The amyloid state and its association with protein misfe

Nature Reviews Molecular Cell Biology

15, 384-396

DOI: 10.1038/nrm3810

Citation Report

#	Article	IF	CITATIONS
2	Investigating heart-specific toxicity of amyloidogenic immunoglobulin light chains: A lesson fromC. elegans. Worm, 2014, 3, e965590.	1.0	9
3	A comprehensive database of verified experimental data on protein folding kinetics. Protein Science, 2014, 23, 1808-1812.	3.1	16
4	Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions. Journal of Biological Chemistry, 2014, 289, 33783-33796.	1.6	18
5	Zn ²⁺ , Cd ²⁺ and Cu ²⁺ mediated formation of amyloid like fibrils by the monomers of β-sheet rich peanut agglutinin. RSC Advances, 2014, 4, 53044-53054.	1.7	8
6	Crucial role of nonspecific interactions in amyloid nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17869-17874.	3.3	157
7	Hypertension Is Associated With Preamyloid Oligomers in Human Atrium: A Missing Link in Atrial Pathophysiology?. Journal of the American Heart Association, 2014, 3, e001384.	1.6	16
8	Orientation of aromatic residues in amyloid cores: Structural insights into prion fiber diversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17158-17163.	3.3	12
9	Energy landscapes of functional proteins are inherently risky. Nature Chemical Biology, 2014, 10, 884-891.	3.9	90
10	A Relationship between the Transient Structure in the Monomeric State and the Aggregation Propensities of \hat{I}_{\pm} -Synuclein and \hat{I}^2 -Synuclein. Biochemistry, 2014, 53, 7170-7183.	1.2	50
11	Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir, 2014, 30, 10090-10097.	1.6	61
12	α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes. Journal of Physical Chemistry Letters, 2014, 5, 3043-3048.	2.1	24
13	Antibodies and protein misfolding: From structural research tools to therapeutic strategies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1907-1919.	1.1	56
14	Chaperoned amyloid proteins for immune manipulation: αâ€ s ynuclein/Hsp70 shifts immunity toward a modulatory phenotype. Immunity, Inflammation and Disease, 2014, 2, 226-238.	1.3	10
15	Development of a high affinity Affibodyâ€derived protein against amyloid βâ€peptide for future Alzheimer's disease therapy. Biotechnology Journal, 2015, 10, 1668-1669.	1.8	9
16	Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Scientific Reports, 2015, 5, 14992.	1.6	24
18	BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity. Scientific Reports, 2015, 5, 18337.	1.6	73
19	Theme and variations: evolutionary diversification of the HET-s functional amyloid motif. Scientific Reports, 2015, 5, 12494.	1.6	29
20	Ion Mobility—Mass Spectrometry-Based Screening for Inhibition of <i>α</i> -Synuclein Aggregation. European Journal of Mass Spectrometry, 2015, 21, 255-264.	0.5	20

# 21	ARTICLE Intrinsically Disordered Energy Landscapes. Scientific Reports, 2015, 5, 10386.	IF 1.6	CITATIONS 80
22	Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions. Scientific Reports, 2015, 5, 13416.	1.6	109
23	Modeling the Aggregation Propensity and Toxicity of Amyloid-Î ² Variants. Journal of Alzheimer's Disease, 2015, 47, 215-229.	1.2	23
24	The physical basis of protein misfolding disorders. Physics Today, 2015, 68, 36-41.	0.3	22
25	Long range Trp-Trp interaction initiates the folding pathway of a pro-angiogenic β-hairpin peptide. Scientific Reports, 2015, 5, 16651.	1.6	10
26	Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking. Journal of Biological Chemistry, 2015, 290, 25062-25071.	1.6	24
27	Alzheimer's disease: addressing a twenty-first century plague. Rendiconti Lincei, 2015, 26, 251-262.	1.0	15
28	All-atom Simulation of Amyloid Aggregates. Physics Procedia, 2015, 68, 61-68.	1.2	10
29	Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins. Biochemistry, 2015, 54, 6876-6886.	1.2	19
30	The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microbial Cell Factories, 2015, 14, 102.	1.9	12
32	Misfolded opsin mutants display elevated <i>β</i> â€sheet structure. FEBS Letters, 2015, 589, 3119-3125.	1.3	18
33	Untangling a Repetitive Amyloid Sequence: Correlating Biofilmâ€Derived and Segmentally Labeled Curli Fimbriae by Solid‣tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 14669-14672.	7.2	32
34	Aggregation of Betaâ€Amyloid Peptides Proximal to Zwitterionic Lipid Bilayers. Chemistry - an Asian Journal, 2015, 10, 1967-1971.	1.7	7
36	Contact between the β1 and β2 Segments of αâ€5ynuclein that Inhibits Amyloid Formation. Angewandte Chemie - International Edition, 2015, 54, 8837-8840.	7.2	25
37	Disaggregases, molecular chaperones that resolubilize protein aggregates. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1273-1292.	0.3	24
38	Protein Folding and Mechanisms of Proteostasis. International Journal of Molecular Sciences, 2015, 16, 17193-17230.	1.8	210
39	Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Frontiers in Molecular Biosciences, 2015, 2, 57.	1.6	101
40	DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach. PLoS ONE, 2015, 10, e0128334.	1.1	2

#	Article	IF	CITATIONS
41	Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry. PLoS ONE, 2015, 10, e0132309.	1.1	6
42	Prediction of Peptide and Protein Propensity for Amyloid Formation. PLoS ONE, 2015, 10, e0134679.	1.1	54
43	The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases. Frontiers in Physiology, 2015, 6, 277.	1.3	45
44	Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. Frontiers in Plant Science, 2015, 6, 306.	1.7	14
46	Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells. ELife, 2015, 4, .	2.8	20
47	Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Physical Chemistry Chemical Physics, 2015, 17, 8338-8348.	1.3	59
48	Nanopore analysis of amyloid fibrils formed by lysozyme aggregation. Analyst, The, 2015, 140, 4882-4886.	1.7	27
49	Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst, The, 2015, 140, 4967-4980.	1.7	206
50	W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme. Prion, 2015, 9, 207-227.	0.9	10
51	On the lack of polymorphism in Aβâ€peptide aggregates derived from patient brains. Protein Science, 2015, 24, 923-935.	3.1	17
52	High Resolution Structural Characterization of Aβ ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR. Journal of the American Chemical Society, 2015, 137, 7509-7518.	6.6	103
53	A systems biology approach to heat stress, heat injury, and heat stroke. Proceedings of SPIE, 2015, , .	0.8	2
54	Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9902-9907.	3.3	113
55	Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide. Biomacromolecules, 2015, 16, 3792-3801.	2.6	15
56	Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 757-768.	1.1	21
57	Structural Transitions and Interactions in the Early Stages of Human Glucagon Amyloid Fibrillation. Biophysical Journal, 2015, 108, 937-948.	0.2	19
58	Single Fibril Growth Kinetics of Î \pm -Synuclein. Journal of Molecular Biology, 2015, 427, 1428-1435.	2.0	53
59	A molecular chaperone breaks the catalytic cycle that generates toxic AÎ ² oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	3.6	373

#	Article	IF	CITATIONS
60	Computational Studies of Protein Aggregation: Methods and Applications. Annual Review of Physical Chemistry, 2015, 66, 643-666.	4.8	156
61	Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques. International Journal of Modern Physics B, 2015, 29, 1530002.	1.0	24
62	A βâ€Hairpinâ€Binding Protein for Three Different Diseaseâ€Related Amyloidogenic Proteins. ChemBioChem, 2015, 16, 411-414.	1.3	24
63	Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nature Chemical Biology, 2015, 11, 229-234.	3.9	532
64	Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends in Pharmacological Sciences, 2015, 36, 72-77.	4.0	147
65	Fibril Breaking Accelerates α-Synuclein Fibrillization. Journal of Physical Chemistry B, 2015, 119, 1912-1918.	1.2	43
66	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	7.3	121
67	Prion-like features of misfolded AÎ ² and tau aggregates. Virus Research, 2015, 207, 106-112.	1.1	63
68	Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Research, 2015, 207, 155-164.	1.1	16
69	A multiâ€pathway perspective on protein aggregation: Implications for control of the rate and extent of amyloid formation. FEBS Letters, 2015, 589, 672-679.	1.3	38
70	Reactive Î ³ -ketoaldehydes promote protein misfolding and preamyloid oligomer formation in rapidly-activated atrial cells. Journal of Molecular and Cellular Cardiology, 2015, 79, 295-302.	0.9	27
71	Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , .	0.5	3
72	Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes. Cellular and Molecular Life Sciences, 2015, 72, 4027-4047.	2.4	29
73	A Colloidal Description of Intermolecular Interactions Driving Fibril–Fibril Aggregation of a Model Amphiphilic Peptide. Langmuir, 2015, 31, 7590-7600.	1.6	16
74	Self-Assembly of Ovalbumin Amyloid Pores: Effects on Membrane Permeabilization, Dipole Potential, and Bilayer Fluidity. Langmuir, 2015, 31, 8911-8922.	1.6	9
75	A new mechanism links preamyloid oligomer formation in the myocyte stress response associated with atrial fibrillation. Journal of Molecular and Cellular Cardiology, 2015, 80, 110-113.	0.9	0
76	Imaging stress. Cell Stress and Chaperones, 2015, 20, 867-874.	1.2	5
77	Identification and characterization of PKCÎ ³ , a kinase associated with SCA14, as an amyloidogenic protein. Human Molecular Genetics, 2015, 24, 525-539.	1.4	22

#	Article	IF	CITATIONS
78	A feature analysis of lower solubility proteins in three eukaryotic systems. Journal of Proteomics, 2015, 118, 21-38.	1.2	15
79	Biophysical insight into the anti-amyloidogenic behavior of taurine. International Journal of Biological Macromolecules, 2015, 80, 375-384.	3.6	78
80	Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway. Biophysical Chemistry, 2015, 206, 1-11.	1.5	35
81	Mechanisms of amyloid formation revealed by solution NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, 88-89, 86-104.	3.9	85
82	Supramolecular peptide vaccines: tuning adaptive immunity. Current Opinion in Immunology, 2015, 35, 73-79.	2.4	127
83	Current and future implications of basic and translational research on amyloid-β peptide production and removal pathways. Molecular and Cellular Neurosciences, 2015, 66, 3-11.	1.0	56
84	The route to protein aggregate superstructures: Particulates and amyloidâ€like spherulites. FEBS Letters, 2015, 589, 2448-2463.	1.3	70
85	The First Step of Amyloidogenic Aggregation. Journal of Physical Chemistry B, 2015, 119, 8260-8267.	1.2	12
86	Oligo(<i>p</i> -phenylene ethynylene) Electrolytes: A Novel Molecular Scaffold for Optical Tracking of Amyloids. ACS Chemical Neuroscience, 2015, 6, 1526-1535.	1.7	30
87	Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins. Journal of Proteome Research, 2015, 14, 3693-3709.	1.8	29
88	New insight into the structure and function of Hfq C-terminus. Bioscience Reports, 2015, 35, .	1.1	55
89	Doxycycline ameliorates aggregation of collagen and atrial natriuretic peptide in murine post-infarction heart. European Journal of Pharmacology, 2015, 754, 66-72.	1.7	10
90	Injection of insulin amyloid fibrils in the hippocampus of male Wistar rats: report on memory impairment and formation of amyloid plaques. Neurological Sciences, 2015, 36, 1411-1416.	0.9	9
91	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	3.3	95
92	Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nature Communications, 2015, 6, 6768.	5.8	139
93	Layers of structure and function in protein aggregation. Nature Chemical Biology, 2015, 11, 373-377.	3.9	35
94	A flexible approach to assess fluorescence decay functions in complex energy transfer systems. BMC Biophysics, 2015, 8, 5.	4.4	2
95	The Biology of Proteostasis in Aging and Disease. Annual Review of Biochemistry, 2015, 84, 435-464.	5.0	1,086

#	Article	IF	CITATIONS
96	Self-Assembly of a Nine-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-Protein: Mechanism of Self Aggregation and Amyloid-Inhibition of hIAPP. Biochemistry, 2015, 54, 2249-2261.	1.2	50
97	Amyloid β: one of three dangerâ€associated molecules that are secondary inducers of the proinflammatory cytokines that mediate <scp>A</scp> lzheimer's disease. British Journal of Pharmacology, 2015, 172, 3714-3727.	2.7	71
98	Widespread Proteome Remodeling and Aggregation in Aging C.Âelegans. Cell, 2015, 161, 919-932.	13.5	478
99	Fibrillar Structures Formed by Covalently Bound, Short, β-Stranded Peptides on Self-Assembled Monolayers. Langmuir, 2015, 31, 3441-3450.	1.6	8
100	Regulating extracellular proteostasis capacity through the unfolded protein response. Prion, 2015, 9, 10-21.	0.9	22
101	Neurodegenerative Diseases: Expanding the Prion Concept. Annual Review of Neuroscience, 2015, 38, 87-103.	5.0	278
102	Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using <i>in Situ</i> Liquid Phase Transmission Electron Microscopy. ACS Central Science, 2015, 1, 33-39.	5.3	121
103	Engineering enhanced protein disaggregases for neurodegenerative disease. Prion, 2015, 9, 90-109.	0.9	68
104	Consequences of Inducing Intrinsic Disorder in a High-Affinity Protein–Protein Interaction. Journal of the American Chemical Society, 2015, 137, 5252-5255.	6.6	23
105	Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	3.3	384
106	Personalized Biochemistry and Biophysics. Biochemistry, 2015, 54, 2551-2559.	1.2	31
107	The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 882-895.	2.5	50
108	Role of Species-Specific Primary Structure Differences in AÎ ² 42 Assembly and Neurotoxicity. ACS Chemical Neuroscience, 2015, 6, 1941-1955.	1.7	26
109	Druggability of Intrinsically Disordered Proteins. Advances in Experimental Medicine and Biology, 2015, 870, 383-400.	0.8	52
110	Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell, 2015, 163, 406-418.	13.5	148
111	Structure and Dynamics of Intrinsically Disordered Proteins. Advances in Experimental Medicine and Biology, 2015, 870, 35-48.	0.8	13
112	Yeast prions: Paramutation at the protein level?. Seminars in Cell and Developmental Biology, 2015, 44, 51-61.	2.3	17
113	A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation. Journal of Biological Chemistry, 2015, 290, 22174-22183.	1.6	156

#	Article	IF	CITATIONS
114	A pyrane based fluorescence probe for noninvasive prediction of cerebral β-amyloid fibrils. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4472-4476.	1.0	11
115	Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides. Journal of Structural Biology, 2015, 192, 376-391.	1.3	9
116	Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. Science Advances, 2015, 1, e1500137.	4.7	119
117	Analysis of Amyloid in Medullary Thyroid Carcinoma by Mass Spectrometry-Based Proteomic Analysis. Endocrine Pathology, 2015, 26, 291-295.	5.2	25
118	Hierarchical multi-step organization during viral capsid assembly. Colloids and Surfaces B: Biointerfaces, 2015, 136, 674-677.	2.5	5
119	Emerging Roles of Disordered Sequences in RNA-Binding Proteins. Trends in Biochemical Sciences, 2015, 40, 662-672.	3.7	195
120	Protein structures in Alzheimer's disease: The basis for rationale therapeutic design. Archives of Biochemistry and Biophysics, 2015, 588, 1-14.	1.4	20
121	Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease?. Trends in Biochemical Sciences, 2015, 40, 719-727.	3.7	100
122	Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chemical Communications, 2015, 51, 13434-13450.	2.2	191
123	Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions. Genome Biology and Evolution, 2015, 7, 1815-1826.	1.1	27
124	Different zinc(II) complex species and binding modes at AÎ ² N-terminus drive distinct long range cross-talks in the AÎ ² monomers. Journal of Inorganic Biochemistry, 2015, 153, 367-376.	1.5	18
125	Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chemical Communications, 2015, 51, 14425-14434.	2.2	18
126	Appearance of annular ring-like intermediates during amyloid fibril formation from human serum albumin. Physical Chemistry Chemical Physics, 2015, 17, 22862-22871.	1.3	24
127	Chaperones in Neurodegeneration. Journal of Neuroscience, 2015, 35, 13853-13859.	1.7	81
128	Thermodynamic and fibril formation studies of full length immunoglobulin light chain AL-09 and its germline protein using scan rate dependent thermal unfolding. Biophysical Chemistry, 2015, 207, 13-20.	1.5	42
129	Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection. Chemistry and Biology, 2015, 22, 1074-1086.	6.2	34
130	Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils. Molecular Cell, 2015, 59, 781-793.	4.5	336
131	Amyloid and Related Disorders. Current Clinical Pathology, 2015, , .	0.0	7

#	Article	IF	CITATIONS
132	A Rational Design Strategy for the Selective Activity Enhancement of a Molecular Chaperone toward a Target Substrate. Biochemistry, 2015, 54, 5103-5112.	1.2	25
133	Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophysical Chemistry, 2015, 207, 30-39.	1.5	27
134	Positively Charged Chitosan and <i>N</i> -Trimethyl Chitosan Inhibit Aβ40 Fibrillogenesis. Biomacromolecules, 2015, 16, 2363-2373.	2.6	43
135	SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Molecular Neurodegeneration, 2015, 10, 57.	4.4	68
136	Transient misfolding dominates multidomain protein folding. Nature Communications, 2015, 6, 8861.	5.8	97
137	Cognitive and Functional Decline in Patients With Mild Alzheimer Dementia With or Without Comorbid Diabetes. Clinical Therapeutics, 2015, 37, 1195-1205.	1.1	34
138	Peptide sequences converting polyglutamine into a prion in yeast. FEBS Journal, 2015, 282, 477-490.	2.2	0
139	The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: New insights into the pathogenesis of cataract disorders. Colloids and Surfaces B: Biointerfaces, 2015, 125, 170-180.	2.5	22
140	Structure, Dynamics, Assembly, and Evolution of Protein Complexes. Annual Review of Biochemistry, 2015, 84, 551-575.	5.0	351
141	AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Current Pharmaceutical Design, 2016, 22, 3950-3970.	0.9	75
142	Characterization of aggregate load and pattern in living yeast cells by flow cytometry. BioTechniques, 2016, 61, 137-148.	0.8	8
143	A New Folding Kinetic Mechanism for Human Transthyretin and the Influence of the Amyloidogenic V30M Mutation. International Journal of Molecular Sciences, 2016, 17, 1428.	1.8	6
144	Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes. Journal of Alzheimer's Disease, 2016, 54, 457-470.	1.2	23
145	Epigenetic inheritance of proteostasis and ageing. Essays in Biochemistry, 2016, 60, 191-202.	2.1	15
146	Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Frontiers in Molecular Biosciences, 2016, 3, 55.	1.6	16
147	PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation. International Journal of Molecular Sciences, 2016, 17, 1438.	1.8	76
148	Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases. Essays in Biochemistry, 2016, 60, 181-190.	2.1	11
149	Understanding and Designing the Gold–Bio Interface: Insights from Simulations. Small, 2016, 12, 2395-2418.	5.2	58

#	Article	IF	Citations
150	Chiral recognition in amyloid fiber growth. Journal of Peptide Science, 2016, 22, 290-304.	0.8	25
151	Solvent Polarity Effect on Nonradiative Decay Rate of Thioflavin T. Journal of Physical Chemistry A, 2016, 120, 5481-5496.	1.1	39
152	EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace, 2016, 18, 1455-1490.	0.7	471
153	Splitting of αâ€Helical Structure as Molecular Basis for Abolishing an Amyloid Formation by Multiple Glycosylation: A Molecular Dynamics Simulation Study. Bulletin of the Korean Chemical Society, 2016, 37, 1159-1162.	1.0	1
154	Non-covalent Sâ< ⁻ O interactions control conformation in a scaffold that disrupts islet amyloid polypeptide fibrillation. Chemical Science, 2016, 7, 6435-6439.	3.7	22
155	Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates: a potential diagnostic and therapeutic for TTR amyloidoses. Scientific Reports, 2016, 6, 25080.	1.6	26
156	Uncovering the Binding and Specificity of β-Wrapins for Amyloid-β and α-Synuclein. Journal of Physical Chemistry B, 2016, 120, 12781-12794.	1.2	22
157	Proteopathic Strains and the Heterogeneity of Neurodegenerative Diseases. Annual Review of Genetics, 2016, 50, 329-346.	3.2	53
158	Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Scientific Reports, 2016, 6, 25559.	1.6	47
159	Pancreatic Î ² -Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species. Scientific Reports, 2016, 6, 21274.	1.6	44
160	Asymptotics of Stochastic Protein Assembly Models. SIAM Journal on Applied Mathematics, 2016, 76, 2333-2352.	0.8	1
161	Structural and fluctuational difference between two ends of AÎ ² amyloid fibril: MD simulations predict only one end has open conformations. Scientific Reports, 2016, 6, 38422.	1.6	57
162	Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 2016, 7, 10948.	5.8	219
163	Linking in domain-swapped protein dimers. Scientific Reports, 2016, 6, 33872.	1.6	33
164	Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. Journal of Biological Chemistry, 2016, 291, 26540-26553.	1.6	75
165	Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1–40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. Scientific Reports, 2016, 6, 30983.	1.6	27
166	Quantitative thermophoretic study of disease-related protein aggregates. Scientific Reports, 2016, 6, 22829.	1.6	48
167	Phosphorylation modifies the molecular stability of β-amyloid deposits. Nature Communications, 2016, 7, 11359.	5.8	70

#	Article	IF	CITATIONS
168	A coarse grained protein model with internal degrees of freedom. Application to <i>α</i> -synuclein aggregation. Journal of Chemical Physics, 2016, 144, 085103.	1.2	30
169	Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly. Journal of Chemical Physics, 2016, 144, 175101.	1.2	15
170	α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Scientific Reports, 2016, 6, 19180.	1.6	35
171	MTERF2 contributes to MPP+-induced mitochondrial dysfunction and cell damage. Biochemical and Biophysical Research Communications, 2016, 471, 177-183.	1.0	7
172	Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface. Advances in Colloid and Interface Science, 2016, 234, 80-88.	7.0	5
173	Wild type huntingtin toxicity in yeast: Implications for the role of amyloid cross-seeding in polyQ diseases. Prion, 2016, 10, 221-227.	0.9	8
174	Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition. Biochemical and Biophysical Research Communications, 2016, 476, 153-158.	1.0	2
175	Amyloids assemble as part of recognizable structures during oogenesis in Xenopus. Biology Open, 2016, 5, 801-806.	0.6	13
176	Molecular medicine – To be or not to be. Biophysical Chemistry, 2016, 214-215, 33-46.	1.5	4
177	Quantitative proteome-based guidelines for intrinsic disorder characterization. Biophysical Chemistry, 2016, 213, 6-16.	1.5	11
178	ER chaperones in neurodegenerative disease: Folding and beyond. Brain Research, 2016, 1648, 580-587.	1.1	11
179	Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry. European Journal of Medicinal Chemistry, 2016, 113, 258-272.	2.6	146
180	The physics of protein self-assembly. Current Opinion in Colloid and Interface Science, 2016, 22, 73-79.	3.4	188
181	Amyloid- <i>β</i> peptide aggregation and the influence of carbon nanoparticles. Chinese Physics B, 2016, 25, 018704.	0.7	16
182	Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare. Extremophiles, 2016, 20, 251-259.	0.9	22
183	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	4.5	140
184	Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5006-5011.	3.3	32
185	Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurology, The, 2016, 15, 748-759.	4.9	124

#	Article	IF	CITATIONS
186	Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Analytical Biochemistry, 2016, 504, 7-13.	1.1	11
187	Stability of a Recently Found Triple-β-Stranded Aβ1–42 Fibril Motif. Journal of Physical Chemistry B, 2016, 120, 4548-4557.	1.2	21
188	A transcriptional signature of Alzheimer's disease is associated with a metastable subproteome at risk for aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4753-4758.	3.3	74
189	Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study. Biomacromolecules, 2016, 17, 1998-2009.	2.6	35
190	A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity. Journal of the American Chemical Society, 2016, 138, 6271-6280.	6.6	29
191	Ionic Strength Modulation of the Free Energy Landscape of Aβ ₄₀ Peptide Fibril Formation. Journal of the American Chemical Society, 2016, 138, 6893-6902.	6.6	80
192	EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication. Journal of Arrhythmia, 2016, 32, 247-278.	0.5	92
193	A glass menagerie of low complexity sequences. Current Opinion in Structural Biology, 2016, 38, 18-25.	2.6	29
194	Second Virial Coefficient As Determined from Protein Phase Behavior. Journal of Physical Chemistry Letters, 2016, 7, 4008-4014.	2.1	22
195	Water Rearrangements upon Disorder-to-Order Amyloid Transition. Journal of Physical Chemistry Letters, 2016, 7, 4105-4110.	2.1	26
196	Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Physical Chemistry Chemical Physics, 2016, 18, 29892-29904.	1.3	15
197	Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Selfâ€Assembly of Distinct Amyloid Structures. ChemBioChem, 2016, 17, 2274-2285.	1.3	9
198	Adaptation to Stressors by Systemic Protein Amyloidogenesis. Developmental Cell, 2016, 39, 155-168.	3.1	136
199	Endoplasmic Reticulum Proteostasis Influences the Oligomeric State of an Amyloidogenic Protein Secreted from Mammalian Cells. Cell Chemical Biology, 2016, 23, 1282-1293.	2.5	29
200	Assembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Journal of the American Chemical Society, 2016, 138, 13882-13890.	6.6	34
201	The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Human Molecular Genetics, 2016, 25, 3908-3924.	1.4	72
202	The effect of fluorescent labeling on α-synuclein fibril morphology. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1419-1427.	1.1	12
203	Understanding and predicting protein misfolding and aggregation: Insights from proteomics. Proteomics, 2016, 16, 2570-2581.	1.3	25

#	Article	IF	CITATIONS
204	Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1609-1619.	1.1	19
205	Intramolecular diffusion controls aggregation of the PAPf39 peptide. Biophysical Chemistry, 2016, 216, 37-43.	1.5	11
206	Nucleation of Amyloid Oligomers by RepAâ€WH1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie - International Edition, 2016, 55, 11237-11241.	7.2	17
207	Application of Nanomedicine to the CNS Diseases. International Review of Neurobiology, 2016, 130, 73-113.	0.9	17
208	Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. Journal of Physical Chemistry B, 2016, 120, 8809-8817.	1.2	30
209	Nucleation of Amyloid Oligomers by RepAâ€₩H1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie, 2016, 128, 11403-11407.	1.6	1
210	Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. DMM Disease Models and Mechanisms, 2016, 9, 823-838.	1.2	45
211	Monomer Dynamics of Alzheimer Peptides and Kinetic Control of Early Aggregation in Alzheimer's Disease. ChemPhysChem, 2016, 17, 3470-3479.	1.0	20
212	Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers. RSC Advances, 2016, 6, 75082-75091.	1.7	10
213	Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b. International Journal of Biological Macromolecules, 2016, 92, 1252-1257.	3.6	18
214	Characterization of Salt-Induced Oligomerization of Human β ₂ -Microglobulin at Low pH. Journal of Physical Chemistry B, 2016, 120, 7815-7823.	1.2	6
215	Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation. Chemical Communications, 2016, 52, 11318-11334.	2.2	115
216	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	2.1	176
217	Documentation of an Imperative To Improve Methods for Predicting Membrane Protein Stability. Biochemistry, 2016, 55, 5002-5009.	1.2	46
218	Hsp90 directly interacts, in vitro, with amyloid structures and modulates their assembly and disassembly. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2598-2609.	1.1	22
219	Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10328-10333.	3.3	252
220	Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins. Biophysical Journal, 2016, 111, 768-774.	0.2	34
222	Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use. Biological and Pharmaceutical Bulletin. 2016. 39. 401-408.	0.6	7

