The role of senescent cells in ageing

Nature 509, 439-446 DOI: 10.1038/nature13193

Citation Report

#	Article	IF	CITATIONS
1	Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget, 2014, 5, 12715-12727.	0.8	32
2	Long noncoding RNAs (IncRNAs) and the molecular hallmarks of aging. Aging, 2014, 6, 992-1009.	1.4	189
3	Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle, 2014, 13, 3183-3190.	1.3	54
4	Reactive oxygen species: The good, the bad, and the enigma. Molecular and Cellular Oncology, 2014, 1, e964033.	0.3	16
5	An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 2014, 31, 722-733.	3.1	1,376
6	Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death and Disease, 2014, 5, e1528-e1528.	2.7	186
7	Are there roles for brain cell senescence in aging and neurodegenerative disorders?. Biogerontology, 2014, 15, 643-660.	2.0	101
8	Geroconversion: irreversible step to cellular senescence. Cell Cycle, 2014, 13, 3628-3635.	1.3	119
9	Cyclic Decidualization of the Human Endometrium in Reproductive Health and Failure. Endocrine Reviews, 2014, 35, 851-905.	8.9	759
10	Translational strategies and challenges in regenerative medicine. Nature Medicine, 2014, 20, 814-821.	15.2	166
11	Senescence and apoptosis: dueling or complementary cell fates?. EMBO Reports, 2014, 15, 1139-1153.	2.0	643
12	Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 2014, 15, 482-496.	16.1	1,979
13	SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nature Communications, 2014, 5, 5011.	5.8	319
14	HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cellular and Molecular Immunology, 2014, 11, 460-466.	4.8	79
15	PRC1 complex diversity: where is it taking us?. Trends in Cell Biology, 2014, 24, 632-641.	3.6	148
16	Oxidative Clial Cell Damage Associated with White Matter Lesions in the Aging Human Brain. Brain Pathology, 2015, 25, 565-574.	2.1	57
17	Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells. Scientific Reports, 2015, 5, 17342.	1.6	22
18	Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. Journal of Radiation Research, 2015, 56, i2-i18.	0.8	31

		Citation Ri	EPORT	
#	Article		IF	Citations
19	Molecular aspects of renal senescence. Current Opinion in Organ Transplantation, 2015	, 20, 412-416.	0.8	19
20	Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tu Oncotarget, 2015, 6, 39482-39492.	mor activity.	0.8	32
21	Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Current Aging Sc 131-146.	ence, 2015, 8,	0.4	76
22	Oxidative Stress in Aging Human Skin. Biomolecules, 2015, 5, 545-589.		1.8	602
23	Changes in Regenerative Capacity through Lifespan. International Journal of Molecular S 16, 25392-25432.	ciences, 2015,	1.8	146
24	Mathematical Modelling of Metabolic Regulation in Aging. Metabolites, 2015, 5, 232-25	1.	1.3	22
25	Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study i Syndrome Cells. Pharmaceuticals, 2015, 8, 257-276.	n Werner	1.7	9
26	Classifying aging as a disease in the context of ICD-11. Frontiers in Genetics, 2015, 6, 32	26.	1.1	53
27	Insights into Muscle Degeneration from Heritable Inclusion Body Myopathies. Frontiers i Neuroscience, 2015, 7, 13.	n Aging	1.7	10
28	Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel ⁻ Target. Frontiers in Oncology, 2015, 5, 158.	Therapeutic	1.3	41
29	Aging as an Optimization Between Cellular Maintenance Requirements and Evolutionary Current Aging Science, 2015, 8, 110-119.	[,] Constraints.	0.4	7
30	Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE, 2015, 10, e0125322.	Head and Neck	1.1	30
31	Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Senescence. PLoS ONE, 2015, 10, e0140189.	Cellular	1.1	25
32	Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast S ONE, 2015, 10, e0140747.	trains. PLoS	1.1	7
33	SIRT1 Suppresses the Senescence-Associated Secretory Phenotype through Epigenetic (PLoS ONE, 2015, 10, e0116480.	Sene Regulation.	1.1	116
34	Biology and mechanoâ€response of tendon cells: Progress overview and perspectives. Jo Orthopaedic Research, 2015, 33, 785-792.	urnal of	1.2	21
35	Mitochondria: Are they causal players in cellular senescence?. Biochimica Et Biophysica A Bioenergetics, 2015, 1847, 1373-1379.	\cta -	0.5	125
36	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of F and Critical Care Medicine, 2015, 191, 261-269.	lespiratory	2.5	149

#	Article	IF	CITATIONS
37	Regulation of the p19 Arf /p53 pathway by histone acetylation underlies neural stem cell behavior in senescenceâ€prone SAMP8 mice. Aging Cell, 2015, 14, 453-462.	3.0	22
38	The role of the microbiota in ageing: current state and perspectives. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 131-138.	6.6	14
39	A simple stochastic model for the feedback circuit between p16INK4a and p53 mediated by p38MAPK: implications for senescence and apoptosis. Molecular BioSystems, 2015, 11, 2955-2963.	2.9	7
40	The cell biology of aging. Molecular Biology of the Cell, 2015, 26, 4524-4531.	0.9	139
42	Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21, 1424-1435.	15.2	1,547
43	A New Pathway for Senescence Regulation. Genomics, Proteomics and Bioinformatics, 2015, 13, 333-335.	3.0	14
44	Role of Cellular Senescence and NOX4-Mediated Oxidative Stress in Systemic Sclerosis Pathogenesis. Current Rheumatology Reports, 2015, 17, 473.	2.1	37
45	Stem Cells Versus Senescence. Journal of the American College of Cardiology, 2015, 65, 148-150.	1.2	15
46	The Circadian Clock in Skin. Journal of Biological Rhythms, 2015, 30, 163-182.	1.4	135
47	Stem Cell Senescence as the Memory of Past Injuries. Current Pathobiology Reports, 2015, 3, 17-26.	1.6	3
48	Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptideââ,¬â€œMHC Interactions. Frontiers in Oncology, 2015, 4, 378.	1.3	4
49	Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. Journal of Proteomics, 2015, 128, 18-29.	1.2	15
50	Forging a signature of in vivo senescence. Nature Reviews Cancer, 2015, 15, 397-408.	12.8	775
51	Rescue of the Stargardt phenotype in <i>Abca4</i> knockout mice through inhibition of vitamin A dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8415-8420.	3.3	103
52	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015, 64, 2289-2298.	0.3	294
53	Unfolding the story of chromatin organization in senescent cells. Nucleus, 2015, 6, 254-260.	0.6	28
54	Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region. BMC Cancer, 2015, 15, 68.	1.1	38
55	The mechanism of ageing: primary role of transposable elements in genome disintegration. Cellular and Molecular Life Sciences, 2015, 72, 1839-1847.	2.4	59

#	Article	IF	CITATIONS
56	The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model. BMC Complementary and Alternative Medicine, 2015, 15, 119.	3.7	44
57	Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline. Toxicology Letters, 2015, 235, 37-44.	0.4	18
58	Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin. Journal of Investigative Dermatology, 2015, 135, 1722-1726.	0.3	102
59	The Role of Stem Cell Genomic Instability in Aging. Current Stem Cell Reports, 2015, 1, 151-161.	0.7	0
60	MicroRNAs and IncRNAs in senescence: A reâ€view. IUBMB Life, 2015, 67, 255-267.	1.5	31
61	Morphological and ultrastructural examination of senescence in Morchella elata. Micron, 2015, 78, 79-84.	1.1	15
62	Gas6 Delays Senescence in Vascular Smooth Muscle Cells through the PI3K/ Akt/FoxO Signaling Pathway. Cellular Physiology and Biochemistry, 2015, 35, 1151-1166.	1.1	22
63	Serum levels of lipid metabolites in ageâ€related macular degeneration. FASEB Journal, 2015, 29, 4579-4588.	0.2	19
64	Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nature Cell Biology, 2015, 17, 1193-1204.	4.6	170
65	Type 1 interferons contribute to the clearance of senescent cell. Cancer Biology and Therapy, 2015, 16, 1214-1219.	1.5	20
66	The DNA Damage Response—Self-awareness for DNA. JAMA - Journal of the American Medical Association, 2015, 314, 1111.	3.8	12
67	Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential. , 2015, 153, 125-134.		45
68	Novel ageing-biomarker discovery using data-intensive technologies. Mechanisms of Ageing and Development, 2015, 151, 114-121.	2.2	5
69	Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 2015, 79, 197-205.	1.3	65
70	Exercise Attenuates the Major Hallmarks of Aging. Rejuvenation Research, 2015, 18, 57-89.	0.9	275
71	Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases. , 0, , .		1
72	Aging-associated oxidized albumin promotes cellular senescence and endothelial damage. Clinical Interventions in Aging, 2016, 11, 225.	1.3	19
73	p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice. International Journal of Molecular Sciences, 2016, 17, 905.	1.8	17

ARTICLE

IF CITATIONS

74	Overview of Autophagy. , 2016, , 3-84.		0
75	Principles of alternative gerontology. Aging, 2016, 8, 589-602.	1.4	6
76	Extracellular Vesicles as New Players in Cellular Senescence. International Journal of Molecular Sciences, 2016, 17, 1408.	1.8	91
77	Enhanced Viral Replication by Cellular Replicative Senescence. Immune Network, 2016, 16, 286.	1.6	57
78	Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging, 2016, 8, 2915-2926.	1.4	188
80	Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface. Stem Cells International, 2016, 2016, 1-16.	1.2	6
81	ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-18.	1.9	661
82	The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	49
83	Alzheimer's Disease: From Animal Models to the Human Syndrome. , 0, , .		1
84	Vitamin C, Antioxidant Status, and Cardiovascular Aging. , 2016, , 609-619.		7
85	Role of IncRNAs in Cellular Aging. Frontiers in Endocrinology, 2016, 7, 151.	1.5	35
86	Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis. Biology, 2016, 5, 29.	1.3	18
87	Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2016, 17, 1801.	1.8	62
88	Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging, 2016, 8, 1316-1329.	1.4	199
89	Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 2016, 31, 1920-1929.	3.1	352
90	Disorganization of the splenic microanatomy in ageing mice. Immunology, 2016, 148, 92-101.	2.0	40
91	Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells. Trends in Molecular Medicine, 2016, 22, 701-712.	3.5	135
92	Molecular mechanisms of biological aging in intervertebral discs. Journal of Orthopaedic Research, 2016, 34, 1289-1306.	1.2	270

#	Article	IF	CITATIONS
93	A phase 1/2a study to test the safety and immunogenicity of a p16 ^{INK4a} peptide vaccine in patients with advanced human papillomavirusâ€associated cancers. Cancer, 2016, 122, 1425-1433.	2.0	33
94	Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice. Stem Cells and Development, 2016, 25, 948-958.	1.1	26
95	Ageing induced vascular smooth muscle cell senescence in atherosclerosis. Journal of Physiology, 2016, 594, 2115-2124.	1.3	115
96	Cellular Senescence and Lung Function during Aging. Yin and Yang. Annals of the American Thoracic Society, 2016, 13, S402-S406.	1.5	60
97	Chromosome organisation during ageing and senescence. Current Opinion in Cell Biology, 2016, 40, 161-167.	2.6	44
98	Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Experimental Gerontology, 2016, 82, 39-49.	1.2	186
99	mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1. Experimental Gerontology, 2016, 75, 48-52.	1.2	17
100	Small Noncoding RNAs in Senescence and Aging. Healthy Ageing and Longevity, 2016, , 287-312.	0.2	1
101	Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle, 2016, 15, 1674-1684.	1.3	202
102	Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow?. Mechanisms of Ageing and Development, 2016, 156, 17-24.	2.2	23
103	Demystifying the role of mitochondria in senescence. Molecular and Cellular Oncology, 2016, 3, e1162896.	0.3	4
104	Finding Shangri-La: Limiting the Impact of Senescence on Aging. Cell Stem Cell, 2016, 18, 305-306.	5.2	5
105	Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 919-929.	2.8	20
106	BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. Cancer Discovery, 2016, 6, 612-629.	7.7	272
107	Context-dependent effects of cellular senescence in cancer development. British Journal of Cancer, 2016, 114, 1180-1184.	2.9	131
108	Telomere Dysfunction and Senescence-associated Pathways in Bronchiectasis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 929-932.	2.5	34
109	Reflections on the role of senescence during development and aging. Archives of Biochemistry and Biophysics, 2016, 598, 40-49.	1.4	15
110	Cellular Senescence and Vascular Disease: Novel Routes to Better Understanding and Therapy. Canadian Journal of Cardiology, 2016, 32, 612-623.	0.8	71

		CITATION REPC	DRT	
#	Article	I	F	CITATIONS
111	Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity, 2016, , .	C).2	10
112	Targeting Senescent Cells to Improve Human Health. Healthy Ageing and Longevity, 2016, , 3	13-343. 0).2	0
113	Telomeres Shortening: A Mere Replicometer?. Healthy Ageing and Longevity, 2016, , 97-115.	().2	0
114	Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiatio Research, 2016, 186, 153-161.	n C).7	149
115	Aging of the Liver: What This Means for Patients with HIV. Current HIV/AIDS Reports, 2016, 13	3, 309-317. 1	.1	8
116	NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?. Clinical So 2016, 130, 317-335.	tience, 1	8	123
117	The Chromatin Landscape of Cellular Senescence. Trends in Genetics, 2016, 32, 751-761.	2	2.9	103
118	Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends in Immun 37, 866-876.	ology, 2016, 2	2.9	208
119	Senescent Osteocytes: Do They Cause Damage and Can They Be Targeted to Preserve the Skeleton?. Journal of Bone and Mineral Research, 2016, 31, 1917-1919.		3.1	11
120	hnRNP A1 antagonizes cellular senescence and senescenceâ€associated secretory phenotype regulation of SIRT1 mRNA stability. Aging Cell, 2016, 15, 1063-1073.	via a	3.0	37
121	Epigenetic Mechanisms of Longevity and Aging. Cell, 2016, 166, 822-839.	1	.3.5	649
122	Molecular and biological hallmarks of ageing. British Journal of Surgery, 2016, 103, e29-e46.	C).1	202
123	Cellular lifespan and senescence: a complex balance between multiple cellular pathways. Insid Cell, 2016, 1, 36-47.	e the c).4	1
124	To clear, or not to clear (senescent cells)? That is the question. Inside the Cell, 2016, 1, 87-95.	C).4	2
125	Metforminâ€mediated increase in DICER1 regulates microRNA expression and cellular senesce Cell, 2016, 15, 572-581.	ence. Aging 3	3.0	153
126	Changes of telomere status with aging: An update. Geriatrics and Gerontology International, 2 30-42.	2016, 16, 0).7	37
127	Rif1 and Exo1 regulate the genomic instability following telomere losses. Aging Cell, 2016, 15	, 553-562. a	3.0	13
128	The Senescence-Associated Secretory Phenotype: Critical Effector in Skin CancerÂand Aging. J Investigative Dermatology, 2016, 136, 2133-2139.	ournal of).3	109

#	Article	IF	CITATIONS
129	UVB-Induced Senescence of Human Dermal Fibroblasts Involves Impairment of Proteasome and Enhanced Autophagic Activity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw150.	1.7	39
130	To clear, or not to clear (senescent cells)? That is the question. BioEssays, 2016, 38, S56-64.	1.2	88
131	Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts. Tissue Engineering - Part A, 2016, 22, 949-961.	1.6	66
132	Conserved and novel functions of programmed cellular senescence during vertebrate development. Development (Cambridge), 2017, 144, 106-114.	1.2	85
133	Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology, 2016, 62, 513-518.	1.4	48
134	Nutritional Modulators of Cellular Senescence In Vitro. , 2016, , 293-312.		3
135	Small molecule compounds that induce cellular senescence. Aging Cell, 2016, 15, 999-1017.	3.0	143
136	miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 168-178.	1.4	80
137	Cellular lifespan and senescence: a complex balance between multiple cellular pathways. BioEssays, 2016, 38, S33-44.	1.2	25
138	Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. DMM Disease Models and Mechanisms, 2016, 9, 719-735.	1.2	117
139	How stem cells manage to escape senescence and ageing – while they can. BioEssays, 2016, 38, 857-862.	1.2	4
140	Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells. Stem Cells, 2016, 34, 2840-2851.	1.4	61
141	Multiple facets of p53 in senescence induction and maintenance. Cancer Science, 2016, 107, 1550-1555.	1.7	48
142	HMCB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. Journal of Cell Biology, 2016, 215, 325-334.	2.3	132
143	Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Scientific Reports, 2016, 6, 31194.	1.6	11
144	Dissecting cellular senescence and SASP in Drosophila. Inflammation and Regeneration, 2016, 36, 25.	1.5	19
145	Role of fatty acids and micronutrients in healthy ageing: a systematic review of randomised controlled trials set in the context of European dietary surveys of older adults. Journal of Human Nutrition and Dietetics, 2016, 29, 308-324.	1.3	32
146	Energetic interventions for healthspan and resiliency with aging. Experimental Gerontology, 2016, 86, 73-83.	1.2	39

#	Article		CITATIONS
147	The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends in Biochemical Sciences, 2016, 41, 700-711.	3.7	143
148	NF-κB signaling as a driver of ageing. International Review of Cell and Molecular Biology, 2016, 326, 133-174.	1.6	55
149	Comparable Senescence Induction in Three-dimensional Human Cartilage Model byÂExposure to Therapeutic Doses of X-rays orÂC-ions. International Journal of Radiation Oncology Biology Physics, 2016, 95, 139-146.	0.4	11
150	Prolactin, EGFR, vimentin and α-actin profiles in elderly rat prostate subjected to steroid hormonal imbalance. Tissue and Cell, 2016, 48, 189-196.	1.0	2
151	Animal and human models to understand ageing. Maturitas, 2016, 93, 18-27.	1.0	35
152	The role of oncogenic Ras in human skin tumorigenesis depends on clonogenic potential of the founding keratinocytes. Journal of Cell Science, 2016, 129, 1003-17.	1.2	13
153	Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes. Journal of Biological Chemistry, 2016, 291, 6641-6654.	1.6	105
154	Systemic DNA damage responses in aging and diseases. Seminars in Cancer Biology, 2016, 37-38, 26-35.	4.3	89
155	Molecular biology of gynecological cancer. Oncology Letters, 2016, 11, 16-22.	0.8	16
156	p53 regulates autophagic activity in senescent rat mesenchymal stromal cells. Experimental Gerontology, 2016, 75, 64-71.	1.2	30
157	Sirtuins, Cell Senescence, and Vascular Aging. Canadian Journal of Cardiology, 2016, 32, 634-641.	0.8	199
158	Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 2016, 22, 78-83.	15.2	1,273
159	Long noncoding RNAs in aging and age-related diseases. Ageing Research Reviews, 2016, 26, 1-21.	5.0	96
160	Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130.	0.6	15
161	Vascular Cell Senescence Contributes to Blood–Brain Barrier Breakdown. Stroke, 2016, 47, 1068-1077.	1.0	167
162	Stem cell therapy for heart failure: Ensuring regenerative proficiency. Trends in Cardiovascular Medicine, 2016, 26, 395-404.	2.3	62
163	Cellular senescence and tumor promotion: Is aging the key?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 155-167.	3.3	67
164	Out with the old. Nature, 2016, 530, 164-165.	13.7	20

	CHAHON	EPORT	
# 165	ARTICLE Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 2016, 530, 184-189.	IF 13.7	Citations
166	MLL1 is essential for the senescence-associated secretory phenotype. Genes and Development, 2016, 30, 321-336.		121
167	Regenerative decline of stem cells in sarcopenia. Molecular Aspects of Medicine, 2016, 50, 109-117.	2.7	99
168	p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine, 2016, 22, 412-420.	15.2	252
169	Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts. International Journal of Biochemistry and Cell Biology, 2016, 71, 72-80.	1.2	17
170	Autophagy maintains stemness by preventing senescence. Nature, 2016, 529, 37-42.	13.7	1,013
171	Cardiopoietic Stem Cells for Heart Failure Therapy. , 2016, , 235-241.		0
172	From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology, 2016, 17, 147-157.	2.0	128
173	PML is required for telomere stability in non-neoplastic human cells. Oncogene, 2016, 35, 1811-1821.		23
174	4 DNA Damage and Repair in Vascular Disease. Annual Review of Physiology, 2016, 78, 45-66.		59
175	Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis and Cartilage, 2016, 24, 398-408.	0.6	306
176	Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Research Reviews, 2017, 33, 76-88.	5.0	88
177	Genome instability: Linking ageing and brain degeneration. Mechanisms of Ageing and Development, 2017, 161, 4-18.	2.2	11
178	Regulation of lipids is central to replicative senescence. Molecular BioSystems, 2017, 13, 498-509.	2.9	69
179	Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 2017, 22, 786-795.	3.2	149
180	The role of cellular senescence in ageing of the placenta. Placenta, 2017, 52, 139-145.	0.7	116
181	Quantitative Analysis of Cellular Senescence in Culture and In Vivo. Current Protocols in Cytometry, 2017, 79, 9.51.1-9.51.25.	3.7	10
182	Age-Dependent Gender Disparities in Post Lung Transplant Survival Among Patients With Idiopathic Pulmonary Fibrosis. Annals of Thoracic Surgery, 2017, 103, 441-446.	0.7	23

#	Article		CITATIONS
183	The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney International, 2017, 91, 1126-1145.		85
184	Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell, 2017, 20, 161-175.	5.2	129
185	Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 2017, 8, 14532.	5.8	1,008
186	Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell, 2017, 16, 480-487.	3.0	80
187	MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin. Genomics, 2017, 109, 147-157.	1.3	25
188	The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Reports, 2017, 18, 2148-2161.	2.9	58
189	Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-Î ² Pathway. Cell Reports, 2017, 18, 2480-2493.	2.9	135
190	Detecting senescence: a new method for an old pigment. Aging Cell, 2017, 16, 432-434.	3.0	30
191	Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1668-E1677.	3.3	104
192	Impact of CCR5, Integrase and Protease Inhibitors on Human Endothelial Cell Function, Stress, Inflammation and Senescence. Antiviral Therapy, 2017, 22, 645-657.	0.6	20
193	<scp>DNA</scp> damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell, 2017, 16, 693-703.	3.0	146
194	DNA single-strand break-induced DNA damage response causes heart failure. Nature Communications, 2017, 8, 15104.	5.8	85
195	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.	15.2	994
196	Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Research Reviews, 2017, 37, 39-52.	5.0	16
197	Basic science and pathogenesis of ageing with HIV. Aids, 2017, 31, S105-S119.	1.0	82
198	Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nature Communications, 2017, 8, 14995.	5.8	131
199	HCSGD: An integrated database of human cellular senescence genes. Journal of Genetics and Genomics, 2017, 44, 227-234.	1.7	15
200	The effects of aging in the hippocampus and cognitive decline. Neuroscience and Biobehavioral Reviews, 2017, 79, 66-86.	2.9	385

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
201	senescence in a disc perfusion culture. Bioscience Reports, 2017, 37, .	iiposus ceii	1.1	32
202	UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discove 17019.	ery, 2017, 3,	3.1	27
203	Non-Pharmacological Management of Osteoporosis. , 2017, , .			1
204	Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?. Biogeron 18, 859-879.	tology, 2017,	2.0	122
205	Do Aging Factors Influence the Clinical Presentation and Management of Chronic Rhinosin Otolaryngology - Head and Neck Surgery, 2017, 156, 598-605.	usitis?.	1.1	19
206	Senescence in Health and Disease. Cell, 2017, 169, 1000-1011.		13.5	1,137
207	β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistar Metabolism, 2017, 25, 898-910.e5.	nce. Cell	7.2	149
208	Telomeres and Cell Senescence - Size Matters Not. EBioMedicine, 2017, 21, 14-20.		2.7	238
209	Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liv in mouse model. Scientific Reports, 2017, 7, 325.	er fibrosis	1.6	62
210	Senotherapy: growing old and staying young?. Pflugers Archiv European Journal of Physiolo 469, 1051-1059.	ogy, 2017,	1.3	30
211	Urinary DcR2 is a novel biomarker for tubulointerstitial injury in patients with diabetic neph American Journal of Physiology - Renal Physiology, 2017, 313, F273-F281.	ıropathy.	1.3	16
212	Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicol 382, 75-83.	ogy, 2017,	2.0	23
213	Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport a induces cellular senescence in human endothelial cells. Experimental Gerontology, 2017, 9	and 2, 7-12.	1.2	24
214	Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence supp CircPVT1. Nucleic Acids Research, 2017, 45, 4021-4035.	ressor	6.5	205
215	Depletion of mitochondria in mammalian cells through enforced mitophagy. Nature Protoc 12, 183-194.	:ols, 2017,	5.5	42
216	Using comparative biology to understand how aging affects mitochondrial metabolism. Mo and Cellular Endocrinology, 2017, 455, 54-61.	plecular	1.6	12
217	Cellular senescence in renal ageing and disease. Nature Reviews Nephrology, 2017, 13, 77	-89.	4.1	243
218	HIV-associated cellular senescence: A contributor to accelerated aging. Ageing Research Re 36, 117-124.	eviews, 2017,	5.0	57

