCAPS simulated FASnI ₃ and MASnI ₃ based PSC solar cells: A comparison of device performance. IOP Conference Series: Materials Science and Engineering, 2022, 1219, 012048.	0.3	8
967	Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites. Opto-Electronic Advances, 2022, 5, 200051-200051.	6.4	7
968	Towards Up-Scaling the 4-Terminal All-Perovskite Tandem Solar Modules on Flexible Substrates. SSRN Electronic Journal, 0, , .	0.4	0
969	Data-driven design of novel halide perovskite alloys. Energy and Environmental Science, 2022, 15, 1930-1949.	15.6	26
970	A Review of Three-Dimensional Tin Halide Perovskites as Solar Cell Materials. Materials Research, 0, 25,	0.6	5
971	Highâ€Efficiency Nonâ€Toxic 2â€Terminal and 4â€Terminal Perovskiteâ€Transition Metal Dichalcogenide Tandem Solar Cells. Advanced Theory and Simulations, 2022, 5, .	1.3	7
972	High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.	13.1	121
973	Accelerated screening of functional atomic impurities in halide perovskites using high-throughput computations and machine learning. Journal of Materials Science, 2022, 57, 10736-10754.	1.7	10
974	Hybrid Halide Perovskiteâ€Based Nearâ€Infrared Photodetectors and Imaging Arrays. Advanced Optical Materials, 2022, 10, .	3.6	35
975	Adenosine Triphosphate Disodium Modified Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. ChemNanoMat, 2022, 8, .	1.5	2
976	New Pb-Free Stable Sn–Ge Solid Solution Halide Perovskites Fabricated by Spray Deposition. ACS Applied Energy Materials, 2022, 5, 3638-3646.	2.5	20

#	ARTICLE	IF	CITATIONS
977	Using Ligand Engineering to Produce Efficient and Stable Pb–Sn Perovskite Solar Cells with Antioxidative 2D Capping Layers. ACS Applied Materials & Interfaces, 2022, 14, 14729-14738.	4.0	8
978	High-Detectivity UV–Vis–NIR Broadband Perovskite Photodetector Using a Mixed Pb–Sn Narrow-Band-Gap Absorber and a NiO <i>_x</i> Electron Blocker. ACS Applied Electronic Materials, 2022, 4, 1206-1213.	2.0	6
979	Theoretical modelling of high-efficiency perovskite solar cells and reduction of internal heat generation using hot-electron extraction. Optical and Quantum Electronics, 2022, 54, 1.	1.5	0
980	Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering. Journal of Physical Chemistry Letters, 2022, 13, 3130-3137.	2.1	12
981	Optoelectronic Analysis of Bismuth Sulfide and Copper-Doped Bismuth Sulfide Thin Films. Jom, 2022, 74, 2809-2816.	0.9	9
982	Pbl ₂ Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd) ₂ and HI. Chemistry of Materials, 2022, 34, 2553-2561.	3.2	2
983	Structural stability and optical properties of tin-based iodide perovskite. Japanese Journal of Applied Physics, 2022, 61, 031003.	0.8	4
984	2D Graphene-Like Pb-Free Perovskite Semiconductor CsSb(Br _{1–<i>x</i>} I _{<i>x</i>}) ₄ with Quasi-linear Electronic Dispersion and Direct Bandgap Close to Germanium. ACS Applied Materials & Interfaces, 2022, , .	4.0	2
985	Structural, electronic and optoelectronic properties of asymmetric organic ligands in Dion-Jacobson phase perovskites. Solid State Communications, 2022, 350, 114761.	0.9	4
986	A Selective Targeting Anchor Strategy Affords Efficient and Stable Idealâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2022, 34, e2110241.	11.1	44
987	Bandgap Tuning and Input Parameter Optimization for Leadâ€Free Allâ€Inorganic Single, Double, and Ternary Perovskiteâ€Based Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
988	Crystallization Regulation and Morphological Evolution for HTMâ€free Tin‣ead (1.28eV) Alloyed Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	8
989	Bandgap Correction and Spin-Orbit Coupling Induced Absorption Spectra of Dimethylammonium Lead Iodide for Solar Cell Absorber. Frontiers in Energy Research, 2021, 9, .	1.2	1
990	Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nature Communications, 2021, 12, 7277.	5.8	60
991	β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 11772-11778.	2.1	14
992	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	1.3	3
