Two-Dimensional Zeolites: Current Status and Perspect

Chemical Reviews 114, 4807-4837 DOI: 10.1021/cr400600f

Citation Report

#	Article	IF	CITATIONS
2	Preferential Location of Germanium in the UTL and IPC-2a Zeolites. Journal of Physical Chemistry C, 2014, 118, 26939-26946.	1.5	17
4	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052.	7.2	62
5	Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346, 1356-1359.	6.0	1,432
6	Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8. Chinese Chemical Letters, 2014, 25, 1511-1514.	4.8	16
7	From Doubleâ€Fourâ€Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem, 2014, 15, 2972-2976.	1.0	31
8	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Down Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	1.7	9
9	Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules. Sensors, 2014, 14, 19023-19056.	2.1	51
10	Heterogeneous Pd catalysts supported on silica matrices. RSC Advances, 2014, 4, 65137-65162.	1.7	137
11	Exploring Zeolite Chemistry with the Tools of Surface Science: Challenges, Opportunities, and Limitations. Catalysis Letters, 2014, 144, 1987-1995.	1.4	28
12	Creation of Nickel-Based Active Species within a Macroreticular Acidic Resin: A Noble-Metal-Free Heterogeneous Catalyst for Visible-Light-Driven H ₂ Evolution from Water. ACS Catalysis, 2014, 4, 4129-4135.	5.5	23
13	Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Transactions, 2014, 43, 10548.	1.6	23
14	Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. Chemical Communications, 2014, 50, 14658-14661.	2.2	48
15	High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry A, 2014, 2, 17828-17839.	5.2	96
16	Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Transactions, 2014, 43, 10628.	1.6	52
17	Theoretical investigation of layered zeolites with MWW topology: MCM-22P vs. MCM-56. Dalton Transactions, 2014, 43, 10443-10450.	1.6	33
18	The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chemical Communications, 2014, 50, 7378.	2.2	16
19	Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation. Journal of Materials Chemistry A, 2014, 2, 15722-15725.	5.2	29
20	The role of boric acid in the synthesis of Eni Carbon Silicates. Dalton Transactions, 2014, 43, 10617.	1.6	8

#	Article	IF	CITATIONS
21	Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chemistry of Materials, 2014, 26, 5789-5798.	3.2	60
22	Silylation of Layered Silicate RUB-51 with SiCl ₄ and Conversion of the Silylated Derivative to a Crystalline Microporous Material. Chemistry of Materials, 2014, 26, 3796-3803.	3.2	18
23	Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts. ACS Catalysis, 2014, 4, 3227-3236.	5.5	52
24	High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Dalton Transactions, 2014, 43, 10501.	1.6	44
25	Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5. Dalton Transactions, 2014, 43, 10574-10583.	1.6	15
26	High-resolution adsorption analysis of pillared zeolites IPC-3PI and MCM-36. Dalton Transactions, 2014, 43, 10558-10565.	1.6	20
27	NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 2014, 26, 5556-5565.	3.2	41
28	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	7.2	104
29	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	5.7	148
30	On the Rotational Intergrowth of Hierarchical FAU/EMT Zeolites. Angewandte Chemie - International Edition, 2014, 53, 9456-9461.	7.2	90
31	Reactivity and applications of layered silicates and layered double hydroxides. Dalton Transactions, 2014, 43, 10365.	1.6	98
32	Computational Investigation of the Lewis Acidity in Three-Dimensional and Corresponding Two-Dimensional Zeolites: UTL vs IPC-1P. Journal of Physical Chemistry A, 2014, 118, 7526-7534.	1.1	16
34	Ultra-thin silicate films on metals. Journal of Physics Condensed Matter, 2015, 27, 443001.	0.7	12
35	Interlayer Condensation of Protonated Layered Silicate Magadiite through Refluxing in <i>N</i> -Methylformamide. Bulletin of the Chemical Society of Japan, 2015, 88, 1241-1249.	2.0	7
38	Selfâ€Pillared, Singleâ€Unit ell Snâ€MFI Zeolite Nanosheets and Their Use for Glucose and Lactose Isomerization. Angewandte Chemie - International Edition, 2015, 54, 10848-10851.	7.2	138
39	Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 2087-2096.	1.3	19
40	Zeolite Membranes in Catalysis—From Separate Units to Particle Coatings. Catalysts, 2015, 5, 2161-2222.	1.6	30
41	Nb and Zr modified MWW zeolites – characterisation and catalytic activity. RSC Advances, 2015, 5, 22326-22333.	1.7	12