#	Article	IF	CITATIONS
223	Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Scientific Reports, 2016, 6, 18728.	1.6	77
224	Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chemical Reviews, 2016, 116, 13752-13990.	23.0	1,444
225	Intrinsic and membrane-facilitated α-synuclein oligomerization revealed by label-free detection through solid-state nanopores. Scientific Reports, 2016, 6, 20776.	1.6	62
226	Structured States of Disordered Proteins from Genomic Sequences. Cell, 2016, 167, 158-170.e12.	13.5	127
227	Coassembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Journal of the American Chemical Society, 2016, 138, 13891-13900.	6.6	23
228	Physical determinants of the self-replication of protein fibrils. Nature Physics, 2016, 12, 874-880.	6.5	90
229	Helical Folding Competing with Unfolded Aggregation in Phenylene Ethynylene Foldamers. Chemistry - A European Journal, 2016, 22, 11028-11034.	1.7	5
230	Initial condition of stochastic self-assembly. Physical Review E, 2016, 93, 022109.	0.8	6
231	A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics. Journal of the American Chemical Society, 2016, 138, 10546-10553.	6.6	121
232	Neurodegenerative disorders share common features of "loss of function―states of a proposed mechanism of nervous system functions. Biomedicine and Pharmacotherapy, 2016, 83, 412-430.	2.5	18
233	Stability differences in the NMR ensembles of amyloid \hat{I}^2 fibrils. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650059.	1.8	4
234	Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Scientific Reports, 2016, 6, 26759.	1.6	152
235	The activities of amyloids from a structural perspective. Nature, 2016, 539, 227-235.	13.7	386
236	Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. Journal of Nanobiotechnology, 2016, 14, 60.	4.2	55
237	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	2.9	26
238	Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability InÂVivo. Neuron, 2016, 92, 796-812.	3.8	354
239	Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils. Scientific Reports, 2016, 6, 36499.	1.6	5
240	A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System. Scientific Reports, 2016, 6, 30633.	1.6	Ο

#	Article	IF	CITATIONS
241	Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Scientific Reports, 2016, 6, 32721.	1.6	107
242	Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ42 toxicity in <i>Drosophila</i> . Biochemical Journal, 2016, 473, 3683-3704.	1.7	48
243	A copper–amyloid-β targeted fluorescent chelator as a potential theranostic agent for Alzheimer's disease. Inorganic Chemistry Frontiers, 2016, 3, 1572-1581.	3.0	20
244	Protein States as Symmetry Transitions in the Correlation Matrices. Journal of Physical Chemistry B, 2016, 120, 11428-11435.	1.2	8
245	Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Scientific Reports, 2016, 6, 31155.	1.6	130
246	A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif. Nature Communications, 2016, 7, 12657.	5.8	75
247	A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates. Scientific Reports, 2016, 6, 23668.	1.6	90
248	β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor. Scientific Reports, 2016, 6, 33474.	1.6	34
249	A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer's disease. Science Advances, 2016, 2, e1600947.	4.7	84
250	The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200.	1.6	323
251	RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Scientific Reports, 2016, 6, 23144.	1.6	20
252	Folding superfunnel to describe cooperative folding of interacting proteins. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1009-1016.	1.5	1
253	Compound heterozygous <i>FXN</i> mutations and clinical outcome in friedreich ataxia. Annals of Neurology, 2016, 79, 485-495.	2.8	115
254	Selective Inhibition of Aggregation and Toxicity of a Tauâ€Derived Peptide using Its Glycosylated Analogues. Chemistry - A European Journal, 2016, 22, 5945-5952.	1.7	37
255	Understanding Amyloidâ€Î² Oligomerization at the Molecular Level: The Role of the Fibril Surface. Chemistry - A European Journal, 2016, 22, 8768-8772.	1.7	34
256	NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Metabolomics, 2016, 12, 1.	1.4	23
257	Conformational selection in amyloid-based immunotherapy: Survey of crystal structures of antibody-amyloid complexes. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2672-2681.	1.1	23
258	Tip-enhanced Raman spectroscopy: From concepts to practical applications. Chemical Physics Letters, 2016, 659, 16-24.	1.2	56

#	ARTICLE	IF	CITATIONS
259	Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochemistry, 2016, 51, 1183-1192.	1.8	107
260	Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone. Structure, 2016, 24, 1095-1109.	1.6	12
261	Estimation of the lag time in a subsequent monomer addition model for fibril elongation. Physical Chemistry Chemical Physics, 2016, 18, 21259-21268.	1.3	34
262	Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nature Cell Biology, 2016, 18, 765-776.	4.6	175
263	Are microRNAs the Molecular Link Between Metabolic Syndrome and Alzheimer's Disease?. Molecular Neurobiology, 2016, 53, 2320-2338.	1.9	27
264	Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chemical Reviews, 2016, 116, 6516-6551.	23.0	302
265	Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophysical Journal, 2016, 110, 441-454.	0.2	36
266	An in vivo platform for identifying inhibitors of protein aggregation. Nature Chemical Biology, 2016, 12, 94-101.	3.9	75
267	Simultaneous acquisition of infrared, fluorescence and light scattering spectra of proteins: direct evidence for pre-fibrillar species in amyloid fibril formation. Analyst, The, 2016, 141, 963-973.	1.7	7
268	Characterization of AÎ ² Monomers through the Convergence of Ensemble Properties among Simulations with Multiple Force Fields. Journal of Physical Chemistry B, 2016, 120, 259-277.	1.2	81
269	Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016, 351, 173-176.	6.0	336
270	Allosteric stabilization of the amyloid-β peptide hairpin by the fluctuating N-terminal. Chemical Communications, 2016, 52, 1733-1736.	2.2	25
271	A minichaperone-based fusion system for producing insoluble proteins in soluble stable forms. Protein Engineering, Design and Selection, 2016, 29, 57-64.	1.0	8
272	Advances in the Simulation of Protein Aggregation at the Atomistic Scale. Journal of Physical Chemistry B, 2016, 120, 2991-2999.	1.2	102
273	Conformational Compatibility Is Essential for Heterologous Aggregation of α-Synuclein. ACS Chemical Neuroscience, 2016, 7, 719-727.	1.7	26
274	Getting to the core of prion superstructural variability. Prion, 2016, 10, 1-8.	0.9	0
275	Double-Tip Artifact Removal From Atomic Force Microscopy Images. IEEE Transactions on Image Processing, 2016, 25, 2774-2788.	6.0	4
276	Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mechanisms of Ageing and Development, 2016, 156, 1-13.	2.2	31

0			D -	
	ТΛТ	ON	IVE	PORT
	IAU			FURT

#	Article	IF	CITATIONS
277	É'-Synuclein strains and the variable pathologies of synucleinopathies. Journal of Neurochemistry, 2016, 139, 256-274.	2.1	72
278	One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Al²40 and Al²42. Journal of Structural Biology, 2016, 194, 404-414.	1.3	37
279	An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. Science Advances, 2016, 2, e1501244.	4.7	180
280	Detection of amyloid-Î ² fibrils using the DNA-intercalating dye YOYO-1: Binding mode and fibril formation kinetics. Biochemical and Biophysical Research Communications, 2016, 469, 313-318.	1.0	10
281	A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases. Current Opinion in Chemical Biology, 2016, 32, 10-21.	2.8	19
282	Monomeric Aβ ^{1–40} and Aβ ^{1–42} Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Biochemistry, 2016, 55, 762-775.	1.2	168
283	A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. ACS Combinatorial Science, 2016, 18, 144-153.	3.8	35
284	A nanofiber assembly directed by the non-classical antiparallel β-structure from 4S-(OH) proline polypeptide. Chemical Communications, 2016, 52, 4884-4887.	2.2	12
285	Amyloid fibrillogenesis of lysozyme is suppressed by a food additive brilliant blue FCF. Colloids and Surfaces B: Biointerfaces, 2016, 142, 351-359.	2.5	20
286	The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit. Behavioural Brain Research, 2016, 306, 106-116.	1.2	20
287	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477.	23.0	625
287 288	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477. Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	23.0 7.3	625 105
	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution		
288	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets.	7.3	105
288 289	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. Proceedings of the IEEE, 2016, 104, 176-197.	7.3 16.4	105 186
288 289 290	 Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. Proceedings of the IEEE, 2016, 104, 176-197. Natural supramolecular protein assemblies. Chemical Society Reviews, 2016, 45, 24-39. Chaperome screening leads to identification of Grp94/Gp96 and FKBP4/52 as modulators of the 	7.3 16.4 18.7	105 186 291
288 289 290 291	 Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. Proceedings of the IEEE, 2016, 104, 176-197. Natural supramolecular protein assemblies. Chemical Society Reviews, 2016, 45, 24-39. Chaperome screening leads to identification of Grp94/Gp96 and FKBP4/52 as modulators of the I±a€synucleina€elicited immune response. FASEB Journal, 2016, 30, 564-577. A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation. 	7.3 16.4 18.7 0.2	105 186 291 13

#	Article	IF	Citations
295	Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer?. International Journal of Biological Macromolecules, 2017, 100, 75-88.	3.6	7
296	Stepwise unfolding of human β2-microglobulin into a disordered amyloidogenic precursor at low pH. European Biophysics Journal, 2017, 46, 65-76.	1.2	3
297	Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing $\hat{I} \pm / \hat{I}^2$ and $\hat{I} \pm / \hat{I}^3$ Hybrid Peptidomimetics. Scientific Reports, 2017, 7, 40095.	1.6	38
298	A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	3.3	231
299	Strain-specific Fibril Propagation by an AÎ ² Dodecamer. Scientific Reports, 2017, 7, 40787.	1.6	41
300	Update on Alzheimer's Disease Therapy and Prevention Strategies. Annual Review of Medicine, 2017, 68, 413-430.	5.0	402
301	Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chemical Reviews, 2017, 117, 1927-1969.	23.0	104
302	MBAR-enhanced lattice Monte Carlo simulation of the effect of helices on membrane protein aggregation. Journal of Computational Physics, 2017, 333, 128-141.	1.9	1
303	Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano, 2017, 11, 1478-1487.	7.3	199
304	The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils. International Review of Cell and Molecular Biology, 2017, 329, 187-226.	1.6	46
305	Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Physical Biology, 2017, 14, 016003.	0.8	7
306	The Amyloid Phenomenon and Its Links with Human Disease. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023648.	2.3	108
308	Coaggregation of κâ€Casein and Î2‣actoglobulin Produces Morphologically Distinct Amyloid Fibrils. Small, 2017, 13, 1603591.	5.2	31
309	Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomaterials Science, 2017, 5, 485-493.	2.6	53
310	Partially-deuterated samples of HET-s(218–289) fibrils: assignment and deuterium isotope effect. Journal of Biomolecular NMR, 2017, 67, 109-119.	1.6	30
311	Identification of Binding Modes for Amino Naphthalene 2-Cyanoacrylate (ANCA) Probes to Amyloid Fibrils from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 1211-1221.	1.2	20
312	Protein aggregation, misfolding and consequential human neurodegenerative diseases. International Journal of Neuroscience, 2017, 127, 1047-1057.	0.8	44
313	Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Scientific Reports, 2017, 7, 41051.	1.6	111

#	Article	IF	CITATIONS
314	Insoluble Off-Pathway Aggregates as Crowding Agents during Amyloid Fibril Formation. Journal of Physical Chemistry B, 2017, 121, 2288-2298.	1.2	13
315	Recent Progress in Alzheimer's Disease Research, Part 1: Pathology. Journal of Alzheimer's Disease, 2017, 57, 1-28.	1.2	75
316	Phosphorylation at Ser8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils. Journal of Biological Chemistry, 2017, 292, 2611-2623.	1.6	29
317	Insulin Formulation Characterization—the Thioflavin T Assays. AAPS Journal, 2017, 19, 397-408.	2.2	18
318	Potential Artifacts in Sample Preparation Methods Used for Imaging Amyloid Oligomers and Protofibrils due to Surface-Mediated Fibril Formation. Journal of Physical Chemistry B, 2017, 121, 2534-2542.	1.2	13
319	Structural properties of amyloid β(1â€40) dimer explored by replica exchange molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1024-1045.	1.5	18
320	Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils. Biophysical Journal, 2017, 112, 584-594.	0.2	40
321	The nucleus: keeping it together by keeping it apart. Current Opinion in Cell Biology, 2017, 44, 44-50.	2.6	41
322	Biophysical Studies of the Amyloid Beta Peptide Involved in Alzheimer's Disease. Biophysical Journal, 2017, 112, 160a.	0.2	3
323	Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1454-1463.	1.8	32
324	Inhibitory effect of hydrophobic fullerenes on the β-sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations. RSC Advances, 2017, 7, 13947-13956.	1.7	12
325	Aggregation prone regions in human proteome: Insights from largeâ€scale data analyses. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1099-1118.	1.5	25
326	Rheological monitoring of tau protein polymerisation with acoustic waves sensor. Electronics Letters, 2017, 53, 298-300.	0.5	2
327	Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry, 2017, 56, 1199-1217.	1.2	111
328	Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods. Journal of Chemical Physics, 2017, 146, 074101.	1.2	13
329	The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress and Chaperones, 2017, 22, 627-638.	1.2	45
330	Natural product-based amyloid inhibitors. Biochemical Pharmacology, 2017, 139, 40-55.	2.0	155
331	Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3935-E3943.	3.3	91

#	ARTICLE	IF	CITATIONS
332	ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 1-16.	1.4	257
333	Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathologica, 2017, 134, 187-205.	3.9	288
334	The multitude of therapeutic targets in neurodegenerative proteinopathies. , 2017, , 1-20.		1
335	Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annual Review of Biochemistry, 2017, 86, 27-68.	5.0	1,929
336	Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 5463-5473.	1.2	20
337	Cellular Osmolytes. , 2017, , .		5
338	Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis. International Journal of Biological Macromolecules, 2017, 102, 1241-1249.	3.6	3
339	Amyloid-like Fibrils from an α-Helical Transmembrane Protein. Biochemistry, 2017, 56, 3225-3233.	1.2	19
340	Expression, purification, and characterization of recombinant 8ÂkDa gelsolin fragment. Protein Expression and Purification, 2017, 135, 33-36.	0.6	1
341	Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Aβ42 peptide and its variants. Chemical Science, 2017, 8, 4352-4362.	3.7	60
342	Molecular insights into the inhibitory mechanism of rifamycin SV against β2–microglobulin aggregation: A molecular dynamics simulation study. International Journal of Biological Macromolecules, 2017, 102, 1025-1034.	3.6	19
343	Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 414-427.	1.8	60
344	Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer's disease from tauopathies. Biosensors and Bioelectronics, 2017, 98, 54-61.	5.3	83
345	Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nature Chemical Biology, 2017, 13, 902-908.	3.9	58
346	The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro. Scientific Reports, 2017, 7, 562.	1.6	13
347	Supramolecular Orientation in Anisotropic Assemblies by Infrared Nanopolarimetry. ACS Macro Letters, 2017, 6, 598-602.	2.3	12
348	Osmolytes: Key Players in Regulating Protein Aggregation. , 2017, , 97-119.		3
349	Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules. Future Medicinal Chemistry, 2017, 9, 797-810.	1.1	42

#	Article	IF	CITATIONS
350	Strong Electroâ€Optic Effect and Spontaneous Domain Formation in Selfâ€Assembled Peptide Structures. Advanced Science, 2017, 4, 1700052.	5.6	19
351	Methods of probing the interactions between small molecules and disordered proteins. Cellular and Molecular Life Sciences, 2017, 74, 3225-3243.	2.4	56
352	Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	4.7	116
353	Improving the reliability of mass spectrometry measurements of peptide-zinc(II) binding constants. International Journal of Mass Spectrometry, 2017, 421, 124-128.	0.7	3
354	Salt-regulated reversible fibrillation of Mycobacterium tuberculosis isocitrate lyase: Concurrent restoration of structure and activity. International Journal of Biological Macromolecules, 2017, 104, 89-96.	3.6	6
355	Cu/Zn Superoxide Dismutase Forms Amyloid Fibrils under Near-Physiological Quiescent Conditions: The Roles of Disulfide Bonds and Effects of Denaturant. ACS Chemical Neuroscience, 2017, 8, 2019-2026.	1.7	25
356	Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6444-6449.	3.3	60
357	Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. Nucleic Acids Research, 2017, 45, 8091-8104.	6.5	38
358	Quantitative computational models of molecular self-assembly in systems biology. Physical Biology, 2017, 14, 035003.	0.8	13
359	Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid-β peptides. Physical Chemistry Chemical Physics, 2017, 19, 16257-16266.	1.3	42
360	Diphenylalanine as a Reductionist Model for the Mechanistic Characterization of β <i>-</i> Amyloid Modulators. ACS Nano, 2017, 11, 5960-5969.	7.3	62
361	The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radical Biology and Medicine, 2017, 108, 383-393.	1.3	46
362	Disentangling a Bad Reputation: Changing Perceptions of Amyloids. Trends in Cell Biology, 2017, 27, 465-467.	3.6	14
363	MOAG-4 promotes the aggregation of $\hat{l}\pm$ -synuclein by competing with self-protective electrostatic interactions. Journal of Biological Chemistry, 2017, 292, 8269-8278.	1.6	40
364	Osmotic Stress Reduces Vesicle Size while Keeping a Constant Neurotransmitter Concentration. Biophysical Journal, 2017, 112, 159a.	0.2	1
365	A fineâ€ŧuned composition of protein nanofibrils yields an upgraded functionality of displayed antibody binding domains. Biotechnology Journal, 2017, 12, 1600672.	1.8	8
366	Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS Omega, 2017, 2, 784-792.	1.6	25
367	Role of local and nonlocal interactions in folding and misfolding of globular proteins. Journal of Chemical Physics, 2017, 146, 065102.	1.2	8

#	Article	IF	CITATIONS
368	Multisite aggregation of p53 and implications for drug rescue. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2634-E2643.	3.3	67
369	Plasmoelectronic sensor for real-time on-chip wavelength selective biosensing. Proceedings of SPIE, 2017, , .	0.8	0
370	Protein misfolding in neurodegenerative diseases: implications and strategies. Translational Neurodegeneration, 2017, 6, 6.	3.6	424
371	DNA repair in the trinucleotide repeat disorders. Lancet Neurology, The, 2017, 16, 88-96.	4.9	75
372	What Makes a Prion. International Review of Cell and Molecular Biology, 2017, 329, 227-276.	1.6	6
373	Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	3.3	180
374	pH-Responsive Mechanistic Switch Regulates the Formation of Dendritic and Fibrillar Nanostructures of a Functional Amyloid. Journal of Physical Chemistry B, 2017, 121, 412-419.	1.2	21
375	The Amyloidâ€Î² Peptide in Amyloid Formation Processes: Interactions with Blood Proteins and Naturally Occurring Metal Ions. Israel Journal of Chemistry, 2017, 57, 674-685.	1.0	21
376	Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB Journal, 2017, 31, 5-10.	0.2	92
377	Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Biochemistry, 2017, 56, 1632-1644.	1.2	23
378	Structural Characteristics of α-Synuclein Oligomers. International Review of Cell and Molecular Biology, 2017, 329, 79-143.	1.6	95
379	Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochemical Journal, 2017, 474, 123-147.	1.7	17
380	Amyloidosis: Insights from Proteomics. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 277-304.	9.6	72
381	Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure. Scientific Reports, 2017, 7, 13783.	1.6	12
382	A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP. Journal of the American Chemical Society, 2017, 139, 16748-16758.	6.6	60
383	Inhibition of curli assembly and <i>Escherichia coli</i> biofilm formation by the human systemic amyloid precursor transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12184-12189.	3.3	56
384	Kinetic constraints on self-assembly into closed supramolecular structures. Scientific Reports, 2017, 7, 12295.	1.6	18
385	Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences. Pharmaceutical Research, 2017, 34, 2628-2636.	1.7	1

#	Article	IF	CITATIONS
386	Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner. Biochemistry, 2017, 56, 5570-5581.	1.2	20
387	Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11127-11132.	3.3	31
388	Peptides for targeting βB2-crystallin fibrils. Experimental Eye Research, 2017, 165, 109-117.	1.2	5
389	Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017, 89, 12306-12313.	3.2	21
390	Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Scientific Reports, 2017, 7, 12433.	1.6	37
391	Conformation of Methylcellulose as a Function of Poly(ethylene glycol) Graft Density. ACS Macro Letters, 2017, 6, 1274-1279.	2.3	28
392	The molecular basis of Alzheimer's plaques. Science, 2017, 358, 45-46.	6.0	24
393	Imaging Aβ(1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Physical Chemistry Chemical Physics, 2017, 19, 27987-27996.	1.3	57
394	Kinetic Studies on Protein Aggregation With and Without the Presence of Crowders. World Scientific Lecture and Course Notes in Chemistry, 2017, , 187-220.	0.2	4
395	Electrostatic lipid–protein interactions sequester the curli amyloid fold on the lipopolysaccharide membrane surface. Journal of Biological Chemistry, 2017, 292, 19861-19872.	1.6	27
396	Disease-associated protein seeding suggests a dissociation between misfolded protein accumulation and neurodegeneration in prion disease. Prion, 2017, 11, 381-387.	0.9	3
397	Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomaterialia, 2017, 64, 259-268.	4.1	34
398	Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-I®B Signaling. Immunity, 2017, 47, 635-647.e6.	6.6	63
399	Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation. ACS Nano, 2017, 11, 11358-11367.	7.3	53
400	Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nature Communications, 2017, 8, 1026.	5.8	24
401	Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy. Journal of Visualized Experiments, 2017, , .	0.2	2
402	Self-assembly of model proteins into virus capsids. Journal of Physics Condensed Matter, 2017, 29, 474003.	0.7	10
403	Monomer-dependent secondary nucleation in amyloid formation. Biophysical Reviews, 2017, 9, 329-338.	1.5	112

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
404	Amyloid single-cell cytotoxicity assays by nanomotion detection. Cell Death Discovery,	2017, 3, 17053.	2.0	20
405	Hemin is able to disaggregate lysozyme amyloid fibrils into monomers. Biochimica Et Bi Proteins and Proteomics, 2017, 1865, 1315-1325.	ophysica Acta -	1.1	13
406	SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmu 9711-9730.	ir, 2017, 33,	1.6	121
407	Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, a Investigated by 2D IR Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 8935-8		1.2	60
408	Lessons learned from protein aggregation: toward technological and biomedical applica Biophysical Reviews, 2017, 9, 501-515.	itions.	1.5	11
409	Stilbene Boronic Acids Form a Covalent Bond with Human Transthyretin and Inhibit Its Journal of Medicinal Chemistry, 2017, 60, 7820-7834.	Aggregation.	2.9	25
410	Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Ser Langmuir, 2017, 33, 10606-10615.	um Albumin.	1.6	37
411	Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in pla diabetics with cardiovascular co-morbidities. Scientific Reports, 2017, 7, 9680.	sma of type 2	1.6	42
412	sw ApoMb Amyloid Aggregation under Nondenaturing Conditions: The Role of Native S Stability. Biophysical Journal, 2017, 113, 991-1001.	tructure	0.2	8
413	Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-At Dynamics Simulations. Scientific Reports, 2017, 7, 7915.	om Molecular	1.6	17
414	Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science, 2017, 3	58, 116-119.	6.0	801
415	Inhibiting the Fibrillation of Serum Albumin Proteins in the Presence of Surface Active Ic (SAILs) at Low pH: Spectroscopic and Microscopic Study. Journal of Physical Chemistry 7550-7560.		1.2	31
416	Zinc-coordination and C-peptide complexation: a potential mechanism for the endogen of IAPP aggregation. Chemical Communications, 2017, 53, 9394-9397.	ous inhibition	2.2	21
417	Substituent, Charge, and Size Effects on the Fluorogenic Performance of Amyloid Ligan Small-Library Screening Study. ACS Omega, 2017, 2, 3192-3200.	ds: A	1.6	19
418	Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fib toxicity, and BACE1 activity. Nanoscale, 2017, 9, 12862-12866.	rillation and	2.8	64
419	Mining databases for protein aggregation: a review. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society Amyloidosis, 2017, 24, 143-152.	of of	1.4	11
420	Sequence Specificity in the Entropy-Driven Binding of a Small Molecule and a Disordere Journal of Molecular Biology, 2017, 429, 2772-2779.	d Peptide.	2.0	62
421	Structural studies of amyloid- \hat{l}^2 peptides: Unlocking the mechanism of aggregation and toxicity. Biochimie, 2017, 140, 176-192.	the associated	1.3	59

# 423	ARTICLE The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2762-2771.	IF 1.8	Citations
425	Inhibition of amyloid fibrillation and destabilization of fibrils of human Î ³ D-crystallin by direct red 80 and orange G. International Journal of Biological Macromolecules, 2017, 105, 956-964.	3.6	16
426	Proteins evolve on the edge of supramolecular self-assembly. Nature, 2017, 548, 244-247.	13.7	185
427	Sequential Release of Proteins from Structured Multishell Microcapsules. Biomacromolecules, 2017, 18, 3052-3059.	2.6	14
428	The wisdom of crowds: regulating cell function through condensed states of living matter. Journal of Cell Science, 2017, 130, 2789-2796.	1.2	130
429	Heterologous prion-forming proteins interact to cross-seed aggregation in Saccharomyces cerevisiae. Scientific Reports, 2017, 7, 5853.	1.6	29
430	Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Reports, 2017, 21, 2291-2303.	2.9	107
431	Quantitative Study of the Oligomerization of Yeast Prion Sup35NM Proteins. Biochemistry, 2017, 56, 6575-6584.	1.2	4
432	Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell, 2017, 171, 1001-1014.	13.5	39
433	Amyloidogenic Pattern Prediction of HIV-1 Proteins. , 2017, , 823-895.		1
434	Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 2017, 7, 20170030.	1.5	206
435	Detergent-induced aggregation of an amyloidogenic intrinsically disordered protein. Journal of Chemical Sciences, 2017, 129, 1817-1827.	0.7	0
436	Toward a Soluble Model System for the Amyloid State. Journal of the American Chemical Society, 2017, 139, 16434-16437.	6.6	4
437	Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis. Biomacromolecules, 2017, 18, 4316-4322.	2.6	50
438	Cellular mechanism of fibril formation from serum amyloid A1 protein. EMBO Reports, 2017, 18, 1352-1366.	2.0	39
439	Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophysical Reviews, 2017, 9, 405-419.	1.5	74
440	Protein homeostasis of a metastable subproteome associated with Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5703-E5711.	3.3	77
441	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie, 2017, 129, 7858-7862.	1.6	9