993	Understanding the Limitations of Charge Transporting Layers in Mixed Lead–Tin Halide Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	13
994	Multifunction Sandwich Structure Based on Diffusible 2-Chloroethylamine for High-Efficiency and Stable Tin–Lead Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 118-129.	2.1	6

#	Article	IF	CITATIONS
995	A review on monolithic perovskite/c-Si tandem solar cells: progress, challenges, and opportunities. Journal of Materials Chemistry A, 2022, 10, 10811-10828.	5.2	11
996	Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604, 280-286.	13.7	181
997	Optical absorption and stability enhancement in mixed lead, tin, and germanium hybrid halide perovskites for photovoltaic applications. Vacuum, 2022, 201, 111106.	1.6	8
998	Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications. Nano Energy, 2022, 98, 107270.	8.2	35
1000	Semitransparent near-infrared Sn–Pb hybrid perovskite photodetectors. Journal of Materials Chemistry C, 2022, 10, 13878-13885.	2.7	12
1001	Theoretical Modelling of Perovskite-Kesterite Tandem Solar Cells for Optimal Photovoltaic Performance. SSRN Electronic Journal, 0, , .	0.4	0
1003	Performance Analysis of Lead-Free Perovskite Solar Cells. Lecture Notes in Networks and Systems, 2022, , 629-638.	0.5	3
1004	Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI3-Based Solar Cells. Materials, 2022, 15, 3229.	1.3	25
1005	Monolithic perovskite/c-Si tandem solar cell: Progress on numerical simulation. , 2022, 1, .		5
1006	Synthesis, Structure, and Tunability of Zero-Dimensional Organic–Inorganic Metal Halides Utilizing the <i>m</i> Xylylenediammonium Cation: MXD ₂ Pbl ₆ , MXDBil ₅ , and MXD ₃ Bi ₂ Br ₁₂ ·2H ₂ O. Crystal Growth and Design, 2022, 22, 3815-3823.	1.4	4
1007	Optoelectronic Properties of Mixed Iodide–Bromide Perovskites from First-Principles Computational Modeling and Experiment. Journal of Physical Chemistry Letters, 2022, 13, 4184-4192.	2.1	16
1008	4â€Hydrazinobenzoicâ€Acid Antioxidant for Highâ€Efficiency Sn–Pb Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	10
1009	An efficient and stable lead-free organic–inorganic tin iodide perovskite for photovoltaic device: Progress and challenges. Energy Reports, 2022, 8, 5753-5763.	2.5	14
1010	Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chemical Engineering Journal, 2022, 445, 136769.	6.6	30
1011	Enhanced performance and stability of low-bandgap mixed lead–tin halide perovskite photovoltaic solar cells and photodetectors <i>via</i> defect passivation with UiO-66-NH ₂ metal–organic frameworks and interfacial engineering. Molecular Systems Design and Engineering, 2022, 7, 1073-1084.	1.7	9
1012	Efficient passivation on halide perovskite by tailoring the organic molecular functional groups: First-principles investigation. Applied Surface Science, 2022, 597, 153716.	3.1	6
1013	Simultaneous Optimization of Charge Transport Properties in a Triple-Cation Perovskite Layer and Triple-Cation Perovskite/Spiro-OMeTAD Interface by Dual Passivation. ACS Omega, 2022, 7, 17907-17920.	1.6	2
1014	A review on high performance photovoltaic cells and strategies for improving their efficiency. Frontiers in Energy, 2022, 16, 548-580.	1.2	3

	Сітатіо	on Report	
#	ARTICLE	IF	CITATIONS
1015	Alloying Sb into all inorganic lead-free CsBi ₃ 1 ₁₀ for improving the crystal growth and photovoltaic performance. Journal of Materials Chemistry A, 2022, 10, 19618-19625.	5.2	13
1016	ABO3 Perovskites' Formability Prediction and Crystal Structure Classification using Machine Learning. , 2022, , .		4
1017	Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells. Optical Materials, 2022, 128, 112403.	1.7	22
1018	Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy and Environmental Science, 2022, 15, 3152-3170.	15.6	26
1019	Electronic structure of oxide and halide perovskites. , 2022, , .		0
1020	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	1.0	5
1021	Dual Organic Spacer Cation Quasiâ€2D Sn–Pb Perovskite for Solar Cells and Nearâ€Infrared Photodetectors Application. Advanced Photonics Research, 2022, 3, .	1.7	5