#	Article	IF	CITATIONS
42	Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets. Nature Communications, 2015, 6, 7128.	5.8	39
43	Synthesis and characterization of Si/Ga Eni Carbon Silicates. Chinese Journal of Catalysis, 2015, 36, 813-819.	6.9	6
44	Potential of Sustainable Hierarchical Zeolites in the Valorization of αâ€Pinene. ChemSusChem, 2015, 8, 1197-1205.	3.6	41
45	Abatement of toluene from polluted air over Mn/Clinoptilolite–CeO2 nanopowder: Impregnation vs. ultrasound assisted synthesis with various Mn-loading. Advanced Powder Technology, 2015, 26, 602-611.	2.0	40
46	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	6.0	1,272
47	Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44, 8877-8903.	18.7	279
48	The ADOR synthesis of new zeolites: In silico investigation. Catalysis Today, 2015, 243, 32-38.	2.2	30
49	Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions. Catalysis Today, 2015, 243, 141-152.	2.2	27
50	Facile evaluation of the crystallization and quality of the transient layered zeolite MCM-56 by infrared spectroscopy. Catalysis Today, 2015, 243, 39-45.	2.2	31
51	Na ₂ B ₁₀ O ₁₇ ·H ₂ en: a three-dimensional open-framework layered borate co-templated by inorganic cations and organic amines. Chemical Communications, 2015, 51, 5066-5068.	2.2	61
52	Comparative Study of Vanadium Supported on MCM-36 and MCM-22 and Their Catalytic Perfomance in C3-ODH. Industrial & Engineering Chemistry Research, 2015, 54, 2030-2039.	1.8	7
53	Synthesis of Organic Pillared MFI Zeolite as Bifunctional Acid–Base Catalyst. Chemistry of Materials, 2015, 27, 1479-1487.	3.2	41
54	Spatial distribution and catalytic performance of metal–acid sites in Mo/MFI catalysts with tunable meso-/microporous lamellar zeolite structures. Journal of Catalysis, 2015, 323, 100-111.	3.1	52
55	Fabrication of Hybrid Organic–Inorganic Materials with Tunable Porosity for Catalytic Application. ChemPlusChem, 2015, 80, 599-605.	1.3	4
56	Role of zeolite catalysts for benzene removal from gasoline via alkylation: A review. Microporous and Mesoporous Materials, 2015, 213, 169-180.	2.2	38
57	Alkali treatment upon MCM-49 zeolite with various contents of HMI in the presence of CTAB and application in anisole acylation with acetic anhydride. Applied Catalysis A: General, 2015, 495, 152-161.	2.2	14
58	Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44, 7112-7127.	18.7	460
59	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. Journal of the American Chemical Society, 2015, 137, 9963-9970.	6.6	360