#	Article	IF	CITATIONS
219	Relationship of inflammatory profile of elderly patients serum and senescence-associated secretory phenotype with human breast cancer cells proliferation: Role of IL6/IL8 ratio. Cytokine, 2017, 91, 13-29.	1.4	32
220	The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. Molecular and Cellular Biology, 2017, 37, .	1.1	9
221	Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Experimental Gerontology, 2017, 99, 35-45.	1.2	28
222	Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. International Review of Cell and Molecular Biology, 2017, 334, 27-98.	1.6	16
223	Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H890-H895.	1.5	160
224	Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Research Reviews, 2017, 40, 120-141.	5.0	42
225	The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Science Signaling, 2017, 10, .	1.6	65
226	Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. Journal of Experimental Medicine, 2017, 214, 2349-2368.	4.2	33
227	Unmasking Transcriptional Heterogeneity in Senescent Cells. Current Biology, 2017, 27, 2652-2660.e4.	1.8	559
228	Epigenetic regulation in cell senescence. Journal of Molecular Medicine, 2017, 95, 1257-1268.	1.7	37
229	Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 2017, 40, 95-119.	5.0	337
230	P16 INK4a Deletion Ameliorated Renal Tubulointerstitial Injury in a Stress-induced Premature Senescence Model of Bmi-1 Deficiency. Scientific Reports, 2017, 7, 7502.	1.6	36
231	Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 2017, 8, 422.	5.8	466
232	Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Research Reviews, 2017, 37, 94-116.	5.0	64
233	SMARCD1 regulates senescence-associated lipid accumulation in hepatocytes. Npj Aging and Mechanisms of Disease, 2017, 3, 11.	4.5	21
234	Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. American Journal of Obstetrics and Gynecology, 2017, 217, 592.e1-592.e17.	0.7	55
235	Molecular Mechanisms Determining Lifespan in Short- and Long-Lived Species. Trends in Endocrinology and Metabolism, 2017, 28, 722-734.	3.1	81
236	Identification of senescent cell surface targetable protein DPP4. Genes and Development, 2017, 31, 1529-1534.	2.7	168

#	Article	IF	CITATIONS
237	Techniques to Induce and Quantify Cellular Senescence. Journal of Visualized Experiments, 2017, , .	0.2	105
238	Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 2017, 16, 718-735.	21.5	788
239	The emerging role of alternative splicing in senescence and aging. Aging Cell, 2017, 16, 918-933.	3.0	141
240	Counting the time lived, the time left or illness? Age, proximity to death, morbidity and prescribing expenditures. Social Science and Medicine, 2017, 184, 1-14.	1.8	32
241	Molecular mechanisms of renal aging. Kidney International, 2017, 92, 569-579.	2.6	153
242	The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicology in Vitro, 2017, 45, 10-18.	1.1	43
243	Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biology, 2017, 19, 1061-1070.	4.6	741
244	Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress. Nucleic Acids Research, 2017, 45, 10564-10582.	6.5	67
245	Caveolin-1 regulates oxidative stress-induced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro. Molecular Medicine Reports, 2017, 16, 9521-9527.	1.1	17
246	Small molecule modulation of splicing factor expression is associated with rescue from cellular senescence. BMC Cell Biology, 2017, 18, 31.	3.0	71
247	Programmed cell senescence in skeleton during late puberty. Nature Communications, 2017, 8, 1312.	5.8	70
248	Genetics of aging and longevity. Russian Journal of Genetics: Applied Research, 2017, 7, 369-384.	0.4	7
249	Biophysical and biomolecular determination of cellular age in humans. Nature Biomedical Engineering, 2017, 1, .	11.6	74
250	YAP determines the cell fate of injured mouse hepatocytes in vivo. Nature Communications, 2017, 8, 16017.	5.8	40
251	Aging, Cellular Senescence, and Kidney Fibrosis. Current Pathobiology Reports, 2017, 5, 123-131.	1.6	5
252	Basic Biology of Oxidative Stress and theÂCardiovascular System. Journal of the American College of Cardiology, 2017, 70, 196-211.	1.2	171
253	From cellular senescence to regeneration: A quest for the holy grail for the next generation of surgeons?. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 953-954.	0.4	4
254	Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food and Function, 2017, 8, 2394-2418.	2.1	57

#	Article	IF	CITATIONS
255	Renal Aging: Causes and Consequences. Journal of the American Society of Nephrology: JASN, 2017, 28, 407-420.	3.0	306
256	Detecting Markers of Therapy-Induced Senescence in Cancer Cells. Methods in Molecular Biology, 2017, 1534, 41-52.	0.4	11
257	Aging, metabolism and stem cells: Spotlight on muscle stem cells. Molecular and Cellular Endocrinology, 2017, 445, 109-117.	1.6	33
258	Immune senescence: significance of the stromal microenvironment. Clinical and Experimental Immunology, 2016, 187, 6-15.	1.1	44
259	Intracellular signalling pathways: targets to reverse immunosenescence. Clinical and Experimental Immunology, 2016, 187, 35-43.	1.1	46
260	Sustained p16INK4a expression is required to prevent IR-induced tumorigenesis in mice. Oncogene, 2017, 36, 1309-1314.	2.6	7
261	Molecular pathology endpoints useful for aging studies. Ageing Research Reviews, 2017, 35, 241-249.	5.0	50
262	NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells, 2017, 35, 207-221.	1.4	30
263	The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans. Ageing Research Reviews, 2017, 35, 322-335.	5.0	45
264	Accumulation of DNA damage in the aged hematopoietic stem cell compartment. Seminars in Hematology, 2017, 54, 12-18.	1.8	41
265	TWEAK increases SIRT1 expression and promotes p53 deacetylation affecting human hepatic stellate cell senescence. Cell Biology International, 2017, 41, 147-154.	1.4	14
266	Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy, 2017, 13, 386-403.	4.3	49
267	Downregulation of Bâ€myb promotes senescence <i>via</i> the <scp>ROS</scp> â€mediated p53/p21 pathway, in vascular endothelial cells. Cell Proliferation, 2017, 50, .	2.4	15
268	Cellular Senescence, Immunosenescence and HIV. Interdisciplinary Topics in Gerontology and Geriatrics, 2017, 42, 28-46.	2.6	28
269	Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review. Calcified Tissue International, 2017, 100, 193-215.	1.5	54
270	Eroded telomeres are rearranged in quiescent fission yeast cells through duplications of subtelomeric sequences. Nature Communications, 2017, 8, 1684.	5.8	28
271	Ras signaling in aging and metabolic regulation. Nutrition and Healthy Aging, 2017, 4, 195-205.	0.5	44
272	Alzheimer's Disease Biomarkers Interactively Influence Physical Activity, Mobility, and Cognition Associations in a Non-Demented Aging Population. Journal of Alzheimer's Disease, 2017, 60, 69-86.	1.2	14

#	Article	IF	CITATIONS
273	N‑cadherin attenuates nucleus pulposus cell senescence under high‑magnitude compression. Molecular Medicine Reports, 2017, 17, 2879-2884.	1.1	8
274	Molecular inhibition mechanisms of cell migration and invasion by coix polysaccharides in A549 NSCLC cells via targeting S100A4. Molecular Medicine Reports, 2017, 15, 309-316.	1.1	15
275	MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Cell Death and Disease, 2017, 8, e3126-e3126.	2.7	17
276	Immunisation in the elderly. NursePrescribing, 2017, 15, 438-444.	0.1	0
277	Immune System Dysfunction in the Elderly. Anais Da Academia Brasileira De Ciencias, 2017, 89, 285-299.	0.3	157
278	Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. International Journal of Molecular Sciences, 2017, 18, 2517.	1.8	19
279	Telomeres, Aging and Exercise: Guilty by Association?. International Journal of Molecular Sciences, 2017, 18, 2573.	1.8	29
280	The Role of Kinase Modulators in Cellular Senescence for Use in Cancer Treatment. Molecules, 2017, 22, 1411.	1.7	23
281	Evolution of Cancer Defense Mechanisms Across Species. , 2017, , 99-110.		15
282	The Impacts of Cellular Senescence in Elderly Pneumonia and in Age-Related Lung Diseases That Increase the Risk of Respiratory Infections. International Journal of Molecular Sciences, 2017, 18, 503.	1.8	44
283	The Role of p16INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. International Journal of Molecular Sciences, 2017, 18, 1591.	1.8	51
284	Overview of Autophagy. , 2017, , 1-122.		1
285	Cardiac Cell Senescence and Redox Signaling. Frontiers in Cardiovascular Medicine, 2017, 4, 38.	1.1	16
286	Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Frontiers in Immunology, 2017, 8, 982.	2.2	190
287	Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model. Stem Cells International, 2017, 2017, 1-12.	1.2	33
288	Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role?. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	68
289	Overview of Autophagy. , 2017, , 3-90.		1
290	17beta-estradiol Attenuates TNF-α-Induced Premature Senescence of Nucleus Pulposus Cells through Regulating the ROS/NF-κB Pathway. International Journal of Biological Sciences, 2017, 13, 145-156.	2.6	64

#	Article	IF	CITATIONS
291	Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Research and Therapy, 2017, 8, 239.	2.4	85
292	Cooperation of Rel family members in regulating Aβ1-40-mediated pro-inflammatory cytokine secretion by retinal pigment epithelial cells. Cell Death and Disease, 2017, 8, e3115-e3115.	2.7	24
293	Differential and correlated expressions of p16/p21/p27/p38 in mammary gland tumors of aged dogs. Journal of Veterinary Science, 2017, 18, 479.	0.5	6
294	MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	85
295	Cancer and Aging - the Inflammatory Connection. , 2017, 8, 611.		107
296	Combined Effects ofin Uteroand Adolescent Tobacco Smoke Exposure on Lung Function in C57Bl/6J Mice. Environmental Health Perspectives, 2017, 125, 392-399.	2.8	23
298	Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight, 2017, 2, .	2.3	132
299	Hallmarks of Cellular Senescence. Trends in Cell Biology, 2018, 28, 436-453.	3.6	1,474
300	Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacological Research, 2018, 130, 322-330.	3.1	26
301	TGF-Î ² Signaling Accelerates Senescence of Human Bone-Derived CD271 and SSEA-4 Double-Positive Mesenchymal Stromal Cells. Stem Cell Reports, 2018, 10, 920-932.	2.3	32
302	PAN-cancer analysis of S-phase enriched IncRNAs identifies oncogenic drivers and biomarkers. Nature Communications, 2018, 9, 883.	5.8	93
303	Isolating Pediatric Mesenchymal Stem Cells with Enhanced Expansion and Differentiation Capabilities. Tissue Engineering - Part C: Methods, 2018, 24, 313-321.	1.1	26
304	Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biology, 2018, 17, 259-273.	3.9	103
305	Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 2018, 118, 1283-1288.	2.9	125
306	Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. Biochemical and Biophysical Research Communications, 2018, 499, 809-814.	1.0	2
307	The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death and Disease, 2018, 9, 266.	2.7	169
308	Protein kinase D1-mediated classical protein secretory pathway regulates oncogene Ras-induced senescent response. Journal of Cell Science, 2018, 131, .	1.2	10
309	Recent insights into the cellular and molecular determinants of aging. Journal of Cell Science, 2018, 131, .	1.2	21

#	Article	IF	CITATIONS
310	Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Reports, 2018, 22, 930-940.	2.9	342
311	The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture. Bioscience Reports, 2018, 38, .	1.1	12
312	Increased N6â€methyladenosine causes infertility is associated with FTO expression. Journal of Cellular Physiology, 2018, 233, 7055-7066.	2.0	129
313	Ubiquitin C decrement plays a pivotal role in replicative senescence of bone marrow mesenchymal stromal cells. Cell Death and Disease, 2018, 9, 139.	2.7	14
314	STEEx, a boundary between the world of quiescence and the vegetative cycle. Current Genetics, 2018, 64, 901-905.	0.8	5
315	Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160446.	1.8	165
316	Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1003-1009.	1.7	8
317	Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018, 43, 17-25.	5.0	151
318	DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell, 2018, 33, 309-321.e5.	7.7	84
319	Sirt6 overexpression suppresses senescence and apoptosis of nucleus pulposus cells by inducing autophagy in a model of intervertebral disc degeneration. Cell Death and Disease, 2018, 9, 56.	2.7	97
320	Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death and Disease, 2018, 9, 55.	2.7	65
321	Healthy ageing and the science of longevity in dogs. Part I: is grey the new gold?. Companion Animal, 2018, 23, 12-17.	0.0	3
322	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
323	Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction?. American Journal of Obstetrics and Gynecology, 2018, 218, S762-S773.	0.7	97
324	Age-related oxidative changes in pancreatic islets are predominantly located in the vascular system. Redox Biology, 2018, 15, 387-393.	3.9	21
325	Circulating levels of monocyte chemoattractant proteinâ€1 as a potential measure of biological age in mice and frailty in humans. Aging Cell, 2018, 17, e12706.	3.0	77
326	Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Research Reviews, 2018, 42, 56-71.	5.0	150
327	HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Molecular Cell, 2018, 70, 730-744.e6.	4.5	164

щ		IF	CITATIONS
#	INK42/ARE Expression Impairs Neurogenesis in the Brain of Irradiated Mice. Stem Cell Reports, 2018, 10	IF	CHATIONS
328	1721-1733.	2.3	15
329	Acute Kidney Injury as a Condition of Renal Senescence. Cell Transplantation, 2018, 27, 739-753.	1.2	79
330	Stress granules counteract senescence by sequestration of PAlâ \in 1. EMBO Reports, 2018, 19, .	2.0	40
331	cGAS-STING pathway in senescence-related inflammation. National Science Review, 2018, 5, 308-310.	4.6	7
332	IGFBP-3 plays an important role in senescence as an aging marker. Environmental Toxicology and Pharmacology, 2018, 59, 138-145.	2.0	18
333	Comparative characterization of SHED and DPSCs during extended cultivation inÃ ⁻ ¿½vitro. Molecular Medicine Reports, 2018, 17, 6551-6559.	1.1	43
334	Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy. Redox Biology, 2018, 16, 322-331.	3.9	39
335	Mechanisms regulating immune surveillance of cellular stress in cancer. Cellular and Molecular Life Sciences, 2018, 75, 225-240.	2.4	22
336	Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. Journal of Cell Biology, 2018, 217, 21-37.	2.3	33
337	Adipose tissue inflammation in aging. Experimental Gerontology, 2018, 105, 27-31.	1.2	75
338	Mechanisms driving the ageing heart. Experimental Gerontology, 2018, 109, 5-15.	1.2	41
339	Mechanisms of Renal Fibrosis. Annual Review of Physiology, 2018, 80, 309-326.	5.6	681
340	Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. , 2018, 183, 34-49.		128
341	Human <scp>CD</scp> 8 ⁺ <scp>EMRA</scp> T cells display a senescenceâ€associated secretory phenotype regulated by p38 <scp>MAPK</scp> . Aging Cell, 2018, 17, e12675.	3.0	161
342	Senotherapy for attenuation of cellular senescence in aging and organ implantation. Journal of Industrial and Engineering Chemistry, 2018, 60, 1-8.	2.9	5
343	Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biology, 2018, 14, 100-115.	3.9	261
344	Relevance of the p53–MDM2 axis to aging. Cell Death and Differentiation, 2018, 25, 169-179.	5.0	151
345	Connecting chaperone-mediated autophagy dysfunction to cellular senescence. Ageing Research Reviews, 2018, 41, 34-41.	5.0	27

#	Article	IF	CITATIONS
346	The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2018, 41, 18-33.	5.0	36
347	Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Molecular Aspects of Medicine, 2018, 60, 92-103.	2.7	126
348	Alleviation of ginsenoside Rg1 on hematopoietic homeostasis defects caused by lead-acetate. Biomedicine and Pharmacotherapy, 2018, 97, 1204-1211.	2.5	12
349	The senescent cell epigenome. Aging, 2018, 10, 3590-3609.	1.4	54
350	GRSF1 suppresses cell senescence. Aging, 2018, 10, 1856-1866.	1.4	19
351	Nutrition and Ageing. Sub-Cellular Biochemistry, 2018, 90, 373-424.	1.0	11
352	Autophagy: â€~Self-Eating' Your Way to Longevity. Sub-Cellular Biochemistry, 2018, 90, 25-47.	1.0	8
353	Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory. Biochemistry (Moscow), 2018, 83, 1477-1488.	0.7	12
354	Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging, 2018, 10, 1666-1681.	1.4	54
355	Strategies targeting cellular senescence. Journal of Clinical Investigation, 2018, 128, 1247-1254.	3.9	153
357	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	17
358	Autophagy and the cell biology of age-related disease. Nature Cell Biology, 2018, 20, 1338-1348.	4.6	312
359	Getting Too Old Too Quickly for Their Job: Senescent Glial Cells Promote Neurodegeneration. Neuron, 2018, 100, 777-779.	3.8	5
360	Evaluating the Remote Control of Programmed Cell Death, with or without a Compensatory Cell Proliferation. International Journal of Biological Sciences, 2018, 14, 1800-1812.	2.6	8
361	Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission–associated myocardial senescence. Science Signaling, 2018, 11, .	1.6	83
362	SCD – Stem Cell Differentiation Toward Osteoblast Onboard the International Space Station. Microgravity Science and Technology, 2018, 30, 713-729.	0.7	15
363	Influence of microgravity-induced intervertebral disc degeneration of rats on expression levels of p53/p16 and proinflammatory factors. Experimental and Therapeutic Medicine, 2019, 17, 1367-1373.	0.8	8
364	Iron Metabolism in Prostate Cancer; From Basic Science to New Therapeutic Strategies. Frontiers in Oncology, 2018, 8, 547.	1.3	27

#	Article	IF	CITATIONS
365	Spontaneous Cancers, But Not Many Induced Ones in Animals, Resemble Semi-New Organisms that Possess a Unique Programmed Cell Death Mode Different from Apoptosis, Senescent Death, Necrosis and Stress-Induced Cell Death. Journal of Cancer, 2018, 9, 4726-4735.	1.2	5
366	Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nature Communications, 2018, 9, 5435.	5.8	325
367	Telomere dynamics and cellular senescence: an emerging field in environmental and occupational toxicology. Critical Reviews in Toxicology, 2018, 48, 761-788.	1.9	30
368	Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells, 2018, 7, 268.	1.8	75
369	Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nature Communications, 2018, 9, 5191.	5.8	87
370	Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Bioscience Reports, 2018, 38, .	1.1	19
371	Magnesium Isoglycyrrhizinate Ameliorates Fibrosis and Disrupts TGF-β-Mediated SMAD Pathway in Activated Hepatic Stellate Cell Line LX2. Frontiers in Pharmacology, 2018, 9, 1018.	1.6	18
372	Targeting senescence to delay progression of multiple sclerosis. Journal of Molecular Medicine, 2018, 96, 1153-1166.	1.7	30
373	The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Research Reviews, 2018, 48, 1-10.	5.0	71
374	G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. International Journal of Molecular Sciences, 2018, 19, 2919.	1.8	26
375	The integration of inflammaging in age-related diseases. Seminars in Immunology, 2018, 40, 17-35.	2.7	234
376	Evaluation of the differentiation status of neural stem cells based on cell morphology and the expression of Notch and Sox2. Cytotherapy, 2018, 20, 1472-1485.	0.3	7
377	Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging?. Frontiers in Immunology, 2018, 9, 2187.	2.2	143
378	The emerging field of senotherapeutic drugs. Future Medicinal Chemistry, 2018, 10, 2369-2372.	1.1	24
379	Major trauma and acceleration of the ageing process. Ageing Research Reviews, 2018, 48, 32-39.	5.0	12
380	DNA Methylation as anÂEpigenetic Memory Keeper during Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , 57-73.	0.1	1
381	The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Frontiers in Neuroscience, 2018, 12, 726.	1.4	18
382	β-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. Molecular Cell, 2018, 71, 1064-1078.e5.	4.5	89

#	Article	IF	CITATIONS
383	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
384	Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sciences, 2018, 212, 20-29.	2.0	12
385	Fibroblast state switching orchestrates dermal maturation and wound healing. Molecular Systems Biology, 2018, 14, e8174.	3.2	113
386	Rank-Related Contrasts in Longevity Arise from Extra-Group Excursions Not Delayed Senescence in a Cooperative Mammal. Current Biology, 2018, 28, 2934-2939.e4.	1.8	31
387	A Quantitative Measurement of Reactive Oxygen Species and Senescence-associated Secretory Phenotype in Normal Human Fibroblasts During Oncogene-induced Senescence. Journal of Visualized Experiments, 2018, , .	0.2	0
388	Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Research, 2018, 28, 625-643.	5.7	37
389	Multimorbidity, age-related comorbidities and mortality. Aids, 2018, 32, 1651-1660.	1.0	57
390	Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta, 2018, 68, 15-22.	0.7	81
391	Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators of Inflammation, 2018, 2018, 1-32.	1.4	49
392	The mitochondria in lung fibrosis: friend or foe?. Translational Research, 2018, 202, 1-23.	2.2	38
393	iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence. Planta, 2018, 248, 859-873.	1.6	23
394	Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.	1.5	46
395	miR-200a Modulates the Expression of the DNA Repair Protein OGG1 Playing a Role in Aging of Primary Human Keratinocytes. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-17.	1.9	28
396	Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, 19, 325-339.	2.0	51
397	Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L162-L172.	1.3	114
398	Inflammageing: chronic inflammation in ageing, cardiovascular disease, andÂfrailty. Nature Reviews Cardiology, 2018, 15, 505-522.	6.1	1,760
399	Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions. PLoS Biology, 2018, 16, e2005263.	2.6	48
400	The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis. Cancers, 2018, 10, 122.	1.7	10

#	Article	IF	CITATIONS
401	The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. Journal of Bone and Mineral Research, 2018, 33, 1568-1584.	3.1	54
402	Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Frontiers in Physiology, 2018, 9, 706.	1.3	100
403	The Pathobiology of the Meniscus: A Comparison Between the Human and Dog. Frontiers in Veterinary Science, 2018, 5, 73.	0.9	9
404	HIV antiretroviral therapy drugs induce premature senescence and altered physiology in HUVECs. Mechanisms of Ageing and Development, 2018, 175, 74-82.	2.2	19
405	Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology, 2018, 19, 447-459.	2.0	119
406	The Molecular Intersection Between Senescence and Major Depression in the Elderly. American Journal of Geriatric Psychiatry, 2018, 26, 1097-1105.	0.6	25
407	The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. International Journal of Molecular Sciences, 2018, 19, 2139.	1.8	32
408	Developmental programming of aging trajectory. Ageing Research Reviews, 2018, 47, 105-122.	5.0	43
409	Physiologie et physiopathologie de la sénescence. Archives Des Maladies Du Coeur Et Des Vaisseaux - Pratique, 2018, 2018, 30-32.	0.0	0
410	Vascular Senescence in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine, 2018, 5, 18.	1.1	150
411	Implications of Cellular Aging in Cardiac Reprogramming. Frontiers in Cardiovascular Medicine, 2018, 5, 43.	1.1	14
412	Aging Hallmarks: The Benefits of Physical Exercise. Frontiers in Endocrinology, 2018, 9, 258.	1.5	148
413	Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Frontiers in Genetics, 2018, 9, 59.	1.1	87
414	Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Frontiers in Medicine, 2018, 5, 104.	1.2	60
415	"Till Death Do Us Part― A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Frontiers in Neuroscience, 2018, 12, 144.	1.4	13
416	Age-Related Epigenetic Derangement upon Reprogramming and Differentiation of Cells from the Elderly. Genes, 2018, 9, 39.	1.0	11
417	Mathematical Modeling Reveals the Role of Hypoxia in the Promotion of Human Mesenchymal Stem Cell Long-Term Expansion. Stem Cells International, 2018, 2018, 1-13.	1.2	7
418	Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. International Journal of Molecular Sciences, 2018, 19, 674.	1.8	72

ARTICLE IF CITATIONS Anti-Aging Effect of Chitosan Oligosaccharide on d-Galactose-Induced Subacute Aging in Mice. Marine 419 2.2 81 Drugs, 2018, 16, 181. T cell senescence and CAR-T cell exhaustion in hematological malignancies. Journal of Hematology 420 6.9 172 and Oncology, 2018, 11, 91. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. 421 1.8 41 International Journal of Molecular Sciences, 2018, 19, 2003. Notch and Senescence. Advances in Experimental Medicine and Biology, 2018, 1066, 299-318. 0.8 Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death and 423 2.7 25 Disease, 2018, 9, 512. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. Journal of Biological Chemistry, 2018, 293, 11242-11250. 424 1.6 Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal 425 1.5 32 Fibroblasts. The American Journal of Chinese Medicine, 2018, 46, 853-873. Noninvasive Fingerprinting-Based Tracking of Replicative Cellular Senescence Using a Colorimetric 426 3.2 Polyion Complex Array. Analytical Chemistry, 2018, 90, 6348-6352. Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of 427 1.0 70 Sirtuin 1. Biochemical and Biophysical Research Communications, 2018, 500, 682-690. Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis. Respiratory Research, 2018, 1.4 19, 153. Role of accelerated aging in limb muscle wasting of patients with COPD. International Journal of 429 0.9 16 COPD, 2018, Volume 13, 1987-1998. Overexpression of Klotho Inhibits HELF Fibroblasts SASP-related Protumoral Effects on Non-small 1.2 Cell Lung Cancer Cells. Journal of Cancer, 2018, 9, 1248-1258. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. International Journal of 431 1.8 58 Molecular Sciences, 2018, 19, 2325. Cellular Senescence: The Sought or the Unwanted?. Trends in Molecular Medicine, 2018, 24, 871-885. 3.5 141 Cellular senescence in tissue repair: every cloud has a silver lining. International Journal of 433 0.3 34 Developmental Biology, 2018, 62, 591-604. Detecting senescent fate in mesenchymal stem cells: a combined cytofluorimetric and ultrastructural 434 2.0 approach. Biogerontology, 2018, 19, 401-414. New mechanisms driving muscle stem cell regenerative decline with aging. International Journal of 435 0.3 18 Developmental Biology, 2018, 62, 583-590. Adjustment of the lysosomal-mitochondrial axis for control of cellular senescence. Ageing Research Reviews, 2018, 47, 176-182.