1022	Using low-cost materials for highly efficient eco-friendly formamidinium tin iodide based solar cell with copper oxide as hole transport material and titanium oxide as electron transport material with different metal contacts. Ceramics International, 2022, 48, 29314-29321.	2.3	2
1023	Magnesium doped spinel NiCo2O4 for improved hole extraction in efficient inverted perovskite solar cells. Materials Today Communications, 2022, 31, 103750.	0.9	1
1024	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	8.2	16
1025	Suppressing interface charge recombination for efficient integrated perovskite/organic bulk-heterojunction solar cells. Journal of Power Sources, 2022, 541, 231665.	4.0	6
1027	Wavelength-Tuneable Near-Infrared Luminescence in Mixed Tin–Lead Halide Perovskites. Frontiers in Chemistry, 0, 10, .	1.8	3
1030	Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic–Inorganic Lead-Halide Perovskites. Nano Letters, 2022, 22, 4870-4878.	4.5	24
1031	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	19.8	121
1032	Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. Journal of Physical Chemistry Letters, 2022, 13, 5946-5952.	2.1	18
1036	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
1038	TowardÂup-scaling the four-terminal all-perovskite tandem solar modules on flexible substrates. Materials Today Energy, 2022, 28, 101073.	2.5	5
1039	Fundamental analysis of lead-free CsGeI3 perovskite solar cell. Materials Today: Proceedings, 2022, 67, 180-186.	0.9	5

#	Article	IF	CITATIONS
1040	Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives. Nanomaterials, 2022, 12, 2102.	1.9	13
1041	Synthesis, structural characterization, and spectroscopic studies of bis-tetraethylammonium hexabromostannate [N(C2H5)4]2SnBr6. Journal of Physics and Chemistry of Solids, 2022, , 110841.	1.9	1
1042	Fabrication and amplified spontaneous emission behavior of FAPbBr ₃ perovskite quantum dots in solid polymer rods. Materials Science-Poland, 2022, 40, 84-100.	0.4	1
1043	Sustainable Pb Management in Perovskite Solar Cells toward Ecoâ€Friendly Development. Advanced Energy Materials, 2022, 12, .	10.2	38
1044	Leveraging Hierarchical Chirality in Perovskite(â€Inspired) Halides for Transformative Device Applications. Advanced Energy Materials, 2023, 13, .	10.2	9
1045	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
1046	Recent advances in Pb–Sn mixed perovskite solar cells. Journal of Energy Chemistry, 2022, 73, 615-638.	7.1	12
1047	Metal-cation-mixed lead-less two-dimensional hybrid perovskites with high carrier mobility and promoted light adsorption. Materials Today Physics, 2022, 27, 100769.	2.9	3
1048	Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. Chemical Record, 2022, 22, .	2.9	2
1049	Tuning the Band Gap in the Halide Perovskite CsPbBr ₃ through Sr Substitution. ACS Applied Materials & amp; Interfaces, 2022, 14, 34884-34890.	4.0	11
1050	Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science and Applications, 2022, 11, .	7.7	19
1051	Carbonyl functional group assisted crystallization of mixed tin–lead narrow bandgap perovskite absorber in ambient conditions. Applied Physics Letters, 2022, 121, 073901.	1.5	0
1052	Recent Progress in Cesiumâ€Based Leadâ€Free Halide Double Perovskite Materials for Photovoltaic Applications. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	6
1053	High-performance Fe-Cu composite oxide for selective catalytic reduction of NO with NH3: Driving of Cu on α-Fe2O3. Journal of Environmental Chemical Engineering, 2022, 10, 108481.	3.3	4
1054	MAS and static NMR study on N–Hâ<̄Br hydrogen bond in organic-inorganic perovskite [NH3(CH2)4NH3]CdBr4 crystal. Solid State Communications, 2022, 354, 114917.	0.9	0
1055	The fundamental physical properties of Cs2PtI6 and (CH3NH3)2PtI6. Physica B: Condensed Matter, 2022, 644, 414235.	1.3	1
1056	Review of nanomaterials impact on improving the performance of dye-sensitized and perovskite solar cells. Optical and Quantum Electronics, 2022, 54, .	1.5	6