#	Article	IF	CITATIONS
60	Synthesis of the RTH-type layer: the first small-pore, two dimensional layered zeolite precursor. Chemical Science, 2015, 6, 5955-5963.	3.7	34
61	Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 2015, 44, 7128-7154.	18.7	594
62	Mesoporous Y zeolite through ionic liquid based surfactant templating. Microporous and Mesoporous Materials, 2015, 217, 81-86.	2.2	30
63	Syntheses, structure solutions, and catalytic performance of two novel layered silicates. Dalton Transactions, 2015, 44, 15567-15575.	1.6	3
64	Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism. Analytical Chemistry, 2015, 87, 7588-7594.	3.2	29
65	Nanocrystalline ZSM-5 based bi-functional catalyst for two step and three step tandem reactions. RSC Advances, 2015, 5, 25998-26006.	1.7	18
66	Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 2015, 27, 4620-4629.	3.2	64
67	Sonication-Free Exfoliation of Graphite Oxide via Rapid Phase Change of Water. Topics in Catalysis, 2015, 58, 522-528.	1.3	9
68	Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 2015, 7, 381-388.	6.6	153
69	New mesoporous titanosilicate MCM-36 material synthesized by pillaring layered ERB-1 precursor. Journal of Materials Chemistry A, 2015, 3, 8715-8724.	5.2	37
70	Bifunctional Metalâ€Free Catalysis of Mesoporous Noble Carbons for Oxygen Reduction and Evolution Reactions. ChemSusChem, 2015, 8, 1156-1160.	3.6	89
71	Morphology-induced shape selectivity in zeolite catalysis. Journal of Catalysis, 2015, 327, 22-32.	3.1	64
72	Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 2015, 44, 7044-7111.	18.7	405
73	Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification. Applied Catalysis A: General, 2015, 495, 84-91.	2.2	52
74	Transformation from NaA to MCM-49 Zeolite and Its Catalytic Alkylation Performance. Industrial & Engineering Chemistry Research, 2015, 54, 3123-3135.	1.8	22
75	Molecular sieve membranes: From 3D zeolites to 2D MOFs. Chinese Journal of Catalysis, 2015, 36, 692-697.	6.9	23
76	Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for In Vivo Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1645-1652.	3.9	259
77	Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44, 7025-7043.	18.7	175

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
78	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	18.7	275
79	Cubic Pm3n mesoporous aluminosilicates assembled from zeolite seeds as strong acidic catalysts. Catalysis Science and Technology, 2015, 5, 3182-3193.	2.1	2
80	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	5.5	74
81	A zeolitic Cd(II) boron imidazolate framework with sensing and catalytic properties. Journal of Solid State Chemistry, 2015, 231, 185-189.	1.4	11
82	Filling the Gaps between Graphene Oxide: A General Strategy toward Nanolayered Oxides. Advanced Functional Materials, 2015, 25, 5683-5690.	7.8	31
83	Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO ₂ Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2. ACS Applied Materials & Interfaces, 2015, 7, 24360-24369.	4.0	20
84	Structural analysis of hierarchically organized zeolites. Nature Communications, 2015, 6, 8633.	5.8	206
85	Acidity of two-dimensional zeolites. Physical Chemistry Chemical Physics, 2015, 17, 27873-27882.	1.3	32
86	Synthesis of layered titanosilicate JDF-L1 for fabrication of composite polyamide 6 film. Applied Clay Science, 2015, 118, 151-157.	2.6	7
87	Local environments of boron heteroatoms in non-crystalline layered borosilicates. Physical Chemistry Chemical Physics, 2015, 17, 21664-21682.	1.3	11
88	One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 2015, 6, 6320-6324.	3.7	118
89	Structural stability and Lewis acidity of tetravalent Ti, Sn, or Zr-linked interlayer-expanded zeolite COE-4: A DFT study. Microporous and Mesoporous Materials, 2015, 218, 160-166.	2.2	11
90	Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO ₂ capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry A, 2015, 3, 20801-20810.	5.2	121
91	Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 2015, 27, 7852-7860.	3.2	36
92	Catalytic behavior of metal-organic frameworks and zeolites: Rationalization and comparative analysis. Catalysis Today, 2015, 243, 2-9.	2.2	29
93	From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 2015, 27, 316-326.	3.2	16
94	Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite. Catalysis Today, 2015, 243, 23-31.	2.2	13
95	Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 2015, 243, 134-140.	2.2	57