#	Article	IF	CITATIONS
437	Micro <scp>RNA</scp> â€31aâ€5p from aging <scp>BMSC</scp> s links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell, 2018, 17, e12794.	3.0	151
438	Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: An in vitro study. Journal of Cellular Physiology, 2018, 233, 8996-9006.	2.0	37
439	Sex and the Aging Immune System. , 2018, , 803-830.		1
440	Global mapping of transcription factor motifs in human aging. PLoS ONE, 2018, 13, e0190457.	1.1	12
441	Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle, 2018, 17, 1048-1055.	1.3	64
442	Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, , .	0.2	27
443	Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respiratory Medicine,the, 2018, 6, 603-614.	5.2	133
444	In vitro assays and techniques utilized in anticancer drug discovery. Journal of Applied Toxicology, 2019, 39, 38-71.	1.4	73
445	The three-dimensional organization of the genome in cellular senescence and age-associated diseases. Seminars in Cell and Developmental Biology, 2019, 90, 154-160.	2.3	20
446	Aging―and vascularâ€related pathologies. Microcirculation, 2019, 26, e12463.	1.0	22
447	The ING1a model of rapid cell senescence. Mechanisms of Ageing and Development, 2019, 177, 109-117.	2.2	7
448	Stem Cell-Induced Pulp Regeneration Can Be Enhanced by Administration of CCL11-Neutralizing Antibody in the Ectopic Tooth Transplantation Model in the Aged Mice. Rejuvenation Research, 2019, 22, 51-59.	0.9	8
449	Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1810-1821.	1.8	96
450	Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovascular Research, 2019, 115, 230-242.	1.8	105
451	<i>FOXO1</i> and <i>ETV6</i> genes may represent novel regulators of splicing factor expression in cellular senescence. FASEB Journal, 2019, 33, 1086-1097.	0.2	27
452	Bone and Soft Tissue Turnover in Relation to All-cause Mortality in Postmenopausal Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1098-1104.	1.7	12
453	Acetylation of PGC1α by Histone Deacetylase 1 Downregulation Is Implicated in Radiation-Induced Senescence of Brain Endothelial Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 787-793.	1.7	16
454	Hallmarks of senescence and aging. Biochemia Medica, 2019, 29, 483-497.	1.2	187

		CITATION RE	PORT	
# 455	ARTICLE The Molecular Physiology of Ageing: New Targets for Regenerative Medicine. , 2019, , 1	5-29.	IF	CITATIONS
456	Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell Rej 1499-1510.e6.	ports, 2019, 28,	2.9	56
457	Six weeks of strength endurance training decreases circulating senescence-prone T-lym cytomegalovirus seropositive but not seronegative older women. Immunity and Ageing	phocytes in , 2019, 16, 17.	1.8	11
458	Mitophagy, Diseases, and Aging. , 2019, , 177-191.			0
459	Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senesc reperfusion mice by reduction of p16. Kidney International, 2019, 96, 1162-1175.	ence in ischemia	2.6	31
460	Design, synthesis, and preliminary biological evaluation of catalpol propionates as antia BMC Chemistry, 2019, 13, 109.	ging drugs.	1.6	6
461	Conjugated Physiological Resveratrol Metabolites Induce Senescence in Breast Cancer (p53/p21 and p16/Rb Pathways, and ABC Transporters. Molecular Nutrition and Food Re e1900629.	Cells: Role of search, 2019, 63,	1.5	48
462	Exercise Training for the Elderly: Inflammaging and the Central Role for HSP70. Journal of Sport and Exercise, 2019, 1, 97-115.	of Science in	0.4	10
463	Rosiglitazone Treatment Prevents Postoperative Fibrosis in a Rabbit Model of Glaucoma Surgery. , 2019, 60, 2743.	Filtration		20
464	Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBiol 2019, 45, 588-605.	Medicine,	2.7	86
465	Computational Drug Screening Identifies Compounds Targeting Renal Age-associated N Profiles. Computational and Structural Biotechnology Journal, 2019, 17, 843-853.	1olecular	1.9	6
466	Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends Biochemical Sciences, 2019, 44, 996-1008.	s in	3.7	71
467	Re-thinking the Etiological Framework of Neurodegeneration. Frontiers in Neuroscience	, 2019, 13, 728.	1.4	56
468	Doxorubicin and liposomal doxorubicin induce senescence by enhancing nuclear factor mitochondrial membrane potential. Life Sciences, 2019, 232, 116677.	kappa B and	2.0	12
469	Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascu International Journal of Molecular Sciences, 2019, 20, 3079.	llar Diseases.	1.8	43
470	Transcriptome signature of cellular senescence. Nucleic Acids Research, 2019, 47, 7294	-7305.	6.5	185
471	Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease. Pharmaceutic	als, 2019, 12, 93.	1.7	68
472	Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomo Insect Physiology, 2019, 117, 103907.	es. Journal of	0.9	12

-			_	
\mathbf{C}		ION	DEDC	דתר
	IIAI		NEPU	ואכ

#	Article	IF	CITATIONS
473	Trophoblast type-specific expression of senescence markers in the human placenta. Placenta, 2019, 85, 56-62.	0.7	15
474	Microglia and the aging brain: are senescent microglia the key to neurodegeneration?. Journal of Neurochemistry, 2019, 151, 676-688.	2.1	150
475	Regulation of senescence and the SASP by the transcription factor C/EBPÎ ² . Experimental Gerontology, 2019, 128, 110752.	1.2	41
476	New Perspectives for Fisetin. Frontiers in Chemistry, 2019, 7, 697.	1.8	76
477	Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respiratory Research, 2019, 20, 232.	1.4	40
478	The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	104
479	LRP5 in age-related changes in vascular and alveolar morphogenesis in the lung. Aging, 2019, 11, 89-103.	1.4	10
480	Senescenceâ€induced immunophenotype, gene expression and electrophysiology changes in human amniocytes. Journal of Cellular and Molecular Medicine, 2019, 23, 7233-7245.	1.6	7
481	G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Computational and Structural Biotechnology Journal, 2019, 17, 1265-1277.	1.9	28
482	Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18983-18993.	3.3	18
483	DCR2, a Cellular Senescent Molecule, Is a Novel Marker for Assessing Tubulointerstitial Fibrosis in Patients with Immunoglobulin A Nephropathy. Kidney and Blood Pressure Research, 2019, 44, 1063-1074.	0.9	9
484	Induction of Fibroblast Senescence During Mouse Corneal Wound Healing. , 2019, 60, 3669.		34
485	Inhibition of â€~jumping genes' promotes healthy ageing. Nature, 2019, 566, 46-48.	13.7	6
486	Apoptotic Effects of Drug Targeting Conjugates Containing Different GnRH Analogs on Colon Carcinoma Cells. International Journal of Molecular Sciences, 2019, 20, 4421.	1.8	5
487	Fate and future climatic role of polar ice sheets. Nature, 2019, 566, 48-49.	13.7	3
488	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	5.2	96
489	Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells International, 2019, 2019, 1-15.	1.2	75
490	Nanomechanical insights: Amyloid beta oligomer-induced senescent brain endothelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183061.	1.4	11

#	Article	IF	CITATIONS
491	Metformin and Aging: A Review. Gerontology, 2019, 65, 581-590.	1.4	98
492	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biology of Sex Differences, 2019, 10, 49.	1.8	49
493	Molecular Aberrations in Bone Marrow Stromal Cells in Multiple Myeloma. , 2019, , .		1
494	Manufacturing of primed mesenchymal stromal cells for therapy. Nature Biomedical Engineering, 2019, 3, 90-104.	11.6	245
495	Involvement of Lamin B1 Reduction in Accelerated Cellular Senescence during Chronic Obstructive Pulmonary Disease Pathogenesis. Journal of Immunology, 2019, 202, 1428-1440.	0.4	42
496	ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells. Cell Death and Disease, 2019, 10, 76.	2.7	24
497	Telomere Dynamics and Aging Related Diseases. , 2019, , 66-90.		0
498	Short-term gain, long-term pain: the senescence life cycle and cancer. Genes and Development, 2019, 33, 127-143.	2.7	64
499	Gene network analysis of senescence-associated genes in annual plants and comparative assessment of aging in perennials and animals. Translational Medicine of Aging, 2019, 3, 6-13.	0.6	6
500	Protective effects of pyrroloquinoline quinone against oxidative stress-induced cellular senescence and inflammation in human renal tubular epithelial cells via Keap1/Nrf2 signaling pathway. International Immunopharmacology, 2019, 72, 445-453.	1.7	27
501	Cellular senescence in cardiac diseases. Journal of Cardiology, 2019, 74, 313-319.	0.8	101
502	Physiology and technology for the ICU in vivo. Critical Care, 2019, 23, 126.	2.5	6
503	Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Computational and Structural Biotechnology Journal, 2019, 17, 721-729.	1.9	65
504	Rapid Detection of Senescent Mesenchymal Stromal Cells by a Fluorescent Probe. Biotechnology Journal, 2019, 14, e1800691.	1.8	13
505	Antioxidative nanomaterials and biomedical applications. Nano Today, 2019, 27, 146-177.	6.2	116
506	Neuroendocrine Aspects of Skin Aging. International Journal of Molecular Sciences, 2019, 20, 2798.	1.8	75
507	How to Treat or Prevent, or Slow Down, Cellular Ageing and Senescence?. Practical Issues in Geriatrics, 2019, , 83-88.	0.3	0
508	Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nature Communications, 2019, 10, 2538.	5.8	104

#	Article	IF	CITATIONS
509	Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta. Epigenetics, 2019, 14, 1030-1039.	1.3	30
510	The Senescent Cell, SC. Practical Issues in Geriatrics, 2019, , 37-46.	0.3	0
511	Low bone turnover levels predict increased risk of cancer. Bone, 2019, 127, 75-81.	1.4	6
512	β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chemical Communications, 2019, 55, 7175-7178.	2.2	44
513	Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy, 2019, 21, 803-819.	0.3	28
514	Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. International Journal of Molecular Sciences, 2019, 20, 2547.	1.8	51
515	Human Menstrual Blood-Derived Stem Cells Inhibit the Proliferation of HeLa Cells via TGF- <i>β</i> 1-Mediated JNK/P21 Signaling Pathways. Stem Cells International, 2019, 2019, 1-18.	1.2	8
516	Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle, 2019, 18, 1490-1497.	1.3	10
517	Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nature Communications, 2019, 10, 2387.	5.8	281
518	Human aging DNA methylation signatures are conserved but accelerated in cultured fibroblasts. Epigenetics, 2019, 14, 961-976.	1.3	36
520	β‑catenin signalling inhibits cartilage endplate chondrocyte homeostasis inï¿1⁄2vitro. Molecular Medicine Reports, 2019, 20, 567-572.	1.1	5
521	Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Research and Therapy, 2019, 10, 142.	2.4	110
522	Chromosomal instability and pro-inflammatory response in aging. Mechanisms of Ageing and Development, 2019, 182, 111118.	2.2	19
523	Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sciences, 2019, 229, 225-232.	2.0	12
524	MicroRNA-126 regulates Hypoxia-Inducible Factor- $1\hat{l}$ ± which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence. Scientific Reports, 2019, 9, 7381.	1.6	44
525	Data-Driven Analysis of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 392.	1.4	22
526	Senolytic therapies for healthy longevity. Science, 2019, 364, 636-637.	6.0	162
527	Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-CRY1 Transgenic Mice. Journal of Diabetes Research, 2019, 2019, 1-11.	1.0	4

		CITATION REPORT		
#	Article		IF	CITATIONS
528	Notch Signaling Mediates Secondary Senescence. Cell Reports, 2019, 27, 997-1007.e5		2.9	82
529	Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Re 47-55.	ports, 2019, 52,	1.1	134
530	Cellular Senescence in the Kidney. Journal of the American Society of Nephrology: JASN, 726-736.	2019, 30,	3.0	164
531	Cellular parabiosis and the latency of age-related diseases. Open Biology, 2019, 9, 1802	.50.	1.5	8
532	Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal S Cultures. Methods in Molecular Biology, 2019, 2045, 93-105.	tromal Cell	0.4	10
533	Cellular senescence and senescence-associated secretory phenotype: comparison of idi pulmonary fibrosis, connective tissue disease-associated interstitial lung disease, and ch obstructive pulmonary disease. Journal of Thoracic Disease, 2019, 11, 857-864.	opathic nronic	0.6	23
534	Systemic clearance of <i>p16^{INK4a}</i> â€positive senescent cells mitigate intervertebral disc degeneration. Aging Cell, 2019, 18, e12927.	s ageâ€associated	3.0	118
535	Telomere length and age-dependent telomere attrition: the blood-and-muscle model. Ca of Physiology and Pharmacology, 2019, 97, 328-334.	anadian Journal	0.7	5
536	NLRP3/IL1Î ² inflammasome associated with the aging bladder triggers bladder dysfunct Molecular Medicine Reports, 2019, 19, 2960-2968.	ion in female rats.	1.1	10
537	The Aging Lung and Idiopathic Pulmonary Fibrosis. American Journal of the Medical Scie 384-389.	nces, 2019, 357,	0.4	66
538	Pulmonary Diseases and Ageing. Sub-Cellular Biochemistry, 2019, 91, 45-74.		1.0	29
539	Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Potential. Cell Metabolism, 2019, 29, 592-610.	Therapeutic	7.2	394
540	Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Re 47, 4597-4611.	esearch, 2019,	6.5	6
541	The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Cor canonical p53/p21 pathway. Aging Cell, 2019, 18, e12918.	nplement of the	3.0	50
542	Astrocyte senescence: Evidence and significance. Aging Cell, 2019, 18, e12937.		3.0	162
543	TGFâ€Î² Initiates βâ€Cateninâ€Mediated CTGF Secretory Pathway in Old Bovine Nucleu Potential Mechanism for Intervertebral Disc Degeneration. JBMR Plus, 2019, 3, e10069.	ıs Pulposus Cells: A	1.3	11
544	Senescence in aging and disorders of the central nervous system. Translational Medicin 2019, 3, 17-25.	e of Aging,	0.6	17
545	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative N Circulation Research, 2019, 124, 938-951.	ledicine.	2.0	28

#	Article	IF	Citations
546	The Role of Curcumin in the Modulation of Ageing. International Journal of Molecular Sciences, 2019, 20, 1239.	1.8	93
547	Functional screening to identify senescence regulators in cancer. Current Opinion in Genetics and Development, 2019, 54, 17-24.	1.5	5
548	Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 556-564.	2.5	282
549	Reduction of plasma angiopoietin-like 2 after cardiac surgery is related to tissue inflammation and senescence status of patients. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 792-802.e5.	0.4	12
550	Dementia: Paradigm shifting into high gear. Alzheimer's and Dementia, 2019, 15, 985-994.	0.4	26
551	The resistant effect of SIRT1 in oxidative stress-induced senescence of rat nucleus pulposus cell is regulated by Akt-FoxO1 pathway. Bioscience Reports, 2019, 39, .	1.1	30
552	Drugs that target aging: how do we discover them?. Expert Opinion on Drug Discovery, 2019, 14, 541-548.	2.5	10
553	A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Frontiers in Aging Neuroscience, 2019, 11, 56.	1.7	74
554	Stem cell competition orchestrates skin homeostasis and ageing. Nature, 2019, 568, 344-350.	13.7	245
555	GRSF1 is an age-related regulator of senescence. Scientific Reports, 2019, 9, 5546.	1.6	11
556	Molecular Mechanisms of Intervertebral Disc Degeneration. Spine Surgery and Related Research, 2019, 3, 1-11.	0.4	51
557	p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biology, 2019, 82, 54-70.	1.5	68
558	Diabetes Impairs Angiogenesis and Induces Endothelial Cell Senescence by Up-Regulating Thrombospondin-CD47-Dependent Signaling. International Journal of Molecular Sciences, 2019, 20, 673.	1.8	35
559	Converging Paths of Pulmonary Arterial Hypertension and Cellular Senescence. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 11-20.	1.4	25
560	Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells. Scientific Reports, 2019, 9, 2074.	1.6	66
561	Is cellular senescence involved in cystic fibrosis?. Respiratory Research, 2019, 20, 32.	1.4	23
562	Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology, 2019, 20, 359-371.	2.0	16
563	Endothelial tollâ€like receptor 4 maintains lung integrity via epigenetic suppression of p16 ^{INK4a} . Aging Cell, 2019, 18, e12914.	3.0	16

#	Article	IF	CITATIONS
564	Senescent cells: Living or dying is a matter of NK cells. Journal of Leukocyte Biology, 2019, 105, 1275-1283.	1.5	69
565	Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomedicine and Pharmacotherapy, 2019, 112, 108669.	2.5	29
566	Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. , 2019, 10, 367.		314
567	Histone Acetyltransferase p300 Induces De Novo Super-Enhancers to Drive Cellular Senescence. Molecular Cell, 2019, 73, 684-698.e8.	4.5	97
568	Conditioned medium derived from human amniotic stem cells delays H2O2â€ʻinduced premature senescence in human dermal fibroblasts. International Journal of Molecular Medicine, 2019, 44, 1629-1640.	1.8	13
569	Metaâ€inflammaging at the crossroad of geroscience. Aging Medicine (Milton (N S W)), 2019, 2, 157-161.	0.9	14
570	Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 2019, 11, e10234.	3.3	194
571	DNA repair deficiency and senescence in concussed professional athletes involved in contact sports. Acta Neuropathologica Communications, 2019, 7, 182.	2.4	29
572	Tumour, but not Age-associated, Increase of Senescence Markers γH2AX and p21 in the Canine Eye. Journal of Comparative Pathology, 2019, 173, 41-48.	0.1	6
573	DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biology, 2019, 9, 190208.	1.5	21
574	10. MANGANESE: ITS ROLE IN DISEASE AND HEALTH. , 2019, 19, 253-266.		30
575	Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. International Journal of Molecular Sciences, 2019, 20, 5946.	1.8	48
576	Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence. Frontiers in Immunology, 2019, 10, 2787.	2.2	83
577	Senescent cells in the development of cardiometabolic disease. Current Opinion in Lipidology, 2019, 30, 177-185.	1.2	7
578	Age-Related Dysfunctions: Evidence and Relationship with Some Risk Factors and Protective Drugs. Biochemistry (Moscow), 2019, 84, 1442-1450.	0.7	19
579	Accelerated aging in serious mental disorders. Current Opinion in Psychiatry, 2019, 32, 381-387.	3.1	30
580	Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 2019, 10, 4731.	5.8	230
581	Understanding the Mechanisms of Resistance to CAR T-Cell Therapy in Malignancies. Frontiers in Oncology, 2019, 9, 1237.	1.3	106

#	Article	IF	Citations
582	p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. International Journal of Molecular Sciences, 2019, 20, 6023.	1.8	32
583	Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology, 2019, 20, 1-16.	2.0	135
584	VEGF receptorâ€1 modulates amyloid β 1–42 oligomerâ€induced senescence in brain endothelial cells. FASEB Journal, 2019, 33, 4626-4637.	0.2	27
585	Healthy aging: A bibliometric analysis of the literature. Experimental Gerontology, 2019, 116, 93-105.	1.2	15
586	Senescent Breast Luminal Cells Promote Carcinogenesis through Interleukin-8-Dependent Activation of Stromal Fibroblasts. Molecular and Cellular Biology, 2019, 39, .	1.1	23
587	Detecting Cellular Senescence in Reprogramming. Methods in Molecular Biology, 2019, 1896, 1-10.	0.4	1
588	Mouse Models of Accelerated Cellular Senescence. Methods in Molecular Biology, 2019, 1896, 203-230.	0.4	30
589	Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP). Methods in Molecular Biology, 2019, 1896, 45-55.	0.4	20
590	Genotoxic Stress-Induced Senescence. Methods in Molecular Biology, 2019, 1896, 93-105.	0.4	15
591	NAD ⁺ Metabolism in Aging and Cancer. Annual Review of Cancer Biology, 2019, 3, 105-130.	2.3	48
592	N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Free Radical Biology and Medicine, 2019, 130, 512-527.	1.3	71
593	Cellular Senescence. Methods in Molecular Biology, 2019, , .	0.4	3
594	STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 61-73.	1.4	52
595	Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress. IScience, 2019, 11, 205-223.	1.9	46
596	Mathematical model and computer simulations of telomere loss. Journal of Theoretical Biology, 2019, 465, 78-89.	0.8	1
597	Inflammation and immunity in IPF pathogenesis and treatment. Respiratory Medicine, 2019, 147, 79-91.	1.3	259
598	Chronic rhinosinusitis in elderly patients is associated with an exaggerated neutrophilic proinflammatory response to pathogenic bacteria. Journal of Allergy and Clinical Immunology, 2019, 143, 990-1002.e6.	1.5	54
599	Osteoarthritis year in review 2018: biology. Osteoarthritis and Cartilage, 2019, 27, 365-370.	0.6	43

# 600	ARTICLE STING SNP R293Q Is Associated with a Decreased Risk of Aging-Related Diseases. Gerontology, 2019, 65, 145-154.	IF 1.4	Citations 32
601	Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention. Reproductive Sciences, 2019, 26, 159-171.	1.1	17
602	Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. GeroScience, 2019, 41, 13-24.	2.1	63
603	Ageing and Longevity. , 2019, , 3-9.		2
604	Use of MSCs in Antiaging Strategies. , 2019, , 443-461.		0
605	Cockayne Syndrome Type A Protein Protects Primary Human Keratinocytes from Senescence. Journal of Investigative Dermatology, 2019, 139, 38-50.	0.3	16
606	Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1876-1897.	1.8	102
607	Inhibitory Effect of Lupeol on MMPs Expression using Aged Fibroblast through Repeated UVA Irradiation. Photochemistry and Photobiology, 2019, 95, 587-594.	1.3	9
608	Strength Endurance Training but Not Intensive Strength Training Reduces Senescence-Prone T Cells in Peripheral Blood in Community-Dwelling Elderly Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1870-1878.	1.7	26
609	Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxidants and Redox Signaling, 2019, 30, 399-414.	2.5	12
610	Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells. Frontiers of Medicine, 2019, 13, 267-276.	1.5	24
611	Expression of p16 and p21 in the frontal association cortex of <scp>ALS</scp> / <scp>MND</scp> brains suggests neuronal cell cycle dysregulation and astrocyte senescence in early stages of the disease. Neuropathology and Applied Neurobiology, 2020, 46, 171-185.	1.8	42
612	Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell and Developmental Biology, 2020, 98, 139-153.	2.3	305
613	Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. Journal of Ginseng Research, 2020, 44, 341-349.	3.0	22
614	Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure. Sleep, 2020, 43, .	0.6	33
615	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Progress in Neurobiology, 2020, 184, 101716.	2.8	98
616	Ecoâ€evolutionary perspectives of the dynamic relationships linking senescence and cancer. Functional Ecology, 2020, 34, 141-152.	1.7	14
617	The role of senescence in cancer development. Seminars in Cancer Biology, 2020, 62, 182-191.	4.3	52