#	ARTICLE Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein	IF 7.2	CITATIONS
443	Aggregates. Angewandte Chemie - International Edition, 2017, 56, 7750-7754. Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
444	Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Al²42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8005-8010.	3.3	45
445	Minimal Nucleation State of α-Synuclein Is Stabilized by Dynamic Threonine–Water Networks. ACS Chemical Neuroscience, 2017, 8, 1859-1864.	1.7	10
446	Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine, 2017, 12, 1675-1687.	1.7	29
447	Designed α-sheet peptides suppress amyloid formation in Staphylococcus aureus biofilms. Npj Biofilms and Microbiomes, 2017, 3, 16.	2.9	34
448	Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Scientific Reports, 2017, 7, 2455.	1.6	34
449	The amyloid architecture provides a scaffold for enzyme-like catalysts. Nanoscale, 2017, 9, 10773-10783.	2.8	89
450	Geometrical frustration yields fibre formation inÂself-assembly. Nature Physics, 2017, 13, 1100-1104.	6.5	39
451	Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid Î ² -protein aggregation and cytotoxicity. Journal of Colloid and Interface Science, 2017, 505, 973-982.	5.0	33
452	On the kinetics of body versus end evaporation and addition of supramolecular polymers. European Physical Journal E, 2017, 40, 65.	0.7	1
453	Thermodynamic and kinetic stability of the Josephin Domain closed arrangement: evidences from replica exchange molecular dynamics. Biology Direct, 2017, 12, 2.	1.9	15
454	A Tetramer Derived from Islet Amyloid Polypeptide. Journal of Organic Chemistry, 2017, 82, 7905-7912.	1.7	14
455	SODA: prediction of protein solubility from disorder and aggregation propensity. Nucleic Acids Research, 2017, 45, W236-W240.	6.5	47
456	Protein folding by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 100, 52-77.	3.9	48
457	Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112, 234-247.	5.7	443
458	Formation of Apoptosisâ€Inducing Amyloid Fibrils by Tryptophan. Israel Journal of Chemistry, 2017, 57, 729-737.	1.0	56
459	Structural Biology of Calcitonin: From Aqueous Therapeutic Properties to Amyloid Aggregation. Israel Journal of Chemistry, 2017, 57, 634-650.	1.0	15

#	Article	IF	CITATIONS
460	Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers. Methods in Molecular Biology, 2017, 1486, 357-390.	0.4	34
461	A resorcinarene for inhibition of $A\hat{I}^2$ fibrillation. Chemical Science, 2017, 8, 2003-2009.	3.7	44
462	Assembly and regulation of ASC specks. Cellular and Molecular Life Sciences, 2017, 74, 1211-1229.	2.4	105
463	Quantification of anti-aggregation activity of chaperones. International Journal of Biological Macromolecules, 2017, 100, 104-117.	3.6	30
464	Structural and functional diversity among amyloid proteins: Agents of disease, building blocks of biology, and implications for molecular engineering. Biotechnology and Bioengineering, 2017, 114, 7-20.	1.7	27
465	Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. Progress in Biophysics and Molecular Biology, 2017, 123, 16-41.	1.4	64
466	Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. Journal of Molecular Liquids, 2017, 228, 176-193.	2.3	103
467	Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science. Vibrational Spectroscopy, 2017, 91, 3-15.	1.2	50
468	Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 176-185.	1.1	20
469	Insulin aggregation tracked by its intrinsic TRES. Applied Physics Letters, 2017, 111, 263701.	1.5	5
470	In vitro aggregating Î ² -lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. Journal of Negative Results in BioMedicine, 2017, 16, 14.	1.4	2
471	Amyloid properties of titin. Biochemistry (Moscow), 2017, 82, 1675-1685.	0.7	3
472	Plagues and History: From the Black Death to Alzheimer's Disease. , 0, , 32-65.		1
473	Shear-Induced Amyloid Formation inÂtheÂBrain: II. An Experimental System forÂMonitoring Amyloid Shear Processes and Investigating Potential Spinal Tap Problems. Journal of Alzheimer's Disease, 2017, 59, 543-557.	1.2	9
474	Strategy and Tactics for Designing Analogs: Biochemical Characterization of the Large Molecules â~†. , 2017, , 66-115.		5
475	Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. , 2017, , 2-43.e19.		107
476	Membrane-Accelerated Amyloid-β Aggregation and Formation of Cross-β Sheets. Membranes, 2017, 7, 49.	1.4	41
477	β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules, 2017, 22, 1692.	1.7	82

		CITATION REPORT		
#	Article		IF	Citations
478	Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscier	ıce, 2017, 11, 64.	1.4	70
479	The Physiological and Pathological Implications of the Formation of Hydrogels, with a S on Amyloid Polypeptides. Biomolecules, 2017, 7, 70.	Specific Focus	1.8	7
480	Why are Functional Amyloids Non-Toxic in Humans?. Biomolecules, 2017, 7, 71.		1.8	68
481	Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Aci International Journal of Molecular Sciences, 2017, 18, 1023.	ds.	1.8	40
482	Hsp78 (78 kDa Heat Shock Protein), a Representative AAA Family Member Found in th Matrix of Saccharomyces cerevisiae. Frontiers in Molecular Biosciences, 2017, 4, 60.	e Mitochondrial	1.6	8
483	The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Frontiers in N 11, 254.	euroscience, 2017,	1.4	277
484	The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorder Potential Therapeutic Significance. Frontiers in Molecular Neuroscience, 2017, 10, 187	s and Its '.	1.4	138
485	Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection Science and Applications, 2017, 6, e17029-e17029.	on. Light:	7.7	93
486	A dominant-negative mutant inhibits multiple prion variants through a common mecha Genetics, 2017, 13, e1007085.	inism. PLoS	1.5	12
487	Outer membrane protein folding from an energy landscape perspective. BMC Biology,	2017, 15, 123.	1.7	62
488	Metal-Binding to Amyloid- \hat{l}^2 Peptide: Coordination, Aggregation, and Reactive Oxygen Production. , 2017, , 265-281.	Species		12
489	Synuclein misfolding as a therapeutic target. , 2017, , 21-47.			0
490	A peptideâ€display protein scaffold to facilitate single molecule force studies of aggreg peptides. Protein Science, 2018, 27, 1205-1217.	zationâ€prone	3.1	6
491	Core-shell assay based aptasensor for sensitive and selective thrombin detection using microscopy. Talanta, 2018, 182, 348-353.	dark-field	2.9	11
492	Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly ir inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Frontiers of Chemica Engineering, 2018, 12, 283-295.		2.3	11
493	Interaction between amyloidogenic proteins and biomembranes in protein misfolding of Mechanisms, contributors, and therapy. Biochimica Et Biophysica Acta - Biomembranes 1876-1888.		1.4	20
494	IAPP in type II diabetes: Basic research on structure, molecular interactions, and diseas suggests potential intervention strategies. Biochimica Et Biophysica Acta - Biomembra 1765-1782.		1.4	62
495	Amyloidâ€Polymorphie in der Energielandschaft der Faltung und Aggregation von Prot Angewandte Chemie, 2018, 130, 8502-8515.	einen.	1.6	16

#	Article	IF	CITATIONS
496	Molecular basis for diversification of yeast prion strain conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2389-2394.	3.3	44
497	Cross-fibrillation of insulin and amyloid β on chiral surfaces: Chirality affects aggregation kinetics and cytotoxicity. Nano Research, 2018, 11, 4102-4110.	5.8	23
498	Translational Chemistry Meets Glutenâ€Related Disorders. ChemistryOpen, 2018, 7, 217-232.	0.9	17
499	Neutral derivatives of Thioflavin T do not exhibit viscosity-dependent fluorescence. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 76-91.	2.0	8
500	Theory of Sequence Effects in Amyloid Aggregation. Journal of Physical Chemistry B, 2018, 122, 5567-5578.	1.2	12
501	Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites. Journal of Physical Chemistry B, 2018, 122, 3101-3112.	1.2	28
502	Adsorption and Fibrillization of Islet Amyloid Polypeptide at Self-Assembled Monolayers Studied by QCM-D, AFM, and PM-IRRAS. Langmuir, 2018, 34, 3517-3524.	1.6	31
503	Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chemical Science, 2018, 9, 3290-3298.	3.7	18
504	Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation. Annual Review of Physical Chemistry, 2018, 69, 273-298.	4.8	161
505	Dynamic protein folding at the surface of stimuliâ€responsive peptide fibrils. Protein Science, 2018, 27, 1243-1251.	3.1	6
506	Semenâ€derived amyloidogenic peptides—Key players of HIV infection. Protein Science, 2018, 27, 1151-1165.	3.1	15
507	Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Science, 2018, 27, 1252-1261.	3.1	35
508	Protein Disaggregation in Multicellular Organisms. Trends in Biochemical Sciences, 2018, 43, 285-300.	3.7	103
509	Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophysical Journal, 2018, 114, 870-884.	0.2	88
510	Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nature Chemical Biology, 2018, 14, 388-395.	3.9	78
511	Translational Research and Innovation in Human and Health Science. Annals of Medicine, 2018, 50, S10-S170.	1.5	3
512	A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates. Journal of Physical Chemistry Letters, 2018, 9, 2433-2437.	2.1	13
513	Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau. Journal of Molecular Biology, 2018, 430, 2508-2520.	2.0	23

#	Article	IF	CITATIONS
514	Conformational flexibility within the nascent polypeptide–associated complex enables its interactions with structurally diverse client proteins. Journal of Biological Chemistry, 2018, 293, 8554-8568.	1.6	20
515	Amyloid assembly and disassembly. Journal of Cell Science, 2018, 131, .	1.2	138
516	Polarization-Dependent Atomic Force Microscopy–Infrared Spectroscopy (AFM-IR): Infrared Nanopolarimetric Analysis of Structure and Anisotropy of Thin Films and Surfaces. Applied Spectroscopy, 2018, 72, 817-832.	1.2	38
517	[PIN+]ing down the mechanism of prion appearance. FEMS Yeast Research, 2018, 18, .	1.1	19
518	TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nature Communications, 2018, 9, 1223.	5.8	47
519	Inhibition of α‧ynuclein Amyloid Fibril Elongation by Blocking Fibril Ends. Angewandte Chemie - International Edition, 2018, 57, 5690-5694.	7.2	27
520	No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biological Reviews, 2018, 93, 1518-1557.	4.7	92
521	Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C. Journal of Peptide Science, 2018, 24, e3073.	0.8	5
522	Intranasally Administered S100A9 Amyloids Induced Cellular Stress, Amyloid Seeding, and Behavioral Impairment in Aged Mice. ACS Chemical Neuroscience, 2018, 9, 1338-1348.	1.7	14
523	A spidroinâ€derived solubility tag enables controlled aggregation of a designed amyloid protein. FEBS Journal, 2018, 285, 1873-1885.	2.2	32
524	Inhibition of α‧ynuclein Amyloid Fibril Elongation by Blocking Fibril Ends. Angewandte Chemie, 2018, 130, 5792-5796.	1.6	4
525	Reciprocal Interactions between Membrane Bilayers and S. aureus PSMα3 Cross-α Amyloid Fibrils Account for Species-Specific Cytotoxicity. Journal of Molecular Biology, 2018, 430, 1431-1441.	2.0	28
526	3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods, 2018, 138-139, 26-38.	1.9	60
527	Unravelling the inhibitory activity of Chlamydomonas reinhardtii sulfated polysaccharides against α-Synuclein fibrillation. Scientific Reports, 2018, 8, 5692.	1.6	14
528	Nanoparticles modulate membrane interactions of human Islet amyloid polypeptide (hIAPP). Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1810-1817.	1.4	11
529	Burning Amyloid-β with a Near-Infrared Photosensitizer. CheM, 2018, 4, 663-665.	5.8	4
530	Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Angewandte Chemie - International Edition, 2018, 57, 8370-8382.	7.2	229
531	Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. Journal of Neuroscience Methods, 2018, 306, 57-67.	1.3	52

#	Article	IF	CITATIONS
532	In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell, 2018, 172, 696-705.e12.	13.5	311
533	Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1803-1809.	1.4	36
534	On-chip measurements of protein unfolding from direct observations of micron-scale diffusion. Chemical Science, 2018, 9, 3503-3507.	3.7	11
535	Amyloids of multiple species: are they helpful in survival?. Biological Reviews, 2018, 93, 1363-1386.	4.7	11
536	Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Medicinal Chemistry, 2018, 10, 679-701.	1.1	45
537	Fibrillization of βâ€Amyloid Peptides via Chemically Modulated Pathway. Chemistry - A European Journal, 2018, 24, 4939-4943.	1.7	2
538	Disordered Nanostructure in Huntingtin Interacting Protein K Acts as a Stabilizing Switch To Prevent Protein Aggregation. Biochemistry, 2018, 57, 2009-2023.	1.2	16
539	Islet Amyloid Polypeptide Promotes Amyloid-Beta Aggregation by Binding-Induced Helix-Unfolding of the Amyloidogenic Core. ACS Chemical Neuroscience, 2018, 9, 967-975.	1.7	39
540	Information content in data sets: A review of methods for interrogation and model comparison. Journal of Inverse and Ill-Posed Problems, 2018, 26, 423-452.	0.5	5
541	Molecular Role of Ca2+ and Hard Divalent Metal Cations on Accelerated Fibrillation and Interfibrillar Aggregation of α-Synuclein. Scientific Reports, 2018, 8, 1895.	1.6	42
542	Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1359.	6.2	17
543	Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Developmental Biology, 2018, 435, 41-55.	0.9	39
544	Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. Journal of the American Chemical Society, 2018, 140, 2493-2503.	6.6	44
545	Microfluidics for Protein Biophysics. Journal of Molecular Biology, 2018, 430, 565-580.	2.0	49
546	Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects. Journal of Reproductive Immunology, 2018, 125, 56-63.	0.8	13
547	Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer's Disease Treatment. ACS Chemical Neuroscience, 2018, 9, 198-210.	1.7	60
548	Pre-aggregation kinetics and intermediates of α-synuclein monitored by the ESIPT probe 7MFE. European Biophysics Journal, 2018, 47, 345-362.	1.2	11
549	Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 757-766.	1.4	33

#	Article	IF	CITATIONS
550	The chaperonin CCT promotes the formation of fibrillar aggregates of Î ³ -tubulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 519-526.	1.1	22
551	Mammalian amyloidogenic proteins promote prion nucleation in yeast. Journal of Biological Chemistry, 2018, 293, 3436-3450.	1.6	23
552	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	3.2	20
553	Identification and characterization of antibodies elicited by human cystatin C fragment. Journal of Molecular Recognition, 2018, 31, e2689.	1.1	0
554	Dementia and vagotomy in Taiwan: a population-based cohort study. BMJ Open, 2018, 8, e019582.	0.8	17
555	Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2018, 14, 3298-3310.	2.3	24
556	Differential inhibition of metabolite amyloid formation by generic fibrillation-modifying polyphenols. Communications Chemistry, 2018, 1, .	2.0	52
557	Conformational evolution of polymorphic amyloid assemblies. Current Opinion in Structural Biology, 2018, 51, 135-140.	2.6	14
558	Simulations and Experiments Delineate Amyloid Fibrilization by Peptides Derived from Glaucoma-Associated Myocilin. Journal of Physical Chemistry B, 2018, 122, 5845-5850.	1.2	9
560	Analytical pyrolysis to gain insights into the protein structure. The case of ovalbumin. Journal of Analytical and Applied Pyrolysis, 2018, 133, 59-67.	2.6	17
561	Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nature Communications, 2018, 9, 1781.	5.8	64
562	Impact of membrane curvature on amyloid aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1741-1764.	1.4	88
563	Emerging Paradigms for Synthetic Design of Functional Amyloids. Journal of Molecular Biology, 2018, 430, 3720-3734.	2.0	23
564	ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell and Tissue Research, 2018, 373, 195-212.	1.5	93
565	Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. Journal of Theoretical Biology, 2018, 451, 35-45.	0.8	5
566	Amyloid Fibrils: Versatile Biomaterials for Cell Adhesion and Tissue Engineering Applications. Biomacromolecules, 2018, 19, 1826-1839.	2.6	99
567	Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nature Structural and Molecular Biology, 2018, 25, 341-346.	3.6	185
568	Recent computational studies of membrane interaction and disruption of human islet amyloid polypeptide: Monomers, oligomers and protofibrils. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1826-1839.	1.4	34

#	Article	IF	CITATIONS
569	Time dependence of NMR observables reveals salient differences in the accumulation of early aggregated species between human islet amyloid polypeptide and amyloid-β. Physical Chemistry Chemical Physics, 2018, 20, 9561-9573.	1.3	9
570	Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12–28) Peptides. Langmuir, 2018, 34, 4665-4672.	1.6	18
571	Structural modelling of the DNAJB6 oligomeric chaperone shows a peptide-binding cleft lined with conserved S/T-residues at the dimer interface. Scientific Reports, 2018, 8, 5199.	1.6	43
572	Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading. ACS Chemical Neuroscience, 2018, 9, 1276-1282.	1.7	68
573	Looking at the Disordered Proteins through the Computational Microscope. ACS Central Science, 2018, 4, 534-542.	5.3	46
574	Hybrid Multifunctional Modulators Inhibit Multifaceted Aβ Toxicity and Prevent Mitochondrial Damage. ACS Chemical Neuroscience, 2018, 9, 1432-1440.	1.7	53
575	Anti-Aβ drug candidates in clinical trials and plasmonic nanoparticle-based drug-screen for Alzheimer's disease. Analyst, The, 2018, 143, 2204-2212.	1.7	19
576	Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins. Computers and Chemical Engineering, 2018, 116, 322-332.	2.0	13
577	Metal-involved theranostics: An emerging strategy for fighting Alzheimer's disease. Coordination Chemistry Reviews, 2018, 362, 72-84.	9.5	53
578	Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano, 2018, 12, 3385-3396.	7.3	210
579	Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nature Structural and Molecular Biology, 2018, 25, 311-319.	3.6	89
580	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	3.1	27
581	Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3225-3230.	3.3	209
582	Genetics of Synucleinopathies. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024109.	2.9	58
583	How the shapes of seeds can influence pathology. Neurobiology of Disease, 2018, 109, 201-208.	2.1	34
584	Different amyloid aggregation of smooth muscles titin <i>in vitro</i> . Journal of Biomolecular Structure and Dynamics, 2018, 36, 2237-2248.	2.0	14
585	The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiology of Disease, 2018, 109, 178-190.	2.1	62
586	AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic Acids Research, 2018, 46, D387-D392.	6.5	59

#	Article	IF	CITATIONS
587	Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. International Journal of Biological Macromolecules, 2018, 107, 2643-2649.	3.6	22
588	Oneâ€Pot Synthesis of Thermoresponsive Amyloidogenic Peptide–Polymer Conjugates via Thio–Bromo "Click―Reaction of RAFT Polymers. Macromolecular Rapid Communications, 2018, 39, 1700507.	2.0	19
589	Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. International Journal of Neuroscience, 2018, 128, 449-463.	0.8	12
590	Sup35NMp morphology evaluation on Au, Si, formvar and mica surfaces using AFM, SEM and TEM. Journal of Structural Biology, 2018, 201, 5-14.	1.3	4
591	Interaction of polymers with amyloidogenic peptides. Polymer International, 2018, 67, 15-24.	1.6	5
592	Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids and Surfaces B: Biointerfaces, 2018, 161, 103-110.	2.5	31
593	Inhibitory effect of tartrate against phosphate-induced DJ-1 aggregation. International Journal of Biological Macromolecules, 2018, 107, 1650-1658.	3.6	3
594	Clinical characteristics of laryngeal versus nonlaryngeal amyloidosis. Laryngoscope, 2018, 128, 670-674.	1.1	24
595	Synthesis and β-sheet propensity of constrained N-amino peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 1162-1166.	1.4	12
596	Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 158-173.	1.2	11
597	The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160525.	1.8	78
598	SUMO1 impact on Alzheimer disease pathology in an amyloid-depositing mouse model. Neurobiology of Disease, 2018, 110, 154-165.	2.1	21
599	Pathways of Amyloid-β Aggregation Depend on Oligomer Shape. Journal of the American Chemical Society, 2018, 140, 319-327.	6.6	120
600	Effects of force fields on the conformational and dynamic properties of amyloid β(1â€40) dimer explored by replica exchange molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2018, 86, 279-300.	1.5	23
601	Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Research, 2018, 11, 3636-3647.	5.8	35
602	NABi, a novel β-sheet breaker, inhibits Aβ aggregation and neuronal toxicity: Therapeutic implications for Alzheimer's disease. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 71-80.	1.1	3
603	Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Preparative Biochemistry and Biotechnology, 2018, 48, 43-56.	1.0	9
604	Discovery of an Orally Bioavailable Benzofuran Analogue That Serves as a β-Amyloid Aggregation Inhibitor for the Potential Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2018, 61, 396-402.	2.9	30

#	Article	IF	Citations
605	The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Cellular and Molecular Life Sciences, 2018, 75, 1445-1459.	2.4	7
606	Estimating the rate of prion aggregate amplification in yeast with a generation and structured population model. Inverse Problems in Science and Engineering, 2018, 26, 257-279.	1.2	6
607	α-Synuclein Aggregation Monitored by Thioflavin T Fluorescence Assay. Bio-protocol, 2018, 8, .	0.2	38
608	Self-inhibition of insulin amyloid-like aggregation. Physical Chemistry Chemical Physics, 2018, 20, 27638-27645.	1.3	22
609	Graphene quantum dots against human IAPP aggregation and toxicity <i>in vivo</i> . Nanoscale, 2018, 10, 19995-20006.	2.8	100
610	Light-scattering detection within the difficult size range of protein particle measurement using flow cytometry. Nanoscale, 2018, 10, 19277-19285.	2.8	6
611	PREVENTIVE EFFECT OF CYCAS REVOLUTA IN 1,2-DIMETHYLHYDRAZINE-INDUCED COLON CANCER IN WISTAR RAT MODEL. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 120.	0.3	2
612	Single-Molecule Study of Peptide Gel Dynamics Reveals States of Prestress. Langmuir, 2018, 34, 14678-14689.	1.6	7
613	Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods in Enzymology, 2018, 611, 347-381.	0.4	25
614	Amyloids Are Novel Cell-Adhesive Matrices. Advances in Experimental Medicine and Biology, 2018, 1112, 79-97.	0.8	6
615	Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. Acta Biologica Hungarica, 2018, 69, 385-394.	0.7	7
617	Cyclic undecapeptide Cyclosporin A mediated inhibition of amyloid synthesis: Implications in alleviation of amyloid induced neurotoxicity. Scientific Reports, 2018, 8, 17283.	1.6	5
618	Polymorph-specific distribution of binding sites determines thioflavin-T fluorescence intensity in α-synuclein fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25, 189-196.	1.4	52
619	A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Scientific Reports, 2018, 8, 17615.	1.6	20
620	Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates. Molecular and Cellular Biology, 2018, 38, .	1.1	10
621	<scp>l</scp> -Dopa and dopamine conjugated naphthalenediimides modulate amyloid β toxicity. Organic and Biomolecular Chemistry, 2018, 16, 7682-7692.	1.5	20
622	Amyloid-beta Degradation and Neuroprotection of Dauricine Mediated by Unfolded Protein Response in a Caenorhabditis elegans Model of Alzheimer's disease. Neuroscience, 2018, 392, 25-37.	1.1	17
623	Polymer-Ligand-Based ELISA for Robust, High-Throughput, Quantitative Detection of p53 Aggregates. Analytical Chemistry, 2018, 90, 13273-13279.	3.2	18

#	Article	IF	CITATIONS
624	Microfluidic deposition for resolving single-molecule protein architecture and heterogeneity. Nature Communications, 2018, 9, 3890.	5.8	40
625	The Rational Discovery of a Tau Aggregation Inhibitor. Biochemistry, 2018, 57, 6099-6107.	1.2	22
626	Liquid crystalline filamentous biological colloids: Analogies and differences. Current Opinion in Colloid and Interface Science, 2018, 38, 30-44.	3.4	23
627	SAR by kinetics for drug discovery in protein misfolding diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10245-10250.	3.3	54
628	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
629	Hydrophobic Modification of Carboxyl-Terminated Polyamidoamine Dendrimer Surface Creates a Potent Inhibitor of Amyloid-β Fibrillation. Langmuir, 2018, 34, 14419-14427.	1.6	14
630	The Insoluble Protein Deposit (IPOD) in Yeast. Frontiers in Molecular Neuroscience, 2018, 11, 237.	1.4	28
631	Novel iatrogenic amyloidosis caused by peptide drug liraglutide: a clinical mimic of AL amyloidosis. Haematologica, 2018, 103, e610-e612.	1.7	11
632	Orientation of a Diagnostic Ligand Bound to Macroscopically Aligned Amyloid-β Fibrils Determined by Solid-State NMR. Journal of Physical Chemistry Letters, 2018, 9, 6611-6615.	2.1	0
633	Prions and Non-infectious Amyloids of Mammals – Similarities and Differences. Biochemistry (Moscow), 2018, 83, 1184-1195.	0.7	6
634	Statistical Mechanics of Globular Oligomer Formation by Protein Molecules. Journal of Physical Chemistry B, 2018, 122, 11721-11730.	1.2	9
635	Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. Small, 2018, 14, e1802825.	5.2	57
637	Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives. ACS Nano, 2018, 12, 9991-9999.	7.3	51
638	Effect of cations and anions of ionic liquids on the stability and activity of lysozyme: Concentration and temperature effect. Journal of Molecular Liquids, 2018, 272, 253-263.	2.3	36
639	Potent α-Synuclein Aggregation Inhibitors, Identified by High-Throughput Screening, Mainly Target the Monomeric State. Cell Chemical Biology, 2018, 25, 1389-1402.e9.	2.5	68
640	Amyloid Growth, Inhibition, and Real-Time Enzymatic Degradation Revealed with Single Conical Nanopore. Analytical Chemistry, 2018, 90, 12900-12908.	3.2	43
641	A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 755-773.	16.1	654
642	Dielectric constant of flagellin proteins measured by scanning dielectric microscopy. Nanoscale, 2018, 10, 19188-19194.	2.8	16