#	Article	IF	CITATIONS
96	Design of Hierarchical Zeolite Catalysts for the Manufacture of Polyurethane Intermediates. ACS Catalysis, 2015, 5, 734-743.	5.5	42
97	Desilication of SSZ-33 zeolite – Post-synthesis modification of textural and acidic properties. Catalysis Today, 2015, 243, 46-52.	2.2	11
98	Future of nano-/hierarchical zeolites in catalysis: gaseous phase or liquid phase system. Catalysis Science and Technology, 2015, 5, 772-785.	2.1	87
99	Homogeneous and heterogeneous cyclopentadienyl-arene titanium catalysts for selective ethylene trimerization to 1-hexene. Journal of Organometallic Chemistry, 2015, 777, 57-66.	0.8	18
100	Hierarchically Nanoporous Zeolites and Their Heterogeneous Catalysis: Current Status and Future Perspectives. Catalysis Letters, 2015, 145, 193-213.	1.4	85
101	Opportunities for zeolites in biomass upgrading—Lessons from the refining and petrochemical industry. Catalysis Today, 2015, 243, 10-22.	2.2	81
102	Impact of Pore Connectivity on the Design of Longâ€Lived Zeolite Catalysts. Angewandte Chemie - International Edition, 2015, 54, 1591-1594.	7.2	84
103	Sub-zeolite of FER topology derived from an interlayer modification of PLS-3 lamellar precursor. Microporous and Mesoporous Materials, 2015, 203, 54-62.	2.2	17
104	Tuning of acidic and catalytic properties of IWR zeolite by post-synthesis incorporation of three-valent elements. Catalysis Today, 2015, 243, 76-84.	2.2	24
105	Twoâ€Dimensional Soft Nanomaterials: A Fascinating World of Materials. Advanced Materials, 2015, 27, 403-427.	11.1	437
106	Synthesis of Novel Titanosilicate Catalysts by Simultaneous Isomorphous Substitution and Interlayer Expansion of Zeolitic Layered Silicates. Chemistry of Materials, 2016, 28, 5295-5303.	3.2	26
107	Effects of the Framework and Mesoporosity on the Catalytic Activity of Hierarchical Zeolite Catalysts in Benzyl Alcohol Conversion. ChemCatChem, 2016, 8, 2406-2414.	1.8	15
108	Pillared Snâ€MWW Prepared by a Solidâ€Stateâ€Exchange Method and its Use as a Lewis Acid Catalyst. ChemCatChem, 2016, 8, 1274-1278.	1.8	40
109	Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	7.8	66
110	Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chemical Science, 2016, 7, 6506-6513.	3.7	21
111	Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion. Advanced Functional Materials, 2016, 26, 5621-5630.	7.8	61
112	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	3.2	35
113	Ring opening of hydrocarbons for diesel and aromatics production: Design of heterogeneous catalytic systems. Fuel, 2016, 181, 618-629.	3.4	44

#	Article	IF	CITATIONS
114	Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 2016, 140, 117-134.	1.9	1,137
115	The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects. Physical Chemistry Chemical Physics, 2016, 18, 9211-9219.	1.3	26
116	The interaction of Pd clusters with the bulk and layered two-dimensional Silicalite-1 supports. Catalysis Today, 2016, 277, 108-117.	2.2	2
117	Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New Journal of Chemistry, 2016, 40, 4398-4405.	1.4	25
118	Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization. RSC Advances, 2016, 6, 39150-39158.	1.7	31
119	Genetic engineering of inorganic functional modular materials. Chemical Science, 2016, 7, 3472-3481.	3.7	10
120	The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catalysis Today, 2016, 274, 109-115.	2.2	21
121	BrÃ,nsted activity of two-dimensional zeolites compared to bulk materials. Faraday Discussions, 2016, 188, 227-234.	1.6	30
122	PKU-20: A new silicogermanate constructed from sti and asv layers. Microporous and Mesoporous Materials, 2016, 224, 384-391.	2.2	5
123	Synthesis and crystal structures of a novel layered silicate SSA-1 and its microporous derivatives by topotactic transformation. Dalton Transactions, 2016, 45, 16335-16344.	1.6	4
124	Effect of the grafting agent on the structure and catalytic performance of Ti-MCM-22. Catalysis Science and Technology, 2016, 6, 7631-7642.	2.1	15
125	Anionic porous polymers with tunable structures and catalytic properties. Journal of Materials Chemistry A, 2016, 4, 15162-15168.	5.2	29
126	Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 2016, 28, 6455-6458.	3.2	46
127	Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catalysis Science and Technology, 2016, 6, 7280-7288.	2.1	39
128	High surface area mesoporous alumina nanosheets and nanorolls from an aluminum based metal organic framework. Ceramics International, 2016, 42, 17742-17748.	2.3	25
129	Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P. Dalton Transactions, 2016, 45, 14124-14130.	1.6	9
130	Sn-based catalysts for Baeyer-Villiger oxidations by using hydrogen peroxide as oxidant. Science China Materials, 2016, 59, 675-700.	3.5	18
131	Missing Building Blocks Defects in a Porous Hydrogen-bonded Amide-Imidazolate Network Proven by Positron Annihilation Lifetime Spectroscopy. ChemistrySelect, 2016, 1, 4320-4325.	0.7	9