#		IF	Citations
618	Genetic and epigenetic Muller's ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model. Human Genetics, 2020, 139, 409-420.	1.8	6
619	Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell, 2020, 19, e13052.	3.0	77
620	Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Research Reviews, 2020, 57, 100979.	5.0	41
621	Endometrial Gene Expression. , 2020, , .		0
622	Biomarkers in the path from cellular senescence to frailty. Experimental Gerontology, 2020, 129, 110750.	1.2	27
623	The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cellular and Molecular Life Sciences, 2020, 77, 1357-1370.	2.4	34
624	COXâ€2/sEH dual inhibitor PTUPB alleviates bleomycinâ€induced pulmonary fibrosis in mice via inhibiting senescence. FEBS Journal, 2020, 287, 1666-1680.	2.2	39
625	Regulation of inflammation as an antiâ€aging intervention. FEBS Journal, 2020, 287, 43-52.	2.2	62
626	lncRNA HOTAIR upregulates autophagy to promote apoptosis and senescence of nucleus pulposus cells. Journal of Cellular Physiology, 2020, 235, 2195-2208.	2.0	44
627	High prevalence of malnutrition and nutrition impact symptoms in older patients with cancer: Results of a Brazilian multicenter study. Cancer, 2020, 126, 156-164.	2.0	25
628	Oncometabolites in renal cancer. Nature Reviews Nephrology, 2020, 16, 156-172.	4.1	113
629	Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. EBioMedicine, 2020, 51, 102597.	2.7	31
630	Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. GeroScience, 2020, 42, 633-651.	2.1	34
631	Aging and the Biological Response to Liver Injury. Seminars in Liver Disease, 2020, 40, 225-232.	1.8	13
632	Frailty and Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2020, , .	0.8	9
633	Rap1â€mediated nucleosome displacement can regulate gene expression in senescent cells without impacting the pace of senescence. Aging Cell, 2020, 19, e13061.	3.0	13
634	Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics, 2020, 20, 1800400.	1.3	8
635	Activation of immunosuppressive network in the aging process. Ageing Research Reviews, 2020, 57, 100998.	5.0	91
		CITATION REPORT	
-----	---	-----------------	-----------
#	Article	IF	CITATIONS
636	Senotherapeutics for HIV and aging. Current Opinion in HIV and AIDS, 2020, 15, 83-93.	1.5	13
637	Cellular senescence and chronological age in various human tissues: A systematic review and metaâ€analysis. Aging Cell, 2020, 19, e13083.	3.0	89
638	Proteostasis failure and cellular senescence in longâ€ŧerm cultured postmitotic rat neurons. Aging Cell, 2020, 19, e13071.	3.0	40
639	Senescence in the pathogenesis of age-related macular degeneration. Cellular and Molecular Life Sciences, 2020, 77, 789-805.	2.4	106
640	Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, <i>p16INK4a</i> . JNCI Cancer Spectrum, 2020, 4, pkaa082.	1.4	15
641	Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 576176.	1.8	68
642	Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Research Reviews, 2020, 64, 101165.	5.0	9
643	Juvenile high–fat diet–induced senescent glial cells in the medial prefrontal cortex drives neuropsychiatric behavioral abnormalities in mice. Behavioural Brain Research, 2020, 395, 112838	. 1.2	6
644	Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells International, 2020, 2020, 1-28.	1.2	10
645	MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. Advanced Scie 2020, 7, 2001950.	ence, 5.6	8
646	Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovascular Drugs and Therapy, 2022, 36, 187-196.	1.3	40
647	Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells, 2020, 9, 2146.	1.8	42
648	Cellular senescence in cancer: from mechanisms to detection. Molecular Oncology, 2021, 15, 263	4-2671. 2.1	78
649	Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine and Growth Fac Reviews, 2020, 55, 15-25.	ttor 3.2	66
650	Cellular Senescence as the Pathogenic Hub of Diabetes-Related Wound Chronicity. Frontiers in Endocrinology, 2020, 11, 573032.	1.5	49
651	Application of Chimeric Antigen Receptor T Cells in the Treatment of Hematological Malignancies. BioMed Research International, 2020, 2020, 1-9.	0.9	9
652	Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progeni cell niche. Cell Death and Disease, 2020, 11, 854.	tor 2.7	59
653	The actions of resveratrol in decidualizing endometrium: acceleration or inhibition?â€. Biology of Reproduction, 2020, 103, 1152-1156.	1.2	11

#	Article	IF	CITATIONS
654	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	6.5	99
655	Cellular senescence: friend or foe to respiratory viral infections?. European Respiratory Journal, 2020, 56, 2002708.	3.1	32
656	Senolytic Agent Navitoclax Inhibits Angiotensin II-Induced Heart Failure in Mice. Journal of Cardiovascular Pharmacology, 2020, 76, 452-460.	0.8	26
657	Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 2020, 192, 111355.	2.2	17
658	Autophagy and heat-shock response impair stress granule assembly during cellular senescence. Mechanisms of Ageing and Development, 2020, 192, 111382.	2.2	18
659	The ageing kidney: Molecular mechanisms and clinical implications. Ageing Research Reviews, 2020, 63, 101151.	5.0	64
660	Curcumin: A therapeutic potential in ageing-related disorders. PharmaNutrition, 2020, 14, 100226.	0.8	18
661	Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Research and Therapy, 2020, 11, 279.	2.4	20
662	Principles of Cell Circuits for Tissue Repair and Fibrosis. IScience, 2020, 23, 100841.	1.9	90
663	Aging of the cells: Insight into cellular senescence and detection Methods. European Journal of Cell Biology, 2020, 99, 151108.	1.6	100
664	Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS Journal, 2021, 288, 3834-3854.	2.2	20
665	Not All Stressors Are Equal: Mechanism of Stressors on RPE Cell Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 591067.	1.8	29
666	CD38-expressing macrophages drive age-related NAD+ decline. Nature Metabolism, 2020, 2, 1186-1187.	5.1	7
667	The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. European Respiratory Journal, 2020, 56, 2000075.	3.1	10
668	Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 589908.	1.3	26
669	ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion, 2020, 55, 54-63.	1.6	12
670	Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells, 2020, 9, 2540.	1.8	19
671	Design and protocol of the multimorbidity and mental health cohort study in frailty and aging (MiMiCS-FRAIL): unraveling the clinical and molecular associations between frailty, somatic disease burden and late life depression. BMC Psychiatry, 2020, 20, 573.	1.1	10

#	Article	IF	Citations
672	Prevalent intron retention fineâ€ŧunes gene expression and contributes to cellular senescence. Aging Cell, 2020, 19, e13276.	3.0	25
673	<p>Reactive Oxygen Species: Drivers of Physiological and Pathological Processes</p> . Journal of Inflammation Research, 2020, Volume 13, 1057-1073.	1.6	333
674	Can Gut Microbiota Affect Dry Eye Syndrome?. International Journal of Molecular Sciences, 2020, 21, 8443.	1.8	42
675	Generation of rhBMP-2-induced juvenile ossicles in aged mice. Biomaterials, 2020, 258, 120284.	5.7	17
676	Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology, 2020, 21, 773-786.	2.0	15
677	Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell, 2020, 19, e13212.	3.0	24
678	Senescence and Host–Pathogen Interactions. Cells, 2020, 9, 1747.	1.8	28
679	Acute atherosis and diffuse lipid infiltration of the placental bed: A review of historical lipid studies. Placenta, 2020, 97, 36-41.	0.7	6
680	Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics, 2020, 12, 688.	2.0	39
681	Rapid senescenceâ€like response after acute injury. Aging Cell, 2020, 19, e13201.	3.0	17
682	Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 2020, 12, 2134.	1.7	134
683	Depression and suicidality: A link to premature T helper cell aging and increased Th17 cells. Brain, Behavior, and Immunity, 2020, 87, 603-609.	2.0	57
684	tBHP treatment as a model for cellular senescence and pollution-induced skin aging. Mechanisms of Ageing and Development, 2020, 190, 111318.	2.2	19
685	Adipose tissue, immune aging, and cellular senescence. Seminars in Immunopathology, 2020, 42, 573-587.	2.8	28
686	Senescenceâ€associated secretory phenotype promotes chronic ocular graftâ€vsâ€host disease in mice and humans. FASEB Journal, 2020, 34, 10778-10800.	0.2	26
687	Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 564461.	1.8	32
688	Editorial: Special issue cellular aging. Experimental Gerontology, 2020, 140, 111065.	1.2	0
689	Extracellular Vesicles Derived From Apoptotic Cells: An Essential Link Between Death and Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 573511.	1.8	50

#	ARTICLE Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. International Journal of Molecular Sciences, 2020, 21, 7794.	IF 1.8	CITATIONS 351
691	Proteomic assessment of serum biomarkers of longevity in older men. Aging Cell, 2020, 19, e13253.	3.0	12
692	<i>Moringa oleifera</i> (Lam.): a natural remedy for ageing?. Natural Product Research, 2021, 35, 6216-6222.	1.0	11
693	Cellular Senescence. Hypertension, 2020, 76, 1069-1075.	1.3	29
694	Nano-Vesicle (Mis)Communication in Senescence-Related Pathologies. Cells, 2020, 9, 1974.	1.8	26
695	A novel indenone derivative selectively induces senescence in MDA-MB-231 (breast adenocarcinoma) cells. Chemico-Biological Interactions, 2020, 331, 109250.	1.7	4
696	Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16high Cells InÂVivo. Cell Metabolism, 2020, 32, 814-828.e6.	7.2	93
697	Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metabolism, 2020, 32, 447-456.e6.	7.2	201
698	Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	32
699	Cellular senescence and hepatitis Bâ€related hepatocellular carcinoma: An intriguing link. Liver International, 2020, 40, 2917-2927.	1.9	23
700	Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Frontiers in Cell and Developmental Biology, 2020, 8, 773.	1.8	82
701	Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Frontiers in Cell and Developmental Biology, 2020, 8, 605996.	1.8	38
702	Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells, 2020, 9, 2659.	1.8	13
703	NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Communications Biology, 2020, 3, 774.	2.0	36
704	Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Experimental and Molecular Medicine, 2020, 52, 2034-2045.	3.2	40
705	Insight into the Role of Angiopoietins in Ageing-Associated Diseases. Cells, 2020, 9, 2636.	1.8	21
706	Cisplatin-Induced Giant Cells Formation Is Involved in Chemoresistance of Melanoma Cells. International Journal of Molecular Sciences, 2020, 21, 7892.	1.8	10
707	Analysis of transcriptional modules during human fibroblast ageing. Scientific Reports, 2020, 10, 19086.	1.6	10

#	Article	IF	Citations
708	The role of senescent T cells in immunopathology. Aging Cell, 2020, 19, e13272.	3.0	50
709	Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers. Frontiers in Oncology, 2020, 10, 568574.	1.3	58
710	Autofluorescence-based sorting removes senescent cells from mesenchymal stromal cell cultures. Scientific Reports, 2020, 10, 19084.	1.6	11
711	Ageâ€related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology, 2021, 58, e13718.	1.2	25
712	CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death and Differentiation, 2020, 27, 2681-2696.	5.0	41
713	The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nature Communications, 2020, 11, 2482.	5.8	64
714	Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Proliferation, 2020, 53, e12819.	2.4	10
715	FOXO1 deficiency impairs proteostasis in aged T cells. Science Advances, 2020, 6, eaba1808.	4.7	33
716	Gene expression in human mesenchymal stem cell aging cultures: modulation by short peptides. Molecular Biology Reports, 2020, 47, 4323-4329.	1.0	13
717	Epigenetics and imprinting in assisted reproduction. , 2020, , 69-87.		0
718	Cardiomyocyte Contractility and Autophagy in a Premature Senescence Model of Cardiac Aging. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	13
719	How can aging be reversed? Exploring rejuvenation from a damageâ€based perspective. Genetics & Genomics Next, 2020, 1, e10025.	0.8	5
720	Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends in Molecular Medicine, 2020, 26, 898-912.	3.5	42
721	The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 2020, 19, 513-532.	21.5	260
722	CCR3 antagonist protects against induced cellular senescence and promotes rejuvenation in periodontal ligament cells for stimulating pulp regeneration in the aged dog. Scientific Reports, 2020, 10, 8631.	1.6	8
723	Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. Journal of Biological Chemistry, 2020, 295, 10255-10270.	1.6	10
724	Altered glucocorticoid metabolism represents a feature of macrophâ€aging. Aging Cell, 2020, 19, e13156.	3.0	24
725	Regulation and Consequences of cGAS Activation by Self-DNA. Trends in Cell Biology, 2020, 30, 594-605.	3.6	54

	Сітатіс	on Report	
#	ARTICLE	IF	CITATIONS
726	cells and machine learning-based phenotypic profiling. Archives of Toxicology, 2020, 94, 2749-2767.	1.9	9
727	Overâ€expression of Nicotinamide phosphoribosyltransferase in mouse cells confers protective effect against oxidative and ER stressâ€induced premature senescence. Genes To Cells, 2020, 25, 593-602.	0.5	5
728	Attenuation of ataxia telangiectasia mutated signalling mitigates ageâ€associated intervertebral disc degeneration. Aging Cell, 2020, 19, e13162.	3.0	18
729	Telomere transcription in ageing. Ageing Research Reviews, 2020, 62, 101115.	5.0	44
730	Healthy Aging: Antioxidants, Uncouplers and/or Telomerase?. Molecular Biology, 2020, 54, 311-316.	0.4	8
731	Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. International Journal of Molecular Sciences, 2020, 21, 4169.	1.8	24
732	Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells, 2020, 9, 1385.	1.8	70
733	First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated Î ² -galactosidase. Chemical Science, 2020, 11, 7292-7301.	3.7	55
734	Role of immune cells in the removal of deleterious senescent cells. Immunity and Ageing, 2020, 17, 16.	1.8	187
735	The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 354.	1.8	69
736	Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Frontiers in Pharmacology, 2020, 11, 755.	1.6	26
737	Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells. Frontiers in Physiology, 2020, 11, 520.	1.3	23
738	17β-estradiol inhibits H2O2-induced senescence in HUVEC cells through upregulating SIRT3 expression and promoting autophagy. Biogerontology, 2020, 21, 549-557.	2.0	16
739	Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 2020, 10, 420.	1.8	267
740	Sleep and ageing: from human studies to rodent models. Current Opinion in Physiology, 2020, 15, 210-216.	0.9	13
741	Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review. Advances in Therapy, 2020, 37, 1407-1424.	1.3	53
742	The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food and Chemical Toxicology, 2020, 139, 111260.	1.8	40
743	Progenitor cell niche senescence reflects pathology of the parotid salivary gland in primary Sjögren's syndrome. Rheumatology, 2020, 59, 3003-3013.	0.9	23

#	Article	IF	Citations
744	The Emerging Role of Senescence in Ocular Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	35
745	Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells, 2020, 9, 671.	1.8	100
746	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie, 2020, 132, 8776-8783.	1.6	10
747	Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nature Reviews Neuroscience, 2020, 21, 433-444.	4.9	132
748	Phage Display-Based Homing Peptide-Daunomycin Conjugates for Selective Drug Targeting to PANC-1 Pancreatic Cancer. Pharmaceutics, 2020, 12, 576.	2.0	19
749	Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Frontiers in Immunology, 2020, 11, 1217.	2.2	69
750	Improvements to Healthspan Through Environmental Enrichment and Lifestyle Interventions: Where Are We Now?. Frontiers in Neuroscience, 2020, 14, 605.	1.4	34
751	Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34+ cells via inhibition of senescence. Stem Cells Translational Medicine, 2020, 9, 1604-1616.	1.6	7
752	The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells, 2020, 9, 1552.	1.8	33
753	The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology, 2020, 441, 152525.	2.0	9
754	Burns in the Elderly: Potential Role of Stem Cells. International Journal of Molecular Sciences, 2020, 21, 4604.	1.8	10
755	DNA Damage- But Not Enzalutamide-Induced Senescence in Prostate Cancer Promotes Senolytic Bcl-xL Inhibitor Sensitivity. Cells, 2020, 9, 1593.	1.8	31
756	A rapid-response near-infrared fluorescent probe with a large Stokes shift for senescence-associated β-galactosidase activity detection and imaging of senescent cells. Dyes and Pigments, 2020, 182, 108657.	2.0	17
757	A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment. Bone and Joint Research, 2020, 9, 225-235.	1.3	12
758	Metformin loaded cholesterol-lysine conjugate nanoparticles: A novel approach for protecting HDFs against UVB-induced senescence. International Journal of Pharmaceutics, 2020, 586, 119603.	2.6	10
759	ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mechanisms of Ageing and Development, 2020, 190, 111296.	2.2	20
760	Cellular senescence in vivo: From cells to tissues to pathologies. Mechanisms of Ageing and Development, 2020, 190, 111308.	2.2	8
761	Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules, 2020, 10, 340.	1.8	74

#	Article	IF	CITATIONS
762	Slowly Repaired Bulky DNA Damages Modulate Cellular Redox Environment Leading to Premature Senescence. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	2
763	Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends in Molecular Medicine, 2020, 26, 422-433.	3.5	22
764	Pathomechanism of intervertebral disc degeneration. JOR Spine, 2020, 3, e1076.	1.5	120
765	Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie, 2020, 171-172, 103-109.	1.3	33
766	miR-142 induces accumulation of reactive oxygen species (ROS) by inhibiting pexophagy in aged bone marrow mesenchymal stem cells. Scientific Reports, 2020, 10, 3735.	1.6	21
767	The Histone Code of Senescence. Cells, 2020, 9, 466.	1.8	45
768	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie - International Edition, 2020, 59, 8698-8705.	7.2	29
769	The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell, 2020, 37, 226-242.e7.	7.7	117
770	Polyesterified Sesquiterpenoids from the Seeds of <i>Celastrus paniculatus</i> as Lifespan-Extending Agents for the Nematode <i>Caenorhabditis elegans</i> . Journal of Natural Products, 2020, 83, 505-515.	1.5	13
771	Senolytics (DQ) Mitigates Radiation Ulcers by Removing Senescent Cells. Frontiers in Oncology, 2019, 9, 1576.	1.3	45
772	Senotherapy. Chest, 2020, 158, 562-570.	0.4	44
773	Chronic irradiation of human cells reduces histone levels and deregulates gene expression. Scientific Reports, 2020, 10, 2200.	1.6	18
774	Physiology and pathology of T-cell aging. International Immunology, 2020, 32, 223-231.	1.8	68
775	Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nature Communications, 2020, 11, 481.	5.8	57
776	Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. Journal of Proteome Research, 2020, 19, 938-948.	1.8	8
777	Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE, 2020, 15, e0227887.	1.1	120
778	Presbycusis: An Update on Cochlear Mechanisms and Therapies. Journal of Clinical Medicine, 2020, 9, 218.	1.0	108
779	Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants, 2020, 9, 94.	2.2	22

#	Article	IF	CITATIONS
780	Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window. Communications Biology, 2020, 3, 37.	2.0	158
781	Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes and Development, 2020, 34, 428-445.	2.7	188
782	LncRNA UCA1 Antagonizes Arsenicâ€Induced Cell Cycle Arrest through Destabilizing EZH2 and Facilitating NFATc2 Expression. Advanced Science, 2020, 7, 1903630.	5.6	19
783	Involvement of Senescence and Mitochondrial Fission in Endothelial Cell Pro-Inflammatory Phenotype Induced by Angiotensin II. International Journal of Molecular Sciences, 2020, 21, 3112.	1.8	26
785	A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biology, 2020, 21, 91.	3.8	177
786	ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. Journal of Molecular Medicine, 2020, 98, 633-650.	1.7	60
787	Caveolin-1, a master regulator of cellular senescence. Cancer and Metastasis Reviews, 2020, 39, 397-414.	2.7	29
788	Cell Senescence and Mesenchymal Stromal Cells. Human Physiology, 2020, 46, 85-93.	0.1	2
789	An Appraisal on the Value of Using Nutraceutical Based Senolytics and Senostatics in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 218.	1.8	17
790	Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. Journal of Cancer, 2020, 11, 2887-2920.	1.2	4
791	Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Research, 2020, 30, 574-589.	5.7	187
792	The Muller's Ratchet and Aging. Trends in Genetics, 2020, 36, 395-402.	2.9	12
793	Natural Killer Cells, Aging, and Vaccination. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 18-35.	2.6	15
794	Regulation of senescence traits by MAPKs. GeroScience, 2020, 42, 397-408.	2.1	84
795	Sprouty1 Prevents Cellular Senescence Maintaining Proliferation and Differentiation Capacity of Human Adipose Stem/Progenitor Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2308-2319.	1.7	10
796	Interleukin-8 Dedifferentiates Primary Human Luminal Cells to Multipotent Stem Cells. Molecular and Cellular Biology, 2020, 40, .	1.1	1
797	Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells International, 2020, 2020, 1-16.	1.2	9
798	Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. American Journal of Physiology - Cell Physiology, 2020, 318, C1005-C1017.	2.1	35

#	Article	IF	CITATIONS
799	Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. Hypertension, 2020, 75, 1233-1241.	1.3	24
800	Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. European Respiratory Review, 2020, 29, 190102.	3.0	36
801	Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells, 2020, 9, 909.	1.8	58
802	From Development to Aging: The Path to Cellular Senescence. Antioxidants and Redox Signaling, 2021, 34, 294-307.	2.5	15
803	Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovascular Research, 2021, 117, 971-982.	1.8	59
804	Maternal cardiometabolic factors and genetic ancestry influence epigenetic aging of the placenta. Journal of Developmental Origins of Health and Disease, 2021, 12, 34-41.	0.7	13
805	The Immune System and Its Contribution to Variability in Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2021, 27, 39-47.	2.5	19
806	Mechanisms of vascular dysfunction in the interleukin-10–deficient murine model of preeclampsia indicate nitric oxide dysregulation. Kidney International, 2021, 99, 646-656.	2.6	10
807	Frail older adults show a distinct plasma microvesicle profile suggesting a prothrombotic and proinflammatory phenotype. Journal of Cellular Physiology, 2021, 236, 2099-2108.	2.0	12
808	Biomarkers of senescence in non-human primate adipose depots relate to aging. GeroScience, 2021, 43, 343-352.	2.1	8
809	Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence. Journal of Materials Science and Technology, 2021, 63, 216-227.	5.6	5
810	A general model for cell death and biomarker release from injured tissues. Journal of Pharmacokinetics and Pharmacodynamics, 2021, 48, 69-82.	0.8	1
811	miRNA-146a-5p mitigates stress-induced premature senescence of D-galactose-induced primary thymic stromal cells. Cytokine, 2021, 137, 155314.	1.4	6
812	Wnt-induced, TRP53-mediated Cell Cycle Arrest of Precursors Underlies Interstitial Cell of Cajal Depletion During Aging. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 117-145.	2.3	9
813	Translating cell biology of ageing? On the importance of choreographing knowledge. New Genetics and Society, 2021, 40, 267-283.	0.7	1
814	Autophagy displays divergent roles during intermittent amino acid starvation and toxic stressâ€induced senescence in cultured skeletal muscle cells. Journal of Cellular Physiology, 2021, 236, 3099-3113.	2.0	4
815	Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. Journal of Allergy and Clinical Immunology, 2021, 147, 545-557.e9.	1.5	316
816	Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cellular Signalling, 2021, 79, 109875.	1.7	7

#	Article	IF	CITATIONS
817	Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. , 2021, 221, 107751.		22
818	Telomeres in toxicology: Occupational health. , 2021, 220, 107742.		9
819	Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nature Reviews Rheumatology, 2021, 17, 47-57.	3.5	284
820	The hypothalamic–pituitary–gonadal axis controls muscle stem cell senescence through autophagosome clearance. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 177-191.	2.9	3
821	Signaling by cGAS–STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in Neurosciences, 2021, 44, 83-96.	4.2	121
822	Cellular senescence, a novel therapeutic target for mesenchymal stem cells in acute kidney injury. Journal of Cellular and Molecular Medicine, 2021, 25, 629-638.	1.6	4
823	Inhibition of the <scp>P53</scp> / <scp>P21</scp> Pathway Attenuates the Effects of Senescent Nucleus Pulposus Cellâ€Derived Exosomes on the Senescence of Nucleus Pulposus Cells. Orthopaedic Surgery, 2021, 13, 583-591.	0.7	15
824	Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. Mechanisms of Ageing and Development, 2021, 193, 111412.	2.2	11
825	Global spliceosome activity regulates entry into cellular senescence. FASEB Journal, 2021, 35, e21204.	0.2	18
826	<i>Eimeria bovis</i> infections induce G ₁ cell cycle arrest and a senescence-like phenotype in endothelial host cells. Parasitology, 2021, 148, 341-353.	0.7	6
827	Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nature Reviews Nephrology, 2021, 17, 153-171.	4.1	126
828	Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone, 2021, 143, 115659.	1.4	52
829	Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer and Prostatic Diseases, 2021, 24, 233-243.	2.0	8
830	The Secretome of Aged Fibroblasts Promotes EMT-Like Phenotype in Primary Keratinocytes from Elderly Donors through BDNF-TrkB Axis. Journal of Investigative Dermatology, 2021, 141, 1052-1062.e12.	0.3	10
831	Induction and transmission of oncogene-induced senescence. Cellular and Molecular Life Sciences, 2021, 78, 843-852.	2.4	11
832	Senescence and autophagy in usual interstitial pneumonia of different etiology. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 497-506.	1.4	6
833	Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. , 2021, 12, 1462.		11
834	Is Adipose Tissue the Fountain of Youth? The Impact of Adipose Stem Cell Aging on Metabolic Homeostasis, Longevity, and Cell-Based Therapies. Advances in Experimental Medicine and Biology, 2021, 1286, 225-250	0.8	4

#		IF	CITATIONS
835	mTOR as a senescence manipulation target: A forked road. Advances in Cancer Research, 2021, 150, 335-363.	1.9	14
836	Natural variation in plant telomere length is associated with flowering time. Plant Cell, 2021, 33, 1118-1134.	3.1	29
837	Stress response decay with aging visualized using a dual-channel logic-based fluorescent probe. Chemical Science, 2021, 12, 13483-13491.	3.7	24
838	Cell Fitness: More Than Push-Ups. International Journal of Molecular Sciences, 2021, 22, 518.	1.8	3
839	Cytoplasmic chromatin fragmentsâ \in "from mechanisms to therapeutic potential. ELife, 2021, 10, .	2.8	25
840	Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnology, 2021, 21, 4.	1.7	10
841	Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1895-1905.	1.7	113
842	Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1â^'/CD34+/CD24+ Adipose Stem/Progenitor Cells. Cells, 2021, 10, 214.	1.8	11
843	An Insight into Aging, Senescence, and Their Impacts on Wound Healing. Advances in Geriatric Medicine and Research, 2021, 3, .	0.6	6
844	Exercise, epigenetics, and aging. , 2021, , 127-182.		1
845	Cardiac aging. , 2021, , 323-344.		0
846	Stem cells and multiomics approaches in senescence: From benchside to bedside. , 2021, , 61-67.		0
847	Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. Journal of Neuroinflammation, 2021, 18, 32.	3.1	62
848	Prevention and Treatment of the Troubles of the Elderly. Advances in Studies of Aging and Health, 2021, , 351-400.	0.2	0
849	Subtelomere-Telomere Aging Theory. Advances in Studies of Aging and Health, 2021, , 179-239.	0.2	0
850	Cardiomyocyte Senescence. , 2021, , 187-205.		0
851	Challenges and effective routes for formulating and delivery of epidermal growth factors in skin care. International Journal of Cosmetic Science, 2021, 43, 123-130.	1.2	17
852	Further assessment of Salvia haenkei as an innovative strategy to counteract skin photo-aging and restore the barrier integrity. Aging, 2021, 13, 89-103.	1.4	9