#	Article	IF	CITATIONS
643	Metastable states of HYPK-UBA domain's seeds drive the dynamics of its own aggregation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2846-2861.	1.1	11
644	Antibodies towards Tyrosine Amyloid-Like Fibrils Allow Toxicity Modulation and Cellular Imaging of the Assemblies. Molecules, 2018, 23, 1273.	1.7	29
645	Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. Journal of Molecular Biology, 2018, 430, 4230-4244.	2.0	49
646	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie, 2018, 130, 12624-12627.	1.6	4
647	Preparation of fibril nuclei of beta-amyloid peptides in reverse micelles. Chemical Communications, 2018, 54, 10459-10462.	2.2	30
648	Serum amyloid A – a review. Molecular Medicine, 2018, 24, 46.	1.9	326
649	Forms and Phases in Huntingtin Protein Aggregation. Molecular Cell, 2018, 70, 567-568.	4.5	1
650	Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. Langmuir, 2018, 34, 7180-7191.	1.6	13
651	Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nature Structural and Molecular Biology, 2018, 25, 463-471.	3.6	183
652	Total chemical synthesis and biophysical properties of a designed soluble 24 kDa amyloid analogue. Chemical Science, 2018, 9, 5594-5599.	3.7	6
653	Stochastic calculus of protein filament formation under spatial confinement. New Journal of Physics, 2018, 20, 055007.	1.2	19
654	Real-Time In Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas. ACS Sensors, 2018, 3, 1109-1117.	4.0	51
655	Achieving biopolymer synergy in systems chemistry. Chemical Society Reviews, 2018, 47, 5444-5456.	18.7	43
656	A hydrophobic low-complexity region regulates aggregation of the yeast pyruvate kinase Cdc19 into amyloid-like aggregates in vitro. Journal of Biological Chemistry, 2018, 293, 11424-11432.	1.6	22
657	Substrate relay in an Hsp70 ochaperone cascade safeguards tail‪nchored membrane protein targeting. EMBO Journal, 2018, 37, .	3.5	41
658	Comparative experiments of fibril formation from whey protein concentrate with homogeneous and secondary nuclei. Food Research International, 2018, 111, 556-564.	2.9	17
659	Quantifying Nucleation InÂVivo Reveals the Physical Basis of Prion-like Phase Behavior. Molecular Cell, 2018, 71, 155-168.e7.	4.5	76
660	Re-designing the α-synuclein tetramer. Chemical Communications, 2018, 54, 8080-8083.	2.2	20

#	Article	IF	CITATIONS
661	Energy landscape of polymorphic amyloid generation of β2-microglobulin revealed by calorimetry. Chemical Communications, 2018, 54, 7995-7998.	2.2	14
662	Identification and nanomechanical characterization of the fundamental single-strand protofilaments of amyloid α-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7230-7235.	3.3	96
663	Kinetic barriers to α-synuclein protofilament formation and conversion into mature fibrils. Chemical Communications, 2018, 54, 7854-7857.	2.2	31
664	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	1.6	86
665	Oligomer Diversity during the Aggregation of the Repeat Region of Tau. ACS Chemical Neuroscience, 2018, 9, 3060-3071.	1.7	50
666	Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angewandte Chemie, 2018, 130, 8655-8660.	1.6	11
667	Disorder at the Tips of a Disease-Relevant Aβ42 Amyloid Fibril: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2018, 122, 11072-11082.	1.2	24
668	Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. Journal of Biological Chemistry, 2018, 293, 13151-13165.	1.6	25
669	Preparation of functionalized protein materials assisted by mechanochemistry. Journal of Materials Science, 2018, 53, 13719-13732.	1.7	10
670	Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano, 2018, 12, 6612-6619.	7.3	97
671	Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chemical Communications, 2018, 54, 7762-7765.	2.2	95
672	Inhibition of Protein Aggregation by Several Antioxidants. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	26
673	Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Research, 2018, 28, 897-903.	5.7	339
674	Dynamic micellar oligomers of amyloid beta peptides play a crucial role in their aggregation mechanisms. Physical Chemistry Chemical Physics, 2018, 20, 20597-20614.	1.3	38
675	Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Letters, 2018, 592, 3040-3053.	1.3	23
676	Aggregation-phase diagrams of β2-microglobulin reveal temperature and salt effects on competitive formation of amyloids versus amorphous aggregates. Journal of Biological Chemistry, 2018, 293, 14775-14785.	1.6	32
677	Photoactive Bismuth Vanadate Structure for Lightâ€Triggered Dissociation of Alzheimer's βâ€Amyloid Aggregates. Advanced Functional Materials, 2018, 28, 1802813.	7.8	34
678	CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Research, 2018, 46, W344-W349.	6.5	30

#	Article	IF	CITATIONS
679	Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1–42). Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2226-2235.	1.1	19
680	In silico prediction of novel residues involved in amyloid primary nucleation of human I56T and D67H lysozyme. BMC Structural Biology, 2018, 18, 9.	2.3	6
681	Cell Polarity in Oocyte Development. , 2018, , 1-29.		1
682	Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model. Journal of Alzheimer's Disease, 2018, 65, 47-70.	1.2	14
683	The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion, 2018, 12, 170-174.	0.9	5
684	Stabilization and Characterization of Cytotoxic Al ² ₄₀ Oligomers Isolated from an Aggregation Reaction in the Presence of Zinc Ions. ACS Chemical Neuroscience, 2018, 9, 2959-2971.	1.7	42
685	Secondary nucleation in amyloid formation. Chemical Communications, 2018, 54, 8667-8684.	2.2	323
686	Cholesterol: A Key in the Pathogenesis of Alzheimer's Disease. ChemMedChem, 2018, 13, 1742-1743.	1.6	11
687	Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle, 2018, 17, 1545-1558.	1.3	39
688	A Rationally Designed Hsp70 Variant Rescues the Aggregation-Associated Toxicity of Human IAPP in Cultured Pancreatic Islet I ² -Cells. International Journal of Molecular Sciences, 2018, 19, 1443.	1.8	14
689	Computational Insight into the Effect of Natural Compounds on the Destabilization of Preformed Amyloid-β(1–40) Fibrils. Molecules, 2018, 23, 1320.	1.7	28
690	Modelling Alzheimer's disease: Insights from <i>in vivo</i> to <i>in vitro</i> three-dimensional culture platforms. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1944-1958.	1.3	18
691	Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli. ELife, 2018, 7, .	2.8	65
692	The 70 KDA Heat Shock Protein Hsp70 as Part of a Protein Disaggregase System. Heat Shock Proteins, 2018, , 155-180.	0.2	1
693	Molecular Chaperones Regulating the Dynamics, Composition and Functionality of RNP Granules: Implications for Age-Related Diseases. Heat Shock Proteins, 2018, , 205-222.	0.2	0
694	Conserved S/T Residues of the Human Chaperone DNAJB6 Are Required for Effective Inhibition of AÎ ² 42 Amyloid Fibril Formation. Biochemistry, 2018, 57, 4891-4902.	1.2	52
695	Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry, 2018, 57, 5029-5040.	1.2	6
696	Increase in soluble protein oligomers triggers the innate immune system promoting inflammation and vascular dysfunction in the pathogenesis of sepsis. Clinical Science, 2018, 132, 1433-1438.	1.8	4

#	Article	IF	CITATIONS
697	More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. Journal of Molecular Biology, 2018, 430, 4607-4618.	2.0	42
698	Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. Langmuir, 2018, 34, 15109-15125.	1.6	41
699	Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis. Developmental Cell, 2018, 45, 392-405.e6.	3.1	66
700	The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Scientific Reports, 2018, 8, 7297.	1.6	22
701	Distinct Effects of Oâ€GlcNAcylation and Phosphorylation of a Tauâ€Derived Amyloid Peptide on Aggregation of the Native Peptide. Chemistry - A European Journal, 2018, 24, 14039-14043.	1.7	7
702	Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules, 2018, 19, 3958-3969.	2.6	9
703	Synthesis and Structure Activity Relationship of Pyridazine-Based Inhibitors for Elucidating the Mechanism of Amyloid Inhibition. Chemical Research in Toxicology, 2018, 31, 1092-1104.	1.7	9
704	Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date. Journal of Proteome Research, 2018, 17, 4072-4084.	1.8	5
705	Heparin assisted assembly of somatostatin amyloid nanofibrils results in disordered precipitates by hindrance of protofilaments interactions. Nanoscale, 2018, 10, 18195-18204.	2.8	18
706	Interactions between the Intrinsically Disordered Proteins βâ€Synuclein and αâ€Synuclein. Proteomics, 2018, 18, e1800109.	1.3	16
707	Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. Journal of Biological Chemistry, 2018, 293, 15581-15593.	1.6	18
708	Mechanical Anisotropy in GNNQQNY Amyloid Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4901-4909.	2.1	7
709	Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide. ACS Nano, 2018, 12, 9152-9161.	7.3	28
710	Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis. Cell Reports, 2018, 24, 1713-1721.e4.	2.9	63
711	Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. Journal of Physical Chemistry B, 2018, 122, 11302-11310.	1.2	6
712	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie - International Edition, 2018, 57, 12444-12447.	7.2	67
713	Organization of Amino Acids into Layered Supramolecular Secondary Structures. Accounts of Chemical Research, 2018, 51, 2187-2197.	7.6	65
714	Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synthetic Biology, 2018, 7, 2087-2093.	1.9	6

#	Article	IF	Citations
715	Discrete roles of trehalose and Hsp104 in inhibition of protein aggregation in yeast cells. FEMS Yeast Research, 2018, 18, .	1.1	6
716	Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angewandte Chemie - International Edition, 2018, 57, 8519-8524.	7.2	43
717	Role of Hydrophobicity and Charge of Amyloid-Beta Oligomer Eliminating <scp>d</scp> -Peptides in the Interaction with Amyloid-Beta Monomers. ACS Chemical Neuroscience, 2018, 9, 2679-2688.	1.7	12
718	Rhenium Complexes of Bis(benzothiazole)â€Based Tetraarylethylenes as Selective Luminescent Probes for Amyloid Fibrils. Chemistry - A European Journal, 2018, 24, 11729-11737.	1.7	23
719	Inhibition of the formation of amyloid-like fibrils using herbal extracts. Acta Biologica Hungarica, 2018, 69, 125-134.	0.7	4
720	Neurodegenerative Diseases as Protein Folding Disorders. , 2018, , 243-267.		0
721	Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein. Biophysical Journal, 2018, 114, 2540-2551.	0.2	32
722	A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Computational Biology, 2018, 14, e1005890.	1.5	46
723	Redoxâ€Activated Nearâ€Infraredâ€Responsive Polyoxometalates Used for Photothermal Treatment of Alzheimer's Disease. Advanced Healthcare Materials, 2018, 7, e1800320.	3.9	51
724	Development of an Effective Alzheimer's Vaccine. , 2018, , 149-169.		2
725	Cholesterol catalyses Al ² 42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	6.6	186
726	Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6201-E6208.	3.3	29
727	In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas. Nano Letters, 2019, 19, 1-7.	4.5	45
728	Fluorescence properties of the amyloid indicator dye thioflavin T in constrained environments. Dyes and Pigments, 2019, 160, 64-70.	2.0	8
729	Noncovalent, Electrostatic Interactions Induce Positively Cooperative Binding of Small Molecules to Alzheimer's and Parkinson's Disease-Related Amyloids. ACS Chemical Neuroscience, 2019, 10, 991-995.	1.7	8
730	Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Molecular Psychiatry, 2019, 24, 936-951.	4.1	47
731	The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. International Journal of Molecular Sciences, 2019, 20, 4009.	1.8	76
732	The Kinetics of Amyloid Fibrillar Aggregation of Uperin 3.5 Is Directed by the Peptide's Secondary Structure. Biochemistry, 2019, 58, 3656-3668.	1.2	26

#	Article	IF	CITATIONS
733	Multifunctional Mono-Triazole Derivatives Inhibit Aβ ₄₂ Aggregation and Cu ²⁺ -Mediated Aβ ₄₂ Aggregation and Protect Against Aβ ₄₂ -Induced Cytotoxicity. Chemical Research in Toxicology, 2019, 32, 1824-1839.	1.7	23
734	Bacterial amphiphiles as amyloid inducers: Effect of Rhamnolipid and Lipopolysaccharide on FapC fibrillation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140263.	1.1	23
735	Bacterial Amyloids: The Link between Bacterial Infections and Autoimmunity. Trends in Microbiology, 2019, 27, 954-963.	3.5	38
736	Suppression of Mouse AApoAll Amyloidosis Progression by Daily Supplementation with Oxidative Stress Inhibitors. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	1.9	3
737	Proteins are Solitary! Pathways of Protein Folding and Aggregation in Protein Mixtures. Journal of Physical Chemistry Letters, 2019, 10, 4800-4804.	2.1	21
738	Amyloid jams: Mechanical and dynamical properties of an amyloid fibrillar network. Biophysical Chemistry, 2019, 253, 106231.	1.5	7
739	Lanosterol Disrupts the Aggregation of Amyloid-β Peptides. ACS Chemical Neuroscience, 2019, 10, 4051-4060.	1.7	14
740	The synergic effect of water and biomolecules in intracellular phase separation. Nature Reviews Chemistry, 2019, 3, 552-561.	13.8	58
741	Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy. Nature Communications, 2019, 10, 3754.	5.8	32
742	Investigating in Vitro Amyloid Peptide 1–42 Aggregation: Impact of Higher Molecular Weight Stable Adducts. ACS Omega, 2019, 4, 12308-12318.	1.6	19
743	Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS Central Science, 2019, 5, 1417-1424.	5.3	18
744	Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins. Frontiers in Molecular Biosciences, 2019, 6, 64.	1.6	22
745	Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. Journal of Magnetic Resonance, 2019, 306, 42-47.	1.2	27
746	Thermally triggered self-assembly of κ-casein amyloid nanofibrils and their nanomechanical properties. Polymer, 2019, 179, 121626.	1.8	10
747	Diverse Misfolded Conformational Strains and Cross-seeding of Misfolded Proteins Implicated in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 158.	1.4	31
748	Rhodopsin Oligomerization and Aggregation. Journal of Membrane Biology, 2019, 252, 413-423.	1.0	21
750	Amyloid-like substance in mice and human oocytes and embryos. Journal of Assisted Reproduction and Genetics, 2019, 36, 1877-1890.	1.2	7
751	Tuning the structure of monomeric amyloid beta peptide by the curvature of carbon nanotubes. Carbon, 2019, 153, 717-724.	5.4	14

#	Article	IF	CITATIONS
752	Stoichiometry of Heavy Metal Binding to Peptides Involved in Alzheimer's Disease: Mass Spectrometric Evidence. Advances in Experimental Medicine and Biology, 2019, 1140, 401-415.	0.8	8
753	Time for the systems-level integration of aging: Resilience enhancing strategies to prevent Alzheimer's disease. Progress in Neurobiology, 2019, 181, 101662.	2.8	38
754	Optimal control strategies for inhibition of protein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14593-14598.	3.3	21
755	NMR Characterization of Conformational Dynamics and Molecular Assemblies of Proteins. Biological and Pharmaceutical Bulletin, 2019, 42, 867-872.	0.6	4
756	Universality of filamentous aggregation phenomena. Physical Review E, 2019, 99, 062415.	0.8	4
757	Protein fibrillogenesis model tracked by its intrinsic time-resolved emission spectra. Methods and Applications in Fluorescence, 2019, 7, 035003.	1.1	2
758	(Bio)chemical Strategies To Modulate Amyloid-β Self-Assembly. ACS Chemical Neuroscience, 2019, 10, 3366-3374.	1.7	21
759	Long Noncoding RNAs and Stress Response in the Nucleolus. Cells, 2019, 8, 668.	1.8	36
760	Catalytic Prion-Like Cross-Talk between a Key Alzheimer's Disease Tau-Fragment R3 and the Type 2 Diabetes Peptide IAPP. ACS Chemical Neuroscience, 2019, 10, 4757-4765.	1.7	20
761	Secretagogin Binding Prevents α-Synuclein Fibrillation. Biochemistry, 2019, 58, 4585-4589.	1.2	4
762	Organoplatinum‣ubstituted Polyoxometalate Inhibits βâ€amyloid Aggregation for Alzheimer's Therapy. Angewandte Chemie - International Edition, 2019, 58, 18032-18039.	7.2	40
763	Effects of Cu(II) on the aggregation of amyloid-β. Journal of Biological Inorganic Chemistry, 2019, 24, 1197-1215.	1.1	30
764	Copper ions trigger disassembly of neurokinin B functional amyloid and inhibit de novo assembly. Journal of Structural Biology, 2019, 208, 107394.	1.3	10
765	Differential Roles of Plasma Protein Corona on Immune Cell Association and Cytokine Secretion of Oligomeric and Fibrillar Beta-Amyloid. Biomacromolecules, 2019, 20, 4208-4217.	2.6	16
766	Pushing Down the Limit: In Vitro Detection of a Polypeptide Monolayer on a Single Infrared Resonant Nanoantenna. ACS Photonics, 2019, 6, 2636-2642.	3.2	20
767	Molecular insights into the inhibitory mechanism of bi-functional bis-tryptoline triazole against β-secretase (BACE1) enzyme. Amino Acids, 2019, 51, 1593-1607.	1.2	4
768	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
769	Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Biomolecules, 2019, 9, 659.	1.8	30

#	Article	IF	CITATIONS
770	Destabilization of Insulin Hexamer in Water–Ethanol Binary Mixture. Journal of Physical Chemistry B, 2019, 123, 10365-10375.	1.2	10
771	Toward the Mode of Action of the Clinical Stage All-‹scp>d‹/scp>-Enantiomeric Peptide RD2 on Aβ42 Aggregation. ACS Chemical Neuroscience, 2019, 10, 4800-4809.	1.7	16
772	Kinetic Transition in Amyloid Assembly as a Screening Assay for Oligomer-Selective Dyes. Biomolecules, 2019, 9, 539.	1.8	12
773	SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proceedings of the United States of America, 2019, 116, 23040-23049.	3.3	25
774	Organoplatinum‣ubstituted Polyoxometalate Inhibits βâ€amyloid Aggregation for Alzheimer's Therapy. Angewandte Chemie, 2019, 131, 18200-18207.	1.6	12
775	High internal phase emulsions stabilized with amyloid fibrils and their polysaccharide complexes for encapsulation and protection of β-carotene. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110459.	2.5	48
776	Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity. Langmuir, 2019, 35, 14522-14531.	1.6	19
777	Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 262.	1.4	101
778	Versatile format of minichaperone-based protein fusion system. Scientific Reports, 2019, 9, 15063.	1.6	4
779	Early mechanisms of amyloid fibril nucleation in model and disease-related proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140264.	1.1	11
780	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	5.8	132
781	Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 2019, 294, 14823-14835.	1.6	149
782	Probing the Basis of α-Synuclein Aggregation byÂComparing Simulations to Single-Molecule Experiments. Biophysical Journal, 2019, 117, 1125-1135.	0.2	11
783	Different Synergy in Amyloids and Biologically Active Forms of Proteins. International Journal of Molecular Sciences, 2019, 20, 4436.	1.8	2
784	Tracking Insulin Glycation in Real Time by Time-Resolved Emission Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 7812-7817.	1.2	3
785	Association of Transfusion With Risks of Dementia or Alzheimer's Disease: A Population-Based Cohort Study. Frontiers in Psychiatry, 2019, 10, 571.	1.3	13
786	The mutational landscape of a prion-like domain. Nature Communications, 2019, 10, 4162.	5.8	116
787	Prediction of amyloid aggregation rates by machine learning and feature selection. Journal of Chemical Physics, 2019, 151, 084106.	1.2	8

#	Article	IF	CITATIONS
788	Modulation of amyloid β peptide aggregation by hydrophilic polymers. Physical Chemistry Chemical Physics, 2019, 21, 20999-21006.	1.3	15
789	Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy. Journal of Visualized Experiments, 2019, , .	0.2	13
790	pH-Dependent Self-Assembly of Human Neuropeptide Hormone GnRH into Functional Amyloid Nanofibrils and Hexagonal Phases. ACS Applied Bio Materials, 2019, 2, 3601-3606.	2.3	10
791	Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. Nano Research, 2019, 12, 2827-2834.	5.8	34
792	The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer′s Disease (AD). International Journal of Molecular Sciences, 2019, 20, 4661.	1.8	48
793	Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region. Journal of Physical Chemistry B, 2019, 123, 8727-8732.	1.2	17
794	Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20446-20452.	3.3	88
795	Interactions of aggregating peptides probed by IR-UV action spectroscopy. Faraday Discussions, 2019, 217, 322-341.	1.6	15
796	Resolving protein mixtures using microfluidic diffusional sizing combined with synchrotron radiation circular dichroism. Lab on A Chip, 2019, 19, 50-58.	3.1	8
797	Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 10462-10471.	4.0	37
798	Sensitivity analysis of the variability of amyloid aggregation profiles. Physical Chemistry Chemical Physics, 2019, 21, 1435-1442.	1.3	12
799	Topological Analysis of Transthyretin Disassembly Mechanism: Surface-Induced Dissociation Reveals Hidden Reaction Pathways. Analytical Chemistry, 2019, 91, 2345-2351.	3.2	22
800	Thermodynamic phase diagram of amyloid-β (16–22) peptide. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2091-2096.	3.3	63
801	Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019, 176, 419-434.	13.5	1,739
802	ATR-FTIR Spectroscopy Supported by Multivariate Analysis for the Characterization of Adipose Tissue Aspirates from Patients Affected by Systemic Amyloidosis. Analytical Chemistry, 2019, 91, 2894-2900.	3.2	26
803	Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State. International Journal of Molecular Sciences, 2019, 20, 396.	1.8	5
804	Amyloid-Î ² Peptide Targeting Peptidomimetics for Prevention of Neurotoxicity. ACS Chemical Neuroscience, 2019, 10, 1462-1477.	1.7	7
805	pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 961-969.	1.1	32

Ci	TAT	ION	I Rf	PO	RT

#	Article	IF	CITATIONS
806	Effect of Terminal Modifications on the Adsorption and Assembly of hIAPP(20–29). ACS Omega, 2019, 4, 2649-2660.	1.6	11
807	Detection/quantification of amyloid aggregation in solution using the novel fluorescent benzofuranone-derivative compounds as amyloid fluorescent probes: synthesis and in vitro characterization. Journal of the Iranian Chemical Society, 2019, 16, 1225-1237.	1.2	6
808	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt–tannic acid networks. Nanoscale, 2019, 11, 1921-1928.	2.8	34
809	Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. International Journal of Biological Macromolecules, 2019, 134, 1022-1037.	3.6	79
810	Interference with Amyloid- \hat{l}^2 Nucleation by Transient Ligand Interaction. Molecules, 2019, 24, 2129.	1.7	11
811	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	2.0	40
812	Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging <i>Caenorhabditis elegans</i> . ACS Chemical Biology, 2019, 14, 1628-1636.	1.6	30
813	Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nature Methods, 2019, 16, 611-614.	9.0	51
814	Molecular insights into the surface-catalyzed secondary nucleation of amyloid-l² ₄₀ (Al²) Tj ETQq0	0 0 _. rgBT /	Overlock 10 T
815	A BODIPY biosensor to detect and drive self-assembly of diphenylalanine. Chemical Communications, 2019, 55, 8564-8566.	2.2	9
816	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	7.3	121
817	Developments with multi-target drugs for Alzheimer's disease: an overview of the current discovery approaches. Expert Opinion on Drug Discovery, 2019, 14, 879-891.	2.5	60
818	Resonant Plasmonic Nanoslits Enable in Vitro Observation of Single-Monolayer Collagen-Peptide Dynamics. ACS Sensors, 2019, 4, 1966-1972.	4.0	16
819	Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chemical Neuroscience, 2019, 10, 3555-3564.	1.7	21
820	Pharmacological targeting of αâ€ s ynuclein and TPPP /p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Letters, 2019, 593, 1641-1653.	1.3	11
821	Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. Journal of Molecular Liquids, 2019, 289, 111090.	2.3	12
822	Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS ONE, 2019, 14, e0217746.	1.1	10
823	Cryo-EM of amyloid fibrils and cellular aggregates. Current Opinion in Structural Biology, 2019, 58, 34-42.	2.6	112

#	Article	IF	CITATIONS
824	Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered Proteins Is Regulated through Zinc-Histidine Interactions. Biomolecules, 2019, 9, 168.	1.8	22
825	Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis, 2019, , 27-51.	0.1	0
826	Molecular dynamics simulations reveal the mechanism of graphene oxide nanosheet inhibition of Aβ _{1–42} peptide aggregation. Physical Chemistry Chemical Physics, 2019, 21, 10981-10991.	1.3	48
827	Infinite Ansammlungen gefalteter Proteine im Kontext von Evolution, Krankheiten und Proteinentwicklung. Angewandte Chemie, 2019, 131, 5568-5587.	1.6	2
828	3D hydrodynamic flow focusing-based micromixer enables high-resolution imaging for studying the early folding kinetics of G-quadruplex. Sensors and Actuators B: Chemical, 2019, 293, 312-320.	4.0	11
829	A quantitative model of human neurodegenerative diseases involving protein aggregation. Neurobiology of Aging, 2019, 80, 46-55.	1.5	23
830	Kinetic versus thermodynamic control of mutational effects on protein homeostasis: A perspective from computational modeling and experiment. Protein Science, 2019, 28, 1324-1339.	3.1	5
831	Ultraviolet–visible–near-infrared optical properties of amyloid fibrils shed light on amyloidogenesis. Nature Photonics, 2019, 13, 473-479.	15.6	69
832	Posttranslational modifications and proteinopathies: how guardians of the proteome are defeated. Biological Chemistry, 2019, 400, 895-915.	1.2	29
833	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	4.7	127
834	Altered dynamics may drift pathological fibrillization in membraneless organelles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 988-998.	1.1	17
835	Structure of proteins: Evolution with unsolved mysteries. Progress in Biophysics and Molecular Biology, 2019, 149, 160-172.	1.4	8
836	Inhibition of Alzheimer's amyloid-β ₄₂ peptide aggregation by a bi-functional bis-tryptoline triazole: key insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-14.	2.0	17
837	Probing the Origin of the Toxicity of Oligomeric Aggregates of α-Synuclein with Antibodies. ACS Chemical Biology, 2019, 14, 1352-1362.	1.6	33
838	Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications, 2019, 10, 2006.	5.8	157
839	Melting Down Protein Stability: PAPS Synthase 2 in Patients and in a Cellular Environment. Frontiers in Molecular Biosciences, 2019, 6, 31.	1.6	10
840	Distinct Binding Dynamics, Sites and Interactions of Fullerene and Fullerenols with Amyloid-Î ² Peptides Revealed by Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2019, 20, 2048.	1.8	28
841	Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level. Analytical Chemistry, 2019, 91, 6880-6886.	3.2	7

#	Article	IF	CITATIONS
842	Structural and functional impact of non-synonymous SNPs in the CST complex subunit TEN1: structural genomics approach. Bioscience Reports, 2019, 39, .	1.1	17
843	Directing curli polymerization with DNA origami nucleators. Nature Communications, 2019, 10, 1395.	5.8	22
844	Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. Chemical Science, 2019, 10, 4588-4597.	3.7	22
845	Propagation of Protein Aggregation in Neurodegenerative Diseases. Annual Review of Biochemistry, 2019, 88, 785-810.	5.0	213
846	Matter over mind: Liquid phase separation and neurodegeneration. Journal of Biological Chemistry, 2019, 294, 7160-7168.	1.6	176
847	Label-free detection of early oligomerization of α-synuclein and its mutants A30P/E46K through solid-state nanopores. Nanoscale, 2019, 11, 6480-6488.	2.8	29
848	Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity. Scientific Reports, 2019, 9, 2530.	1.6	4
849	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid \hat{l}^2 Assembly. Angewandte Chemie, 2019, 131, 6049-6054.	1.6	16
850	Functional Segments on Intrinsically Disordered Regions in Disease-Related Proteins. Biomolecules, 2019, 9, 88.	1.8	16
851	Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 2019, 91, 211-229.	0.9	68
852	Protein Solubility Predictions Using the CamSol Method in the Study of Protein Homeostasis. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033845.	2.3	42
853	Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Medicinal Chemistry, 2019, 11, 285-302.	1.1	21
854	Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm. Molecules, 2019, 24, 1150.	1.7	2
855	The metastability of the proteome of spinal motor neurons underlies their selective vulnerability in ALS. Neuroscience Letters, 2019, 704, 89-94.	1.0	22
856	Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Frontiers in Molecular Biosciences, 2019, 6, 16.	1.6	42
857	Rigid helical-like assemblies from a self-aggregating tripeptide. Nature Materials, 2019, 18, 503-509.	13.3	133
858	Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chemical Reviews, 2019, 119, 6956-6993.	23.0	138
859	The Enigma of Amyloid Forming Proteins: Insights From Molecular Simulations. Australian Journal of Chemistry, 2019, 72, 574.	0.5	5