#	Article	IF	CITATIONS
132	Recent Advances in the Synthesis and Application of Twoâ€Dimensional Zeolites. Advanced Energy Materials, 2016, 6, 1600441.	10.2	65
133	Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. Journal of Visualized Experiments, 2016, , e53463.	0.2	3
134	Manganese Oxide Nanorodâ€Decorated Mesoporous ZSMâ€5 Composite as a Preciousâ€Metalâ€Free Electrode Catalyst for Oxygen Reduction. ChemSusChem, 2016, 9, 1010-1019.	3.6	12
135	A solvent free method for preparation of β-amino alcohols by ring opening of epoxides with amines using MCM-22 as a catalyst. Applied Catalysis A: General, 2016, 524, 50-55.	2.2	29
136	Intrusion–extrusion spring performance of –COK-14 zeolite enhanced by structural changes. Physical Chemistry Chemical Physics, 2016, 18, 18795-18801.	1.3	11
137	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	3.2	16
138	Self-Assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of Hierarchical MWW Zeolite. Chemistry of Materials, 2016, 28, 4512-4521.	3.2	88
139	Water adsorption on two-dimensional silica films. Applied Surface Science, 2016, 364, 822-828.	3.1	10
140	The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol. Journal of Catalysis, 2016, 335, 165-174.	3.1	46
141	Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. Chemical Communications, 2016, 52, 3227-3230.	2.2	36
142	Disruptive catalysis by zeolites. Catalysis Science and Technology, 2016, 6, 2485-2501.	2.1	68
143	Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel, 2016, 167, 226-239.	3.4	67
144	Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene. Catalysis Science and Technology, 2016, 6, 2653-2662.	2.1	9
145	Diversity of layered zeolites: from synthesis to structural modifications. New Journal of Chemistry, 2016, 40, 3968-3981.	1.4	44
146	Size-controlled synthesis of MFI metallosilicate and their catalytic performance on acetone to olefins reaction. Microporous and Mesoporous Materials, 2016, 224, 68-74.	2.2	14
147	Core–shell zeolite@aqueous miscible organic-layered double hydroxides. Chemical Science, 2016, 7, 1457-1461.	3.7	41
148	Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2016, 52, 2011-2014.	2.2	77
149	Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science and Technology, 2016, 6, 3166-3181.	2.1	18

#	Article	IF	CITATIONS
150	Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13. Chemistry of Materials, 2016, 28, 2158-2164.	3.2	34
151	Organosilane with Gemini-Type Structure as the Mesoporogen for the Synthesis of the Hierarchical Porous ZSM-5 Zeolite. Langmuir, 2016, 32, 2085-2092.	1.6	21
152	Towards molecular control of elementary reactions in zeolite catalysis by advanced molecular simulations mimicking operating conditions. Catalysis Science and Technology, 2016, 6, 2686-2705.	2.1	38
153	Catalysis of metal supported zeolites for dealkylation–transalkylation of alkyl-aromatics. Applied Catalysis A: General, 2016, 514, 154-163.	2.2	14
154	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	2.2	116
155	Hybrid organic–inorganic zeolites: status and perspectives. Catalysis Science and Technology, 2016, 6, 2502-2527.	2.1	25
156	Temperature-controlled phase-transfer hydrothermal synthesis of MWW zeolites and their alkylation performances. RSC Advances, 2016, 6, 29707-29717.	1.7	15
157	Tuning external surface of unit-cell thick pillared MFI and MWW zeolites by atomic layer deposition and its consequences on acid-catalyzed reactions. Journal of Catalysis, 2016, 337, 177-187.	3.1	40
158	Zeolite science and technology at Eni. New Journal of Chemistry, 2016, 40, 4061-4077.	1.4	38
159	A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets. Journal of Solid State Chemistry, 2016, 237, 192-203.	1.4	28
160	Bidimensional ZSM-5 zeolites probed as catalysts for polyethylene cracking. Catalysis Science and Technology, 2016, 6, 2754-2765.	2.1	32
161	Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science and Technology, 2016, 6, 2775-2786.	2.1	40
162	Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science and Technology, 2016, 6, 2467-2484.	2.1	161
163	Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016, 312, 99-148.	9.5	270
164	UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties. Catalysis Today, 2016, 277, 2-8.	2.2	51
165	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	2.2	16
166	Highly selective mixed-matrix membranes with layered fillers for molecular separation. Journal of Membrane Science, 2016, 497, 394-401.	4.1	19
167	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	6.6	186