#	Article	IF	CITATIONS
853	Targeting senescent cell clearance: An approach to delay aging and age-associated disorders. Translational Medicine of Aging, 2021, 5, 1-9.	0.6	1
854	Inhibition of Aurora Kinase B activity disrupts development and differentiation of salivary glands. Cell Death Discovery, 2021, 7, 16.	2.0	10
855	The Need for the Establishment of Biomedical Engineering as an Academic and Professional Discipline in the Philippines—A Quantitative Argument. IEEE Access, 2021, 9, 3097-3111.	2.6	4
856	The Impact of Polyphenols-Based Diet on the Inflammatory Profile in COVID-19 Elderly and Obese Patients. Frontiers in Physiology, 2020, 11, 612268.	1.3	11
857	The Jekyll and Hyde of Cellular Senescence in Cancer. Cells, 2021, 10, 208.	1.8	25
858	Gastrointestinal Physiology and Aging. , 2021, , 1-46.		Ο
859	Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Archives of Toxicology, 2021, 95, 727-747.	1.9	5
860	Control of Mesenchymal Stromal Cell Senescence by Tryptophan Metabolites. International Journal of Molecular Sciences, 2021, 22, 697.	1.8	16
861	TGFâ€Î²/Alk5 signaling prevents osteoarthritis initiation via regulating the senescence of articular cartilage stem cells. Journal of Cellular Physiology, 2021, 236, 5278-5292.	2.0	6
862	Effects of radiation on endothelial barrier and vascular integrity. , 2021, , 43-94.		5
863	Gastrointestinal Physiology and Aging. , 2021, , 155-200.		0
864	Aging and ageâ€related diseases: from mechanisms to therapeutic strategies. Biogerontology, 2021, 22, 165-187.	2.0	200
865	Coupling high-throughput mapping with proteomics analysis delineates <i>cis</i> -regulatory elements at high resolution. Nucleic Acids Research, 2022, 50, e5-e5.	6.5	4
866	The Mechanisms of the Growth Inhibitory Effects of Paclitaxel on Gefitinib-resistant Non-small Cell Lung Cancer Cells. Cancer Genomics and Proteomics, 2021, 18, 661-673.	1.0	6
867	Cellular Senescence in Brain Aging. Frontiers in Aging Neuroscience, 2021, 13, 646924.	1.7	129
868	Bcl-xL as a Modulator of Senescence and Aging. International Journal of Molecular Sciences, 2021, 22, 1527.	1.8	20
869	Splicing alterations in healthy aging and disease. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1643.	3.2	29
870	B Cells with a Senescent-Associated Secretory Phenotype Accumulate in the Adipose Tissue of Individuals with Obesity. International Journal of Molecular Sciences, 2021, 22, 1839.	1.8	16

#	Article	IF	CITATIONS
872	High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Science Advances, 2021, 7, .	4.7	59
873	Decoding the role of long noncoding RNAs in the healthy aging of centenarians. Briefings in Bioinformatics, 2021, 22, .	3.2	12
875	Distinct types of stem cell divisions determine organ regeneration and aging in hair follicles. Nature Aging, 2021, 1, 190-204.	5.3	11
876	Rapamycin Treatment of Tendon Stem/Progenitor Cells Reduces Cellular Senescence by Upregulating Autophagy. Stem Cells International, 2021, 2021, 1-10.	1.2	16
877	Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. International Journal of Molecular Sciences, 2021, 22, 1684.	1.8	14
878	HMCB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discovery, 2021, 7, 28.	2.0	15
879	Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee Î ² -cell Function and Protection. International Journal of Molecular Sciences, 2021, 22, 1833.	1.8	4
881	ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell, 2021, 20, e13315.	3.0	38
882	Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells—Implications for Cancer and Neurodegeneration. Life, 2021, 11, 153.	1.1	16
883	Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience, 2021, 43, 517-537.	2.1	35
884	A Matter of State: Diversity in Oligodendrocyte Lineage Cells. Neuroscientist, 2022, 28, 144-162.	2.6	13
885	Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell, 2021, 20, e13318.	3.0	16
886	Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. International Journal of Environmental Research and Public Health, 2021, 18, 1883.	1.2	5
887	Tissue-Specific Landscape of Metabolic Dysregulation during Ageing. Biomolecules, 2021, 11, 235.	1.8	24
888	SIRT3 mitigates intervertebral disc degeneration by delaying oxidative stressâ€induced senescence of nucleus pulposus cells. Journal of Cellular Physiology, 2021, 236, 6441-6456.	2.0	32
889	Extracellular Vesicles and Immune System in Ageing and Immune Diseases. Experimental Neurobiology, 2021, 30, 32-47.	0.7	3
890	Senescent cells as promising targets to tackle age-related diseases. Ageing Research Reviews, 2021, 66, 101251.	5.0	28
891	Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem?. Frontiers in Plant Science, 2021, 12, 634393.	1.7	9

#	Article	IF	CITATIONS
892	Effects of cellular senescence on metabolic pathways in non-immune and immune cells. Mechanisms of Ageing and Development, 2021, 194, 111428.	2.2	14
894	Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification?. Frontiers in Cell and Developmental Biology, 2021, 9, 611922.	1.8	41
895	BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging, 2021, 13, 9646-9664.	1.4	20
896	Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing. Antioxidants, 2021, 10, 491.	2.2	16
897	Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology, 2021, 10, 253.	1.3	48
898	Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 645593.	1.8	608
899	Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 3367.	1.8	20
900	Twist1 signaling in age-dependent decline in angiogenesis and lung regeneration. Aging, 2021, 13, 7781-7799.	1.4	8
901	Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest <i>in vitro</i> and <i>in vivo</i> . Aging Cell, 2021, 20, e13338.	3.0	106
902	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47.	1.2	20
902 903	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	1.2 10.6	20 714
902 903 904	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47. The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045.	1.2 10.6 1.4	20 714 8
902 903 904 905	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47. The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.	1.2 10.6 1.4 1.4	20 714 8 9
902 903 904 905	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47.The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045.Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight, 2021, 6, .	1.2 10.6 1.4 1.4 2.3	20 714 8 9 42
902 903 904 905 906	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47. The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight, 2021, 6, . Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respiratory Research, 2021, 22, 109.	1.2 10.6 1.4 1.4 2.3 1.4	 20 714 8 9 42 65
902 903 904 905 906 907	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47. The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight, 2021, 6, . Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respiratory Research, 2021, 22, 109. Possibility of inducing tumor cell senescence during therapy (Review). Oncology Letters, 2021, 22, 496.	1.2 10.6 1.4 2.3 1.4 0.8	20 714 8 9 42 65
 902 903 904 905 906 907 908 909 	The aging endothelium. Vascular Biology (Bristol, England), 2021, 3, R35-R47.The cGASâ€"STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging, 2021, 13, 12031-12045.Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Frontiers in Neuroscience, 2021, 15, 666881.Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight, 2021, 6, .Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respiratory Research, 2021, 22, 109.Possibility of inducing tumor cell senescence during therapy (Review). Oncology Letters, 2021, 22, 496.The emerging role of Cockayne group A and B proteins in ubiquitin/proteasome-directed protein degradation. Mechanisms of Ageing and Development, 2021, 195, 111466.	1.2 10.6 1.4 2.3 1.4 0.8 2.2	20 714 8 8 9 42 65 8 8

#	Article	IF	CITATIONS
911	Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. Npj Aging and Mechanisms of Disease, 2021, 7, 7.	4.5	32
912	Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatology Communications, 2021, 5, 1125-1137.	2.0	18
913	Frailty and HIV: Moving from Characterization to Intervention. Current HIV/AIDS Reports, 2021, 18, 157-175.	1.1	15
914	An evaluation of the recognised systemic inflammatory biomarkers of chronic sub-optimal inflammation provides evidence for inflammageing (IFA) during multiple sclerosis (MS). Immunity and Ageing, 2021, 18, 18.	1.8	5
915	Differential role of melatonin in healthy brain aging: a systematic review and meta-analysis of the SAMP8 model. Aging, 2021, 13, 9373-9397.	1.4	11
916	ls There an Interconnection between Epithelial–Mesenchymal Transition (EMT) and Telomere Shortening in Aging?. International Journal of Molecular Sciences, 2021, 22, 3888.	1.8	13
917	Tissue Homeostasis and Inflammation. Annual Review of Immunology, 2021, 39, 557-581.	9.5	143
918	Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. Journal of Investigative Dermatology, 2021, 141, 1031-1040.	0.3	13
919	The Human Islet: Mini-Organ With Mega-Impact. Endocrine Reviews, 2021, 42, 605-657.	8.9	44
920	Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. International Journal of Molecular Sciences, 2021, 22, 4186.	1.8	16
921	PADI4 mediates autophagy and participates in the role of ganoderic acid A monomers in delaying the senescence of Alzheimer's cells through the Akt/mTOR pathway. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1818-1829.	0.6	6
922	Senescence of donor cells impairs fat graft regeneration by suppressing adipogenesis and increasing expression of senescence-associated secretory phenotype factors. Stem Cell Research and Therapy, 2021, 12, 311.	2.4	2
923	Derivation, characterization, and in vitro cell regeneration of canine white adipose tissue-derived mesenchymal stem cells obtained from a mesenteric region. Journal of Basic and Applied Zoology, 2021, 82, .	0.4	0
924	Chromosome Instability, Aging and Brain Diseases. Cells, 2021, 10, 1256.	1.8	23
925	Pathology, Radiology, and Genetics of Interstitial Lung Disease in Patients With Shortened Telomeres. American Journal of Surgical Pathology, 2021, 45, 871-884.	2.1	8
926	Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathologica Communications, 2021, 9, 82.	2.4	19
927	Morphological alterations, activity, mRNA fold changes, and aging changes before and after orthodontic force application in young and adult human-derived periodontal ligament cells. European Journal of Orthodontics, 2021, 43, 690-696.	1.1	1
928	Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sciences, 2021, 273, 119266.	2.0	30

#	Article	IF	CITATIONS
930	A randomized clinical study on the impact of Comprehensive Geriatric Assessment (CGA) based interventions on the quality of life of elderly, frail, onco-hematologic patients candidate to anticancer therapy: protocol of the ONCO-Aging study. BMC Geriatrics, 2021, 21, 320.	1.1	5
931	Exosomes of Adipose-derived Stem Cells Conditioned Media Promotes Retinoblastoma and Forkhead-Box M1 Protein Expression. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 422-427.	0.1	0
932	Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomedicine and Pharmacotherapy, 2021, 137, 111327.	2.5	52
933	Fibroinflammatory Signatures Increase with Age in the Human Ovary and Follicular Fluid. International Journal of Molecular Sciences, 2021, 22, 4902.	1.8	17
934	p16-3MR: A Novel Model to Study Cellular Senescence in Cigarette Smoke-Induced Lung Injuries. International Journal of Molecular Sciences, 2021, 22, 4834.	1.8	6
935	Alternative Animal Models of Aging Research. Frontiers in Molecular Biosciences, 2021, 8, 660959.	1.6	56
936	Senescence and associated blood–brain barrier alterations in vitro. Histochemistry and Cell Biology, 2021, 156, 283-292.	0.8	13
937	An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.	13.7	368
938	Cellular senescence at the saphenofemoral junction in patients with healthy, primary varicose and recurrent varicose veins – A pilot study. Vascular, 2022, 30, 559-567.	0.4	5
939	Lithium inhibits oxidative stress-induced neuronal senescence through miR-34a. Molecular Biology Reports, 2021, 48, 4171-4180.	1.0	9
940	The Micro-RNA Cargo of Extracellular Vesicles Released by Human Adipose Tissue-Derived Mesenchymal Stem Cells Is Modified by Obesity. Frontiers in Cell and Developmental Biology, 2021, 9, 660851.	1.8	21
941	The Stress of Lung Aging: Endoplasmic Reticulum and Senescence Tête-Ã-Tête. Physiology, 2021, 36, 150-159.	1.6	7
942	Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Research Reviews, 2021, 67, 101264.	5.0	51
943	Aging and Options to Halt Declining Immunity to Virus Infections. Frontiers in Immunology, 2021, 12, 681449.	2.2	26
944	Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair, 2021, 102, 103103.	1.3	11
945	Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2Âmouse. JHEP Reports, 2021, 3, 100250.	2.6	17
946	H3K4 Methylation in Aging and Metabolism. Epigenomes, 2021, 5, 14.	0.8	9
947	Senescent cells in human adipose tissue: A crossâ€sectional study. Obesity, 2021, 29, 1320-1327.	1.5	18

#	Article	IF	CITATIONS
948	Attenuation of age-elevated blood factors by repositioning plasmapheresis: A novel perspective and approach. Transfusion and Apheresis Science, 2021, 60, 103162.	0.5	5
949	Football and team handball training postpone cellular aging in women. Scientific Reports, 2021, 11, 11733.	1.6	5
950	Inhibition of SIRT1 Limits Self-Renewal and Oncogenesis by Inducing Senescence of Liver Cancer Stem Cells. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 685-699.	1.8	11
951	Bacterial genotoxins induce TÂcell senescence. Cell Reports, 2021, 35, 109220.	2.9	20
952	UNC5B Promotes Vascular Endothelial Cell Senescence via the ROS-Mediated P53 Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	8
953	Expression Regulation, Protein Chemistry and Functional Biology of the Guanine-Rich Sequence Binding Factor 1 (GRSF1). Journal of Molecular Biology, 2021, 433, 166922.	2.0	8
954	The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Research, 2021, 31, 1121-1135.	2.4	36
955	CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduction and Targeted Therapy, 2021, 6, 223.	7.1	26
956	Age-Related Retinal Changes in Wild-Type C57BL/6J Mice Between 2 and 32 Months. , 2021, 62, 9.		27
958	Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells, 2021, 10, 1628.	1.8	12
959	Efficacy and limitations of senolysis in atherosclerosis. Cardiovascular Research, 2022, 118, 1713-1727.	1.8	34
960	When dormancy fuels tumour relapse. Communications Biology, 2021, 4, 747.	2.0	59
961	Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Research, 2021, 49, 7389-7405.	6.5	14
962	Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. , 2021, 222, 107795.		32
963	Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. International Journal of Molecular Sciences, 2021, 22, 6381.	1.8	14
964	Quantitative mapping of human hair greying and reversal in relation to life stress. ELife, 2021, 10, .	2.8	28
965	Evidence that the acetyltransferase Tip60 induces the DNA damage response and cell-cycle arrest in neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 155, 88-98.	0.9	8
966	DNA Homeostasis and Senescence: Lessons from the Naked Mole Rat. International Journal of Molecular Sciences, 2021, 22, 6011.	1.8	5

#	Article	IF	CITATIONS
967	Flavonoids in Skin Senescence Prevention and Treatment. International Journal of Molecular Sciences, 2021, 22, 6814.	1.8	49
969	Salamander Insights Into Ageing and Rejuvenation. Frontiers in Cell and Developmental Biology, 2021, 9, 689062.	1.8	11
970	Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology, 2022, 68, 339-352.	1.4	16
971	Cellular Senescence in Health, Disease and Aging: Blessing or Curse?. Life, 2021, 11, 541.	1.1	4
972	The combination of ADSCs and 10% PRP increases Rb protein expression on senescent human dermal fibroblasts. F1000Research, 0, 10, 516.	0.8	0
973	T-cell Exhaustion in Organ Transplantation. Transplantation, 2022, 106, 489-499.	0.5	14
974	Dynamic Aging: Channeled Through Microenvironment. Frontiers in Physiology, 2021, 12, 702276.	1.3	9
975	Systematic review on the effects of physical exercise on cellular immunosenescence-related markers – An update. Experimental Gerontology, 2021, 149, 111318.	1.2	14
976	Die idiopathische pulmonale Fibrose jenseits der Lunge: Krankheitsmechanismen verstehen, um Diagnose und Therapie zu verbessern. Karger Kompass Pneumologie, 0, , 1-12.	0.0	0
977	Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies. International Journal of Molecular Sciences, 2021, 22, 7295.	1.8	21
978	Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Research Reviews, 2021, 68, 101334.	5.0	32
979	Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. International Journal of Molecular Sciences, 2021, 22, 7324.	1.8	20
980	Chondrocyte Aging: The Molecular Determinants and Therapeutic Opportunities. Frontiers in Cell and Developmental Biology, 2021, 9, 625497.	1.8	18
981	Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells. International Journal of Molecular Sciences, 2021, 22, 7474.	1.8	11
982	New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mechanisms of Ageing and Development, 2021, 197, 111510.	2.2	24
983	Implication of integrin α2β1 in senescence of SK-Mel-147 human melanoma cells. Aging, 2021, 13, 18006-18017.	1.4	5
984	Questions of ethical regulation of immunobiological therapy of some occupational lung diseases. Perm Medical Journal, 2021, 38, 131-140.	0.0	1
985	Dietary sugar intake and risk of Alzheimer's disease in older women. Nutritional Neuroscience, 2022, 25, 2302-2313.	1.5	7

#		IF	CITATIONS
987	Carbofuran affects cellular autophagy and developmental senescence through the impairment of	16	19
707	Nrf2 signalling. Journal of Cellular and Molecular Medicine, 2022, 26, 35-47.	1.0	12
988	Induction of T Cell Senescence by Cytokine Induced Bystander Activation. Frontiers in Aging, 2021, 2, .	1.2	6
989	mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. International Journal of Molecular Sciences, 2021, 22, 8149.	1.8	33
990	Senotherapeutics: Targeting senescent cells for the main age-related diseases. Mechanisms of Ageing and Development, 2021, 197, 111526.	2.2	29
991	Targeting senescent cells improves functional recovery after spinal cord injury. Cell Reports, 2021, 36, 109334.	2.9	36
992	Cellular senescence as a possible link between prostate diseases of the ageing male. Nature Reviews Urology, 2021, 18, 597-610.	1.9	19
993	Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 592118.	2.0	32
994	Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Scientific Reports, 2021, 11, 14608.	1.6	35
995	Determination of Biological Age: Geriatric Assessment vs Biological Biomarkers. Current Oncology Reports, 2021, 23, 104.	1.8	39
996	The cell cycle inhibitor P21 promotes the development of pulmonary fibrosis by suppressing lung alveolar regeneration. Acta Pharmaceutica Sinica B, 2022, 12, 735-746.	5.7	18
997	Adipose tissue senescence is mediated by increased ATP content after a shortâ€ŧerm highâ€fat diet exposure. Aging Cell, 2021, 20, e13421.	3.0	16
998	Causes and consequences of telomere lengthening in a wild vertebrate population. Molecular Ecology, 2022, 31, 5933-5945.	2.0	18
999	Role of Cellular Senescence in Type II Diabetes. Endocrinology, 2021, 162, .	1.4	36
1000	Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. EBioMedicine, 2021, 70, 103536.	2.7	20
1001	Acute ischemic stroke triggers a cellular senescence-associated secretory phenotype. Scientific Reports, 2021, 11, 15752.	1.6	20
1002	Piper crocatum Ruiz & Pav. ameliorates wound healing through p53, E-cadherin and SOD1 pathways on wounded hyperglycemia fibroblasts. Saudi Journal of Biological Sciences, 2021, 28, 7257-7268.	1.8	8
1003	Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-ĐºB, and p53/p21 Signaling Pathways. Journal of Cluster Science, 2022, 33, 2265-2275.	1.7	3
1004	Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Frontiers in Cell and Developmental Biology, 2021, 9, 688788.	1.8	17

#	Article	IF	CITATIONS
1005	Establishment and genetic characterization of cell lines derived from proliferating nasal polyps and sinonasal inverted papillomas. Scientific Reports, 2021, 11, 17100.	1.6	5
1006	Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Frontiers in Pharmacology, 2021, 12, 728100.	1.6	31
1007	p16INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Frontiers in Immunology, 2021, 12, 698565.	2.2	16
1008	Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension. Chest, 2022, 161, 219-231.	0.4	26
1009	Acrylamide Induced Oxidative Cellular Senescence in Embryonic Fibroblast Cell Line (NIH 3T3): A Protection by Carvacrol. Jundishapur Journal of Natural Pharmaceutical Products, 2021, 16, .	0.3	2
1010	Joint Degeneration in a Mouse Model of Pseudoachondroplasia: ER Stress, Inflammation, and Block of Autophagy. International Journal of Molecular Sciences, 2021, 22, 9239.	1.8	7
1011	Induced senescence of healthy nucleus pulposus cells is mediated by paracrine signaling from TNFâ€Î±â€"activated cells. FASEB Journal, 2021, 35, e21795.	0.2	17
1012	Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role?. Tropical Medicine and Infectious Disease, 2021, 6, 153.	0.9	4
1014	Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Reports, 2021, 3, 100301.	2.6	30
1015	The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development. Ageing Research Reviews, 2021, 69, 101363.	5.0	10
1016	Laboratory Forensics for Open Science Readiness: an Investigative Approach to Research Data Management. Information Systems Frontiers, 0, , 1.	4.1	1
1017	The Impact of Vitamin D on Skin Aging. International Journal of Molecular Sciences, 2021, 22, 9097.	1.8	46
1018	Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Reports, 2021, 36, 109639.	2.9	13
1019	The killifish visual system as an in vivo model to study brain aging and rejuvenation. Npj Aging and Mechanisms of Disease, 2021, 7, 22.	4.5	20
1020	The Paradoxical Role of Cellular Senescence in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 722205.	1.8	51
1022	Balancing DNA repair to prevent ageing and cancer. Experimental Cell Research, 2021, 405, 112679.	1.2	14
1023	Ouabain and chloroquine trigger senolysis of BRAFâ€V600Eâ€induced senescent cells by targeting autophagy. Aging Cell, 2021, 20, e13447.	3.0	21
1024	Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontology 2000, 2021, 87, 143-156.	6.3	51

#	Article	IF	CITATIONS
1025	Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochemistry International, 2021, 148, 105115.	1.9	23
1026	T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells, 2021, 10, 2435.	1.8	38
1027	Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging, 2021, 13, 21814-21837.	1.4	7
1028	Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mechanisms of Ageing and Development, 2021, 198, 111539.	2.2	19
1029	Vascular Aging in Rodent Models: Contrasting Mechanisms Driving the Female and Male Vascular Senescence. Frontiers in Aging, 2021, 2, .	1.2	11
1030	Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical Pharmacology, 2021, 193, 114765.	2.0	20
1031	Senescence-associated secretory phenotype and activation of NF-κB in splenocytes of old mice exposed to irradiation at a young age. Developmental and Comparative Immunology, 2021, 122, 104124.	1.0	3
1032	Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Research Reviews, 2021, 70, 101417.	5.0	43
1033	Cellular senescence is a potential severity factor for COVID-19: Suitable targets required to eliminate cellular senescence. Respiratory Medicine, 2021, 186, 106517.	1.3	1
1034	Repetitive spikes of glucose and lipid induce senescence-like phenotypes of bone marrow stem cells through H3K27me3 demethylase-mediated epigenetic regulation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H920-H932.	1.5	3
1035	Sexual dimorphism in liver cell cycle and senescence signalling pathways in young and old rats. Journal of Physiology, 2021, 599, 4309-4320.	1.3	3
1036	Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF-β1/Smad3 and HIF1 Signaling Pathways. BioMed Research International, 2021, 2021, 1-19.	0.9	3
1037	MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Canadian Journal of Physiology and Pharmacology, 2021, 99, 827-838.	0.7	5
1038	Elimination of Radiation-Induced Senescence in the Brain Tumor Microenvironment Attenuates Glioblastoma Recurrence. Cancer Research, 2021, 81, 5935-5947.	0.4	62
1039	Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. ELife, 2021, 10, .	2.8	100
1040	Nuclear dynamics and stress responses in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 65.	4.4	11
1041	Longevity leap: mind the healthspan gap. Npj Regenerative Medicine, 2021, 6, 57.	2.5	55
1042	Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Research Reviews, 2021, 70, 101413.	5.0	62

(ITATION REPORT	~		<u>_</u>	
	(ITA	TION	REPO	RT

#	Article	IF	CITATIONS
1043	Associations Between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue, and Bone. Calcified Tissue International, 2022, 110, 236-243.	1.5	12
1044	Nutrition and cellular senescence in obesity-related disorders. Journal of Nutritional Biochemistry, 2022, 99, 108861.	1.9	14
1045	Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Research, 2021, 9, 41.	5.4	58
1046	Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Frontiers in Pharmacology, 2021, 12, 739510.	1.6	23
1047	PI3KÎ ³ Mediates Microglial Proliferation and Cell Viability via ROS. Cells, 2021, 10, 2534.	1.8	7
1048	Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. Frontiers in Aging, 2021, 2, .	1.2	10
1049	Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles. International Journal of Molecular Sciences, 2021, 22, 9891.	1.8	0
1050	Aging preclinical models in oncology field: from cells to aging. Aging Clinical and Experimental Research, 2021, , 1.	1.4	1
1051	The role of lipid-based signalling in wound healing and senescence. Mechanisms of Ageing and Development, 2021, 198, 111527.	2.2	19
1052	Faces of cellular senescence in skin aging. Mechanisms of Ageing and Development, 2021, 198, 111525.	2.2	52
1053	The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. Ageing Research Reviews, 2021, 70, 101407.	5.0	67
1054	The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascular Pharmacology, 2021, 141, 106924.	1.0	4
1055	TFEB protein expression is reduced in aged brains and its overexpression mitigates senescence-associated biomarkers and memory deficits in mice. Neurobiology of Aging, 2021, 106, 26-36.	1.5	17
1056	Breathe it in – Spotlight on senescence and regeneration in the lung. Mechanisms of Ageing and Development, 2021, 199, 111550.	2.2	5
1057	Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin. Experimental Gerontology, 2021, 154, 111528.	1.2	5
1058	Cellular senescence as a driver of cognitive decline triggered by chronic unpredictable stress. Neurobiology of Stress, 2021, 15, 100341.	1.9	22
1059	A common signature of cellular senescence; does it exist?. Ageing Research Reviews, 2021, 71, 101458.	5.0	52
1060	Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PharmaNutrition, 2021, 18, 100281.	0.8	9

IF

CITATIONS

0

#	ARTICLE
TF	AKIICLL

1061 Injury and regeneration in renal aging. , 2022, , 281-301.

Accelerated Lung Aging and Cellular Senescence in COPD., 2022, 583-593. 1062 Innate and adaptive immunity in cancer., 2022, , 19-61. 0 1063 Senescent Cells: A Potential Target for New Cancer Therapies in Older Oncologic Patients. Cancers, 1064 1.7 2021, 13, 278. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their 1065 19 1.6 MicroRNAs in Respiratory Diseases. Frontiers in Molecular Biosciences, 2020, 7, 619697. The emerging role of cellular senescence in complications of COVID-19. Cancer Treatment and 0.7 Research Communications, 2021, 28, 100399. Ultrasmall Prussian blue nanoparticles attenuate UVA-induced cellular senescence in human dermal 1068 2.8 8 fibroblasts <i>via</i> inhibiting the ERK/AP-1 pathway. Nanoscale, 2021, 13, 16104-16112. Cisplatin and Pemetrexed Have Distinctive Growth-inhibitory Effects in Monotherapy and Combination 1069 1.0 Therapy on KRAS-dependent A549 Lung Cancer Cells. Cancer Genomics and Proteomics, 2021, 18, 579-590. Molecular Aspects of Senescence and Organismal Ageingâ€"DNA Damage Response, Telomeres, 1071 27 1.8 Inflammation and Chromatin. International Journal of Molecular Sciences, 2021, 22, 590. Al in Longevity Medicine., 2021, , 1-13. 1 A genome-wide CRISPR-based screen identifies <i>KAT7</i> as a driver of cellular senescence. Science 1073 79 5.8 Translational Medicine, 2021, 13, . CircMRE11A_013 binds to UBXN1 and integrates ATM activation enhancing lens epithelial cells 1074 1.4 senescence in age-related cataract. Aging, 2021, 13, 5383-5402. 1075 Acute Sarcopenia: Definition and Actual Issues. Practical Issues in Geriatrics, 2021, , 133-143. 0.3 0 Engineered Tools to Study Intercellular Communication. Advanced Science, 2021, 8, 2002825. 5.6 39 1078 DNA Methylation in Neuronal Development and Disease. RNA Technologies, 2019, , 103-140. 0.2 1 Role of Immunoregulatory Cytokine IL-15 in theÂEndometrium. , 2020, , 67-74. 1079 The Importance of Cellular Senescence in Frailty and Cardiovascular Diseases. Advances in 1080 0.8 11 Experimental Medicine and Biology, 2020, 1216, 79-86. Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders. Healthy

Ageing and Longevity, 2020, , 43-62.