#	Article	IF	CITATIONS
860	Advances in the Study of Cerium Oxide Nanoparticles: New Insights into Antiamyloidogenic Activity. ACS Applied Bio Materials, 2019, 2, 1884-1896.	2.3	33
861	Prolines Affect the Nucleation Phase of Amyloid Fibrillation Reaction; Mutational Analysis of Human Stefin B. ACS Chemical Neuroscience, 2019, 10, 2730-2740.	1.7	7
862	Tau protein aggregates inhibit the protein-folding and vesicular trafficking arms of the cellular proteostasis network. Journal of Biological Chemistry, 2019, 294, 7917-7930.	1.6	42
863	Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks. Protein and Peptide Letters, 2019, 26, 88-97.	0.4	25
864	Monitoring and modulation of insulin fibers by a protein isomerization targeting dye bromophenol blue. Sensors and Actuators B: Chemical, 2019, 287, 496-502.	4.0	13
865	Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Angewandte Chemie - International Edition, 2019, 58, 5514-5531.	7.2	39
866	Allâ€atom structure ensembles of islet amyloid polypeptides determined by enhanced sampling and experiment data restraints. Proteins: Structure, Function and Bioinformatics, 2019, 87, 541-550.	1.5	10
867	Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against AÎ ² toxicity via attenuating AÎ ² -induced endoplasmic reticulum stress. Journal of Neuroinflammation, 2019, 16, 35.	3.1	48
868	Atomic force microscopy for single molecule characterisation of protein aggregation. Archives of Biochemistry and Biophysics, 2019, 664, 134-148.	1.4	109
869	Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Research Reviews, 2019, 51, 67-77.	5.0	17
870	Anomalous Dense Liquid Condensates Host the Nucleation of Tumor Suppressor p53 Fibrils. IScience, 2019, 12, 342-355.	1.9	46
871	Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. Laboratory Investigation, 2019, 99, 993-1007.	1.7	60
872	Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and α-Synuclein. ACS Nano, 2019, 13, 3243-3256.	7.3	51
873	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid $\hat{\mathbf{l}}^2$ Assembly. Angewandte Chemie - International Edition, 2019, 58, 5988-5993.	7.2	60
874	Modulation of Amyloid States by Molecular Chaperones. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033969.	2.3	63
875	A first-passage approach to the thermal breakage of a discrete one-dimensional chain. Soft Matter, 2019, 15, 2469-2478.	1.2	7
876	Pathophysiology of Amyloid Fibril Formation. , 0, , .		1
877	On the Peculiarities of the Aggregation of Multidomain Muscle Proteins. Biophysics (Russian) Tj ETQq1 1 0.7843	14_rgBT /C	Overlock 10 T

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
878	Label-Free Analysis of Protein Aggregation and Phase Behavior. ACS Nano, 2019, 13, 13	940-13948.	7.3	42
879	Multifunctional hybrid sulfonamides as novel therapeutic agents for Alzheimer's dis Medicinal Chemistry, 2019, 11, 3161-3178.	ease. Future	1.1	25
880	A fingerprint of amyloid plaques in a bitransgenic animal model of Alzheimer's disease of statistical unmixing analysis of hyperspectral Raman data. Analyst, The, 2019, 144, 704	vbtained by 9-7056.	1.7	14
881	Deformation of stable and toxic hIAPP oligomers by liposomes with distinct nanomecha and reduced cytotoxicity. Chemical Communications, 2019, 55, 14359-14362.	inical features	2.2	8
882	Functional and dysfunctional folding, association and aggregation of caseins. Advances Chemistry and Structural Biology, 2019, 118, 163-216.	in Protein	1.0	22
883	Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Frontiers in Genetic 1179.	s, 2019, 10,	1.1	25
884	Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerabi Alzheimer's disease. Heliyon, 2019, 5, e02589.	lity in	1.4	23
885	A metastable subproteome underlies inclusion formation in muscle proteinopathies. Ac Neuropathologica Communications, 2019, 7, 197.	ta	2.4	16
886	Amyloid. , 2019, , 231-253.			2
887	The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Bior 9, 855.	nolecules, 2019,	1.8	32
888	The Amyloid as a Ribbon-Like Micelle in Contrast to Spherical Micelles Represented by C Proteins. Molecules, 2019, 24, 4395.	ìlobular	1.7	13
889	Unpacking the aggregation-oligomerization-fibrillization process of naturally-occurring amyloid oligomers isolated directly from sera of children with obesity or diabetes mellit Reports, 2019, 9, 18465.		1.6	10
890	Combining molecular dynamics simulations and experimental analyses in protein misfo in Protein Chemistry and Structural Biology, 2019, 118, 33-110.	ding. Advances	1.0	9
891	The physical basis of fabrication of amyloid-based hydrogels by lysozyme. RSC Advance 37424-37435.	s, 2019, 9,	1.7	11
892	Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chemical 10, 10802-10814.	Science, 2019,	3.7	30
893	Molecular mechanisms for the destabilization of model membranes by islet amyloid pol Biophysical Chemistry, 2019, 245, 34-40.	ypeptide.	1.5	12
894	Targeting the Post-translational Proteome with Intrabodies. Trends in Biotechnology, 20	019, 37, 578-591.	4.9	12
895	Inverse Correlation between Amyloid Stiffness and Size. Journal of the American Chemi 2019, 141, 58-61.	cal Society,	6.6	7

ARTICLE IF CITATIONS # In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy. 896 2.1 17 Journal of Physical Chemistry Letters, 2019, 10, 214-222. Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes. 1.3 Nanotechnology, 2019, 30, 102001. Design of Aqueous-Liquid Crystal Interfaces To Monitor Protein Aggregation at Nanomolar 898 1.5 10 Concentrations. Journal of Physical Chemistry C, 2019, 123, 1305-1312. Developing Biopolymer Mesocrystals by Crystallization of Secondary Structures. Langmuir, 2019, 35, 899 183-193. A novel ageâ€related venous amyloidosis derived from EGFâ€containing fibulinâ€like extracellular matrix 900 2.1 31 protein 1. Journal of Pathology, 2019, 247, 444-455. Physical and toxicological profiles of human IAPP amyloids and plaques. Science Bulletin, 2019, 64, 4.3 24 26-35. The effect of the stoichiometric ratio of zinc towards the fibrillation of Bovine Serum Albumin (BSA): 902 3.6 9 A mechanistic insight. International Journal of Biological Macromolecules, 2019, 123, 409-419. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. Journal of Biological 1.6 Chemistry, 2019, 294, 2180-2190. A Fluorogenic <i>AggTag</i> Method Based on Halo†and SNAPâ€Tags to Simultaneously Detect 904 1.3 45 Aggregation of Two Proteins in Live Cells. ChemBioChem, 2019, 20, 1078-1087. Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and 1.8 Pathology. International Journal of Molecular Sciences, 2019, 20, 141. Sequence specificity of amylin-insulin interaction: a fragment-based insulin fibrillation inhibition 906 1.1 13 study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 405-415. When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and 1.0 neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology, 2019, 114, 221-264. Imaging individual protein aggregates to follow aggregation and determine the role of aggregates in 908 1.1 15 neurodegenerative disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 870-878. Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers. Scientific Reports, 2019, 9, 33. 909 1.6 Obstacles to translating the promise of nanoparticles into viable amyloid disease therapeutics. 910 2 0.8 Physical Biology, 2019, 16, 021002. How Fluorescent Tags Modify Oligomer Size Distributions of the Alzheimer Peptide. Biophysical Journal, 2019, 116, 227-238. 36 Trodusquemine enhances Al²42 aggregation but suppresses its toxicity by displacing oligomers from 912 5.8 111 cell membranes. Nature Communications, 2019, 10, 225. Assays for Light Chain Amyloidosis Formation and Cytotoxicity. Methods in Molecular Biology, 2019, 1873, 123-153.

#	Article	IF	Citations
914	High-Throughput Microplate-Based Fluorescence Assays for Studying Stochastic Aggregation of Superoxide Dismutase-1. Methods in Molecular Biology, 2019, 1873, 93-108.	0.4	1
915	Two distinct aggregation pathways in transthyretin misfolding and amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 344-349.	1.1	11
916	Amyloid Pan-inhibitors: One Family of Compounds To Cope with All Conformational Diseases. ACS Chemical Neuroscience, 2019, 10, 1311-1317.	1.7	14
917	Amyloid-like Structures Formed by Single Amino Acid Self-Assemblies of Cysteine and Methionine. ACS Chemical Neuroscience, 2019, 10, 1230-1239.	1.7	48
918	Protein Misfolding Diseases. Methods in Molecular Biology, 2019, , .	0.4	3
919	Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry, 2019, 58, 763-775.	1.2	11
920	Transmissible human proteopathies: an expanding field. Diagnostic Histopathology, 2019, 25, 16-22.	0.2	7
921	Alzheimer's Disease and Dementia. , 2019, , 25-82.		2
922	Inhibition of amyloid fibril formation and disassembly of pre-formed fibrils by natural polyphenol rottlerin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 259-274.	1.1	28
923	A multiparametric analysis of the synergistic impact of anti-Parkinson's drugs on the fibrillation of human serum albumin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 275-285.	1.1	8
924	Mitigation of Amyloidosis with Nanomaterials. Advanced Materials, 2020, 32, e1901690.	11.1	87
925	The Amyloid Phenomenon and Its Significance in Biology and Medicine. Cold Spring Harbor Perspectives in Biology, 2020, 12, a033878.	2.3	111
926	A sticky situation: Aberrant protein–protein interactions in Parkinson's disease. Seminars in Cell and Developmental Biology, 2020, 99, 65-77.	2.3	6
927	Protein aggregation in cell biology: An aggregomics perspective of health and disease. Seminars in Cell and Developmental Biology, 2020, 99, 40-54.	2.3	36
928	Synthesis and Aggregation of Polymerâ€Amyloid β Conjugates. Macromolecular Rapid Communications, 2020, 41, 1900378.	2.0	9
929	The Route from the Folded to the Amyloid State: Exploring the Potential Energy Surface of a Drugâ€Like Miniprotein. Chemistry - A European Journal, 2020, 26, 1968-1978.	1.7	14
930	Sequence- and structure-based prediction of amyloidogenic regions in proteins. Soft Computing, 2020, 24, 3285-3308.	2.1	10
931	Physical PEGylation to Prevent Insulin Fibrillation. Journal of Pharmaceutical Sciences, 2020, 109, 900-910.	1.6	2

#	Article	IF	CITATIONS
933	Structural biology techniques: X-ray crystallography, cryo-electron microscopy, and small-angle X-ray scattering. , 2020, , 375-416.		4
934	In Silico Evidence That Protein Unfolding is a Precursor of Protein Aggregation. ChemPhysChem, 2020, 21, 377-384.	1.0	16
935	Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. International Journal of Biological Macromolecules, 2020, 145, 904-913.	3.6	17
936	The Effect of Proline cis-trans Isomerization on the Folding of the C-Terminal SH2 Domain from p85. International Journal of Molecular Sciences, 2020, 21, 125.	1.8	3
937	Computational prediction and redesign of aberrant protein oligomerization. Progress in Molecular Biology and Translational Science, 2020, 169, 43-83.	0.9	10
938	Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Advances, 2020, 10, 215-227.	1.7	50
939	Effect of <i>Andrographis paniculata</i> and <i>Phyllanthus amarus</i> leaf extracts on selected biochemical indices in <i>Drosophila melanogaster</i> model of neurotoxicity. Drug and Chemical Toxicology, 2022, 45, 407-416.	1.2	18
940	Peptides Co-Assembling into Hydrangea-Like Microstructures. Journal of Nanoscience and Nanotechnology, 2020, 20, 3239-3245.	0.9	1
941	Novel properties and applications of chiral inorganic nanostructures. Nano Today, 2020, 30, 100824.	6.2	61
942	Mortality of Alzheimer's Disease Patients: A 10-Year Follow-up Pilot Study in Shanghai. Canadian Journal of Neurological Sciences, 2020, 47, 226-230.	0.3	10
943	A Focused Chiral Mutant Library of the Amyloid \hat{I}^2 42 Central Electrostatic Cluster as a Tool To Stabilize Aggregation Intermediates. Journal of Organic Chemistry, 2020, 85, 1385-1391.	1.7	19
944	Collagen I Weakly Interacts with the β-Sheets of β ₂ -Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. Journal of the American Chemical Society, 2020, 142, 1321-1331.	6.6	15
945	Proteome-wide observation of the phenomenon of life on the edge of solubility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1015-1020.	3.3	115
946	Both beta sheet breaker and alpha helix forming pentapeptide inhibits protein fibrillation: Implication for the treatment of amyloid disorders. International Journal of Biological Macromolecules, 2020, 143, 102-111.	3.6	13
947	Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. Journal of Biological Chemistry, 2020, 295, 1181-1194.	1.6	7
948	Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS Journal, 2020, 287, 2808-2822.	2.2	5
949	Amyloid aggregation at solid-liquid interfaces: Perspectives of studies using model surfaces. Applied Surface Science, 2020, 506, 144991.	3.1	21
950	Proteins: molecules defined by their trade-offs. Current Opinion in Structural Biology, 2020, 60, 50-56.	2.6	32

#	Article	IF	CITATIONS
951	Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochemical Pharmacology, 2020, 173, 113722.	2.0	25
952	Characterization of Changes due to pH Variations in Beta Peptide (25–35) Leading to Alzheimer's Disease. International Journal of Peptide Research and Therapeutics, 2020, 26, 1863-1870.	0.9	2
953	Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Transactions on Nanobioscience, 2020, 19, 78-99.	2.2	9
954	Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124279.	2.3	12
955	Developing Therapies for Neurodegenerative Disorders: Insights from Protein Aggregation and Cellular Stress Responses. Annual Review of Cell and Developmental Biology, 2020, 36, 165-189.	4.0	35
956	Genetic Selection Based on a Ste6*C-HA-Ura3 Substrate Identifies New Cytosolic Quality Control Alleles in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1879-1891.	0.8	2
957	lodine staining as a useful probe for distinguishing insulin amyloid polymorphs. Scientific Reports, 2020, 10, 16741.	1.6	8
958	Computational Model for Studying Breakage-Dependent Amyloid Growth. ACS Chemical Neuroscience, 2020, 11, 3615-3622.	1.7	3
959	Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates. International Journal of Molecular Sciences, 2020, 21, 7410.	1.8	3
960	The prion-like nature of amyotrophic lateral sclerosis. Progress in Molecular Biology and Translational Science, 2020, 175, 261-296.	0.9	14
961	Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Research Reviews, 2020, 63, 101138.	5.0	55
962	Inhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein. Chemical Science, 2020, 11, 11331-11337.	3.7	15
963	The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments. IScience, 2020, 23, 101512.	1.9	16
964	Involvement of endoplasmic reticulum stress in amyloid β (1-42)-induced Alzheimer's like neuropathological process in rat brain. Brain Research Bulletin, 2020, 165, 108-117.	1.4	19
965	Fabrication of Composite Structures of Lysozyme Fibril–Zein using Antisolvent Precipitation: Effects of Blending and pH Adjustment Sequences. Journal of Agricultural and Food Chemistry, 2020, 68, 11802-11809.	2.4	12
966	Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging. Biophysical Journal, 2020, 118, 2997-3007.	0.2	12
967	Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity. ACS Omega, 2020, 5, 18958-18967.	1.6	14
968	Peptide-induced RAFT polymerization <i>via</i> an amyloid-β _{17–20} -based chain transfer agent. Soft Matter, 2020, 16, 6964-6968.	1.2	5

#	Article	IF	CITATIONS
969	Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases. Nanomaterials, 2020, 10, 1349.	1.9	12
970	Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coordination Chemistry Reviews, 2020, 421, 213418.	9.5	67
971	Studies on the structure and conformational flexibility of secondary structures in amyloid beta— A quantum chemical study. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050014.	1.8	3
972	Clustering of human prion protein and α-synuclein oligomers requires the prion protein N-terminus. Communications Biology, 2020, 3, 365.	2.0	26
973	Mechanochemical Formation of Protein Nanofibril: Graphene Nanoplatelet Hybrids and Their Thermoelectric Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 17368-17378.	3.2	13
974	Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. International Journal of Molecular Sciences, 2020, 21, 8651.	1.8	23
975	Identifying Insulin Fibril Conformational Differences by Thioflavin-T Binding Characteristics. Biomacromolecules, 2020, 21, 4989-4997.	2.6	20
976	Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Frontiers in Molecular Neuroscience, 2020, 13, 609073.	1.4	35
977	Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions. Biophysical Journal, 2020, 119, 1995-2009.	0.2	12
978	Michler's hydrol blue elucidates structural differences in prion strains. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29677-29683.	3.3	2
979	Polyphenol Honokiol and Flavone 2′,3′,4′-Trihydroxyflavone Differentially Interact with α-Synuclein at Distinct Phases of Aggregation. ACS Chemical Neuroscience, 2020, 11, 4469-4477.	1.7	14
980	Inhibition potential evaluation of two synthetic bis-indole compounds on amyloid fibrillation: a molecular simulation study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4051-4061.	2.0	3
981	Effect of Ionic Strength on Thioflavin-T Affinity to Amyloid Fibrils and Its Fluorescence Intensity. International Journal of Molecular Sciences, 2020, 21, 8916.	1.8	26
982	BODIPY Dyes as Probes and Sensors to Study Amyloid-Î ² -Related Processes. Biosensors, 2020, 10, 192.	2.3	20
983	TRIM11 Prevents and Reverses Protein Aggregation and Rescues a Mouse Model of Parkinson's Disease. Cell Reports, 2020, 33, 108418.	2.9	39
984	Dihydrophthalazinediones accelerate amyloid \hat{I}^2 peptide aggregation to nontoxic species. Bulletin of Materials Science, 2020, 43, 1.	0.8	0
985	"What Doesn't Kill You Makes You Stronger― Future Applications of Amyloid Aggregates in Biomedicine. Molecules, 2020, 25, 5245.	1.7	20
986	Synthesis of a Cylindrical Micelle from Hydrophilic Polymers Connected with a Single Supramolecular Structure-Directing Unit. Macromolecules, 2020, 53, 7044-7052.	2.2	9

#	Article	IF	CITATIONS
987	Direct measurement of lipid membrane disruption connects kinetics and toxicity of AÎ ² 42 aggregation. Nature Structural and Molecular Biology, 2020, 27, 886-891.	3.6	38
988	The presence of cross-Î ² -structure as a key determinant of carbonic anhydrase amyloid fibrils cytotoxicity. Biochemical and Biophysical Research Communications, 2020, 524, 453-458.	1.0	4
989	Microrheology of filament networks from Brownian dynamics simulations. Journal of Physics: Conference Series, 2020, 1483, 012001.	0.3	5
990	Nanoscopic insights into the surface conformation of neurotoxic amyloid Î ² oligomers. RSC Advances, 2020, 10, 21907-21913.	1.7	19
991	Ubiquitination in the ERAD Process. International Journal of Molecular Sciences, 2020, 21, 5369.	1.8	36
992	Novel protein and peptide nanofibrous structures via supramolecular co-assembly. , 2020, , 69-97.		3
993	The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis. Cell Reports, 2020, 32, 107898.	2.9	22
994	Hidden kinetic traps in multidomain folding highlight the presence of a misfolded but functionally competent intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19963-19969.	3.3	16
995	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
996	The hypothetical amyloid transformation of transthyretin. , 2020, , 233-240.		0
996 997	The hypothetical amyloid transformation of transthyretin. , 2020, , 233-240. Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672.	2.8	0
	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid	2.8	
997	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672. Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with		13
997 998	 Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672. Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS ONE, 2020, 15, e0237328. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal 	1.1	13 3
997 998 999	 Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672. Polypeptides derived from 1±-Synuclein binding partners to prevent 1±-Synuclein fibrils interaction with and take-up by cells. PLoS ONE, 2020, 15, e0237328. Multiplicity of 1±-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal of Molecular Sciences, 2020, 21, 8043. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and 	1.1 1.8	13 3 33
9997 9998 9999 1000	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672. Polypeptides derived from 1±-Synuclein binding partners to prevent 1±-Synuclein fibrils interaction with and take-up by cells. PLoS ONE, 2020, 15, e0237328. Multiplicity of 1±-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal of Molecular Sciences, 2020, 21, 8043. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. Journal of Physical Chemistry B, 2020, 124, 11541-11560. AIE-Based Dynamic <i>in Situ</i>	1.1 1.8 1.2	13 3 33 31
997 998 999 1000	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672. Polypeptides derived from α-Synuclein binding partners to prevent α-Synuclein fibrils interaction with and take-up by cells. PLoS ONE, 2020, 15, e0237328. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal of Molecular Sciences, 2020, 21, 8043. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. Journal of Physical Chemistry B, 2020, 124, 11541-11560. AlE-Based Dynamic <i>in Situ</i> Nanoscale Visualization of Amyloid Fibrillation from Hen Egg White Lysozyme. Bioconjugate Chemistry, 2020, 31, 2303-2311. Rapid Formation of Peptide/Lipid Coaggregates by the Amyloidogenic Seminal Peptide PAP248-286.	1.1 1.8 1.2 1.8	13 3 33 31 13

#	Article	IF	CITATIONS
1005	Gallic acid oxidation products alter the formation pathway of insulin amyloid fibrils. Scientific Reports, 2020, 10, 14466.	1.6	18
1006	Tryptophan-galactosylamine conjugates inhibit and disaggregate amyloid fibrils of AÎ ² 42 and hIAPP peptides while reducing their toxicity. Communications Biology, 2020, 3, 484.	2.0	27
1007	A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease. Scientific Reports, 2020, 10, 15280.	1.6	15
1008	Application of QCM in Peptide and Protein-Based Drug Product Development. Molecules, 2020, 25, 3950.	1.7	41
1009	Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 2020, 85, 1011-1034.	0.7	17
1010	Graphene oxide sheets and quantum dots inhibit α-synuclein amyloid formation by different mechanisms. Nanoscale, 2020, 12, 19450-19460.	2.8	33
1011	Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin. International Journal of Biological Macromolecules, 2020, 165, 291-307.	3.6	9
1012	Mechanical basis for fibrillar bundle morphology. Soft Matter, 2020, 16, 9306-9318.	1.2	4
1013	Fluorescence-Labeled Amyloid Beta Monomer: A Molecular Dynamical Study. Molecules, 2020, 25, 3524.	1.7	3
1014	Sequence-independent recognition of the amyloid structural motif by GFP protein family. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22122-22127.	3.3	7
1015	Changes in Titin Structure during Its Aggregation. Molecular Biology, 2020, 54, 578-585.	0.4	4
1016	Structural Characterization of Covalently Stabilized Human Cystatin C Oligomers. International Journal of Molecular Sciences, 2020, 21, 5860.	1.8	3
1017	Late-stage peptide and protein modifications through phospha-Michael addition reaction. Chemical Communications, 2020, 56, 12632-12635.	2.2	12
1018	Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24251-24257.	3.3	49
1019	Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophysical Reviews, 2020, 12, 1175-1186.	1.5	11
1020	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
1021	Amyloid Targeting "Artificial Chaperone―Impairs Oligomer Mediated Neuronal Damage and Mitochondrial Dysfunction Associated with Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 3277-3287.	1.7	14
1022	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie - International Edition, 2020, 59, 23731-23739.	7.2	25

#	Article	IF	CITATIONS
1023	Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS Applied Bio Materials, 2020, 3, 6598-6625.	2.3	52
1024	Mixed Phospholipid Vesicles Catalytically Inhibit and Reverse Amyloid Fibril Formation. Journal of Physical Chemistry Letters, 2020, 11, 7417-7422.	2.1	7
1025	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	2.0	44
1026	Functional Mammalian Amyloids and Amyloid-Like Proteins. Life, 2020, 10, 156.	1.1	27
1027	Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity. Journal of Physical Chemistry B, 2020, 124, 8772-8783.	1.2	17
1028	Zinc induced structural changes in the intrinsically disordered BDNF Met prodomain confer synaptic elimination. Metallomics, 2020, 12, 1208-1219.	1.0	6
1029	Sensing of Proteins by ICD Response of Iron(II) Clathrochelates Functionalized by Carboxyalkylsulfide Groups. Biomolecules, 2020, 10, 1602.	1.8	11
1030	Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 2020, 14, 619667.	1.4	59
1031	Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity. Molecules, 2020, 25, 5698.	1.7	11
1032	Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. International Journal of Molecular Sciences, 2020, 21, 9458.	1.8	10
1033	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie, 2020, 132, 23939-23947.	1.6	5
1034	Implications of excluded volume for chemical inhibition of protein fibrillation. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129704.	1.1	0
1035	Effect of DNA Origami Nanostructures on hIAPP Aggregation. Nanomaterials, 2020, 10, 2200.	1.9	8
1036	Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease. Science Advances, 2020, 6, .	4.7	95
1037	Insights from nature: A review of natural compounds that target protein misfolding in vivo. Current Research in Biotechnology, 2020, 2, 131-144.	1.9	6
1038	Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast. Nature Structural and Molecular Biology, 2020, 27, 540-549.	3.6	20
1039	Trehalose Effect on The Aggregation of Model Proteins into Amyloid Fibrils. Life, 2020, 10, 60.	1.1	15
1040	Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chemical Society Reviews, 2020, 49, 3315-3347.	18.7	178