#	Article	IF	CITATIONS
168	Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45, 3400-3438.	18.7	196
169	Innovations in hierarchical zeolite synthesis. Catalysis Today, 2016, 264, 3-15.	2.2	167
170	Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45, 3353-3376.	18.7	463
171	Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45, 3331-3352.	18.7	271
172	Unexpected crystal growth modifier effect of glucosamine as additive in the synthesis of SAPO-35. Microporous and Mesoporous Materials, 2016, 219, 322-326.	2.2	11
173	Quantification of external surface and pore mouth acid sites in unit-cell thick pillared MFI and pillared MWW zeolites. Microporous and Mesoporous Materials, 2017, 241, 43-51.	2.2	24
174	Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8, 14460.	5.8	382
176	Boron-containing MFI-type zeolites with a hierarchical nanosheet assembly for lipase immobilization. Dalton Transactions, 2017, 46, 4165-4169.	1.6	16
177	Beyond trial and error for zeolite catalysts. Science, 2017, 355, 1028-1028.	6.0	2
178	Structural transformations of layered structures constructed from Cu(<scp>ii</scp>)–chloranilate monomer compounds. Dalton Transactions, 2017, 46, 2966-2973.	1.6	6
179	Abâ€Initio Simulation of the Acid Sites at the External Surface of Zeolite Beta. ChemCatChem, 2017, 9, 2176-2185.	1.8	32
180	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	2.2	23
181	Robust Ti―and Zrâ€Based Metalâ€Organic Frameworks for Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 135-147.	2.6	74
182	Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity. Journal of Materials Chemistry A, 2017, 5, 8887-8891.	5.2	46
183	Direct synthesis of hydrothermally stable Ge-IWR zeolites. Dalton Transactions, 2017, 46, 6692-6699.	1.6	11
184	One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent. Chemistry of Materials, 2017, 29, 4091-4096.	3.2	86
185	Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates. Dalton Transactions, 2017, 46, 7441-7450.	1.6	16
186	External or internal surface of H-ZSM-5 zeolite, which is more effective for the Beckmann rearrangement reaction?. Catalysis Science and Technology, 2017, 7, 2512-2523.	2.1	26