#	Article	IF	CITATIONS
1082	Targeted Senolytic Strategies Based on the Senescent Surfaceome. Healthy Ageing and Longevity, 2020, , 103-130.	0.2	3
1083	Influence of Donor Age and Species Longevity on Replicative Cellular Senescence. Healthy Ageing and Longevity, 2016, , 49-70.	0.2	2
1084	Evolutionary Paradigms in Cardiology: The Case of Chronic Heart Failure. , 2016, , 137-153.		3
1085	Parallels Between Skeletal Muscle and Bone Aging. , 2017, , 45-52.		1
1086	Senolytic Drugs. , 2019, , 1-7.		1
1087	Pathogenesis of COPD 4 – Cell Death, Senescence, and Autophagy: Is There a Possibility of Developing New Drugs from the Standpoint of This Pathogenetic Mechanism?. Respiratory Disease Series, 2017, , 95-111.	0.1	1
1088	Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 81-95.	8.2	62
1089	Senescent cells and macrophages: key players for regeneration?. Open Biology, 2020, 10, 200309.	1.5	50
1105	Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell, 2020, 19, e13094.	3.0	172
1106	Mitochondrial function in skeletal myofibers is controlled by a TRF2â€SIRT3 axis over lifetime. Aging Cell, 2020, 19, e13097.	3.0	31
1107	ls exercise a senolytic medicine? A systematic review. Aging Cell, 2021, 20, e13294.	3.0	46
1108	Noncoding RNAs in Vascular Aging. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	1.9	27
1109	Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight, 2019, 4, .	2.3	78
1110	The senescence-associated secretome as an indicator of age and medical risk. JCI Insight, 2020, 5, .	2.3	175
1111	Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight, 2016, 1, e87732.	2.3	112
1112	BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. Journal of Clinical Investigation, 2019, 130, 171-188.	3.9	8
1113	Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. Journal of Clinical Investigation, 2020, 130, 1073-1083.	3.9	53
1114	Lymph node fibroblastic reticular cells deposit fibrosis-associated collagen following organ transplantation. Journal of Clinical Investigation, 2020, 130, 4182-4194.	3.9	16

#	Article	IF	CITATIONS
1115	Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. Journal of Clinical Investigation, 2020, 130, 6204-6213.	3.9	59
1116	Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation, 2018, 128, 1208-1216.	3.9	289
1117	Senescent cells and osteoarthritis: a painful connection. Journal of Clinical Investigation, 2018, 128, 1229-1237.	3.9	215
1118	Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018, 128, 1238-1246.	3.9	696
1119	Role of sphingolipids in senescence: implication in aging and age-related diseases. Journal of Clinical Investigation, 2018, 128, 2702-2712.	3.9	125
1120	Telomere Length and the Cancer–Atherosclerosis Trade-Off. PLoS Genetics, 2016, 12, e1006144.	1.5	72
1121	Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLoS ONE, 2017, 12, e0178821.	1.1	96
1122	Rejuvenating Strategies of Tissue-specific Stem Cells for Healthy Aging. , 2019, 10, 871.		17
1123	Hydroxyurea Facilitates Manifestation of Disease Relevant Phenotypes in Patients-Derived IPSCs-Based Modeling of Late-Onset Parkinson's Disease. , 2019, 10, 1037.		8
1124	Transcriptional Repression of High-Mobility Group Box 2 by p21 in Radiation-Induced Senescence. Molecules and Cells, 2018, 41, 362-372.	1.0	6
1125	Smallâ€molecule inhibition of agingâ€associated chromosomal instability delays cellular senescence. EMBO Reports, 2020, 21, e49248.	2.0	27
1126	Nonâ€canonical <scp>ATM</scp> / <scp>MRN</scp> activities temporally define the senescence secretory program. EMBO Reports, 2020, 21, e50718.	2.0	17
1127	Autophagy and Cellular Senescence in Lung Diseases. Journal of Biochemistry and Molecular Biology Research, 2015, 1, 54-66.	0.3	6
1129	The rules of aging: are they universal? Is the yeast model relevant for gerontology?. Acta Biochimica Polonica, 2014, 61, .	0.3	4
1130	Coronary artery calcifications predict long term cardiovascular events in non diabetic Caucasian hemodialysis patients. Aging, 2015, 7, 269-279.	1.4	31
1131	Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging, 2016, 8, 231-244.	1.4	89
1132	The role of hydrogen sulfide in aging and age-related pathologies. Aging, 2016, 8, 2264-2289.	1.4	65
1133	Inducing cellular senescence in vitro by using genetically encoded photosensitizers. Aging, 2016, 8, 2449-2462.	1.4	12

# 1134	ARTICLE Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. Aging, 2017, 9, 860-879.	IF 1.4	Citations
1135	Non-senescent Hydra tolerates severe disturbances in the nuclear lamina. Aging, 2018, 10, 951-972.	1.4	21
1136	Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging, 2019, 11, 950-973.	1.4	17
1137	Knockdown of angiopoietin-like 2 induces clearance of vascular endothelial senescent cells by apoptosis, promotes endothelial repair and slows atherogenesis in mice. Aging, 2019, 11, 3832-3850.	1.4	21
1138	Sex differences in the associations of placental epigenetic aging with fetal growth. Aging, 2019, 11, 5412-5432.	1.4	44
1139	The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells. Aging, 2019, 11, 5817-5828.	1.4	34
1140	lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging, 2019, 11, 7098-7122.	1.4	57
1141	Molecular basis of senescence transmitting in the population of human endometrial stromal cells. Aging, 2019, 11, 9912-9931.	1.4	15
1142	T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging, 2019, 11, 10723-10741.	1.4	12
1143	Targeting senescent cells: approaches, opportunities, challenges. Aging, 2019, 11, 12844-12861.	1.4	67
1144	FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging, 2020, 12, 1272-1284.	1.4	46
1145	PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging, 2020, 12, 2507-2529.	1.4	23
1146	ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. Aging, 2020, 12, 4688-4710.	1.4	54
1147	Intracellular Insulin-like growth factor binding protein 2 (IGFBP2) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. Aging, 2020, 12, 6823-6851.	1.4	20
1148	Identification of SYK inhibitor, R406 as a novel senolytic agent. Aging, 2020, 12, 8221-8240.	1.4	21
1149	Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis. Aging, 2020, 12, 15134-15156.	1.4	8
1150	Association between Nrf2 and CDKN2A expression in patients with end-stage renal disease: a pilot study. Aging, 2020, 12, 16357-16367.	1.4	4
1151	Systemic overexpression of C-C motif chemokine ligand 2 promotes metabolic dysregulation and premature death in mice with accelerated aging. Aging, 2020, 12, 20001-20023.	1.4	5

~	~
(TTATION	REDUBL
CHARLON	

#	Article	IF	CITATIONS
1152	Obesity induced by high-fat diet is associated with critical changes in biological and molecular functions of mesenchymal stromal cells present in visceral adipose tissue. Aging, 2020, 12, 24894-24913.	1.4	11
1153	High fat diet exacerbates Alzheimer's disease-related pathology in APPswe/PS1 mice. Oncotarget, 2016, 7, 67808-67827.	0.8	94
1154	Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget, 2015, 6, 4602-4614.	0.8	38
1155	Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe. Oncotarget, 2015, 6, 2101-2119.	0.8	30
1156	Dual mTORC1/C2 inhibitors: gerosuppressors with potential anti-aging effect. Oncotarget, 2015, 6, 23052-23054.	0.8	18
1157	Insights into the role of immunosenescence during varicella zoster virus infection (shingles) in the aging cell model. Oncotarget, 2015, 6, 35324-35343.	0.8	18
1158	Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget, 2015, 6, 39457-39468.	0.8	89
1159	Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget, 2016, 7, 13285-13296.	0.8	61
1160	Conditioned medium derived from rat amniotic epithelial cells confers protection against inflammation, cancer, and senescence. Oncotarget, 2016, 7, 39051-39064.	0.8	19
1161	Pathogenesis of Aging and Age-related Comorbidities in People with HIV: Highlights from the HIV ACTION Workshop. Pathogens and Immunity, 2020, 5, 143.	1.4	42
1162	Effects of Aging and Diet on Cardioprotection and Cardiometabolic Risk Markers. Current Pharmaceutical Design, 2019, 25, 3704-3714.	0.9	9
1163	Pleiotropic Effects of Tocotrienols and Quercetin on Cellular Senescence: Introducing the Perspective of Senolytic Effects of Phytochemicals. Current Drug Targets, 2016, 17, 447-459.	1.0	46
1164	Cellular Senescence and Anti-Cancer Therapy. Current Drug Targets, 2019, 20, 705-715.	1.0	13
1165	Sumoylation in Cellular Senescence and Aging. Current Molecular Medicine, 2017, 16, 871-876.	0.6	17
1166	Mechanisms of obesity-induced metabolic and vascular dysfunctions. Frontiers in Bioscience - Landmark, 2019, 24, 890-934.	3.0	71
1167	Senescent Cell-Secreted Netrin-1 Modulates Aging-Related Disorders by Recruiting Sympathetic Fibers. Frontiers in Aging Neuroscience, 2020, 12, 507140.	1.7	6
1168	Cellular Senescence in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 16.	1.8	164
1169	Carnosine Stimulates Macrophage-Mediated Clearance of Senescent Skin Cells Through Activation of the AKT2 Signaling Pathway by CD36 and RAGE. Frontiers in Pharmacology, 2020, <u>11</u> , 593832.	1.6	17

#	Article	IF	CITATIONS
1170	Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 601325.	1.6	40
1171	Hepatic senescence, the good and the bad. World Journal of Gastroenterology, 2019, 25, 5069-5081.	1.4	54
1172	Somatic driver mutations in endometriosis as possible regulators of fibrogenesis (Review). World Academy of Sciences Journal, 0, , .	0.4	3
1173	Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genetics, 2015, 02, 054-069.	1.9	10
1174	Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes. Biomolecules and Therapeutics, 2019, 27, 283-289.	1.1	11
1175	Chronic obstructive pulmonary disease and the hallmarks of aging. Lung India, 2018, 35, 321.	0.3	19
1176	Recurrent turnover of senescent cells during regeneration of a complex structure. ELife, 2015, 4, .	2.8	286
1177	Siglec receptors impact mammalian lifespan by modulating oxidative stress. ELife, 2015, 4, .	2.8	56
1178	Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. ELife, 2017, 6, .	2.8	193
1179	p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. ELife, 2020, 9, .	2.8	106
1180	Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. ELife, 2020, 9, .	2.8	22
1181	Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. ELife, 2020, 9, .	2.8	53
1182	Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Research, 2021, 49, 11690-11707.	6.5	10
1183	Expression of p16 Within Myenteric Neurons of the Aged Colon: A Potential Marker of Declining Function. Frontiers in Neuroscience, 2021, 15, 747067.	1.4	8
1184	Proteomic and Biological Analysis of the Effects of Metformin Senomorphics on the Mesenchymal Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 730813.	2.0	19
1185	Cellular senescence in the tumor microenvironment and contextâ€specific cancer treatment strategies. FEBS Journal, 2023, 290, 1290-1302.	2.2	20
1186	Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75, 584-599.	3.6	44
1187	Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Scientific Reports, 2021, 11, 20358.	1.6	45

ARTICLE IF CITATIONS # Phenotypic and functional transformation in smooth muscle cells derived from a superficial 1188 0.4 0 thrombophlebitis-affected vein wall. Annals of Vascular Surgery, 2021, , . Targeted Therapeutics Delivery by Exploiting Biophysical Properties of Senescent Cells. Advanced 1189 Functional Materials, 2022, 32, 2107990. Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and 1190 2.9 14 PD-L1 expressions in intrahepatic cholangiocarcinoma. British Journal of Cancer, 2022, 126, 219-227. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Medicine, 2021, 3, 1041-1049. 1191 A narrative review of imatinib-resistant gastrointestinal stromal tumors. Gastrointestinal Stromal 1192 0.0 4 Tumor, 0, 4, 6-6. Impact of senescence on the transdifferentiation process of human hepatic progenitor-like cells. World Journal of Stem Cells, 2021, 13, 1595-1609. 1.3 Cellular senescenceâ€"an aging hallmark in chronic obstructive pulmonary disease pathogenesis. 1194 0.9 11 Respiratory Investigation, 2022, 60, 33-44. MicroRNA-34a: the bad guy in age-related vascular diseases. Cellular and Molecular Life Sciences, 2021, 2.4 40 78, 7355-7378. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Frontiers in Immunology, 1196 2.2 16 2021, 12, 732913. Sex-biased islet Î² cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Reports, 2021, 37, 109813. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nature 1198 6.1 84 Reviews Cardiology, 2022, 19, 250-264. Passage Number-Induced Replicative Senescence Modulates the Endothelial Cell Response to 1.5 Protein-Bound Uremic Toxins. Toxins, 2021, 13, 738. The tumor suppression theory of aging. Mechanisms of Ageing and Development, 2021, 200, 111583. 1200 2.2 8 Suppression of Cellular Senescence by Cordycepin in Replicative Aged Human Dermal Fibroblasts. 0.2 Journal of the Society of Cosmetic Scientists of Korea, 2015, 41, 135-141. 1202 The Impact of Cancer Treatments on Aging., 2016, , 85-119. 0 Unlike the Stochastic Events That Determine Ageing, Sex Determines Longevity. Healthy Ageing and Longevity, 2016, , 347-362. Biomarkers of Replicative Senescence Revisited. Healthy Ageing and Longevity, 2016, , 203-239. 1204 0.2 0 Can we rejuvenate? Implications of biological aging research. Yeungnam University Journal of Medicine, 2017, 34, 1-10.

#	Article	IF	CITATIONS
1209	The Sturgeon Ovarian Liquid and the Perch Roe Extract are Able to Enhance the Recovery of the Fibroblasts after their Stress-induced Premature Senescence. Biomedical Chemistry Research and Methods, 2018, 1, e00011.	0.1	1
1218	Aging and Cardiovascular Diseases: The Role of Cellular Senescence. , 2019, , 207-233.		1
1219	Cell Senescence. , 2019, , 1-15.		0
1221	Senescence-Associated Beta-Galactosidase Marker of Cellular Senescence. , 2019, , .		0
1223	Cellular Aging/Senescence. , 2019, , 1-11.		0
1224	Hot Water Extract of Loliolus beka Meat Attenuates H2O2-Induced Damage in Human Umbilical Vein Endothelial Cells. Advances in Experimental Medicine and Biology, 2019, 1155, 705-715.	0.8	0
1225	Senescence of the Kidney. , 2019, , 39-48.		0
1229	Erythrocyte miRNA 144 and miRNA 451 as Cell Aging Biomarkers in African American Adults. The Open Biochemistry Journal, 2019, 13, 81-87.	0.3	1
1230	Age-Related Changes of Procollagen Alpha Polypeptide in Vascular Remodeling in Rat Vascular Smooth Muscle Cell. Journal of Biosciences and Medicines, 2020, 08, 20-31.	0.1	0
1231	Towards restoring proper chromosome segregation and preventing ageing. EMBO Reports, 2020, 21, e50322.	2.0	4
1232	El papel del envejecimiento en el desarrollo de enfermedades cardiovasculares asociadas a patologÃas renales. Revista De Investigación Y Educación En Ciencias De La Salud (RIECS), 2020, 5, 106-120.	0.0	0
1234	The Pivotal Role of Senescence in Cell Death and Aging: Where Do We Stand?. Current Molecular Biology Reports, 2020, 6, 91-101.	0.8	0
1235	Autophagy: A new insight into pathogenesis and treatment possibilities in age-related macular degeneration. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 213-223.	0.1	1
1238	Ultraviolet B-induced Senescence Model Using Corneal Fibroblasts and the Anti-aging Effect of Angiogenin. Journal of Korean Ophthalmological Society, 2020, 61, 1015-1022.	0.0	0
1239	Functionally Heterogenous Macrophage Subsets in the Pathogenesis of Giant Cell Arteritis: Novel Targets for Disease Monitoring and Treatment. Journal of Clinical Medicine, 2021, 10, 4958.	1.0	15
1240	p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science, 2021, 374, eabb3420.	6.0	112
1241	DNMT3A and DNMT3B Targeting as an Effective Radiosensitizing Strategy in Embryonal Rhabdomyosarcoma. Cells, 2021, 10, 2956.	1.8	18
1242	Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49th Annual Meeting of the American Aging Association. GeroScience, 2022, 44, 39-52.	2.1	2

#	Article	IF	CITATIONS
1243	Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacological Research, 2022, 177, 105961.	3.1	16
1244	Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology: JASN, 2021, 32, 2697-2713.	3.0	28
1245	Analysis of senescence-responsive stress fiber proteome reveals reorganization of stress fibers mediated by elongation factor eEF2 in HFF-1 cells. Molecular Biology of the Cell, 2022, 33, mbcE21050229.	0.9	7
1246	Reviewing cancer's biology: an eclectic approach. Journal of the Egyptian National Cancer Institute, 2021, 33, 32.	0.6	14
1249	Mitochondrial Glutamine Metabolism Determines Senescence Induction After Chemotherapy. Anticancer Research, 2020, 40, 6891-6897.	0.5	4
1250	Microgravity-Induced Senescence Mechanisms in Human Stem Cell-Derived Cardiomyocytes. SSRN Electronic Journal, 0, , .	0.4	0
1251	Cardiac robustness regulated by reactive sulfur species. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 1-6.	0.6	3
1252	Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. Journal of Molecular and Cellular Cardiology, 2022, 163, 9-19.	0.9	10
1254	Senolysis and Senostasis Through the Plasma Membrane. Healthy Ageing and Longevity, 2020, , 131-143.	0.2	1
1255	Upregulation of p16, Bax and Bcl-2 mRNAExpression Associated with Epithelial Apoptosis and Myofibroblast Proliferation in Kidney Fibrosis Model in Mice. The Malaysian Journal of Medical Sciences, 2020, 27, 37-44.	0.3	4
1256	ROS-Induced DNA Damage as an Underlying Cause of Aging. Advances in Geriatric Medicine and Research, 2020, , .	0.6	2
1257	Extracellular Vesicles as Central Mediators of COPD Pathophysiology. Annual Review of Physiology, 2022, 84, 631-654.	5.6	9
1258	Hormetic effect of low doses of rapamycin triggers anti-aging cascades in WRL-68 cells by modulating an mTOR-mitochondria cross-talk. Molecular Biology Reports, 2022, 49, 463-476.	1.0	5
1259	Extracellular Vesicles: Footprints of environmental exposures in the aging process?. Current Environmental Health Reports, 2021, 8, 309-322.	3.2	5
1260	Accumulation of Senescent Neural Cells in Murine Lupus With Depression-Like Behavior. Frontiers in Immunology, 2021, 12, 692321.	2.2	15
1261	Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11967.	1.8	26
1262	Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis. PeerJ, 2021, 9, e12286.	0.9	4
1264	Future Directions of Therapeutic Vaccines for Chronic Diseases. Circulation Journal, 2020, 84, 1895-1902.	0.7	5

ARTICLE IF CITATIONS # Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genetics, 2015, 1265 1.9 9 2,54-69. Where Is Health Care Headed?. Integrative Medicine, 2016, 15, 16-8. 0.1 Lactose induced redox-dependent senescence and activated Nrf2 pathway. International Journal of 1268 0.53 Clinical and Experimental Pathology, 2019, 12, 2034-2045. Icaritin induces cellular senescence by accumulating the ROS production and regulation of the Jak2/Stat3/p21 pathway in imatinib-resistant, chronic myeloid leukemia cells. American Journal of Translational Research (discontinued), 2021, 13, 8860-8872. 1270 Cellular senescence in neurodegenerative diseases., 2022, , 363-381. 1271 1 Cell senescence is a cause of frailty., 2022, , 383-422. Cell senescence in pulmonary hypertension., 2022, , 81-105. 1273 0 Premalignant lesions and cellular senescence., 2022, , 29-60. 1274 1275 Cellular senescence and its impact on the circadian clock. Journal of Biochemistry, 2022, 171, 493-500. 0.9 10 Camphorquinone Promotes the Antisenescence Effect via Activating AMPK/SIRT1 in Stem Cells and 1276 2.2 D-Galactose-Induced Aging Mice. Antioxidants, 2021, 10, 1916. The right time for senescence. ELife, 2021, 10, . 1277 2.8 56 Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines, 2021, 9, 1769. 1278 1.4 Potential Reasons for Unresponsiveness to Anti-PD1 Immunotherapy in Young Patients with Advanced 1279 1.1 7 Melanoma. Life, 2021, 11, 1318. Ageâ€related cellular and microstructural changes in the rotator cuff enthesis. Journal of 1.2 Orthopaedic Research, 2022, 40, 1883-1895. 1282 Ionizing irradiation-induced Fgr in senescent cells mediates fibrosis. Cell Death Discovery, 2021, 7, 349. 2.0 7 Mechanical Stretch Induces Annulus Fibrosus Cell Senescence through Activation of the RhoA/ROCK Pathway. BioMed Research International, 2021, 2021, 1-7. Immunesenescence and Compromised Removal of Senescent Cells: Implications for Health in Old Age. 1284 0.2 0 Healthy Ageing and Longevity, 2022, , 23-52. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Molecular Neurobiology, 2022, 59, 821-840.