#	ARTICLE Development of novel	IF	CITATIONS
1041	<i>N</i> >.(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-l̂2-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer's disease. RSC Advances, 2020, 10, 17602-17619.	1.7	14
1042	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	7.3	62
1043	Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chemical Reviews, 2020, 120, 4848-4878.	23.0	116
1044	The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study. Physical Chemistry Chemical Physics, 2020, 22, 10968-10980.	1.3	18
1045	Interfaces Determine the Fate of Seeded αâ€6ynuclein Aggregation. Advanced Materials Interfaces, 2020, 7, 2000446.	1.9	7
1046	High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-β. Biochemistry, 2020, 59, 2249-2258.	1.2	40
1047	Artificial chaperones: From materials designs to applications. Biomaterials, 2020, 254, 120150.	5.7	20
1048	Folding and Unfolding of the Short Light-Triggered β-Hairpin Peptide AzoChignolin Occurs within 100 ns. Journal of Physical Chemistry B, 2020, 124, 5113-5121.	1.2	3
1049	Nanoscale analysis of protein self-assemblies. , 2020, , 249-268.		2
1050	Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biology, 2020, 34, 101572.	3.9	16
1051	Long-range Regulation of Partially Folded Amyloidogenic Peptides. Scientific Reports, 2020, 10, 7597.	1.6	12
1052	Chiral structure fluctuations predicted by a coarse-grained model of peptide aggregation. Soft Matter, 2020, 16, 5071-5080.	1.2	3
1053	Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. Journal of Biological Chemistry, 2020, 295, 9676-9690.	1.6	103
1054	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie, 2020, 132, 16217-16224.	1.6	8
1055	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie - International Edition, 2020, 59, 16083-16090.	7.2	16
1056	Amyloid-β (Aβ42) Peptide Aggregation Rate and Mechanism on Surfaces with Widely Varied Properties: Insights from Brownian Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 5549-5558.	1.2	7
1057	Characterization of amyloid β fibril formation under microgravity conditions. Npj Microgravity, 2020, 6, 17.	1.9	10
1058	Entropic Contributions to Protein Stability. Israel Journal of Chemistry, 2020, 60, 705-712.	1.0	10

#	Article	IF	CITATIONS
1059	Amide derivatives of Gallic acid: Design, synthesis and evaluation of inhibitory activities against in vitro α-synuclein aggregation. Bioorganic and Medicinal Chemistry, 2020, 28, 115596.	1.4	14
1060	Biophysical studies of protein misfolding and aggregation inin vivomodels of Alzheimer's and Parkinson's diseases. Quarterly Reviews of Biophysics, 2020, 53, e22.	2.4	13
1061	On the Conformational Dynamics of Î ² -Amyloid Forming Peptides: A Computational Perspective. Frontiers in Bioengineering and Biotechnology, 2020, 8, 532.	2.0	23
1062	Modulating functional amyloid formation via alternative splicing of the premelanosomal protein PMEL17. Journal of Biological Chemistry, 2020, 295, 7544-7553.	1.6	13
1063	Molecular Level Insight into the Involvement of Heat Shock Proteins in Oxidative-Stress-Mediated Human Diseases. , 2020, , 195-207.		1
1065	The ABCF gene family facilitates disaggregation during animal development. Molecular Biology of the Cell, 2020, 31, 1324-1345.	0.9	4
1066	Fluorogenic detection of protein aggregates in live cells using the AggTag method. Methods in Enzymology, 2020, 639, 1-22.	0.4	9
1067	Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology. Frontiers in Neuroscience, 2020, 14, 256.	1.4	21
1068	Solvent effect on excited state potential energy surfaces of Thioflavin T. Qualitatively different results by <scp>TDDFT</scp> and <scp>SAâ€2â€CASSCF</scp> methods. Journal of Computational Chemistry, 2020, 41, 1874-1884.	1.5	2
1069	Phasorâ€FLIM analysis of Thioflavin T selfâ€quenching in Concanavalin amyloid fibrils. Microscopy Research and Technique, 2020, 83, 811-816.	1.2	11
1070	FAIM Is a Non-redundant Defender of Cellular Viability in the Face of Heat and Oxidative Stress and Interferes With Accumulation of Stress-Induced Protein Aggregates. Frontiers in Molecular Biosciences, 2020, 7, 32.	1.6	16
1071	The Aggregation Conditions Define Whether EGCG is an Inhibitor or Enhancer of α-Synuclein Amyloid Fibril Formation. International Journal of Molecular Sciences, 2020, 21, 1995.	1.8	19
1072	Non-polyphenolic natural inhibitors of amyloid aggregation. European Journal of Medicinal Chemistry, 2020, 192, 112197.	2.6	44
1073	Aggregation and coacervation with Monte Carlo simulations. Progress in Molecular Biology and Translational Science, 2020, 170, 505-520.	0.9	1
1074	A Cell- and Tissue-Specific Weakness of the Protein Homeostasis System Underlies Brain Vulnerability to Protein Aggregation. IScience, 2020, 23, 100934.	1.9	9
1075	Molecular dynamics simulations of amyloid-β(16–22) peptide aggregation at air–water interfaces. Journal of Chemical Physics, 2020, 152, 095101.	1.2	25
1076	Antioxidant Berberine-Derivative Inhibits Multifaceted Amyloid Toxicity. IScience, 2020, 23, 101005.	1.9	63
1077	Processing Induced Changes in Food Proteins: Amyloid Formation during Boiling of Hen Egg White. Biomacromolecules, 2020, 21, 2218-2228.	2.6	34

#	Article	IF	CITATIONS
1078	Complexity in Lipid Membrane Composition Induces Resilience to AÎ ² ₄₂ Aggregation. ACS Chemical Neuroscience, 2020, 11, 1347-1352.	1.7	22
1079	Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7831-7836.	3.3	36
1080	Extraction and Refolding Determinants of Chaperone-Driven Aggregated Protein Reactivation. Journal of Molecular Biology, 2020, 432, 3239-3250.	2.0	3
1081	Molecular Spectroscopic Markers of Abnormal Protein Aggregation. Molecules, 2020, 25, 2498.	1.7	24
1082	Overview of extremophiles and their food and medical applications. , 2020, , 65-87.		16
1083	The Effect of Point Mutations on the Biophysical Properties of an Antimicrobial Peptide: Development of a Screening Protocol for Peptide Stability Screening. Molecular Pharmaceutics, 2020, 17, 3298-3313.	2.3	9
1084	NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nature Communications, 2020, 11, 3281.	5.8	36
1085	Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils. Analytical Chemistry, 2020, 92, 10336-10341.	3.2	9
1086	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
1087	Trackâ€Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods, 2020, 4, 2000366.	4.6	123
1088	Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. International Journal of Biological Macromolecules, 2020, 163, 618-629.	3.6	6
1089	Lactic acid bacteria feeding reversed the malformed eye structures and ameliorated gut microbiota profiles of <i>Drosophila melanogaster</i> Alzheimer's disease model. Journal of Applied Microbiology, 2022, 132, 3155-3167.	1.4	19
1090	In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection. PLoS Pathogens, 2020, 16, e1008591.	2.1	24
1091	Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Foods, 2020, 9, 874.	1.9	30
1092	General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. ACS Applied Materials & Interfaces, 2020, 12, 31182-31194.	4.0	33
1093	Rationally Designed Antibodies as Research Tools to Study the Structure–Toxicity Relationship of Amyloid-I² Oligomers. International Journal of Molecular Sciences, 2020, 21, 4542.	1.8	12
1094	Protein Aggregation, Related Pathologies, and Aging. , 2020, , 419-441.		0
1095	Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter, 2020, 16, 10029-10045.	1.2	71

# 1096	ARTICLE Supramolecular Polymers – we've Come Full Circle. Israel Journal of Chemistry, 2020, 60, 33-47.	IF 1.0	Citations 145
1097	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	23.0	189
1098	Lightâ€Induced Chiral Iron Copper Selenide Nanoparticles Prevent βâ€Amyloidopathy Inâ€Vivo. Angewandte Chemie, 2020, 132, 7197-7204.	1.6	11
1099	Lightâ€Induced Chiral Iron Copper Selenide Nanoparticles Prevent βâ€Amyloidopathy Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 7131-7138.	7.2	85
1100	Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. Journal of Molecular Biology, 2020, 432, 3064-3077.	2.0	11
1101	Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Materials Today Bio, 2020, 5, 100044.	2.6	18
1102	Effects of Boron Nitride Nanotube on the Secondary Structure of Aβ(1–42) Trimer: Possible Inhibitory Effect on Amyloid Formation. Journal of Physical Chemistry B, 2020, 124, 1928-1940.	1.2	16
1103	The Properties of α-Synuclein Secondary Nuclei Are Dominated by the Solution Conditions Rather than the Seed Fibril Strain. ACS Chemical Neuroscience, 2020, 11, 909-918.	1.7	29
1104	Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nature Communications, 2020, 11, 1007.	5.8	55
1105	Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. International Journal of Biological Macromolecules, 2020, 152, 21-29.	3.6	3
1106	ThX – a next-generation probe for the early detection of amyloid aggregates. Chemical Science, 2020, 11, 4578-4583.	3.7	43
1107	Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide. Nanoscale, 2020, 12, 6307-6317.	2.8	19
1108	How and why to build a mathematical model: A case study using prion aggregation. Journal of Biological Chemistry, 2020, 295, 5022-5035.	1.6	19
1109	Staphylococcus aureus PSMα3 Cross-α Fibril Polymorphism and Determinants of Cytotoxicity. Structure, 2020, 28, 301-313.e6.	1.6	53
1110	Real-Time Monitoring of Self-Aggregation of Î ² -Amyloid by a Fluorescent Probe Based on Ruthenium Complex. Analytical Chemistry, 2020, 92, 2953-2960.	3.2	21
1111	High-yield Production of Amyloid-β Peptide Enabled by a Customized Spider Silk Domain. Scientific Reports, 2020, 10, 235.	1.6	45
1112	Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 2020, 18, 1301-1310.	1.9	169
1113	Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mechanisms of Ageing and Development, 2020, 186, 111210.	2.2	23

#	Article	IF	CITATIONS
1114	CPAD 2.0: a repository of curated experimental data on aggregating proteins and peptides. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2020, 27, 128-133.	1.4	24
1115	Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Frontiers in Immunology, 2019, 10, 2980.	2.2	7
1116	Molecular Details of a Salt Bridge and Its Role in Insulin Fibrillation by NMR and Raman Spectroscopic Analysis. Journal of Physical Chemistry B, 2020, 124, 1125-1136.	1.2	10
1117	Monomer-targeting affinity peptide inhibitors of amyloid with no self-fibrillation and low cytotoxicity. Chemical Communications, 2020, 56, 1633-1636.	2.2	10
1118	Widespread remodeling of proteome solubility in response to different protein homeostasis stresses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2422-2431.	3.3	44
1119	Amyloid-Beta Peptides Trigger Aggregation of Alpha-Synuclein In Vitro. Molecules, 2020, 25, 580.	1.7	53
1120	Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell, 2020, 180, 633-644.e12.	13.5	300
1121	Small-Molecule Inhibitor Prevents Insulin Fibrillogenesis and Preserves Activity. Molecular Pharmaceutics, 2020, 17, 1827-1834.	2.3	15
1122	Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech, 2020, 10, 193.	1.1	15
1123	A Fluorogenic Molecule for Probing Islet Amyloid Using Flavonoid as a Scaffold Design. Biochemistry, 2020, 59, 1482-1492.	1.2	7
1124	Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nature Chemistry, 2020, 12, 445-451.	6.6	223
1125	A novel, label-free liquid crystal biosensor for Parkinson's disease related alpha-synuclein. Chemical Communications, 2020, 56, 5441-5444.	2.2	49
1126	High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chemical Communications, 2020, 56, 4627-4639.	2.2	71
1127	Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation–inert complex. Journal of Biological Chemistry, 2020, 295, 7224-7234.	1.6	26
1128	Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression. Journal of Virology, 2020, 94, .	1.5	54
1129	Novel Purification Process for Amyloid Beta Peptide(1-40). Processes, 2020, 8, 464.	1.3	3
1130	Protein assembly systems in natural and synthetic biology. BMC Biology, 2020, 18, 35.	1.7	44
1131	Effects of sedimentation, microgravity, hydrodynamic mixing and air–water interface on α-synuclein amyloid formation. Chemical Science, 2020, 11, 3687-3693.	3.7	18

#	Article	IF	CITATIONS
1132	Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6866-6874.	3.3	54
1133	Templated folding of intrinsically disordered proteins. Journal of Biological Chemistry, 2020, 295, 6586-6593.	1.6	44
1134	A ChemE Grows in Brooklyn. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 1-22.	3.3	2
1135	A Systematic Bioinformatics Workflow With Meta-Analytics Identified Potential Pathogenic Factors of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 209.	1.4	7
1136	Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids. Sensors and Actuators B: Chemical, 2021, 329, 129113.	4.0	21
1137	Complementary experimental and computational analysis of the effects of non-ionic detergents and phospholipids on insulin amyloid aggregation. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111428.	2.5	5
1138	Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid. Angewandte Chemie, 2021, 133, 4595-4600.	1.6	9
1139	Functional characterization of the ATPase-like activity displayed by a catalytic amyloid. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129729.	1.1	17
1140	Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823.	1.9	33
1141	Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Progress in Neurobiology, 2021, 198, 101907.	2.8	14
1142	The contrasting effect of macromolecular crowding and confinement on fibril formation of globular protein: Underlying cause of proteopathies. Journal of Molecular Liquids, 2021, 322, 114602.	2.3	5
1143	Diverse interactions of aggregated insulin with selected coumarin dyes: Time dependent fluorogenicity, simulation studies and comparison with thioflavin T. Dyes and Pigments, 2021, 184, 108796.	2.0	1
1144	Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coordination Chemistry Reviews, 2021, 428, 213612.	9.5	11
1145	Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte Chemie - International Edition, 2021, 60, 5173-5178.	7.2	9
1146	Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophysical Chemistry, 2021, 269, 106511.	1.5	10
1147	The role of water in the primary nucleation of protein amyloid aggregation. Biophysical Chemistry, 2021, 269, 106520.	1.5	36
1148	Revealing functional insights into ER proteostasis through proteomics and interactomics. Experimental Cell Research, 2021, 399, 112417.	1.2	8
1149	RNAâ€protein interactions: Central players in coordination of regulatory networks. BioEssays, 2021, 43, e2000118.	1.2	17

#	Article	IF	CITATIONS
1150	Systematic Activity Maturation of a Single-Domain Antibody with Non-canonical Amino Acids through Chemical Mutagenesis. Cell Chemical Biology, 2021, 28, 70-77.e5.	2.5	15
1151	Inhibition of human amylin aggregation by Flavonoid Chrysin: An <i>in-silico</i> and <i>in-vitro</i> approach. International Journal of Medical Sciences, 2021, 18, 199-206.	1.1	9
1152	Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte Chemie, 2021, 133, 5233-5238.	1.6	1
1153	2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 211, 113112.	2.6	19
1154	Distinct temporal actions of different types of unfolded protein responses during aging. Journal of Cellular Physiology, 2021, 236, 5069-5079.	2.0	3
1155	Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery?. Journal of Medicinal Chemistry, 2021, 64, 26-41.	2.9	46
1156	Compact fibril-like structure of amyloid β-peptide (1–42) monomers. Chemical Communications, 2021, 57, 947-950.	2.2	15
1157	Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk αS2-casein. Biophysical Chemistry, 2021, 270, 106530.	1.5	10
1158	Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Advanced Science, 2021, 8, 2002182.	5.6	20
1159	Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid. Angewandte Chemie - International Edition, 2021, 60, 4545-4550.	7.2	19
1160	MILAMP: Multiple Instance Prediction of Amyloid Proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1142-1150.	1.9	7
1161	Modeling and simulation in medical sciences: an overview of specific applications based on research experience in EMRI (Endocrinology and Metabolism Research Institute of Tehran University of Medical) Tj ETQq1	1 03 8431	4 og BT /Over
1162	Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. Journal of Cell Biology, 2021, 220, .	2.3	10
1163	Evolution-Structure Paradigm of Protein Complexes. , 2021, , 153-196.		0
1164	Protein Unfolding and Aggregation near a Hydrophobic Interface. Polymers, 2021, 13, 156.	2.0	26
1165	Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS Omega, 2021, 6, 2328-2339.	1.6	20
1166	Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and Structural Biotechnology Journal, 2021, 19, 2796-2805.	1.9	10
1167	Using palladium nanoparticle-decorated lysozyme amyloid fibrils to catalyze the reduction of methylene blue. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 187-195.	2.7	12

#	Article	IF	CITATIONS
1168	Myosin Binding Protein-C Forms Amyloid-Like Aggregates In Vitro. International Journal of Molecular Sciences, 2021, 22, 731.	1.8	4
1169	Thin-film devices for chemical, biological, and diagnostic applications. , 2021, , 369-405.		1
1170	Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies. Soft Matter, 2021, 17, 2158-2169.	1.2	12
1171	Distinct impact of glycation towards the aggregation and toxicity of murine and human amyloid-β. Chemical Communications, 2021, 57, 7637-7640.	2.2	2
1172	Reproducibility Problems of Amyloid- \hat{l}^2 Self-Assembly and How to Deal With Them. Frontiers in Chemistry, 2020, 8, 611227.	1.8	13
1173	A generic approach to decipher the mechanistic pathway of heterogeneous protein aggregation kinetics. Chemical Science, 2021, 12, 13530-13545.	3.7	2
1174	Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Frontiers in Neurology, 2020, 11, 595532.	1.1	144
1175	Origin, toxicity and characteristics of two amyloid oligomer polymorphs. RSC Chemical Biology, 2021, 2, 1631-1642.	2.0	5
1177	Cation-induced conformational and self-assembly transitions in designer peptides. Molecular Systems Design and Engineering, 2021, 6, 197-201.	1.7	0
1178	Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. Journal of the Indian Chemical Society, 2021, 98, 100011.	1.3	12
1179	An explicitly designed paratope of amyloid-l ² prevents neuronal apoptosis <i>in vitro</i> and hippocampal damage in rat brain. Chemical Science, 2021, 12, 2853-2862.	3.7	7
1180	AgDD System: A Chemical Controllable Protein Aggregates in Cells. Methods in Molecular Biology, 2021, 2312, 277-285.	0.4	0
1181	Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Computational and Structural Biotechnology Journal, 2021, 19, 4711-4724.	1.9	9
1182	Neurodegenerative Proteinopathies in the Proteoform Spectrum—Tools and Challenges. International Journal of Molecular Sciences, 2021, 22, 1085.	1.8	7
1183	Site-specific single point mutation by anthranilic acid in hIAPP8–37 enhances anti-amyloidogenic activity. RSC Chemical Biology, 2021, 2, 266-273.	2.0	3
1184	A kinetic ensemble of the Alzheimer's Aβ peptide. Nature Computational Science, 2021, 1, 71-78.	3.8	42
1185	Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Al²42 oligomers. Nature Communications, 2021, 12, 688.	5.8	52
1186	Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nature Communications, 2021, 12, 49.	5.8	27

#	Article	IF	CITATIONS
1187	Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nature Reviews Chemistry, 2021, 5, 277-294.	13.8	56
1188	Early events in light chain aggregation at physiological pH reveal new insights on assembly, stability, and aggregate dissociation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2021, 28, 113-124.	1.4	6
1189	Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone–Dopamine hybrid. FEBS Journal, 2021, 288, 4267-4290.	2.2	14
1190	Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction. Advanced Functional Materials, 2021, 31, 2009382.	7.8	14
1191	Exploring the occurrence of thioflavin-T-positive insulin amyloid aggregation intermediates. PeerJ, 2021, 9, e10918.	0.9	6
1192	Peptide–Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules, 2021, 26, 1219.	1.7	11
1193	Residue Interaction Network Analysis Predicts a Val24–Ile31 Interaction May be Involved in Preventing Amyloidâ€Beta (1–42) Primary Nucleation. Protein Journal, 2021, 40, 175-183.	0.7	3
1194	Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Frontiers in Immunology, 2021, 12, 638867.	2.2	61
1195	Tandem RNA binding sites induce self-association of the stress granule marker protein TIA-1. Nucleic Acids Research, 2021, 49, 2403-2417.	6.5	27
1196	Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Communications Biology, 2021, 4, 243.	2.0	52
1197	Insights Into the Mechanism of Tyrosine Nitration in Preventing β-Amyloid Aggregation in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 619836.	1.4	4
1198	Mechanistic Insights into the Co-Aggregation of AÎ ² and hIAPP: An All-Atom Molecular Dynamic Study. Journal of Physical Chemistry B, 2021, 125, 2050-2060.	1.2	23
1199	On the Protein Fibrillation Pathway: Oligomer Intermediates Detection Using ATR-FTIR Spectroscopy. Molecules, 2021, 26, 970.	1.7	22
1200	The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations. ELife, 2021, 10, .	2.8	34
1201	Complex Inclusion Bodies and Defective Proteome Hubs in Neurodegenerative Disease: New Clues, New Challenges. Neuroscientist, 2022, 28, 271-282.	2.6	5
1202	NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell, 2021, 184, 577-595.	13.5	103
1203	Complex Photophysical Properties of K114 Make for a Versatile Fluorescent Probe for Amyloid Detection. ACS Chemical Neuroscience, 2021, 12, 1273-1280.	1.7	9
1204	Extract from the Marine Seaweed Padina pavonica Protects Mitochondrial Biomembranes from Damage by Amyloidogenic Peptides. Molecules, 2021, 26, 1444.	1.7	6

#	Article	IF	CITATIONS
1205	The role of surfaces on amyloid formation. Biophysical Chemistry, 2021, 270, 106533.	1.5	46
1206	Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in <i>C. elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1207	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	1.8	12
1208	Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer's Disease. Sensors, 2021, 21, 2067.	2.1	19
1209	Rationalizing the Role of Monosodium Glutamate in the Protein Aggregation Through Biophysical Approaches: Potential Impact on Neurodegeneration. Frontiers in Neuroscience, 2021, 15, 636454.	1.4	9
1210	Glucosamine and Its Analogues as Modulators of Amyloid-β Toxicity. ACS Medicinal Chemistry Letters, 2021, 12, 548-554.	1.3	3
1212	Amyloid Aggregates of Smooth-Muscle Titin Impair Cell Adhesion. International Journal of Molecular Sciences, 2021, 22, 4579.	1.8	4
1213	A theoretical study of polymorphism in VQIVYK fibrils. Biophysical Journal, 2021, 120, 1396-1416.	0.2	10
1214	Molecular Insights into Myocilin and Its Glaucoma-Causing Misfolded Olfactomedin Domain Variants. Accounts of Chemical Research, 2021, 54, 2205-2215.	7.6	13
1215	The Diagnostic Potential of Amyloidogenic Proteins. International Journal of Molecular Sciences, 2021, 22, 4128.	1.8	7
1216	Secondary Nucleation and the Conservation of Structural Characteristics of Amyloid Fibril Strains. Frontiers in Molecular Biosciences, 2021, 8, 669994.	1.6	15
1217	Hybridization of Biomolecular Crystals and Low-Dimensional Materials. ACS Nano, 2021, 15, 6678-6683.	7.3	2
1218	Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins. Frontiers in Molecular Biosciences, 2021, 8, 626729.	1.6	4
1219	Intrinsically Disordered Proteins as Regulators of Transient Biological Processes and as Untapped Drug Targets. Molecules, 2021, 26, 2118.	1.7	13
1220	Coâ€ŧranslational folding of nascent polypeptides: Multiâ€ŀayered mechanisms for the efficient biogenesis of functional proteins. BioEssays, 2021, 43, e2100042.	1.2	7
1222	Amine-Derivatized l-Phenylalanine and l-Tyrosine as Versatile Self-Assembled Platforms of Diverse Supramolecular Architectures: From Mesocrystals to Organogels. Crystal Growth and Design, 2021, 21, 3487-3499.	1.4	4
1223	Membrane Anchored Polymers Modulate Amyloid Fibrillation. Macromolecular Rapid Communications, 2021, 42, e2100120.	2.0	6
1224	Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Current Drug Discovery Technologies, 2021, 18, 365-378.	0.6	4

#	Article	IF	CITATIONS
1225	Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 5075.	1.8	17
1227	Alizarin and Purpurin from <i>Rubia tinctorum</i> L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chemical Neuroscience, 2021, 12, 2182-2193.	1.7	14
1228	Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers. Frontiers in Neuroscience, 2021, 15, 680026.	1.4	34
1229	Redefining Molecular Chaperones as Chaotropes. Frontiers in Molecular Biosciences, 2021, 8, 683132.	1.6	12
1230	Single molecule imaging of protein aggregation in Dementia: Methods, insights and prospects. Neurobiology of Disease, 2021, 153, 105327.	2.1	2
1231	Bladder cancer therapy using a conformationally fluid tumoricidal peptide complex. Nature Communications, 2021, 12, 3427.	5.8	14
1232	Topologically non-trivial metal-organic assemblies inhibit β2-microglobulin amyloidogenesis. Cell Reports Physical Science, 2021, 2, 100477.	2.8	1
1233	Distinct responses of human peripheral blood cells to different misfolded protein oligomers. Immunology, 2021, 164, 358-371.	2.0	7
1234	α-Lactalbumin/к-casein coassembly with different intermediates of β-lactoglobulin during heat-induced fibril formation. Innovative Food Science and Emerging Technologies, 2021, 70, 102705.	2.7	2
1235	From Kuru to Alzheimer: A personal outlook. Protein Science, 2021, 30, 1776-1792.	3.1	7
1237	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	4.6	94
1238	Using lysozyme amyloid fibrils as a means of scavenging aggregationâ€inhibiting compounds. Biotechnology Journal, 2021, 16, e2100138.	1.8	5
1239	Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. International Journal of Molecular Sciences, 2021, 22, 6609.	1.8	31
1241	RNA and liquid-liquid phase separation. Non-coding RNA Research, 2021, 6, 92-99.	2.4	52
1242	Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics, 2021, 10, 795.	1.5	13
1243	Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
1244	The intrinsic chaperone network of Arabidopsis stem cells confers protection against proteotoxic stress. Aging Cell, 2021, 20, e13446.	3.0	15
1245	Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacology and Translational Science, 2021, 4, 1322-1337.	2.5	14

#	Article	IF	CITATIONS
1246	Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Frontiers in Molecular Neuroscience, 2021, 14, 670513.	1.4	18
1247	Different Folding States from the Same Protein Sequence Determine Reversible vs Irreversible Amyloid Fate. Journal of the American Chemical Society, 2021, 143, 11473-11481.	6.6	45
1248	Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape. ACS Chemical Neuroscience, 2021, 12, 2903-2916.	1.7	8
1249	Thermo-Responsive self-assembly of a dual glucagon-like peptide and glucagon receptor agonist. International Journal of Pharmaceutics, 2021, 604, 120719.	2.6	1
1250	Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response. Communications Biology, 2021, 4, 843.	2.0	6
1251	Amyloidoses – pathogenesis, classification, diagnosis. Diagnostyka Laboratoryjna I Wiadomości PTDL, 2021, 56, 1-13.	0.0	Ο
1252	S100A9 Alters the Pathway of Alpha-Synuclein Amyloid Aggregation. International Journal of Molecular Sciences, 2021, 22, 7972.	1.8	13
1254	Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Frontiers in Neurology, 2021, 12, 661117.	1.1	23
1255	Glucosylceramide Associated with Gaucher Disease Forms Amyloid-like Twisted Ribbon Fibrils That Induce α-Synuclein Aggregation. ACS Nano, 2021, 15, 11854-11868.	7.3	18
1256	Impact of single amino acid substitution on the structure and function of TANKâ€binding kinaseâ€1. Journal of Cellular Biochemistry, 2021, 122, 1475-1490.	1.2	11
1257	Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis. Chinese Journal of Chemical Engineering, 2022, 48, 227-235.	1.7	2
1258	Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Scientific Reports, 2021, 11, 14391.	1.6	6
1259	The Ultrastructure of Tissue Damage by Amyloid Fibrils. Molecules, 2021, 26, 4611.	1.7	17
1260	Air–Water Interface Assembly of Protein Nanofibrils Promoted by Hydrophobic Additives. ACS Sustainable Chemistry and Engineering, 2021, 9, 9289-9299.	3.2	12
1262	Diverse Aggregation Kinetics Predicted by a Coarse-Grained Peptide Model. Journal of Physical Chemistry B, 2021, 125, 7587-7597.	1.2	3
1263	Rational Biological Interface Engineering: Amyloidal Supramolecular Microstructure-Inspired Hydrogel. Frontiers in Bioengineering and Biotechnology, 2021, 9, 718883.	2.0	6
1264	The Protein Folding Problem: The Role of Theory. Journal of Molecular Biology, 2021, 433, 167126.	2.0	52
1265	Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation. Journal of Molecular Biology, 2022, 434, 167201.	2.0	62