#	Article	IF	CITATIONS
187	Energetic performances of FER-type zeolite in the presence of electrolyte solutions under high pressure. Energy, 2017, 130, 29-37.	4.5	8
188	Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chemical Communications, 2017, 53, 7011-7014.	2.2	29
189	Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions. Journal of the American Chemical Society, 2017, 139, 7952-7957.	6.6	93
190	Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol. Molecular Catalysis, 2017, 433, 334-345.	1.0	14
191	Perspectives on the multi-functions of aniline: Cases from the temperature-controlled phase transfer hydrothermal synthesis of MWW zeolites. Microporous and Mesoporous Materials, 2017, 254, 201-210.	2.2	9
192	Recyclable swelling solutions for friendly preparation of pillared MWW-type zeolites. Microporous and Mesoporous Materials, 2017, 253, 91-95.	2.2	14
193	Controllable and scalable synthesis of ordered mesoporous silica nanosheets by using acidified g-C3N4 as a lamellar surfactant. Nanotechnology, 2017, 28, 29LT01.	1.3	6
194	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	3.2	60
195	Synthesis of a Singleâ€Crystalline Macroporous Layered Silicate from a Macroporous UTLâ€Type Zeolite and Its Accelerated Intercalation. Chemistry - A European Journal, 2017, 23, 11022-11029.	1.7	3
196	Enhancing ethylene epoxidation of a MWW-type titanosilicate/H2O2 catalytic system by fluorine implanting. Catalysis Science and Technology, 2017, 7, 2624-2631.	2.1	28
197	Simple CTAB surfactant-assisted hierarchical lamellar MWW titanosilicate: a high-performance catalyst for selective oxidations involving bulky substrates. Catalysis Science and Technology, 2017, 7, 2874-2885.	2.1	28
198	Topotactic conversion of layered silicate RUB-15 to silica sodalite through interlayer condensation in N-methylformamide. Dalton Transactions, 2017, 46, 10232-10239.	1.6	9
199	Baeyer–Villiger Oxidation of Cyclic Ketones by Using Tin–Silica Pillared Catalysts. ChemCatChem, 2017, 9, 3063-3072.	1.8	29
200	Recent Progresses in Titanosilicates. Chinese Journal of Chemistry, 2017, 35, 836-844.	2.6	26
201	Surfactant-Templating of Zeolites: From Design to Application. Chemistry of Materials, 2017, 29, 3827-3853.	3.2	115
202	Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology. Petroleum Science, 2017, 14, 203-213.	2.4	17
203	Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543, 690-694.	13.7	446
204	Atomistic Understanding of Zeolite Nanosheets for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 11273-11280.	1.5	60

#	Article	IF	CITATIONS
205	Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process. Journal of the American Chemical Society, 2017, 139, 5140-5148.	6.6	42
206	Mixedâ€Valence Nickel Bis(azamacrocycle) Compounds with Ghost‣egâ€type Sheets. Angewandte Chemie - International Edition, 2017, 56, 3838-3841.	7.2	12
207	Mixedâ€Valence Nickel Bis(azamacrocycle) Compounds with Ghost‣egâ€ŧype Sheets. Angewandte Chemie, 2017, 129, 3896-3899.	1.6	4
208	Synthesis of titanosilicate pillared MFI zeolite as an efficient photocatalyst. RSC Advances, 2017, 7, 3249-3256.	1.7	17
209	Preparation, characterization, and post-synthetic modification of layered MCM-22 zeolite precursor. Journal of Chemical Sciences, 2017, 129, 1671-1676.	0.7	17
210	ICP-2: A New Hybrid Organo-Inorganic Ferrierite Precursor with Expanded Layers Stabilized by π–π Stacking Interactions. Journal of Physical Chemistry C, 2017, 121, 24114-24127.	1.5	8
211	Synthesis and Characterization of a Layered Silicogermanate PKU-22 and Its Topotactic Condensation to a Three-Dimensional STI -type Zeolite. Crystal Growth and Design, 2017, 17, 5465-5473.	1.4	11
212	Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion. Catalysis Science and Technology, 2017, 7, 4520-4533.	2.1	34
213	Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science and Technology, 2017, 7, 5182-5194.	2.1	71
214	Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Crystal Growth and Design, 2017, 17, 4289-4305.	1.4	67
215	The interaction of proteins with silica surfaces. Part I: Ab initio modeling. Computational and Theoretical Chemistry, 2017, 1117, 100-107.	1.1	6
216	Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical zsm-5 zeolites treated with various alkalis. Applied Catalysis A: General, 2017, 547, 274-282.	2.2	84
217	Engineering Zeolites for Catalytic Cracking to Light Olefins. ACS Catalysis, 2017, 7, 6542-6566.	5.5	182
218	Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance. Chemical Communications, 2017, 53, 13328-13331.	2.2	46
219	Post-synthesis and Catalytic Performance of Novel Interlayer Expanded Stanosilicate IEZ-Sn-PLS-3. Chemistry Letters, 2017, 46, 1781-1784.	0.7	6
221	Effect of Defect Site Preorganization on Fe(III) Grafting and Stability: A Comparative Study of Delaminated Zeolite vs Amorphous Silica Supports. Chemistry of Materials, 2017, 29, 6480-6492.	3.2	18
222	A two-dimensional porous framework: solvent-induced structural transformation and selective adsorption towards malachite green. Dalton Transactions, 2017, 46, 8350-8353.	1.6	12
223	Two-dimensional zeolites: Adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide. Journal of CO2 Utilization, 2017, 21, 9-16.	3.3	9