#	Article	IF	CITATIONS
1286	Noninvasive NIR Imaging of Senescence <i>via In Situ</i> Labeling. Journal of Medicinal Chemistry, 2021, 64, 17969-17978.	2.9	28
1287	Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells, 2021, 10, 3114.	1.8	17
1289	Senolytic Phytocompounds in Redox Signaling. Healthy Ageing and Longevity, 2022, , 255-283.	0.2	3
1290	The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Molecular and Cellular Neurosciences, 2021, 117, 103683.	1.0	12
1291	A Benzenesulfonamide GW8510 Rejuvenates Mice and Yeast Through Interaction with P21-Activated Kinases. SSRN Electronic Journal, 0, , .	0.4	0
1292	Cell Senescence. , 2021, , 849-864.		0
1293	Senescence in chronic wounds and potential targeted therapies. Burns and Trauma, 2022, 10, tkab045.	2.3	16
1294	Cellular Aging/Senescence. , 2021, , 864-874.		0
1295	Senolytic Drugs. , 2021, , 4459-4465.		0
1296	Chronic Inflammation and Aging (Inflammaging). , 2021, , 39-50.		1
1296 1297	Chronic Inflammation and Aging (Inflammaging). , 2021, , 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8.	1.5	1 34
1296 1297 1298	Chronic Inflammation and Aging (Inflammaging)., 2021,, 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933.	1.5 2.3	1 34 8
1296 1297 1298 1299	Chronic Inflammation and Aging (Inflammaging)., 2021,, 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Human Reproduction Update, 2022, 28, 376-399.	1.5 2.3 5.2	1 34 8 17
1296 1297 1298 1299 1300	Chronic Inflammation and Aging (Inflammaging)., 2021, , 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Human Reproduction Update, 2022, 28, 376-399. Is Cellular Senescence of Dopaminergic Neurons the Cause of Local Inflammation in the Midbrain Observed in Parkinson's Disease?., 2020, 2,.	1.5 2.3 5.2	1 34 8 17 2
1296 1297 1298 1299 1300	Chronic Inflammation and Aging (Inflammaging)., 2021,, 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Human Reproduction Update, 2022, 28, 376-399. Is Cellular Senescence of Dopaminergic Neurons the Cause of Local Inflammation in the Midbrain Observed in Parkinson's Disease?., 2020, 2, . Morphological and functional changes in placentas from prolonged pregnancies. Placenta, 2022, 125, 29-35.	1.5 2.3 5.2 0.7	1 34 8 17 2 2
1296 1297 1298 1299 1300 1301	Chronic Inflammation and Aging (Inflammaging)., 2021, , 39-50. Senolytic Therapy to Modulate the Progression of Alzheimer〙s Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Human Reproduction Update, 2022, 28, 376-399. Is Cellular Senescence of Dopaminergic Neurons the Cause of Local Inflammation in the Midbrain Observed in Parkinson's Disease?., 2020, 2, . Morphological and functional changes in placentas from prolonged pregnancies. Placenta, 2022, 125, 29-35. Placentation and Placental Function in Normal and Preeclamptic Pregnancies., 2022, , 95-116.	1.5 2.3 5.2 0.7	1 34 8 17 2 2 0
1296 1297 1298 1299 1300 1301 1302	Chronic Inflammation and Aging (Inflammaging)., 2021,, 39-50. Senolytic Therapy to Modulate the Progression of Alzheimerãe™s Disease (STOMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine, 2022, 98, 153933. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Human Reproduction Update, 2022, 28, 376-399. Is Cellular Senescence of Dopaminergic Neurons the Cause of Local Inflammation in the Midbrain Observed in Parkinsonãe™s Disease?., 2020, 2, . Morphological and functional changes in placentas from prolonged pregnancies. Placenta, 2022, 125, 29-35. Placentation and Placental Function in Normal and Preeclamptic Pregnancies. , 2022, , 95-116. Protective Role of Melatonin and Its Metabolites in Skin Aging. International Journal of Molecular Sciences, 2022, 23, 1238.	1.5 2.3 5.2 0.7	1 34 8 17 2 2 0 50

#	Article	IF	CITATIONS
1305	Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein and Cell, 2022, , 1.	4.8	12
1306	Unfolded protein response alleviates acidâ€induced premature senescence by promoting autophagy in nucleus pulposus cells. Cell Biology International, 2022, 46, 568-578.	1.4	5
1307	Nrg1/ErbB signalingâ€mediated regulation of fibrosis after myocardial infarction. FASEB Journal, 2022, 36, e22150.	0.2	17
1308	Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging, 2022, 14, 572-595.	1.4	34
1309	Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular Sciences, 2022, 23, 1542.	1.8	29
1310	Interconnections between Inflammageing and Immunosenescence during Ageing. Cells, 2022, 11, 359.	1.8	70
1311	Precision medicine to manage chronic immune-related conditions. , 2022, , 295-318.		1
1312	Spatially Confined Intervention of Cellular Senescence by a Lysosomal Metabolism Targeting Molecular Prodrug for Broadâ€5pectrum Senotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
1313	The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Molecular Neurodegeneration, 2022, 17, 5.	4.4	34
1314	In vitro study on effect of bardoxolone methyl on cisplatin-induced cellular senescence in human proximal tubular cells. Molecular and Cellular Biochemistry, 2022, 477, 689-699.	1.4	4
1315	Gut microbiome–immune system interaction in reptiles. Journal of Applied Microbiology, 2022, 132, 2558-2571.	1.4	11
1316	Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants, 2022, 11, 301.	2.2	21
1317	A comprehensive analysis of age-related metabolomics and transcriptomics reveals metabolic alterations in rat bone marrow mesenchymal stem cells. Aging, 2022, 14, 1014-1032.	1.4	7
1318	Intravital imaging reveals inflammation as a dominant pathophysiology of age-related hepatovascular changes. American Journal of Physiology - Cell Physiology, 2022, 322, C508-C520.	2.1	5
1319	The effect of lactoferrin in aging: role and potential. Food and Function, 2022, 13, 501-513.	2.1	8
1320	Impaired JAK-STAT pathway signaling in leukocytes of the frail elderly. Immunity and Ageing, 2022, 19, 5.	1.8	6
1321	Emerging Interrelationship Between the Gut Microbiome and Cellular Senescence in the Context of Aging and Disease: Perspectives and Therapeutic Opportunities. Probiotics and Antimicrobial Proteins, 2022, 14, 648-663.	1.9	20
1322	Inflammation Resolution: Implications for Atherosclerosis. Circulation Research, 2022, 130, 130-148.	2.0	49

# 1323	ARTICLE Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules, 2022, 27, 738.	IF 1.7	Citations 25
1324	Tissue engineering strategies to bioengineer the ageing skin phenotype in vitro. Aging Cell, 2022, 21, e13550.	3.0	7
1325	Spatially Confined Intervention of Cellular Senescence by a Lysosomal Metabolism Targeting Molecular Prodrug for Broad‧pectrum Senotherapy. Angewandte Chemie, 2022, 134, .	1.6	3
1326	Atrial Fibrillation Underlies Cardiomyocyte Senescence and Contributes to Deleterious Atrial Remodeling during Disease Progression. , 2022, 13, 298.		7
1327	Systems approaches to investigate the role of NF-κB signaling in aging. Biochemical Journal, 2022, 479, 161-183.	1.7	23
1328	Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes, 2022, 71, 1081-1098.	0.3	30
1329	Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166352.	1.8	4
1330	Restoration of miR-223-3p expression in aged mouse uteri with Samul-tang administration. Integrative Medicine Research, 2022, 11, 100835.	0.7	4
1331	Ageing, cellular senescence and chronic kidney disease: experimental evidence. Current Opinion in Nephrology and Hypertension, 2022, 31, 235-243.	1.0	14
1332	Telomeres, aging, and cancer: the big picture. Blood, 2022, 139, 813-821.	0.6	30
1334	Modulation of SIRT6 activity acts as an emerging therapeutic implication for pathological disorders in the skeletal system. Genes and Diseases, 2022, , .	1.5	2
1336	The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. Frontiers in Reproductive Health, 2021, 3, .	0.6	6
1337	Immunosenescence in Choroidal Neovascularization (CNV)—Transcriptional Profiling of NaÃ⁻ve and CNV-Associated Retinal Myeloid Cells during Aging. International Journal of Molecular Sciences, 2021, 22, 13318.	1.8	7
1338	Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. International Journal of Molecular Sciences, 2022, 23, 77.	1.8	28
1340	A geroscience approach for osteosarcopenia: Autophagy and senescence as therapeutic targets. , 2022, , 51-75.		0
1341	Phosphate and Cellular Senescence. Advances in Experimental Medicine and Biology, 2022, 1362, 55-72.	0.8	5
1342	Al in Longevity Medicine. , 2022, , 1157-1168.		0
1343	Lipid vesicles: potential nanocarriers for the delivery of essential oils to combat skin aging. , 2022, , 131-156.		0
#	Article	IF	Citations
------	--	--------------------	-----------
1344	Cellular senescence and other aging mechanisms in bone and muscle. , 2022, , 19-37.		0
1345	Altered p16Ink4a, IL-1Î ² , and Lamin b1 Protein Expression Suggest Cellular Senescence in Deep Endometriotic Lesions. International Journal of Molecular Sciences, 2022, 23, 2476.	1.8	5
1346	Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Seminars in Immunopathology, 2022, 44, 527-544.	2.8	16
1347	Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Scientific Reports, 2022, 12, 2966.	1.6	3
1348	IL-34 Downregulation‒Associated M1/M2 Macrophage Imbalance Is Related to Inflammaging in Sun-Exposed Human Skin. JID Innovations, 2022, 2, 100112.	1.2	9
1349	Post-GWAS functional analysis identifies CUX1 as a regulator of p16INK4a and cellular senescence. Nature Aging, 2022, 2, 140-154.	5.3	4
1350	ЛОГІКЕВÐ~ЗÐÐЧЕÐÐÐ [~] ЗДОÐĐžÐ"Ð [~] ІÐДÐ [~] ВІДЕТЕПОПУЛÐ ⁻ ЦІЇ. ЧÐÐ _İ E)¢ ð . ÐЕ2.	ĐơВОЛĐ
1351	Cellular Senescence and Aging in Myotonic Dystrophy. International Journal of Molecular Sciences, 2022, 23, 2339.	1.8	5
1352	MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants, 2022, 11, 480.	2.2	21
1353	Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chemical Biology, 2022, 17, 545-555.	1.6	3
1355	Epigenetic Regulation of Cellular Senescence. Cells, 2022, 11, 672.	1.8	43
1356	Attenuation of intrinsic ageing of the skin via elimination of senescent dermal fibroblasts with senolytic drugs. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 1125-1135.	1.3	18
1357	Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells, 2022, 11, 1017.	1.8	45
1358	Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Current Neuropharmacology, 2023, 21, 891-910.	1.4	11
1359	Lipids as Regulators of Cellular Senescence. Frontiers in Physiology, 2022, 13, 796850.	1.3	37
1362	Cellular senescence and acute kidney injury. Pediatric Nephrology, 2022, 37, 3009-3018.	0.9	12
1363	Aging of enteric neuromuscular systems in gastrointestinal tract. Neurogastroenterology and Motility, 2022, 34, e14352.	1.6	8
1364	Cellular Senescence and Ageing: Mechanisms and Interventions. Frontiers in Aging, 2022, 3, .	1.2	34

	C	itation Rep	ORT	
#	Article		IF	CITATIONS
1365	m6A hypomethylation of DNM13B regulated by ALKBH5 promotes intervertebral disc degeneration v E4F1 deficiency. Clinical and Translational Medicine, 2022, 12, e765.	ia	1.7	27
1366	Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 823945.		2.0	17
1367	Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Frontiers in Physiology, 2022, 13, 812157.		1.3	8
1368	Implications of Sphingolipids on Aging and Age-Related Diseases. Frontiers in Aging, 2022, 2, .		1.2	7
1369	A gradual path to mortality. ELife, 2022, 11, .		2.8	0
1370	Exploiting senescence for the treatment of cancer. Nature Reviews Cancer, 2022, 22, 340-355.		12.8	254
1371	Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 3028.		1.8	6
1372	WTAP-mediated m6A modification of IncRNA NORAD promotes intervertebral disc degeneration. Nat Communications, 2022, 13, 1469.	ture	5.8	55
1373	Cytokine-Induced Senescence in the Tumor Microenvironment and Its Effects on Anti-Tumor Immune Responses. Cancers, 2022, 14, 1364.	2	1.7	13
1374	Mitochondria Dysfunction-Mediated Molecular Subtypes and Gene Prognostic Index for Prostate Cancer Patients Undergoing Radical Prostatectomy or Radiotherapy. Frontiers in Oncology, 2022, 12 858479.)-,	1.3	16
1375	Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Research Reviews, 2022, 77, 101608.		5.0	41
1376	Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mechanisms of Ageing and Development, 2022, 204, 111667.		2.2	12
1377	The effect of astaxanthin treatment on the rat model of fetal alcohol spectrum disorders (FASD). Brain Research Bulletin, 2022, 183, 57-72.		1.4	5
1378	Astragalus polysaccharide alleviated hepatocyte senescence via autophagy pathway. Kaohsiung Journal of Medical Sciences, 2022, 38, 457-468.		0.8	9
1380	Aging Leukocytes and the Inflammatory Microenvironment of the Adipose Tissue. Diabetes, 2022, 7 23-30.	L,	0.3	7
1381	Advances in relationship between cell senescence and atherosclerosis. Zhejiang Da Xue Xue Bao Yi X Ban = Journal of Zhejiang University Medical Sciences, 2021, 51, 95-101.	ue	0.1	1
1383	Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells, 2021, 10, 3570.		1.8	17
1384	Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. International Journal of Molecular Sciences, 2022, 23, 254.		1.8	33

#	Article	IF	CITATIONS
1385	Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 13173.	1.8	116
1386	Exploring New Kingdoms: The Role of Extracellular Vesicles in Oxi-Inflamm-Aging Related to Cardiorenal Syndrome. Antioxidants, 2022, 11, 78.	2.2	11
1387	Longevity, cellular senescence and the gut microbiome: lessons to be learned from crocodiles. Heliyon, 2021, 7, e08594.	1.4	10
1388	Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	4
1389	Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice. Journal of Ginseng Research, 2022, 46, 657-665.	3.0	7
1390	Induction of <i>IL19</i> expression through JNK and cGAS-STING modulates DNA damage–induced cytokine production. Science Signaling, 2021, 14, eaba2611.	1.6	1
1391	Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. Frontiers in Rehabilitation Sciences, 2021, 2, .	0.5	2
1392	Adipose tissue macrophages in aging-associated adipose tissue function. Journal of Physiological Sciences, 2021, 71, 38.	0.9	10
1393	Cellular mechanisms of aging and their impact on the aortic/arterial wall. , 2022, , 391-405.		0
1394	Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. International Journal of Molecular Sciences, 2022, 23, 4168.	1.8	36
1395	Yang cycle enzyme DEP1: its moonlighting functions in PSI and ROS production during leaf senescence. Molecular Horticulture, 2022, 2, .	2.3	2
1396	The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. International Journal of Molecular Sciences, 2022, 23, 4338.	1.8	2
1397	Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nature Cell Biology, 2022, 24, 483-496.	4.6	18
1398	The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Frontiers in Cardiovascular Medicine, 2022, 9, 854726.	1.1	8
1399	Identifying Novel Osteoarthritis-Associated Genes in Human Cartilage Using a Systematic Meta-Analysis and a Multi-Source Integrated Network. International Journal of Molecular Sciences, 2022, 23, 4395.	1.8	7
1400	Elevated skin senescence in young mice causes delayed wound healing. GeroScience, 2022, 44, 1871-1878.	2.1	12
1401	Pan-mTOR inhibitors sensitize the senolytic activity of navitoclax via mTORC2 inhibition-mediated apoptotic signaling. Biochemical Pharmacology, 2022, 200, 115045.	2.0	5
1402	Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain, Behavior, and Immunity, 2022, 103, 85-96.	2.0	16

#	Article	IF	CITATIONS
1410	Cellular senescence in cancers: relationship between bone marrow cancer and cellular senescence. Molecular Biology Reports, 2022, 49, 4003-4012.	1.0	2
1411	Obesity as a premature aging phenotype — implications for sarcopenic obesity. GeroScience, 2022, 44, 1393-1405.	2.1	22
1412	Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Reviews and Reports, 2022, 18, 2315-2327.	1.7	47
1413	CB2R Attenuates Intervertebral Disc Degeneration by Delaying Nucleus Pulposus Cell Senescence through AMPK/GSK3Î ² Pathway. , 2022, 13, 552.		25
1414	When wrinkles appear on the immune system can it be reversed?. European Cytokine Network, 2020, 31, 1-17.	1.1	4
1417	Senescence modulation as a key process in the dual role of hyaluronan in cancer. The deforestation allegory. Clycobiology, 2022, , .	1.3	1
1418	Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. Journal of Personalized Medicine, 2022, 12, 716.	1.1	8
1419	Multi-Ingredient Supplement Supports Mitochondrial Health through Interleukin-15 Signaling in Older Adult Human Dermal Fibroblasts. Cosmetics, 2022, 9, 47.	1.5	0
1420	The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Developmental Cell, 2022, 57, 1083-1101.	3.1	19
1421	An Aging and Senescence-Related Gene Signature for Prognosis Prediction in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2022, 13, .	1.1	0
1422	Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomedicine and Pharmacotherapy, 2022, 150, 113034.	2.5	17
1423	Urolithin A protects human dermal fibroblasts from UVA-induced photoaging through NRF2 activation and mitophagy. Journal of Photochemistry and Photobiology B: Biology, 2022, 232, 112462.	1.7	12
1425	Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sciences, 2022, 302, 120644.	2.0	6
1426	Indoxyl sulfate impairs <i>in vitro</i> erythropoiesis by triggering apoptosis and senescence. Experimental Biology and Medicine, 2022, 247, 1350-1363.	1.1	5
1427	Cellular Senescence in Aging Lungs and Diseases. Cells, 2022, 11, 1781.	1.8	18
1428	Oridonin Delays Aging Through the AKT Signaling Pathway. Frontiers in Pharmacology, 0, 13, .	1.6	9
1429	Long-term consumption of green tea EGCG enhances murine health span by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis, and immunosenescence. Journal of Nutritional Biochemistry, 2022, 107, 109068.	1.9	25
1430	Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12

#	Article	IF	CITATIONS
1431	Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress. Antioxidants, 2022, 11, 1037.	2.2	8
1432	Age-Related Changes in the Fibroblastic Differon of the Dermis: Role in Skin Aging. International Journal of Molecular Sciences, 2022, 23, 6135.	1.8	13
1433	Triboelectric Nanogenerators for Cellular Bioelectrical Stimulation. Advanced Functional Materials, 2022, 32, .	7.8	17
1434	LINCing Senescence and Nuclear Envelope Changes. Cells, 2022, 11, 1787.	1.8	3
1435	Clearance of senescent cells with ABT-263 improves biological functions of synovial mesenchymal stem cells from osteoarthritis patients. Stem Cell Research and Therapy, 2022, 13, .	2.4	19
1437	<scp>NFâ€₽B</scp> â€dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell, 2022, 21, .	3.0	6
1438	Age-Related Midbrain Inflammation and Senescence in Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	12
1439	A gene prognostic index from cellular senescence predicting metastasis and radioresistance for prostate cancer. Journal of Translational Medicine, 2022, 20, .	1.8	19
1440	Senotherapy Protects against Cisplatin-Induced Ovarian Injury by Removing Senescent Cells and Alleviating DNA Damage. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	1.9	13
1441	Senescence in Vascular Smooth Muscle Cells and Atherosclerosis. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	10
1442	Knockdown of LMNB1 Inhibits the Proliferation of Lung Adenocarcinoma Cells by Inducing DNA Damage and Cell Senescence. Frontiers in Oncology, 0, 12, .	1.3	8
1443	Omentin-1 alleviate interleukin-1β(IL-1β)-induced nucleus pulposus cells senescence. Bioengineered, 2022, 13, 13849-13859.	1.4	7
1444	Androgens, aging, and prostate health. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 1221-1231.	2.6	7
1445	Human primary skeletal muscleâ€derived myoblasts and fibroblasts reveal different senescent phenotypes. JCSM Rapid Communications, 2022, 5, 226-238.	0.6	4
1446	Hot and dry conditions predict shorter nestling telomeres in an endangered songbird: Implications for population persistence. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
1447	Cellular senescence and the tumour microenvironment. Molecular Oncology, 2022, 16, 3333-3351.	2.1	34
1448	Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants, 2022, 11, 1121.	2.2	63
1449	N-methyl-D-aspartate receptor blockers attenuate bleomycin-induced pulmonary fibrosis by inhibiting endogenous mesenchymal stem cells senescence. Annals of Translational Medicine, 2022, 10, 642-642.	0.7	2

#	Article	IF	CITATIONS
1450	EA.hy926 Cells and HUVECs Share Similar Senescence Phenotypes but Respond Differently to the Senolytic Drug ABT-263. Cells, 2022, 11, 1992.	1.8	8
1451	Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight, 2022, 7, .	2.3	16
1452	Adrenal stress hormone regulation of hepatic homeostatic function after an acute ozone exposure in Wistar-Kyoto male rats. Toxicological Sciences, 0, , .	1.4	7
1453	Linking Mitochondrial Function to Insulin Resistance: Focusing on Comparing the Old and the Young. Frontiers in Nutrition, 0, 9, .	1.6	1
1454	A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Frontiers in Aging Neuroscience, 0, 14, .	1.7	19
1455	Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. IScience, 2022, 25, 104577.	1.9	12
1456	Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis. Ocular Surface, 2022, 25, 108-118.	2.2	22
1457	Flavonoids from Rhododendron nivale Hook. f delay aging via modulation of gut microbiota and glutathione metabolism. Phytomedicine, 2022, 104, 154270.	2.3	9
1458	Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nature Communications, 2022, 13, .	5.8	16
1459	β-Klotho inhibits CSF-1 secretion and delays the development of endometrial cancer. Cell Cycle, 2022, 21, 2132-2144.	1.3	0
1461	Senescence: An Identity Crisis Originating from Deep Within the Nucleus. Annual Review of Cell and Developmental Biology, 2022, 38, 219-239.	4.0	8
1462	Contextâ€dependent roles of cellular senescence in normal, aged, and disease states. FEBS Journal, 2023, 290, 1161-1185.	2.2	6
1463	Exploring the fuzzy border between senolytics and senomorphics with chemoinformatics and systems pharmacology. Biogerontology, 2022, 23, 453-471.	2.0	4
1464	Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. European Respiratory Journal, 2022, 60, 2102307.	3.1	23
1465	Elimination of Senescent Cells by Senolytics Facilitates Bony Endplate Microvessel Formation and Mitigates Disc Degeneration in Aged Mice. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
1466	Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells, 2022, 11, 2220.	1.8	24
1468	DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 94, S429-S451.	1.2	7
1469	Intersection of Inflammation and Senescence in the Aging Lung Stem Cell Niche. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8

#	Article	IF	CITATIONS
1470	Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mechanisms of Ageing and Development, 2022, 206, 111707.	2.2	29
1471	Repair, regeneration and rejuvenation require un-entangling pluripotency from senescence. Ageing Research Reviews, 2022, 80, 101663.	5.0	2
1472	Muscle metabolism in older adults. Russian Journal of Geriatric Medicine, 2022, , 96-102.	0.3	3
1473	Cyclin-Dependent Kinase 1 Inhibition Potentiates the Proliferation of Tonsil-Derived Mesenchymal Stem Cells by Delaying Cellular Senescence. Stem Cells International, 2022, 2022, 1-14.	1.2	0
1475	Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mechanisms of Ageing and Development, 2022, 206, 111708.	2.2	7
1476	COX-2/sEH Dual Inhibitor Alleviates Hepatocyte Senescence in NAFLD Mice by Restoring Autophagy through Sirt1/PI3K/AKT/mTOR. International Journal of Molecular Sciences, 2022, 23, 8267.	1.8	19
1477	The development and validation of a novel senescence-related long-chain non-coding RNA (IncRNA) signature that predicts prognosis and the tumor microenvironment of patients with hepatocellular carcinoma. Annals of Translational Medicine, 2022, 10, 766-766.	0.7	4
1478	Black Ginseng Ameliorates Cellular Senescence via p53-p21/p16 Pathway in Aged Mice. Biology, 2022, 11, 1108.	1.3	4
1479	Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Research and Therapy, 2022, 24, .	1.6	40
1480	Hesperidin Exhibits Protective Effects against PM2.5-Mediated Mitochondrial Damage, Cell Cycle Arrest, and Cellular Senescence in Human HaCaT Keratinocytes. Molecules, 2022, 27, 4800.	1.7	10
1481	The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Frontiers in Pharmacology, 0, 13, .	1.6	6
1482	Global research trends in atherosclerosis: A bibliometric and visualized study. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	6
1483	Axolotl: A resourceful vertebrate model for regeneration and beyond. Developmental Dynamics, 2022, 251, 1914-1933.	0.8	5
1484	Scientific literature landscape analysis of researches on oxidative stress in intervertebral disc degeneration in web of science. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1485	A review of pathobiological mechanisms and potential application of medicinal plants for vascular aging: focus on endothelial cell senescence. Medical Journal of Indonesia, 0, , .	0.2	0
1486	Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	8
1487	New Trends in Aging Drug Discovery. Biomedicines, 2022, 10, 2006.	1.4	3
1488	Transcriptional Heterogeneity of Cellular Senescence in Cancer. Molecules and Cells, 2022, 45, 610-619.	1.0	9