#	Article	IF	CITATIONS
1266	Zika virus capsid anchor forms cytotoxic amyloid-like fibrils. Virology, 2021, 560, 8-16.	1.1	11
1267	DAXX represents a new type of protein-folding enabler. Nature, 2021, 597, 132-137.	13.7	54
1268	Nanotechnological approaches for targeting amyloid-Î ² aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discovery Today, 2021, 26, 1972-1979.	3.2	21
1269	The Proteome Folding Problem and Cellular Proteostasis. Journal of Molecular Biology, 2021, 433, 167197.	2.0	22
1270	Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
1271	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	23.0	123
1274	Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. Journal of Molecular Biology, 2022, 434, 167216.	2.0	44
1275	Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Communications Biology, 2021, 4, 939.	2.0	15
1276	Oligomerization of Selective Autophagy Receptors for the Targeting and Degradation of Protein Aggregates. Cells, 2021, 10, 1989.	1.8	8
1277	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478
1278	Cholesterol in Synaptic Vesicle Membranes Regulates the Vesicle-Binding, Function, and Aggregation of α-Synuclein. Journal of Physical Chemistry B, 2021, 125, 11099-11111.	1.2	14
1280	Structural and Functional Insights into α-Synuclein Fibril Polymorphism. Biomolecules, 2021, 11, 1419.	1.8	39
1281	Half-Time Heat Map Reveals Ultrasonic Effects on Morphology and Kinetics of Amyloidogenic Aggregation Reaction. ACS Chemical Neuroscience, 2021, 12, 3456-3466.	1.7	10
1282	Frustrated peptide chains at the fibril tip control the kinetics of growth of amyloid-β fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1283	The curvature of gold nanoparticles influences the exposure of amyloid-β and modulates its aggregation process. Materials Science and Engineering C, 2021, 128, 112269.	3.8	8
1284	Aggregation Condition–Structure Relationship of Mouse Prion Protein Fibrils. International Journal of Molecular Sciences, 2021, 22, 9635.	1.8	4
1285	Spectral photokinetic conversion of the fluorescent probes BSB and K114 for improved detection of amyloid assemblies. Journal of Biophotonics, 2021, 14, e202100203.	1,1	4
1286	Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO Journal, 2021, 40, e107711.	3.5	65

#	Article	IF	CITATIONS
1287	Dysregulation of the secretory pathway connects Alzheimer's disease genetics to aggregate formation. Cell Systems, 2021, 12, 873-884.e4.	2.9	11
1288	Coassembly of Macrocyclic Amphiphiles for Anti-β-Amyloid Therapy of Alzheimer's Disease. CCS Chemistry, 2021, 3, 2485-2497.	4.6	26
1289	In vitro characterization of urea derivatives to inhibit alpha-synuclein early-stage aggregation. Journal of Molecular Structure, 2022, 1249, 131569.	1.8	6
1290	Water Contribution to the Protein Folding and Its Relevance in Protein Design and Protein Aggregation. Springer Proceedings in Physics, 2022, , 3-28.	0.1	0
1291	New Frontiers for Machine Learning in Protein Science. Journal of Molecular Biology, 2021, 433, 167232.	2.0	8
1292	Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites. Journal of Colloid and Interface Science, 2022, 606, 1928-1939.	5.0	16
1293	Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae. Journal of Molecular Biology, 2021, 433, 167162.	2.0	2
1294	All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells, 2021, 10, 2438.	1.8	22
1296	Bioinspired Intrinsic Versatile Hydrogel Fabricated by Amyloidal Toxin Simulantâ€Based Nanofibrous Assemblies for Accelerated Diabetic Wound Healing. Advanced Functional Materials, 2021, 31, 2106705.	7.8	44
1297	Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biology and Medicine, 2021, 173, 52-63.	1.3	26
1298	Exploring amyloid oligomers with peptide model systems. Current Opinion in Chemical Biology, 2021, 64, 106-115.	2.8	23
1299	Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116333.	5.8	14
1300	Understanding and controlling amyloid aggregation with chirality. Current Opinion in Chemical Biology, 2021, 64, 1-9.	2.8	18
1301	TowardÂthe equilibrium and kinetics of amyloid peptide self-assembly. Current Opinion in Structural Biology, 2021, 70, 87-98.	2.6	10
1302	Metabolite assemblies: A surprising extension to the amyloid hypothesis. Current Opinion in Chemical Biology, 2021, 64, 154-164.	2.8	15
1303	Purification and characterization of an amyloidogenic repeat domain from the functional amyloid Pmel17. Protein Expression and Purification, 2021, 187, 105944.	0.6	4
1304	Neurodegeneration & imperfect ageing: Technological limitations and challenges?. Mechanisms of Ageing and Development, 2021, 200, 111574.	2.2	2
1305	The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Computational and Structural Biotechnology Journal, 2021, 19, 3817-3828.	1.9	6

#	Article	IF	CITATIONS
1306	Facilitating functionalization of benzene-1,3,5-tricarboxamides by switching amide connectivity. Organic and Biomolecular Chemistry, 2021, 19, 8281-8294.	1.5	4
1307	Sequestration within biomolecular condensates inhibits AÎ ² -42 amyloid formation. Chemical Science, 2021, 12, 4373-4382.	3.7	33
1308	Naphthalene Monoimide Derivative Ameliorates Amyloid Burden and Cognitive Decline in a Transgenic Mouse Model of Alzheimer's Disease. Advanced Therapeutics, 2021, 4, 2000225.	1.6	18
1309	Curcumin promotes AApoAll amyloidosis and peroxisome proliferation in mice by activating the PPARÎ \pm signaling pathway. ELife, 2021, 10, .	2.8	8
1310	Molecular Network for Management of Neurodegenerative Diseases and their Translational Importance using Animal Biotechnology as a Tool in Preclinical Studies. , 2021, , 219-235.		0
1311	A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Communications Biology, 2021, 4, 19.	2.0	25
1312	Design, synthesis and comparison of water-soluble phthalocyanine/porphyrin analogues and their inhibition effects on Al² ₄₂ fibrillization. Inorganic Chemistry Frontiers, 2021, 8, 3501-3513.	3.0	6
1313	Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. Journal of Biological Chemistry, 2021, 296, 100334.	1.6	22
1314	Suppression of aggregate and amyloid formation by a novel intrinsically disordered region in metazoan Hsp110 chaperones. Journal of Biological Chemistry, 2021, 296, 100567.	1.6	15
1315	Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discovery, 2021, 7, 4.	3.1	92
1316	Similarity of the non-amyloid-Î ² component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Computational and Structural Biotechnology Journal, 2021, 19, 5348-5359.	1.9	7
1319	Quenched Hydrogen Exchange NMR of Amyloid Fibrils. Methods in Molecular Biology, 2016, 1345, 211-222.	0.4	6
1320	Amyloid Oligomers, Protofibrils and Fibrils. Sub-Cellular Biochemistry, 2019, 93, 471-503.	1.0	13
1321	Understanding Bacterial Physiology for Improving Full Fitness. Progress in Biological Control, 2020, , 47-60.	0.5	1
1322	Amyloid Diseases at the Molecular Level: General Overview and Focus on AL Amyloidosis. Current Clinical Pathology, 2015, , 9-29.	0.0	3
1323	Molecular Chaperones and HSPs in Sugarcane and Eucalyptus. Heat Shock Proteins, 2016, , 245-282.	0.2	1
1324	Protein Aggregation and Its Prediction. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 115-127.	0.5	1
1325	Dynamics and Control of Peptide Self-Assembly and Aggregation. Advances in Experimental Medicine and Biology, 2019, 1174, 1-33.	0.8	6

#	Article	IF	CITATIONS
1326	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	0.8	10
1327	Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones. Advances in Experimental Medicine and Biology, 2019, 1174, 265-290.	0.8	18
1328	Application of yeast to studying amyloid and prion diseases. Advances in Genetics, 2020, 105, 293-380.	0.8	19
1329	Amyloid formation by intrinsically disordered trans-activation domain of cMyb. Biochemical and Biophysical Research Communications, 2020, 524, 446-452.	1.0	13
1330	Protein secondary structure detection based on surface plasmon resonance of graphene nanowires. Optik, 2020, 216, 164703.	1.4	5
1331	Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. Journal of Biological Chemistry, 2020, 295, 1181-1194.	1.6	6
1332	Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. Journal of Physical Chemistry Letters, 2021, 12, 368-378.	2.1	34
1333	Surface Ligand-Controlled Wavelength-Tunable Luminescence of Gold Nanoclusters: Cellular Imaging and Smart Fluorescent Probes for Amyloid Detection. ACS Applied Bio Materials, 2020, 3, 4282-4293.	2.3	27
1334	Environmental Control of Amyloid Polymorphism by Modulation of Hydrodynamic Stress. ACS Nano, 2021, 15, 944-953.	7.3	13
1335	Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Communications, 2020, 11, 571.	5.8	28
1336	The molecular chaperone β-casein prevents amorphous and fibrillar aggregation of α-lactalbumin by stabilisation of dynamic disorder. Biochemical Journal, 2020, 477, 629-643.	1.7	18
1337	Directionality of growth and kinetics of branched fibril formation. Journal of Chemical Physics, 2020, 153, 244101.	1.2	3
1338	Kinetics of first-order phase transitions from microcanonical thermostatistics. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 083204.	0.9	3
1339	Apolipoprotein genetic variants and hereditary amyloidosis. Current Opinion in Lipidology, 2021, 32, 132-140.	1.2	2
1361	Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. Journal of Applied Crystallography, 2018, 51, 1623-1632.	1.9	36
1362	Amyloid structure determination in <i>RELION</i> -3.1. Acta Crystallographica Section D: Structural Biology, 2020, 76, 94-101.	1.1	161
1363	Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport. PLoS Genetics, 2016, 12, e1006324.	1.5	38
1364	Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genetics, 2016, 12, e1006417.	1.5	10

#	Article	IF	Citations
1365	The absence of specific yeast heat-shock proteins leads to abnormal aggregation and compromised autophagic clearance of mutant Huntingtin proteins. PLoS ONE, 2018, 13, e0191490.	1.1	16
1366	Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease. PLoS ONE, 2018, 13, e0192121.	1.1	31
1367	Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries, 2017, 5, e79.	1.5	9
1368	Aggregation and disaggregation features of the human proteome. Molecular Systems Biology, 2020, 16, e9500.	3.2	25
1369	Amyloid-like Fibril Formation by Trypsin in Aqueous Ethanol. Inhibition of Fibrillation by PEG. Protein and Peptide Letters, 2015, 22, 1104-1110.	0.4	8
1370	β-amyloid and Oxidative Stress: Perspectives in Drug Development. Current Pharmaceutical Design, 2020, 25, 4771-4781.	0.9	37
1371	Protein Aggregation in a Nutshell: The Splendid Molecular Architecture of the Dreaded Amyloid Fibrils. Current Protein and Peptide Science, 2019, 20, 1077-1088.	0.7	7
1372	Heat Shock Factor (HSF): The Promoter of Chaperone Genes. A Mini Review. Current Proteomics, 2018, 16, 22-30.	0.1	1
1373	Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt–Jakob Disease: Similar Behavior of Different Proteins?. International Journal of Molecular Sciences, 2021, 22, 7.	1.8	15
1374	Challenges in understanding the structure/activity relationship of AÎ ² oligomers. AIMS Biophysics, 2019, 6, 1-22.	0.3	3
1375	The disruption of proteostasis in neurodegenerative disorders. AIMS Molecular Science, 2015, 2, 259-293.	0.3	2
1376	Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response. World Journal of Virology, 2015, 4, 188.	1.3	6
1377	Further insight into the role of metals in amyloid formation by IAPP1-37 and ProIAPP1-48. Journal of Diabetes Research & Clinical Metabolism, 2015, 4, 4.	0.2	6
1378	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. ELife, 2015, 4, .	2.8	29
1379	The physical dimensions of amyloid aggregates control their infective potential as prion particles. ELife, 2017, 6, .	2.8	31
1380	Spatial control of irreversible protein aggregation. ELife, 2019, 8, .	2.8	37
1381	Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. ELife, 2019, 8, .	2.8	51
1382	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	2.8	24

#	ARTICLE Identification of fibrillogenic regions in human triosephosphate isomerase. PeerJ, 2016, 4, e1676.	IF 0.9	Citations 3
1383	Amyloid domains in the cell nucleus controlled by nucleoskeletal protein lamin B1 reveal a new pathway of mercury neurotoxicity. PeerJ, 2015, 3, e754.	0.9	3
1385	Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ, 2019, 7, e8208.	0.9	20
1386	Biochemical and biophysical characterisation of immunoglobulin free light chains derived from an initially unbiased population of patients with light chain disease. PeerJ, 2020, 8, e8771.	0.9	4
1387	Computational maturation of a single-domain antibody against AÎ ² 42 aggregation. Chemical Science, 2021, 12, 13940-13948.	3.7	4
1388	Molecular Profiles of Amyloid-β Proteoforms in Typical and Rapidly Progressive Alzheimer's Disease. Molecular Neurobiology, 2022, 59, 17-34.	1.9	8
1389	T-cell based immunotherapies for Parkinson's disease. , 2021, 1, .		3
1390	Interplay between epigallocatechin-3-gallate and ionic strength during amyloid aggregation. PeerJ, 2021, 9, e12381.	0.9	7
1392	Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cellular and Molecular Life Sciences, 2021, 78, 7185-7198.	2.4	7
1393	Global Proteotoxicity Caused by Human β2 Microglobulin Variants Impairs the Unfolded Protein Response in C. elegans. International Journal of Molecular Sciences, 2021, 22, 10752.	1.8	4
1394	Structural Stability of Insulin Oligomers and Protein Association–Dissociation Processes: Free Energy Landscape and Universal Role of Water. Journal of Physical Chemistry B, 2021, 125, 11793-11811.	1.2	11
1395	Identification of an optimal foldability criterion to designÂmisfolding resistant protein. Journal of Chemical Physics, 2021, 155, 144102.	1.2	2
1396	The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3î¶. Molecules, 2021, 26, 6120.	1.7	9
1397	Rift Valley fever virus: a new avenue of research on the biological functions of amyloids?. Future Virology, 2021, 16, 677-689.	0.9	1
1398	Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biology Direct, 2021, 16, 15.	1.9	12
1399	Man does not live by intrinsically unstructured proteins alone: The role of structured regions in aggregation. BioEssays, 2021, 43, e2100178.	1.2	3
1400	Kinetics of aggregation of amyloid Î ² under different shearing conditions: Experimental and modelling analyses. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112156.	2.5	5
1401	Autobiography of Carol K. Hall. Journal of Physical Chemistry B, 2021, 125, 11343-11349.	1.2	Ο

#	Article	IF	CITATIONS
1402	N-Amination Converts Amyloidogenic Tau Peptides into Soluble Antagonists of Cellular Seeding. ACS Chemical Neuroscience, 2021, 12, 3928-3938.	1.7	7
1403	The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Communications, 2021, 12, 5999.	5.8	37
1404	Evolutionary conservation of systemic and reversible amyloid aggregation. Journal of Cell Science, 2021, 134, .	1.2	6
1405	FÓ§rster resonance energy transfer between Thioflavin T and unsymmetrical trimethine cyanine dyes on amyloid fibril scaffold. Chemical Physics Letters, 2021, 785, 139127.	1.2	5
1406	Secondary Structure. , 2015, , 1-9.		0
1407	The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation. , 2015, , 1-28.		1
1411	Amyloidosis Classification. , 2016, , 232-237.		0
1412	Classifying lipoproteins based on their polar profiles Acta Biochimica Polonica, 2016, 63, 235-41.	0.3	2
1415	A Plasma Cell Dyscrasia Presenting as Amyloid Cardiomyopathy and Autonomic Dysfunction in a Healthy Patient. Cureus, 2017, 9, e1409.	0.2	0
1419	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0
1421	Secondary Structure. , 2018, , 1089-1097.		0
1429	Imaging Modalities: Neuropathology. , 2019, , 57-118.		0
1430	Self-Assembly from a Single-Molecule Perspective. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 147-155.	0.2	1
1431	Neurodegeneration: General Aspects. , 2019, , 827-870.		0
1433	Protein/Emulsifier Interactions. , 2019, , 101-192.		1
1437	Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation. PeerJ, 2019, 7, e7554.	0.9	9
1443	Amyloid \hat{l}^2 -peptide interaction with GM1 containing model membrane. Advances in Biomembranes and Lipid Self-Assembly, 2020, 32, 1-24.	0.3	0
1448	Multi-Scale Mathematical Modeling of Prion Aggregate Dynamics and Phenotypes in Yeast Colonies. , 0,		2

#	Article	IF	CITATIONS
1453	In vivo rate-determining steps of tau seed accumulation in Alzheimer's disease. Science Advances, 2021, 7, eabh1448.	4.7	70
1454	Under Conditions of Amyloid Formation Bovine Carbonic Anhydrase B Undergoes Fragmentation by Acid Hydrolysis. Biomolecules, 2021, 11, 1608.	1.8	2
1456	Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. Nanoscale Advances, 2020, 2, 5866-5873.	2.2	7
1458	Effects of Dissolved Gases on the Amyloid Fibril Morphology. Langmuir, 2021, 37, 516-523.	1.6	1
1459	Peptide Engineering Strategies. RSC Soft Matter, 2020, , 47-75.	0.2	0
1461	Amylin and amylin receptors in Alzheimer's disease. , 2020, , 309-324.		1
1463	Transcriptional signature of prion-induced neurotoxicity in a <i>Drosophila</i> model of transmissible mammalian prion disease. Biochemical Journal, 2020, 477, 833-852.	1.7	8
1467	Effect of Metal Ions on the Intrinsic Blue Fluorescence Property and Morphology of Aromatic Amino Acid Self-Assembly. Journal of Physical Chemistry B, 2021, 125, 12436-12445.	1.2	11
1468	Impact of Deleterious Mutations on Structure, Function and Stability of Serum/Glucocorticoid Regulated Kinase 1: A Gene to Diseases Correlation. Frontiers in Molecular Biosciences, 2021, 8, 780284.	1.6	12
1471	The Role of α-sheet in Amyloid Oligomer Aggregation and Toxicity. Yale Journal of Biology and Medicine, 2018, 91, 247-255.	0.2	9
1472	Myocilin-associated Glaucoma: A Historical Perspective and Recent Research Progress. Molecular Vision, 2021, 27, 480-493.	1.1	5
1473	Superoxide dismutase-1 alters the rate of prion protein aggregation and resulting fibril conformation. Archives of Biochemistry and Biophysics, 2022, 715, 109096.	1.4	2
1474	Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. Journal of Physical Chemistry B, 2021, 125, 12718-12729.	1.2	26
1475	Proteinaceous porous nanofiber membrane-type adsorbent derived from amyloid lysozyme protofilaments for highly efficient lead(II) biologic scavenging. Journal of Hazardous Materials, 2022, 425, 127886.	6.5	14
1476	Inhibitorâ€Mediated Structural Transition in a Minimal Amyloid Model. Angewandte Chemie - International Edition, 2022, 61, e202113845.	7.2	7
1477	Polymorphism of Alpha-Synuclein Amyloid Fibrils Depends on Ionic Strength and Protein Concentration. International Journal of Molecular Sciences, 2021, 22, 12382.	1.8	17
1478	Oligomeric Aβ25–35 induces the tyrosine phosphorylation of PSD-95 by SrcPTKs in rat hippocampal CA1 subfield. International Journal of Neuroscience, 2023, 133, 888-895.	0.8	1
1480	Inhibitorâ€Mediated Structural Transition in a Minimal Amyloid Model. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
1481	Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chemical Biology, 2022, 3, 220-226.	2.0	13
1482	Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. International Journal of Biological Macromolecules, 2022, 200, 151-161.	3.6	18
1483	How does excess phenylalanine affect the packing density and fluidity of a lipid membrane?. Physical Chemistry Chemical Physics, 2021, 23, 27294-27303.	1.3	4
1484	When kinetics plays strange tricks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122078119.	3.3	0
1485	Chemoselective Bioconjugation of Amyloidogenic Protein Antigens to PEGylated Microspheres Enables Detection of α-Synuclein Autoantibodies in Human Plasma. Bioconjugate Chemistry, 2022, , .	1.8	0
1486	Inhibiting mTTR Aggregation/Fibrillation by a Chaperone-like Hydrophobic Amino Acid-Conjugated SPION. Journal of Physical Chemistry B, 2022, 126, 1640-1654.	1.2	9
1487	Chemoenzymatic Polymerization of <scp>l</scp> -Serine Ethyl Ester in Aqueous Media without Side-Group Protection. ACS Polymers Au, 2022, 2, 147-156.	1.7	7
1488	Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nature Communications, 2022, 13, 85.	5.8	15
1489	Nucleation in Protein Aggregation in Biotherapeutic Development: A look into the Heart of the Event. Journal of Pharmaceutical Sciences, 2022, 111, 951-959.	1.6	8
1491	Turning the structure of the Aβ ₄₂ peptide by different functionalized carbon nanotubes: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2022, 24, 4270-4279.	1.3	2
1492	Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. Journal of Physical Chemistry B, 2022, 126, 443-452.	1.2	3
1493	Interaction between polyphenols and amyloids: from the view of prevention of protein misfolding disorders related diseases. , 2022, 2, 1-15.		2
1494	A Disulfide-Stabilized AÎ ² that Forms Dimers but Does Not Form Fibrils. Biochemistry, 2022, 61, 252-264.	1.2	4
1495	Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. Journal of Chemical Physics, 2022, 156, 164904.	1.2	13
1496	Taurine Stabilizing Effect on Lysozyme. Life, 2022, 12, 133.	1.1	4
1497	Carbonic anhydrase amyloid fibrils composed of laterally associated protofilaments show reduced cytotoxicity. Biochemical and Biophysical Research Communications, 2022, 593, 46-51.	1.0	Ο
1498	The amyloid state of proteins: A boon or bane?. International Journal of Biological Macromolecules, 2022, 200, 593-617.	3.6	12
1499	Amyloid fishing: Î ² -Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112374.	2.5	1

#	Article	IF	Citations
1500	Physiology, Diagnosis and Treatment of Cardiac Light Chain Amyloidosis. Journal of Clinical Medicine, 2022, 11, 911.	1.0	7
1502	End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins. ACS Biomaterials Science and Engineering, 2022, 8, 1156-1165.	2.6	22
1503	Graphene Oxide/Silver Nanoparticles Platforms for the Detection and Discrimination of Native and Fibrillar Lysozyme: A Combined QCM and SERS Approach. Nanomaterials, 2022, 12, 600.	1.9	12
1504	Contact-Based Analysis of Aggregation of Intrinsically Disordered Proteins. Methods in Molecular Biology, 2022, 2340, 105-120.	0.4	1
1505	Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophysics and Physicobiology, 2022, 19, n/a.	0.5	3
1506	High-throughput cryo-EM structure determination of amyloids. Faraday Discussions, 0, 240, 243-260.	1.6	19
1507	Robust organometallic gold nanoparticles in nanomedicine engineering of proteins. , 2022, , 73-93.		0
1508	All-Atom Molecular Dynamics Simulation Methods for the Aggregation of Protein and Peptides: Replica Exchange/Permutation and Nonequilibrium Simulations. Methods in Molecular Biology, 2022, 2340, 197-220.	0.4	5
1509	Electric-field induced modulation of amorphous protein aggregates: polarization, deformation, and reorientation. Scientific Reports, 2022, 12, 3061.	1.6	1
1511	Advanced Biophotonics Techniques: The Role of Optical Tweezers for Cells and Molecules Manipulation Associated With Cancer. Frontiers in Physics, 2022, 10, .	1.0	1
1512	PERK activation by SB202190 ameliorates amyloidogenesis via the TFEB-induced autophagy-lysosomal pathway. Aging, 2022, 14, 1233-1252.	1.4	6
1513	Shape-free theory for the self-assembly kinetics in macromolecular systems. Europhysics Letters, 2022, 137, 57001.	0.7	4
1514	Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly. Nature Communications, 2022, 13, 1040.	5.8	23
1515	Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-β 42. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116736119.	3.3	12
1516	The folding and misfolding mechanisms of multidomain proteins. Medicine in Drug Discovery, 2022, , 100126.	2.3	3
1517	Nanoscale Structural Analysis of a Lipid-Driven Aggregation of Insulin. Journal of Physical Chemistry Letters, 2022, 13, 2467-2473.	2.1	30
1518	In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chemical Reviews, 2022, 122, 9497-9570.	23.0	55
1520	Structural Dissection of the First Events Following Membrane Binding of the Islet Amyloid Polypeptide. Frontiers in Molecular Biosciences, 2022, 9, 849979.	1.6	8

#	Article	IF	CITATIONS
1521	Chiral carbon dots: synthesis, optical properties, and emerging applications. Light: Science and Applications, 2022, 11, 75.	7.7	105
1522	Generating Ensembles of Dynamic Misfolding Proteins. Frontiers in Neuroscience, 2022, 16, 881534.	1.4	9
1523	Lipid Homeostasis and Its Links With Protein Misfolding Diseases. Frontiers in Molecular Neuroscience, 2022, 15, 829291.	1.4	11
1524	Analysis tools for single-monomer measurements of self-assembly processes. Scientific Reports, 2022, 12, 4682.	1.6	1
1525	Distribution and Structure Analysis of Fibril-Forming Peptides Focusing on Concentration Dependency. ACS Omega, 2022, 7, 10012-10021.	1.6	0
1526	In Silico Three-Dimensional (3D) Modeling of the SecY Protein of â€~Candidatus Phytoplasma Solani' Strains Associated with Grapevine "Bois Noir―and Its Possible Relationship with Strain Virulence. International Journal of Plant Biology, 2022, 13, 15-30.	1.1	1
1527	High-avidity binding drives nucleation of amyloidogenic transthyretin monomer. JCI Insight, 2022, 7, .	2.3	2
1528	Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annual Review of Genomics and Human Genetics, 2022, 23, 475-498.	2.5	41
1529	Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption. International Journal of Molecular Sciences, 2022, 23, 391.	1.8	4
1532	Rapid Determination of Phase Diagrams for Biomolecular Liquid–Liquid Phase Separation with Microfluidics. Analytical Chemistry, 2022, 94, 687-694.	3.2	12
1534	Functional Gallic Acid-Based Dendrimers as Synthetic Nanotools to Remodel Amyloid-β-42 into Noncytotoxic Forms. ACS Applied Materials & Interfaces, 2021, 13, 59673-59682.	4.0	9
1535	Polyglutamine-Specific Gold Nanoparticle Complex Alleviates Mutant Huntingtin-Induced Toxicity. ACS Applied Materials & Interfaces, 2021, 13, 60894-60906.	4.0	3
1536	Photon Recycling Effect and Lossless Fluorescence Propagation in βâ€Sheet Peptide Fibers. Advanced Optical Materials, 2022, 10, 2102342.	3.6	2
1537	Charged Tubular Supramolecule Boosting Multivalent Interactions for the Drastic Suppression of Al ² Fibrillation. Nano Letters, 2021, 21, 10494-10500.	4.5	8
1538	Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules, 2022, 23, 196-209.	2.6	4
1539	Investigation of Structural Heterogeneity in Individual Amyloid Fibrils Using Polarization-Resolved Microscopy. Journal of Physical Chemistry B, 2021, 125, 13406-13414.	1.2	3
1540	Ion-Mediated Morphological Diversity in Protein Amyloid Systems. Journal of Physical Chemistry Letters, 2022, 13, 3586-3593.	2.1	9
1542	Proteome-wide landscape of solubility limits in a bacterial cell. Scientific Reports, 2022, 12, 6547.	1.6	2