1057	Recent promise of lead-free halide perovskites in optoelectronic applications. Chemical Engineering Journal, 2023, 451, 138926.	6.6	26

#	Article	IF	CITATIONS
1058	Structure modulation for bandgap engineered vacancy-ordered Cs ₃ Bi ₂ Br ₉ perovskite structures through copper alloying. Journal of Materials Chemistry C, 2022, 10, 12863-12872.	2.7	6
1059	Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials, 2022, , 45-85.	0.3	1
1060	Laserâ€induced Modifiable Dualâ€wavelength Emissions from Lead Halide Perovskite Alloy Microcrystal. Advanced Materials Interfaces, 2022, 9, 2200680.	1.9	0
1061	Theoretical Modeling of Perovskite–Kesterite Tandem Solar Cells for Optimal Photovoltaic Performance. Energy Technology, 2022, 10, .	1.8	3
1062	Solutionâ€Processed Ternary Tin (II) Alloy as Holeâ€Transport Layer of Sn–Pb Perovskite Solar Cells for Enhanced Efficiency and Stability. Advanced Materials, 2022, 34, .	11.1	32
1063	Recent Progress of Eco-friendly Lead-free Halide Perovskite Light-Emitting Diodes. Ceramist, 2022, 25, 332-355.	0.0	0
1064	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Journal of Energy Research, 2022, 46, 21856-21883.	2.2	13
1065	Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 19137-19149.	6.6	46
1066	Gradient doping simulation of perovskite solar cells with CH3NH3Sn1â^'xPbxI3 as the absorber layer. Current Applied Physics, 2022, 44, 55-62.	1.1	3
1067	A practical guide to 3D halide perovskites: Structure, synthesis, and measurement. , 2022, , .		0
1068	Raising the LUMO level of fullerene derivatives alleviates the output voltage loss in tin halide perovskite solar cells. Chemical Communications, 2022, 58, 13007-13010.	2.2	10
1069	Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. ELight, 2022, 2, .	11.9	26
1070	Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency. Journal of Materials Science and Technology, 2023, 140, 33-57.	5.6	5
1071	Snâ€Based Perovskite Halides for Electronic Devices. Advanced Science, 2022, 9, .	5.6	12
1072	Hard and Soft Acid and Base (HSAB) Engineering for Efficient and Stable Snâ€Pb Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	26
1073	Additive Engineering for Highâ€Performance Twoâ€Dimensional Dion–Jacobson Pb–Sn Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	3
1074	An organic-inorganic hybrid cadmium chloride with face-sharing CdCl6 octahedral chains: Synthesis, crystal structure, optical and conduction mechanisms: [NH2(CH3)2]5Cd3Cl11. Optical Materials, 2022, 134, 113100.	1.7	6
1075	The effect of B-site alloying on the electronic and opto-electronic properties of RbPbI3: A DFT study. Physica B: Condensed Matter, 2023, 649, 414384.	1.3	3

#	Article	IF	CITATIONS
1076	Dual passivation of SnO2/Perovskite heterogeneous interfacial defects for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 250, 112088.	3.0	8
1077	Optoelectronic functionality and photovoltaic performance of Sr-doped tetragonal CH3NH3PbI3: A first-principles study. Physica B: Condensed Matter, 2023, 649, 414453.	1.3	1
1078	Lead-Free Perovskite and Improved Processes and Techniques for Creating Future Photovoltaic Cell to Aid Green Mobility. , 0, , .		1
1079	Optoelectronic investigation and simulation study of zinc and cobalt doped lead halide perovskite nanocrystals. Solar Energy, 2022, 247, 553-563.	2.9	6
1080	Minimizing the Voltage Deficit of Tin Halide Perovskite Solar Cells with Hydroxyureaâ€Đoped PEDOT:PSS. Solar Rrl, 2023, 7, .	3.1	7
1081	Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nature Reviews Materials, 2023, 8, 89-108.	23.3	125
1082	The Effect of Short Chain Carboxylic Acids as Additives on the Crystallization of Methylammonium Lead Triiodide (MAPI). Inorganics, 2022, 10, 201.	1.2	0
1083	Comparative Study of the Correlation between Diffusion Length of Charge Carriers and the Performance of CsSnGel ₃ Perovskite Solar Cells. Energy & Fuels, 2022, 36, 14403-14410.	2.5	35
1084	High Efficiency Cs based Perovskite―Silicon Tandem Solar Cells―A Modelling Study. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	3