#	Article	IF	CITATIONS
1489	Cellular senescence: a key therapeutic target in aging and diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	115
1490	Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry. Cells, 2022, 11, 2506.	1.8	5
1491	Hormetic alteration of mTOR–mitochondria association: An approach to mitigate cellular aging. Current Opinion in Environmental Science and Health, 2022, 29, 100387.	2.1	1
1493	Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants, 2022, 11, 1571.	2.2	3
1494	Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene, 2022, 41, 4361-4370.	2.6	13
1495	Pathophysiological Aspects of Aging in Venous Thromboembolism: An Update. Medicina (Lithuania), 2022, 58, 1078.	0.8	4
1497	Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Frontiers in Oncology, 0, 12, .	1.3	2
1498	The Integrin α3β1 Signaling in the Regulation of the SK-Mel-147 Melanoma Cell Senescence. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2022, 16, 187-194.	0.2	0
1499	Cathepsin F is a potential marker for senescent human skin fibroblasts and keratinocytes associated with skin aging. GeroScience, 2023, 45, 427-437.	2.1	5
1500	Application of telomere biology and telomerase in mesenchymal stem cells. , 2022, 1, e9130007.		1
1501	The non-modifiable factors age, gender, and genetics influence resistance exercise. Frontiers in Aging, 0, 3, .	1.2	6
1502	Dicer1 deficient mice exhibit premature aging and metabolic perturbations in adipocytes. IScience, 2022, 25, 105149.	1.9	1
1503	Sirtuin-1 attenuates cadmium-induced renal cell senescence through p53 deacetylation. Ecotoxicology and Environmental Safety, 2022, 245, 114098.	2.9	8
1504	Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Research Reviews, 2022, 81, 101737.	5.0	25
1505	Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mechanisms of Ageing and Development, 2022, 208, 111740.	2.2	27
1506	Moving from reactive to preventive medicine. , 2023, , 663-681.		0
1507	Dietary restriction and mTOR and IIS inhibition: the potential to antiaging drug approach. , 2022, , 173-190.		0
1508	Brief about hallmarks of aging. , 2022, , 41-60.		0

		CITATION REPORT	
#	Article	IF	CITATIONS
1509	Astaxanthin attenuates irradiation-induced osteoporosis in mice by inhibiting oxidative stress, osteocyte senescence, and SASP. Food and Function, 2022, 13, 11770-11779.	2.1	6
1510	Multiple time-series expression trajectories imply dynamic functional changes during cellular senescence. Computational and Structural Biotechnology Journal, 2022, 20, 4131-4137.	1.9	1
1511	Longevity and Ageing of World Citizens. Quality of Life in Asia, 2022, , 177-188.	0.1	0
1512	Clearance of senescent cells: potent anti-aging approach. , 2022, , 291-306.		0
1513	Elimination of Senescent Cells by Polyphenols and Flavonoids. , 2022, , 3-24.		0
1514	Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro, 20 175909142211185.	22, 14, 1.5	9
1515	Function and treatment strategies of β-hydroxybutyrate in aging. Smart Materials in Medicine, 2 160-172.	.023, 4, 3.7	5
1516	Obesity, inflammation, and aging. , 2023, , 83-99.		0
1517	Novel mediators of idiopathic pulmonary fibrosis. Clinical Science, 2022, 136, 1229-1240.	1.8	8
1518	A novel senescence-associated LncRNA signature predicts the prognosis and tumor microenviron of patients with colorectal cancer: a bioinformatics analysis. Journal of Gastrointestinal Oncology 2022, 13, 1842-1863.	nment y, 0.6	4
1519	New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 2022, 14, 6829	-6839. 1.4	123
1520	Senescence plays a role in myotonic dystrophy type 1. JCI Insight, 2022, 7, .	2.3	7
1521	Oxidative Stress and Cell Senescence Process. Antioxidants, 2022, 11, 1718.	2.2	11
1522	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.	2.3	110
1523	<i>InÂvitro</i> characterization and rational analog design of a novel inhibitor of telomerase assembly in MDA MB 231 breast cancer cell line. Oncology Reports, 2022, 48, .	1.2	0
1524	Cellular Senescence and Periodontitis: Mechanisms and Therapeutics. Biology, 2022, 11, 1419.	1.3	4
1525	The Multicellular Effects of VDAC1 N-Terminal-Derived Peptide. Biomolecules, 2022, 12, 1387.	1.8	6
1526	Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Frontiers in Medicine, 0, 9, .	1.2	3

#	Article	IF	CITATIONS
1528	FBXW7 inactivation induces cellular senescence via accumulation of p53. Cell Death and Disease, 2022, 13, .	2.7	8
1529	Advanced age is associated with changes in alveolar macrophages and their responses to the stress of traumatic injury. Journal of Leukocyte Biology, 2022, 112, 1371-1386.	1.5	0
1530	Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
1531	Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nature Communications, 2022, 13, .	5.8	34
1532	Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nature Reviews Nephrology, 2022, 18, 762-778.	4.1	51
1533	Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Research and Therapy, 2022, 13, .	2.4	7
1534	Establishment of In Vitro Models by Stress-Induced Premature Senescence for Characterizing the Stromal Vascular Niche in Human Adipose Tissue. Life, 2022, 12, 1459.	1.1	1
1535	Deciphering the endometrial immune landscape of RIF during the window of implantation from cellular senescence by integrated bioinformatics analysis and machine learning. Frontiers in Immunology, 0, 13, .	2.2	6
1536	In Vivo Skin Regeneration and Wound Healing Using Cell Micro-Transplantation. Pharmaceutics, 2022, 14, 1955.	2.0	1
1537	Senescent Fibroblasts Generate a CAF Phenotype through the Stat3 Pathway. Genes, 2022, 13, 1579.	1.0	9
1538	Identification and characterization of aging/senescence-induced genes in osteosarcoma and predicting clinical prognosis. Frontiers in Immunology, 0, 13, .	2.2	13
1539	PCAF Accelerates Vascular Senescence via the Hippo Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	3
1540	Oridonin acts as a novel senolytic by targeting glutathione <i>S</i> -transferases to activate the ROS-p38 signaling axis in senescent cells. Chemical Communications, 2022, 58, 13250-13253.	2.2	4
1542	Senotherapeutics and Their Molecular Mechanism for Improving Aging. Biomolecules and Therapeutics, 2022, 30, 490-500.	1.1	8
1543	The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines, 2022, 10, 2492.	1.4	4
1544	Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology, 2022, 23, 699-729.	2.0	8
1545	Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Science Advances, 2022, 8, .	4.7	35
1546	Cellular senescence in ischemia/reperfusion injury. Cell Death Discovery, 2022, 8, .	2.0	3

#	Article	IF	CITATIONS
1547	Downregulation of P300/CBP-Associated Factor Protects from Vascular Aging via Nrf2 Signal Pathway Activation. International Journal of Molecular Sciences, 2022, 23, 12574.	1.8	4
1548	Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life. Nature Communications, 2022, 13, .	5.8	11
1549	Therapeutic Antiaging Strategies. Biomedicines, 2022, 10, 2515.	1.4	11
1550	Natural Products as a Major Source of Candidates for Potential Senolytic Compounds obtained by in silico Screening. Medicinal Chemistry, 2023, 19, 653-668.	0.7	3
1551	Novel hydrogel system eliminates subculturing and improves retention of nonsenescent mesenchymal stem cell populations. Regenerative Medicine, 2023, 18, 23-36.	0.8	2
1552	Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Research Reviews, 2022, 82, 101768.	5.0	3
1553	Unravelling the impact of aging on the human endothelial IncRNA transcriptome. Frontiers in Genetics, 0, 13, .	1.1	3
1554	Exploring the mechanisms of CD19 CAR T-cell failure and salvage strategies in B-cell lymphoma. , 2022, 1, .		0
1555	Senescent-like Blood Lymphocytes and Disease Progression in Amyotrophic Lateral Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, .	3.1	6
1557	Unsupervised learning of aging principles from longitudinal data. Nature Communications, 2022, 13, .	5.8	10
1558	A novel senescence-related lncRNA signature that predicts prognosis and the tumor microenvironment in patients with lung adenocarcinoma. Frontiers in Genetics, 0, 13, .	1.1	3
1559	Interaction of aging and Immunosenescence: New therapeutic targets of aging. International Immunopharmacology, 2022, 113, 109397.	1.7	1
1560	Canonical and novel strategies to delay or reverse aging. , 2023, , 225-239.		0
1561	Anti-aging strategies, plant bioactives, and drug development: current insights. , 2023, , 23-48.		0
1562	Aging mechanism. , 2023, , 229-238.		0
1563	Senescence in aging. , 2023, , 149-195.		0
1564	Associations between exercise capacity, p16INK4a expression and inflammation among adult survivors of childhood cancer. Frontiers in Oncology, 0, 12, .	1.3	4
1566	The role of ageing and oxidative stress in intervertebral disc degeneration. Frontiers in Molecular Biosciences, 0, 9, .	1.6	12

#	Article	IF	Citations
1567	H2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119388.	1.9	4
1568	A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Frontiers in Endocrinology, 0, 13, .	1.5	4
1569	Endothelin A receptors contribute to senescence of brain microvascular endothelial cells. Canadian Journal of Physiology and Pharmacology, 2022, 100, 1087-1096.	0.7	2
1570	Associations between biomarkers of cellular senescence and physical function in humans: observations from the lifestyle interventions for elders (LIFE) study. GeroScience, 2022, 44, 2757-2770.	2.1	17
1572	Declined adipogenic potential of senescent MSCs due to shift in insulin signaling and altered exosome cargo. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
1573	Ambient PM2.5 exposure causes cellular senescence via DNA damage, micronuclei formation, and cGAS activation. Nanotoxicology, 2022, 16, 757-775.	1.6	6
1574	Telomere and SARS-CoV-2: A Correlation between Them. Journal of Biosciences and Medicines, 2022, 10, 153-164.	0.1	0
1575	Major depression and the biological hallmarks of aging. Ageing Research Reviews, 2023, 83, 101805.	5.0	13
1576	p21 induces a senescence program and skeletal muscle dysfunction. Molecular Metabolism, 2023, 67, 101652.	3.0	22
1577	Dynamic and scalable assessment of the senescence-associated secretory phenotype (SASP). Methods in Cell Biology, 2024, , 181-195.	0.5	0
1579	Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Reports, 2022, 41, 111744.	2.9	10
1580	Resveratrol attenuates cigarette smoke extract induced cellular senescence in human airway epithelial cells by regulating the miR-34a/SIRT1/NF-κB pathway. Medicine (United States), 2022, 101, e31944.	0.4	6
1581	Preconditioned Mesenchymal Stromal Cell-Derived Extracellular Vesicles (EVs) Counteract Inflammaging. Cells, 2022, 11, 3695.	1.8	2
1583	Genetic enhancement: an avenue to combat aging-related diseases. , 2022, 1, 307-318.		14
1584	IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature Cell Biology, 2022, 24, 1754-1765.	4.6	22
1588	Age-related changes in CD4+ T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age. Journal of Reproductive Immunology, 2023, 155, 103790.	0.8	2
1589	Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Advanced Drug Delivery Reviews, 2023, 193, 114670.	6.6	29
1591	The radiation response measurement of a single and multiple cell ionization of neuroblastoma cells by infrared laser trap. Journal of Radiation Research, 2023, 64, 113-125.	0.8	3

#	Article	IF	CITATIONS
1592	Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension. , 2023, 2, .		5
1593	Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis. Acta Biomaterialia, 2023, 157, 352-366.	4.1	10
1594	The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. International Journal of Molecular Sciences, 2022, 23, 15182.	1.8	17
1595	Research advances in cGAS–stimulator of interferon genes pathway and central nervous system diseases: Focus on new therapeutic approaches. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
1596	Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Science Translational Medicine, 2022, 14, .	5.8	10
1597	Sirtuins and chemokines as markers of replicative and induced senescence of human endotheliocytes. Acta Biomedica Scientifica, 2022, 7, 12-20.	0.1	0
1600	Immune checkpoint inhibitors as senolytic agents. Cell Research, 2023, 33, 197-198.	5.7	1
1601	Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Frontiers in Aging, 0, 3, .	1.2	8
1602	Selective Clearance of Senescent Chondrocytes in Osteoarthritis by Targeting Excitatory Amino Acid Transporter Protein 1 to Induce Ferroptosis. Antioxidants and Redox Signaling, 2023, 39, 262-277.	2.5	4
1603	Anti-ageing effects of FDA-approved medicines: a focused review. Journal of Basic and Clinical Physiology and Pharmacology, 2023, 34, 277-289.	0.7	1
1604	Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS Nano, 2023, 17, 910-926.	7.3	16
1605	Mesenchymal stromal cell senescence in haematological malignancies. Cancer and Metastasis Reviews, 2023, 42, 277-296.	2.7	11
1606	The Dual Role of Oxidative-Stress-Induced Autophagy in Cellular Senescence: Comprehension and Therapeutic Approaches. Antioxidants, 2023, 12, 169.	2.2	9
1607	Antiproliferative and apoptotic effects of conditioned medium released from human amniotic epithelial stem cells on breast and cervical cancer cells. International Journal of Immunopathology and Pharmacology, 2023, 37, 039463202211507.	1.0	4
1608	Radiation-induced senescence: therapeutic opportunities. Radiation Oncology, 2023, 18, .	1.2	14
1609	Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nature Communications, 2023, 14, .	5.8	7
1610	Notch activation shifts the fate decision of senescent progenitors toward myofibrogenesis in human adipose tissue. Aging Cell, 0, , .	3.0	2
1611	Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease. 2023, 1869, 166642.	1.8	4

#	Article	IF	CITATIONS
1612	17β-estradiol suppresses H2O2-induced senescence in human umbilical vein endothelial cells by inducing autophagy through the PVT1/miR-31/SIRT3 axis. Journal of Steroid Biochemistry and Molecular Biology, 2023, 227, 106244.		4
1613	Histone methyltransferase Smyd2 drives vascular aging by its enhancer-dependent activity. Aging, 2023, 15, 70-91.	1.4	0
1614	Moderate-vigorous physical activity attenuates premature senescence of immune cells in sedentary adults with obesity: a pilot randomized controlled trial. Aging, 2022, 14, 10137-10152.	1.4	1
1615	Aging is a Side Effect of the Ontogenesis Program of Multicellular Organisms. Biochemistry (Moscow), 2022, 87, 1498-1503.	0.7	0
1616	Is Human Aging a Form of Phenoptosis?. Biochemistry (Moscow), 2022, 87, 1446-1464.	0.7	1
1617	Activation and Metabolic Shifting: An Essential Process to Mesenchymal Stromal Cells Function. Biochemistry, 0, , .	0.8	0
1618	ML216 Prevents DNA Damage-Induced Senescence by Modulating DBC1–BLM Interaction. Cells, 2023, 12, 145.	1.8	2
1619	Obesity triggers tumoral senescence and renders poorly immunogenic malignancies amenable to senolysis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1620	Merkel Cell Polyomavirus Large T Antigen Induces Cellular Senescence for Host Growth Arrest and Viral Genome Persistence through Its Unique Domain. Cells, 2023, 12, 380.	1.8	0
1621	Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. Progress in Brain Research, 2023, , 165-215.	0.9	4
1622	Nicotinamide mononucleotide alleviates angiotensin II-induced human aortic smooth muscle cell senescence in a microphysiological model. Journal of Cardiovascular Pharmacology, 2023, Publish Ahead of Print, .	0.8	0
1623	Exploiting pivotal mechanisms behind the senescence-like cell cycle arrest in cancer. Advances in Protein Chemistry and Structural Biology, 2023, , 1-19.	1.0	3
1624	Targeting Mitochondria to Control Ageing and Senescence. Pharmaceutics, 2023, 15, 352.	2.0	7
1625	Diabetes and Its Cardiovascular Complications: Potential Role of the Acetyltransferase p300. Cells, 2023, 12, 431.	1.8	10
1626	Identification and validation of a novel senescence-related biomarker for thyroid cancer to predict the prognosis and immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	6
1627	RRP Regulates Autophagy through the AMPK Pathway to Alleviate the Effect of Cell Senescence on Atherosclerosis. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-22.	1.9	1
1628	Long-term administration of CU06-1004 ameliorates cerebrovascular aging and BBB injury in aging mouse model. Fluids and Barriers of the CNS, 2023, 20, .	2.4	1
1629	SPOP is essential for DNA replication licensing through maintaining translation of CDT1 and CDC6 in HaCaT cells. Biochemical and Biophysical Research Communications, 2023, 651, 30-38.	1.0	1

#	Article	IF	CITATIONS
1630	Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Experimental and Therapeutic Medicine, 2023, 25, .	0.8	6
1631	Hypoxiaâ€Inducible Factorâ€2α Signaling in the Skeletal System. JBMR Plus, 2023, 7, .	1.3	4
1632	Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Analytical Chemistry, 2023, 95, 3996-4004.	3.2	9
1634	TGF-Î ² in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Reports, 2023, 42, 112129.	2.9	9
1635	The mechanisms and functions of TNF-α in intervertebral disc degeneration. Experimental Gerontology, 2023, 174, 112119.	1.2	9
1636	Oxylipin-PPARÎ ³ -initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metabolism, 2023, 35, 667-684.e6.	7.2	17
1637	Yearning for machine learning: applications for the classification and characterisation of senescence. Cell and Tissue Research, 2023, 394, 1-16.	1.5	4
1638	Sulfated fuco-manno-glucuronogalactan alleviates pancreatic beta cell senescence via PI3K/AKT/FoxO1 pathway. International Journal of Biological Macromolecules, 2023, 236, 123846.	3.6	0
1639	Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. North American Spine Society Journal (NASSJ), 2023, 14, 100210.	0.3	2
1640	Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells, 2023, 12, 1163.	1.8	5
1641	Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacological Reviews, 2023, 75, 675-713.	7.1	12
1642	Human Xylosyltransferase l—An Important Linker between Acute Senescence and Fibrogenesis. Biomedicines, 2023, 11, 460.	1.4	2
1643	Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants, 2023, 12, 444.	2.2	9
1644	Role of cellular senescence in inflammatory lung diseases. Cytokine and Growth Factor Reviews, 2023, 70, 26-40.	3.2	5
1646	A near-infrared fluorescent nanoprobe for senescence-associated β-galactosidase sensing in living cells. Chemical Communications, 2023, 59, 2974-2977.	2.2	1
1647	Analysis method of cellular stress caused by intermediate doseâ€rate irradiation using a cell lysate array technique. Genes To Cells, 2023, 28, 288-306.	0.5	0
1648	Senescent cancer cell vaccines induce cytotoxic T cell responses targeting primary tumors and disseminated tumor cells. , 2023, 11, e005862.		3
1649	Effects of Ginsenoside Rg1 on the Biological Behavior of Human Amnion-Derived Mesenchymal Stem/Stromal Cells (hAD-MSCs). Stem Cells International, 2023, 2023, 1-19.	1.2	0

#	Article	IF	CITATIONS
1651	Pulmonary Vascular Remodeling in Pulmonary Hypertension. Journal of Personalized Medicine, 2023, 13, 366.	1.1	6
1652	Extracellular Vesicles as "Very Important Particles―(VIPs) in Aging. International Journal of Molecular Sciences, 2023, 24, 4250.	1.8	7
1653	Anti-aging Effects of Alu Antisense RNA on Human Fibroblast Senescence Through the MEK-ERK Pathway Mediated by KIF15. Current Medical Science, 2023, 43, 35-47.	0.7	1
1654	Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. ELife, 0, 12, .	2.8	10
1655	Soluble Epoxide Hydrolase Contributes to Cell Senescence and ER Stress in Aging Mice Colon. International Journal of Molecular Sciences, 2023, 24, 4570.	1.8	3
1656	Long-term intensive endurance exercise training is associated to reduced markers of cellular senescence in the colon mucosa of older adults. , 2023, 9, .		3
1657	Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. Journal of Nanobiotechnology, 2023, 21, .	4.2	2
1658	Localization of senescent cells under cavity preparations in rats and restoration of reparative dentin formation by senolytics. Dental Materials Journal, 2023, , .	0.8	0
1659	Modeling of senescent cell dynamics predicts a lateâ€life decrease in cancer incidence. Evolutionary Applications, 2023, 16, 609-624.	1.5	2
1660	Senescent cancer cell-derived nanovesicle as a personalized therapeutic cancer vaccine. Experimental and Molecular Medicine, 2023, 55, 541-554.	3.2	8
1661	Tissueâ€mimetic culture enhances mesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair and Regeneration, 2023, 31, 367-383.	1.5	4
1662	Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology, 0, 14, .	2.2	5
1663	Impact of Cellular Senescence on Cellular Clocks. Healthy Ageing and Longevity, 2023, , 105-125.	0.2	0
1664	Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes and Metabolism Journal, 2023, 47, 441-453.	1.8	4
1665	cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Frontiers in Immunology, 0, 14, .	2.2	13
1668	Downregulation of Lysosome-Associated Membrane Protein-2A Contributes to the Pathogenesis of COPD. International Journal of COPD, 0, Volume 18, 289-303.	0.9	2
1669	Attenuation of Alzheimer's brain pathology in 5XFAD mice by PTH1-34, a peptide of parathyroid hormone. Alzheimer's Research and Therapy, 2023, 15, .	3.0	2
1670	CNS Ageing in Health and Neurodegenerative Disorders. Journal of Clinical Medicine, 2023, 12, 2255.	1.0	8

#	Article	IF	CITATIONS
1671	MAPKs in the early steps of senescence implemEMTation. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
1672	Integrin β3-Mediated Cell Senescence Associates with Gut Inflammation and Intestinal Degeneration in Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 5697.	1.8	3
1673	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	1.8	6
1674	Heterogeneity of Cellular Senescence: Cell Type-Specific and Senescence Stimulus-Dependent Epigenetic Alterations. Cells, 2023, 12, 927.	1.8	5
1676	Glycyrrhizic acid inhibits myeloid differentiation of hematopoietic stem cells by binding S100 calcium binding protein A8 to improve cognition in aged mice. Immunity and Ageing, 2023, 20, .	1.8	5
1677	Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	12
1678	Epigenetic Signatures of Aging: A Comprehensive Study of Biomarker Discovery. Advances in Aging Research, 2023, 12, 11-38.	0.3	0
1679	<scp>TFEB</scp> â€dependent lysosome biogenesis is required for senescence. EMBO Journal, 2023, 42, .	3.5	13
1680	Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
1681	Rapid and Live-Cell Detection of Senescence in Mesenchymal Stem Cells by Micro Magnetic Resonance Relaxometry. Stem Cells Translational Medicine, 2023, 12, 266-280.	1.6	1
1682	Cycloastragenol: A Novel Senolytic Agent That Induces Senescent Cell Apoptosis and Restores Physical Function in TBI-Aged Mice. International Journal of Molecular Sciences, 2023, 24, 6554.	1.8	4
1683	Damage-Free Shortening of Telomeres Is a Potential Strategy Supporting Blind Mole-Rat Longevity. Genes, 2023, 14, 845.	1.0	0
1684	Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Frontiers in Endocrinology, 0, 14, .	1.5	2
1685	P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis. Heliyon, 2023, 9, e15188.	1.4	2
1686	Senolytics: Opening avenues in drug discovery to find novel therapeutics for Parkinson's Disease. Drug Discovery Today, 2023, 28, 103582.	3.2	0
1688	Advances in biomarkers and diagnostic significance of organ aging. Fundamental Research, 2023, , .	1.6	0
1689	Innate Immunity System in Patients With Cardiovascular and Kidney Disease. Circulation Research, 2023, 132, 915-932.	2.0	8
1690	TP53 mutationâ€related senescence is an indicator of hepatocellular carcinoma patient outcomes from multiomics profiles. , 2023, 2,		0

ARTICLE IF CITATIONS # The establishment of mitotic errors-driven senescence depends on autophagy. Redox Biology, 2023, 62, 1691 3.9 3 102701. Tracking the dynamics of cellular senescence. Aging, 2023, 15, 3219-3220. 1.4 Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and 1693 1.8 16 Potential Therapeutic Opportunities. Biomolecules, 2023, 13, 686. Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations. Aging, 0, 1694 Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066. 2.3 1695 60 <i>MicroRNA</i>â€<i>19a</i>â€<i>3p</i> Decreases with Age in Mice and Humans and Inhibits Osteoblast 1.3 Senescence. JBMR Plus, 2023, 7, . Cellular senescence and ophthalmic diseases: narrative review. Graefe's Archive for Clinical and 1697 1.0 4 Experimental Ophthalmology, 2023, 261, 3067-3082. Molecular Mechanisms of Cellular Senescence in Neurodegenerative Diseases. Journal of Molecular 1698 9 2.0 Biology, 2023, 435, 168114. Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene, 2023, 871, 1699 1.0 5 147437. Computational screen to identify potential targets for immunotherapeutic identification and removal 1700 of senescence cells. Aging Cell, 0, , . Molecular and Cellular Mechanisms of Neuropathic Pain in Aging. ACS Chemical Neuroscience, 2023, 1701 1.7 0 14, 1701-1716. Neural cell state shifts and fate loss in ageing and age-related diseases. Nature Reviews Neurology, 1717 4.9 2023, 19, 434-443. Transposable elements in mammalian chromatin organization. Nature Reviews Genetics, 2023, 24, 1722 7.7 21 712-723. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. Nature Aging, 2023, 3, 766-775. 5.3 1731 Cellular senescence and neurodegeneration. Human Genetics, 2023, 142, 1247-1262. 1.8 4 The Cellular and Molecular Mechanisms of Ovarian Aging., 2023, , 119-169. 1765 Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell 1770 5.0 4 Death and Differentiation, 0, , . MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. 1778 Biogerontology, 0, , .

		Сіта	TION REPORT	
#	Article		IF	CITATIONS
1794	Cellular senescence and frailty: a comprehensive insight into the causal links. GeroScie	nce, 0, , .	2.1	1
1818	Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate canc Reviews Urology, 0, , .	er. Nature	1.9	0
1862	A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity a 2024, 10, .	and aging. ,		0
1871	The science of stem cells and stem cell engineering for cellular agriculture. , 2024, , 12	5-142.		0
1874	Molecular Basis of Stem Cell Senescence. , 2024, , .			0