#	Article	IF	CITATIONS
1553	ATP-Independent Chaperones. Annual Review of Biophysics, 2022, 51, 409-429.	4.5	16
1554	Copper chelating cyclic peptidomimetic inhibits Aβ fibrillogenesis. RSC Medicinal Chemistry, 2022, 13, 761-774.	1.7	3
1555	Imidazolium-based ionic liquids with increasing alkyl chain length of cations decrease the stability and fibrillation propensity of lysozyme. New Journal of Chemistry, 2022, 46, 11082-11094.	1.4	3
1556	Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils. Biomolecules, 2022, 12, 630.	1.8	3
1557	A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. Journal of Biological Inorganic Chemistry, 2022, 27, 393-403.	1.1	7
1558	The degree of unsaturation of fatty acids in phosphatidylserine alters the rate of insulin aggregation and the structure and toxicity of amyloid aggregates. FEBS Letters, 2022, 596, 1424-1433.	1.3	27
1559	Clearance of an amyloid-like translational repressor is governed by 14-3-3 proteins. Cell Reports, 2022, 39, 110753.	2.9	9
1560	Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Biophysical Journal, 2022, 121, 2084-2095.	0.2	7
1561	Lysozyme Amyloid Fibril Structural Variability Dependence on Initial Protein Folding State. International Journal of Molecular Sciences, 2022, 23, 5421.	1.8	10
1562	Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Frontiers in Chemistry, 2022, 10, .	1.8	6
1563	Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. Journal of Colloid and Interface Science, 2022, 622, 804-818.	5.0	17
1564	Molecular mechanisms of amyloid formation in living systems. Chemical Science, 2022, 13, 7080-7097.	3.7	21
1565	Conjugated polymers for biomedical applications. Chemical Communications, 2022, 58, 7232-7244.	2.2	35
1566	FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid–liquid phase separation and aggregation of proteins. Nucleic Acids Research, 2022, 50, W337-W344.	6.5	44
1567	Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids. Journal of Biological Chemistry, 2022, 298, 102088.	1.6	12
1569	Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. International Journal of Molecular Sciences, 2022, 23, 5761.	1.8	3
1572	Magnetic-Resonance-Imaging-Based Left Atrial Strain and Left Atrial Strain Rate as Diagnostic Parameters in Cardiac Amyloidosis. Journal of Clinical Medicine, 2022, 11, 3150.	1.0	6
1573	Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes. Biomaterials, 2022, 286, 121605.	5.7	15

#	Article	IF	CITATIONS
1574	Pathogénie et physiopathologie deÂla maladie d'Alzheimer. , 2022, , 17-28.		0
1575	Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chemical Society Reviews, 2022, 51, 5691-5730.	18.7	64
1576	Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chemical Science, 2022, 13, 8526-8535.	3.7	8
1577	Dual functional amphiphilic sugar-coated AIE-active fluorescent organic nanoparticles for the monitoring and inhibition of insulin amyloid fibrillation based on carbohydrate–protein interactions. Journal of Materials Chemistry B, 2022, 10, 5602-5611.	2.9	3
1579	Therapeutic potential for amyloid surface inhibitor: only amyloidâ€Î² oligomers formed by secondary nucleation disrupt lipid membrane integrity. FEBS Journal, 2022, 289, 6767-6781.	2.2	7
1580	Physics-Based Computational Approaches to Compute the Viscoelasticity of Semiflexible Filamentous Biomaterials. Frontiers in Physics, 0, 10, .	1.0	2
1581	Lipids reverse supramolecular chirality and reduce toxicity of amyloid fibrils. FEBS Journal, 2022, 289, 7537-7544.	2.2	10
1582	Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Communications Biology, 2022, 5, .	2.0	12
1583	Interactions between S100A9 and Alpha-Synuclein: Insight from NMR Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 6781.	1.8	2
1584	Dynamical Behavior of Disordered Regions in Disease-Related Proteins Revealed by Quasielastic Neutron Scattering. Medicina (Lithuania), 2022, 58, 795.	0.8	1
1585	Amyloidâ€Î² Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents. ChemMedChem, 2022, 17, .	1.6	6
1586	A biosensor of protein foldedness identifies increased "holdase―activity of chaperones in the nucleus following increased cytosolic protein aggregation. Journal of Biological Chemistry, 2022, 298, 102158.	1.6	2
1587	A transthyretin monomer intermediate undergoes local unfolding and transient interaction with oligomers in a kinetically concerted aggregation pathway. Journal of Biological Chemistry, 2022, 298, 102162.	1.6	5
1588	Multi- <i>e</i> GO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1589	An Outlook on the Complexity of Protein Morphogenesis in Health and Disease. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
1590	Silver nanoparticle-deposited whey protein isolate amyloid fibrils as catalysts for the reduction of methylene blue. International Journal of Biological Macromolecules, 2022, 213, 1098-1114.	3.6	11
1591	Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Frontiers in Neuroscience, 0, 16, .	1.4	8
1592	Risk factors for in-hospital death in elderly patients over 65 years of age with dementia: A retrospective cross-sectional study. Medicine (United States), 2022, 101, e29737.	0.4	1

#	Article	IF	CITATIONS
1594	Experimental and theoretical studies on the antiâ€amyloidogenic and destabilizing effects of pyrogallol against human insulin protein. Journal of Food Biochemistry, 2022, 46, .	1.2	2
1595	Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS Nano, 2022, 16, 11733-11741.	7.3	3
1596	ÃΫ-Sheet Induced Helical Self-Assembly Structure Formation by Dityrosine Dipeptide: Crystallographic Evidence and Other Biophysical Studies. Journal of Physical Chemistry Β, Ο, , .	1.2	3
1597	Structure-specific amyloid precipitation in biofluids. Nature Chemistry, 2022, 14, 1045-1053.	6.6	11
1598	Eraldo Antonini Lectures, 1983–2019. Biology Direct, 2022, 17, .	1.9	0
1600	Are casein micelles extracellular condensates formed by liquidâ€liquid phase separation?. FEBS Letters, 2022, 596, 2072-2085.	1.3	5
1601	Amyloid aggregates exert cell toxicity causing irreversible damages in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166485.	1.8	23
1602	Protein-based luminescent aerogels with elastic properties. Green Chemistry Letters and Reviews, 2022, 15, 508-518.	2.1	2
1603	Repression Effects of Hydrolysates from Hen-Egg Proteins on Amyloid Fibril Formation. Journal of Poultry Science, 2022, 59, 384-391.	0.7	0
1604	HSF1, Aging, and Neurodegeneration. Advances in Experimental Medicine and Biology, 2022, , .	0.8	2
1605	Controlling Amyloid Fibril Properties Via Ionic Liquids: The Representative Case of Ethylammonium Nitrate and Tetramethylguanidinium Acetate on the Amyloidogenesis of Lysozyme. Journal of Physical Chemistry Letters, 2022, 13, 7058-7064.	2.1	8
1606	Phosphatidylcholine and Phosphatidylserine Uniquely Modify the Secondary Structure of α-Synuclein Oligomers Formed in Their Presence at the Early Stages of Protein Aggregation. ACS Chemical Neuroscience, 2022, 13, 2380-2385.	1.7	22
1607	Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses, 2022, 14, 1635.	1.5	4
1608	Adsorption free energy predicts amyloid protein nucleation rates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1609	DES-Amyloidoses "Amyloidoses through the looking-glass― A knowledgebase developed for exploring and linking information related to human amyloid-related diseases. PLoS ONE, 2022, 17, e0271737.	1.1	0
1610	Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Molecules, 2022, 27, 4787.	1.7	6
1611	Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up?. Essays in Biochemistry, 2022, 66, 959-975.	2.1	2
1612	Uncovering the universality of self-replication in protein aggregation and its link to disease. Science Advances, 2022, 8, .	4.7	16

ARTICLE IF CITATIONS Catalytic amyloids. Trends in Chemistry, 2022, 4, 907-917. 17 1613 4.4 What makes functional amyloids work?. Critical Reviews in Biochemistry and Molecular Biology, 2022, 1614 2.3 57, 399-411. Catechol-containing compounds are a broad class of protein aggregation inhibitors: Redox state is a 1615 3.16 key determinant of the inhibitory activities. Pharmacological Research, 2022, 184, 106409. Alzheimer's Disease: Molecular Biology, Pathophysiology and Biomarkers. , 2022, , 88-98. 1616 Cryptic binding properties of a transient folding intermediate in a <scp>PDZ</scp> tandem repeat. 1617 3.1 3 Protein Science, 2022, 31, . Microscopic Insights into the Mechanism of White Light Generation by Disruptive Interaction between Human Serum Albumin Amyloid Fibrils and Surfactant-AlEgen Nanorods. Journal of Physical Chemistry 2.1 Letters, 2022, 13, 7355-7362. Transmissible human proteopathies: an expanding field. Diagnostic Histopathology, 2022, , . 1619 0.2 0 Length and Unsaturation of Fatty Acids of Phosphatidic Acid Determines the Aggregation Rate of Insulin and Modifies the Structure and Toxicity of Insulin Aggregates. ACS Chemical Neuroscience, 1620 1.7 2022, 13, 2483-2489. Free-energy landscape of two-state protein acylphosphatase with large contact order revealed by 1621 0.8 3 force-dependent folding and unfolding dynamics. Physical Review E, 2022, 106, . TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biology, 2022, 12, . 1.5 \hat{I} ±-Synuclein Aggregation Intermediates form Fibril Polymorphs with Distinct Prion-like Properties. 1623 2.0 8 Journal of Molecular Biology, 2022, 434, 167761. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to 1624 3.6 neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720. d-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. 1626 1.7 7 Chemico-Biological Interactions, 2022, 367, 110147. Fluorescence Lifetime Imaging of Protein Aggregation to Understand the Etiology of Neurodegenerative Diseases., 2022,,. Aptamer conjugated polydopamine-coated gold nanoparticles as a dual-action nanoplatform targeting 1628 2.9 4 β-amyloid peptideÂfor Alzheimer's disease therapy. Journal of Materials Chemistry B, 2022, 10, 8525-8534. Effects of N-Terminal Acetylation on the Aggregation of Disease-Related a Lpha-Synuclein Variants. 1629 0.4 SSRN Electronic Journal, 0, , . Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed 1630 2.6 7 Flanking Sequences. Biomacromolecules, 2022, 23, 4179-4191. Identifying the Template for Oligomer to Fibril Conversion for Amyloidâ $\in \hat{H}^2$ (1â \in 42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics. ChemPhysChem, 0, , .

#	Article	IF	CITATIONS
1632	Rapid restructurization of conformationally-distinct alpha-synuclein amyloid fibrils at an elevated temperature. PeerJ, 0, 10, e14137.	0.9	2
1633	Effects of N-terminal Acetylation on the Aggregation of Disease-related α-synuclein Variants. Journal of Molecular Biology, 2023, 435, 167825.	2.0	12
1634	Charge of Phospholipids Determines the Rate of Lysozyme Aggregation but Not the Structure and Toxicity of Amyloid Aggregates. Journal of Physical Chemistry Letters, 2022, 13, 8833-8839.	2.1	13
1635	Protein condensation diseases: therapeutic opportunities. Nature Communications, 2022, 13, .	5.8	38
1637	Misfolding at the synapse: A role in amyotrophic lateral sclerosis pathogenesis?. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	0
1638	Direct observation of the molecular mechanism underlying protein polymerization. Science Advances, 2022, 8, .	4.7	7
1639	Exploring Epigallocatechin-3-Gallate Autoxidation Products: Specific Incubation Times Required for Emergence of Anti-Amyloid Properties. Antioxidants, 2022, 11, 1887.	2.2	1
1640	Amyloidâ€inspired Peptide Selfâ€assembly/Disassembly as Intervened by Gold Nanoparticles and Polydopamine Coating to Dictate Spatiotemporal Organization. ChemNanoMat, 2022, 8, .	1.5	7
1641	Nanoparticles and Nanocolloidal Carbon: Will They Be the Next Antidiabetic Class That Targets Fibrillation and Aggregation of Human Islet Amyloid Polypeptide in Type 2 Diabetes?. Accounts of Chemical Research, 2022, 55, 2869-2881.	7.6	1
1643	Lipids uniquely alter secondary structure and toxicity of lysozyme aggregates. FASEB Journal, 2022, 36, .	0.2	20
1644	Spectral Phasor Analysis of Nile Red Identifies Membrane Microenvironment Changes in the Presence of Amyloid Peptides. Cell Biochemistry and Biophysics, 0, , .	0.9	0
1646	ldentifying Biological and Biophysical Features of Different Maturation States of α-Synuclein Amyloid Fibrils. Methods in Molecular Biology, 2023, , 321-344.	0.4	1
1647	Metal–Organic Framework-Derived Carbon as a Photoacoustic Modulator of Alzheimer's β-Amyloid Aggregate Structure. ACS Nano, 2022, 16, 18515-18525.	7.3	5
1649	Efficacy and Safety of a Brain-Penetrant Biologic TNF-α Inhibitor in Aged APP/PS1 Mice. Pharmaceutics, 2022, 14, 2200.	2.0	7
1650	The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells, 2022, 11, 3421.	1.8	3
1651	Characterization of Plasma SDS-Protein Aggregation Profile of Patients with Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 0, , .	1.1	1
1652	Metal-Ion-Induced Evolution of Phenylalanine Self-Assembly: Structural Polymorphism of Novel Metastable Intermediates. Journal of Physical Chemistry Letters, 2022, 13, 10409-10417.	2.1	3
1653	Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Research Reviews, 2022, 82, 101769.	5.0	1

#	Article	IF	CITATIONS
1654	Tuning the surface charge of phospholipid bilayers inhibits insulin fibrilization. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112904.	2.5	0
1655	Lipids uniquely alter rates of insulin aggregation and lower toxicity of amyloid aggregates. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2023, 1868, 159247.	1.2	17
1656	Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer's Disease. Jacs Au, 2022, 2, 2571-2584.	3.6	20
1657	Non-specificity as the sticky problem in therapeutic antibody development. Nature Reviews Chemistry, 2022, 6, 844-861.	13.8	23
1658	Sequence-based Prediction of the Cellular Toxicity Associated with Amyloid Aggregation within Protein Condensates. Biochemistry, 2022, 61, 2461-2469.	1.2	6
1660	Forced amyloidogenic cooperativity of structurally incompatible peptide segments: Fibrillization behavior of highly aggregation-prone A-chain fragment of insulin coupled to all-L, and alternating L/D octaglutamates. International Journal of Biological Macromolecules, 2022, 223, 362-369.	3.6	2
1661	Drops in the cell ocean: new roles for non-coding RNAs in liquid–liquid phase separation. Genome Instability & Disease, 0, , .	0.5	1
1662	An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation. Nature Communications, 2022, 13, .	5.8	9
1663	Deep mutational scanning to probe specificity determinants in proteins. , 2023, , 31-71.		2
1664	The roles of prion-like domains in amyloid formation, phase separation, and solubility. , 2023, , 397-426.		0
1665	Inhibition of p53 protein aggregation as a cancer treatment strategy. Current Opinion in Chemical Biology, 2023, 72, 102230.	2.8	12
1666	Self-organized computation in the far-from-equilibrium cell. Biophysics Reviews, 2022, 3, .	1.0	5
1667	Systemic Disorders with Gastrointestinal Manifestations. , 2021, , 379-408.		0
1668	Pediococcus pentosaceus LAB6- and Lactiplantibacillus plantarum LAB12-Derived Cell Free Supernatant Inhibited RhoA Activation and Reduced Amyloid-Î' In Vitro. Probiotics and Antimicrobial Proteins, 2024, 16, 62-75.	1.9	0
1669	Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. Biology, 2022, 11, 1704.	1.3	3
1670	A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics, 2022, 12, 2975.	1.3	5
1671	Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics, 2022, 14, 2533.	2.0	12
1672	The role of \hat{I}_{\pm} -sheet structure in amyloidogenesis: characterization and implications. Open Biology, 2022, 12, .	1.5	3

#	Article	IF	CITATIONS
1673	Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines, 2022, 10, 3000.	1.4	2
1674	Characterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques. Biophysica, 2022, 2, 506-524.	0.6	0
1675	Studying the trafficking of labeled trodusquemine and its application as nerve marker for lightâ€sheet and expansion microscopy. FASEB Journal, 2022, 36, .	0.2	3
1676	Inhibition of Amyloid Nucleation by Steric Hindrance. Journal of Physical Chemistry B, 2022, 126, 10045-10054.	1.2	1
1677	Sequence patterns and signatures: Computational and experimental discovery of amyloid-forming peptides. , 2022, 1, .		4
1678	Effect of Junction Aggregation on the Dynamics of Supramolecular Polymers and Networks. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	4
1679	Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1680	Multifunctional Architectures of Cyclic Dipeptide Copolymers and Composites, and Modulation of Multifaceted Amyloid-Î ² Toxicity. ACS Applied Materials & Interfaces, 2022, 14, 56535-56547.	4.0	3
1681	Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacological Reviews, 2023, 75, 263-308.	7.1	4
1682	Predicting Supramolecular Structure from the Statistics of Individual Molecular Events. Mobile Networks and Applications, 0, , .	2.2	0
1683	Enhanced potency of aggregation inhibitors mediated by liquid condensates. Physical Review Research, 2022, 4, .	1.3	0
1684	Protein interactions: anything new?. Essays in Biochemistry, 2022, 66, 821-830.	2.1	8
1685	Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives. Angewandte Chemie, 2023, 135, .	1.6	3
1686	Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Current Pharmaceutical Design, 2022, 28, 3546-3562.	0.9	3
1687	Modulating amyloids' formation path with sound energy. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
1688	Nonspecific Amyloid Aggregation of Chicken Smooth-Muscle Titin: In Vitro Investigations. International Journal of Molecular Sciences, 2023, 24, 1056.	1.8	2
1689	Tau and tubulin protein aggregation characterization by solid-state nanopore method and atomic force microscopy. Journal of Applied Physics, 2023, 133, .	1.1	4
1690	Dual Role of a Fluorescent Small Molecule as a Sensor and Inhibitor of Protein Fibrillation. Chemistry - an Asian Journal, 2023, 18, .	1.7	2

~			~		
CT	ΓΑΤ	ION	RE	- PO	RT

#	Article	IF	CITATIONS
1691	Maternal High Fat Diet Anticipates the AD-like Phenotype in 3xTg-AD Mice by Epigenetic Dysregulation of Aβ Metabolism. Cells, 2023, 12, 220.	1.8	2
1693	Examining the effect of the crown ether, 18-crown-6, on lysozyme fibrillation. New Journal of Chemistry, 2023, 47, 2924-2931.	1.4	1
1694	Molecular insight into the modulation of ovalbumin fibrillation by allura red dye at acidic pH. International Journal of Biological Macromolecules, 2023, 230, 123254.	3.6	1
1695	A Kinetic Map of the Influence of Biomimetic Lipid Model Membranes on Aβ ₄₂ Aggregation. ACS Chemical Neuroscience, 2023, 14, 323-329.	1.7	8
1696	Food protein-derived amyloids do not accelerate amyloid \hat{l}^2 aggregation. Scientific Reports, 2023, 13, .	1.6	6
1697	Racemic Amino Acid Assembly Enables Supramolecular Î ² -Sheet Transition with Property Modulations. ACS Nano, 2023, 17, 2737-2744.	7.3	6
1698	Heterogeneous and Surface-Catalyzed Amyloid Aggregation Monitored by Spatially Resolved Fluorescence and Single Molecule Microscopy. Journal of Physical Chemistry Letters, 2023, 14, 912-919.	2.1	3
1699	Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets. Biomolecules, 2023, 13, 230.	1.8	1
1700	Selective recognition of the amyloid marker single thioflavin T using DNA origami-based gold nanobipyramid nanoantennas. Nanoscale, 2023, 15, 6170-6178.	2.8	3
1701	Molecular Mechanisms of Amyloid-l 2 Self-Assembly Seeded by In Vivo-Derived Fibrils and Inhibitory Effects of the BRICHOS Chaperone. ACS Chemical Neuroscience, 0, , .	1.7	2
1702	Structural polymorphism and cytotoxicity of brainâ€derived βâ€amyloid extracts. Protein Science, 2023, 32,	3.1	4
1703	Protein-to-lipid ratio uniquely changes the rate of lysozyme aggregation but does not significantly alter toxicity of mature protein aggregates. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2023, 1868, 159305.	1.2	3
1704	Amphipathic peptide–phospholipid nanofibers: Kinetics of fiber formation and molecular transfer between assemblies. Biophysical Chemistry, 2023, 296, 106985.	1.5	1
1705	Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 296, 122650.	2.0	1
1706	Anti-aggregation triggering molecular transformation and boosting stable sodium storage. Cell Reports Physical Science, 2023, 4, 101290.	2.8	3
1707	Probing the interactions between amyloidogenic proteins and bio-membranes. Biophysical Chemistry, 2023, 296, 106984.	1.5	4
1708	Single-molecule High-speed AFM Observation of Fiber Elongation of Prion Protein Sup35. Seibutsu Butsuri, 2022, 62, 327-330.	0.0	0
1709	Learned Reconstruction of Protein Folding Trajectories from Noisy Single-Molecule Time Series. Journal of Chemical Theory and Computation, 0, , .	2.3	1

#	Article	IF	CITATIONS
1710	Combinations of Vitamin A and Vitamin E Metabolites Confer Resilience against Amyloid-Î ² Aggregation. ACS Chemical Neuroscience, 2023, 14, 657-666.	1.7	0
1712	Molecular dynamics simulations reveal the importance of amyloid-beta oligomer β-sheet edge conformations in membrane permeabilization. Journal of Biological Chemistry, 2023, 299, 103034.	1.6	6
1713	Advances in Raman spectroscopy and imaging for biomedical research. Advances in Optics and Photonics, 2023, 15, 318.	12.1	4
1714	Network of hotspot interactions cluster tau amyloid folds. Nature Communications, 2023, 14, .	5.8	10
1715	Spontaneous nucleation and fast aggregate-dependent proliferation of α-synuclein aggregates within liquid condensates at neutral pH. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	25
1716	Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes. Nature Communications, 2023, 14, .	5.8	9
1717	Peptide Selfâ€Assembly into Amyloid Fibrils at Hard and Soft Interfaces—From Corona Formation to Membrane Activity. Macromolecular Bioscience, 2023, 23, .	2.1	4
1718	Extracellular protein homeostasis in neurodegenerative diseases. Nature Reviews Neurology, 0, , .	4.9	3
1719	Single-Molecule Sizing through Nanocavity Confinement. Nano Letters, 2023, 23, 1629-1636.	4.5	1
1720	Nanoscale imaging of individual amyloid aggregates extracted from brains of Alzheimer and Parkinson patients reveals presence of lipids in αâ€synuclein but not in amyloid β _{1–42} fibrils. Protein Science, 2023, 32, .	3.1	4
1721	Fundamentals and methods of atomic force microscopy for biophysics. , 2023, , 1-42.		0
1723	Application of Amyloid-Based Hybrid Membranes in Drug Delivery. Polymers, 2023, 15, 1444.	2.0	4
1724	EMBER multidimensional spectral microscopy enables quantitative determination of disease- and cell-specific amyloid strains. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
1725	Exploration and Exploitation Approaches Based on Generative Machine Learning to Identify Potent Small Molecule Inhibitors of α-Synuclein Secondary Nucleation. Journal of Chemical Theory and Computation, 2023, 19, 4701-4710.	2.3	10
1727	Elucidation of the Effect of Phospholipid Charge on the Rate of Insulin Aggregation and Structure and Toxicity of Amyloid Fibrils. ACS Omega, 2023, 8, 12379-12386.	1.6	4
1728	S100B chaperone multimers suppress the formation of oligomers during Aβ42 aggregation. Frontiers in Neuroscience, 0, 17, .	1.4	7
1729	Potential role of TREM2 in high cholesterol‑induced cell injury and metabolic dysfunction in SH‑SY5Y cells. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	1
1730	Polymerization in living organisms. Chemical Society Reviews, 2023, 52, 2911-2945.	18.7	11

#	Article	IF	CITATIONS
1731	Chiral Skeletons of Mesoporous Silica Nanospheres to Mitigate Alzheimer's β-Amyloid Aggregation. Journal of the American Chemical Society, 2023, 145, 7810-7819.	6.6	15
1732	å‰å£°æŠ€æœ⁻在脑组织æ^åfä¸çš"å²"ç"ï¼^特é,€ï¼‰. Hongwai Yu Jiguang Gongcheng/Infrared and La	s @.E ngine	e ti ng, 2022
1733	Electrostatics-Induced Nucleated Conformational Transition of Protein Aggregation. Physical Review Letters, 2023, 130, .	2.9	6
1734	Cascade autohydrolysis of Alzheimer's Aβ peptides. Chemical Science, 2023, 14, 4986-4996.	3.7	1
1755	Amyloid formation as a protein phase transition. Nature Reviews Physics, 2023, 5, 379-397.	11.9	22
1765	How protein fold: Insights from nuclear magnetic resonance spectroscopy. , 2024, , 619-635.		0
1787	$\hat{l}^2\text{-}Sheet$ and $\hat{l}^2\text{-}Hairpin$ Peptide Nanomaterials. , 2023, , 53-86.		0
1799	Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chemical Society Reviews, 2023, 52, 7262-7293.	18.7	4
1825	EPR Studies of Chaperone Interactions and Dynamics. , 2023, , 242-277.		0
1835	Introduction: Molecular Chaperones and Protein Quality Control. , 2023, , 1-37.		0
1849	Pathology of Protein Misfolding Diseases in Animals. Veterinary Medicine and Science, 0, , .	0.0	0
1865	Exploring the free energy landscape of proteins using magnetic tweezers. Methods in Enzymology, 2024, , 237-261.	0.4	0
1872	Metal-driven folding and assembly of a minimal β-sheet into a 3D-porous honeycomb framework. Chemical Communications, 2024, 60, 2621-2624.	2.2	0