1085	Red Perovskite Lightâ€Emitting Diodes: Recent Advances and Perspectives. Laser and Photonics Reviews, 2023, 17, .	4.4	19
1086	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	14.8	12
1087	Optoelectronic Properties of MAPbBr3 Perovskite Light-Emitting Diodes Using Anti-Solvent and PEDOT:PSS/PVK Double-Layer Hole Transport Layers. Micromachines, 2022, 13, 2122.	1.4	1
1088	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	10
1089	Highly Sensitive Broadband Phototransistors Based on Gradient Tin/Lead Mixed Perovskites. Small, 2023, 19, .	5.2	3
1090	Perovskite/Perovskite Tandem Solar Cells in the Substrate Configuration with Potential for Bifacial Operation. , 2022, 4, 2638-2644.		8
1091	Onsite and intersite electronic correlations in the Hubbard model for halide perovskites. Physical Review B, 2022, 106, .	1.1	8
1092	Compositional Impact on Structural, Optical and Thermal Properties of Stable Cesium-Tin-Bromide-Chloride Perovskites for Optoelectronic Applications. Journal of Electronic Materials, 0, , .	1.0	0
1093	A comprehensive DFT study to evaluate the modulation in the band gap, elastic, and optical behaviour of CsPbBr ₃ under the effect of stress. Materials Research Express, 2022, 9, 125501.	0.8	6

		_		
Сіт	ATIC	NNE D		
	ALIC	on R	EP.	JRT

#	Article	IF	CITATIONS
1094	Pure Tin Halide Perovskite Solar Cells: Focusing on Preparation and Strategies. Advanced Energy Materials, 2023, 13, .	10.2	16
1095	Comprehensively Improved the Performance of Carbonâ€Based Printed Mesoscopic (FA)CsRbPbI ₃ Solar Cells by 3â€Pyridine Formamide. Energy Technology, 2023, 11, .	1.8	2
1096	Unraveling the Broadband Emission in Mixed Tin‣ead Layered Perovskites. Advanced Optical Materials, 2023, 11, .	3.6	6
1097	Understanding and Minimizing <i>V</i> _{OC} Losses in Allâ€Perovskite Tandem Photovoltaics. Advanced Energy Materials, 2023, 13, .	10.2	28
1098	Realizing High-Detectivity Near-Infrared Photodetectors in Tin–Lead Perovskites by Double-Sided Surface-Preferred Distribution of Multifunctional Tin Thiocyanate Additive. ACS Energy Letters, 2023, 8, 577-589.	8.8	11
1099	Composition Engineering of Perovskite Single Crystals for Highâ€Performance Optoelectronics. Advanced Functional Materials, 2023, 33, .	7.8	17
1100	Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Communications Materials, 2022, 3, .	2.9	36
1101	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
1102	Situation and Perspectives on Tin-Based Perovskite Solar Cells. Sustainability, 2022, 14, 16603.	1.6	0
1103	Design and analysis of lead-free perovskite-CZTSSe based tandem solar cell. Optical and Quantum Electronics, 2023, 55, .	1.5	17
1104	Linkerâ€Based Bandgap Tuning in Conductive MOF Solid Solutions. Small, 2023, 19, .	5.2	6
1105	Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl ₃ (A = K, Rb, and Cs). Japanese Journal of Applied Physics, 2023, 62, 011002.	0.8	18
1106	Improved Defect Tolerance and Charge Carrier Lifetime in Tin–Lead Mixed Perovskites: Ab Initio Quantum Dynamics. Journal of Physical Chemistry Letters, 2023, 14, 499-507.	2.1	6
1107	The nonhalides in perovskite solar cells. Materials Chemistry Frontiers, 2023, 7, 789-805.	3.2	6
1108	Inorganic tin-based perovskite solar cells: Modeling and performance analysis of hole transport layer-free structures. Chemical Physics Letters, 2023, 813, 140295.	1.2	3
1109	Electronic and optical properties of leadâ€free double perovskites A ₂ BCl ₆ (A = Rb, Cs; B = Si, Ge, Sn) for solar cell applications: A systematic computational study. Journal Physical Organic Chemistry, 2023, 36, .	ത്.9	3
1110	Lead-free halide perovskites. , 2023, , 187-237.		0
1111	Zn ²⁺ ion doping for structural modulation of lead-free Sn-based perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 10605-10611.	5.2	2

			0
#	ARTICLE	IF	CITATIONS
1112	Pseudohalide-Modulated Crystallization for Efficient Quasi-2D Tin Perovskite Solar Cells with Minimized Voltage Deficit. , 2023, 5, 936-943.		8
1113	Transition metal dichalcogenides solar cells and integration with perovskites. Nano Energy, 2023, 108, 108249.	8.2	19
1114	A new D-A-D type benzodithiazole-based hole transport material for Sn-Pb perovskite solar cells with high efficiency and stability. Journal of Alloys and Compounds, 2023, 948, 169801.	2.8	3
1115	Reduced <i>V</i> _{OC} Deficit of Mixed Lead–Tin Perovskite Solar Cells via Strainâ€Releasing and Synergistic Passivation Additives. Small Methods, 2023, 7, .	4.6	6
1116	A Review on the Progress, Challenges, and Performances of Tin-Based Perovskite Solar Cells. Nanomaterials, 2023, 13, 585.	1.9	17
1117	2D/3D Perovskite: A Step toward Commercialization of Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	11
1118	The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (MÂ=ÂIn, Tl, Sb, bi; X Â=ÂCl, Br, I). Computational Materials Science, 2023, 220, 112058.	1.4	13
1119	Double-perovskite van der Waals heterostructure Cs2NaInCl6-XS2 (X=Cr, Mo, W) as great potential material in photovoltaic devices. Surfaces and Interfaces, 2023, 37, 102734.	1.5	0
1120	Evaluation of Performance Parameters of 2T Perovskite/Si Tandem Solar Cells. , 2022, , .		0
1121	Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic–Inorganic Dion–Jacobson Perovskites. Journal of the American Chemical Society, 2023, 145, 5297-5309.	6.6	24
1122	Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells. Chemical Engineering Journal, 2023, 462, 142122.	6.6	10
1123	Fabrication of an ultrathin PEG-modified PEDOT:PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique. Journal of Materials Chemistry A, 2023, 11, 7246-7255.	5.2	9
1124	Atomic Model for Alkali Metal-Doped Tin–Lead Mixed Perovskites: Insight from Quantum Dynamics. Journal of Physical Chemistry Letters, 2023, 14, 2878-2885.	2.1	5
1125	Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations. Scientific Reports, 2023, 13, .	1.6	0
1126	Metal halide perovskites: promising materials toward next-generation circularly polarized luminescence. Journal of Materials Chemistry C, 2023, 11, 4993-5008.	2.7	4
1127	An Overview of Lead, Tin, and Mixed Tin–Leadâ€Based ABI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	12
1128	Rubidium Iodide Reduces Recombination Losses in Methylammoniumâ€Free Tin‣ead Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	16
1129	Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsGel3. Materials Today: Proceedings, 2023, , .	0.9	2

	CHAID	CHATION REPORT	
#	Article	IF	CITATIONS
1130	Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806.	1.4	8
1131	All-inorganic perovskite solar cells featuring mixed group IVA cations. Nanoscale, 2023, 15, 7249-7260.	2.8	6
1132	Doped metal halide perovskite materials for solar energy. , 2023, , 169-188.		0
1133	Effective Approaches for Perovskite Solar Cells; Recent Advances and Perspectives. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
1134	Self-powered optoelectronic artificial synapses based on a lead-free perovskite film for artificial visual perception systems. Journal of Materials Chemistry C, 2023, 11, 6212-6219.	2.7	6
1135	Prospects for Tin-Containing Halide Perovskite Photovoltaics. , 2023, 1, 69-82.		8
1136	Additive Engineering for Mixed Lead–Tin Narrow-Band-Gap Perovskite Solar Cells: Recent Advances and Perspectives. Energy & Fuels, 2023, 37, 6401-6423.	2.5	11
1137	Complete modelling and simulation of all perovskite tandem solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 294, 116506.	1.7	1
1138	Blue perovskite single-mode lasing in a rubidium lead bromide microcubic cavity. Photonics Research, 2023, 11, 1067.	3.4	4
1146	Unique Chiro-optical Properties of the Weakly-2D (R-/S-MBA) ₂ CuBr ₄ Hybrid Material. , 2023, 5, 1556-1564.		8
1170	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21
1179	Structure, composition, and stability of metal halide perovskites. , 2023, , 3-47.		0
1204	Advanced Perovskite Solar Cells. Advances in Material Research and Technology, 2024, , 113-135.	0.3	0
1225	Strategies for constructing high-performance tin-based perovskite solar cells. Journal of Materials Chemistry C, 2024, 12, 4184-4207.	2.7	0