#	Article	IF	CITATIONS
224	ECNU-10 zeolite: A three-dimensional MWW-Type analogue. Microporous and Mesoporous Materials, 2017, 253, 137-145.	2.2	10
225	Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin. Applied Surface Science, 2017, 423, 433-442.	3.1	23
226	Sn-Substituted Zeolites as Heterogeneous Catalysts for Liquid-Phase Catalytic Technologies. Studies in Surface Science and Catalysis, 2017, 177, 567-611.	1.5	5
227	A Microporous Aluminosilicate with 12-, 12-, and 8-Ring Pores and Isolated 8-Ring Channels. Journal of the American Chemical Society, 2017, 139, 7989-7997.	6.6	40
228	Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous and Mesoporous Materials, 2017, 244, 264-277.	2.2	41
229	Studying two-dimensional zeolites with the tools of surface science: MFI nanosheets on Au(111). Catalysis Today, 2017, 280, 283-288.	2.2	11
230	Synthesis of mesoporous zeolites in fluoride media with structure-directing multiammonium surfactants. Microporous and Mesoporous Materials, 2017, 239, 19-27.	2.2	33
231	Molecular sensors confined on SiOx substrates. Coordination Chemistry Reviews, 2017, 330, 144-163.	9.5	31
232	Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high density polyethylene. Applied Catalysis A: General, 2017, 531, 187-196.	2.2	47
233	Methane adsorption in ADOR zeolites: a combined experimental and DFT/CC study. Physical Chemistry Chemical Physics, 2017, 19, 16533-16540.	1.3	9
234	Background and Recent Advances in Ti-Containing Zeolite Materials. Structure and Bonding, 2017, , 1-52.	1.0	7
235	Applications of Zeolites in Sustainable Chemistry. CheM, 2017, 3, 928-949.	5.8	518
236	Probing the Nature of Surface Barriers on ZSMâ€5 by Surface Modification. Chemie-Ingenieur-Technik, 2017, 89, 1333-1342.	0.4	23
237	Self-Assembled Materials for Catalysis. , 2017, , 329-349.		0
238	Synthesis and Modification of Clinoptilolite. Molecules, 2017, 22, 1107.	1.7	49
239	Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice. Molecules, 2017, 22, 2014.	1.7	4
241	Two-Dimensional Silica-Based Inorganic Networks. , 2017, , 475-501.		1
242	Frontier of Inorganic Synthesis and Preparative Chemistry (II)-Designed Synthesis—Inorganic Crystalline Porous Materials. , 2017, , 723-761.		1

ARTICLE IF CITATIONS Synthetic Chemistry of the Inorganic Ordered Porous Materials. , 2017, , 389-428. 243 5 Metalâ€"organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 244 2018, 362, 1-23. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Coreâ€"Shell 245 11.1 114 Materials. Advanced Materials, 2018, 30, e1704439. Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of 246 3.1 n-pentane. Journal of Catalysis, 2018, 360, 152-159. Cationic two-dimensional inorganic networks of antimony oxide hydroxide for Lewis acid catalysis. 247 1.6 6 Dalton Transactions, 2018, 47, 4054-4058. Nanosheets of Ni/Clay as high efficient catalysts for hydrogenation of aromatics. Journal of Fuel Chemistry and Technology, 2018, 46, 171-178. Synthese von Zeolithen aus vorkristallisierten Bausteinen: Architektur im Nanomaßstab. Angewandte 249 1.6 14 Chemie, 2018, 130, 15554-15578. Effect of template removal using plasma treatment on the structure and catalytic performance of MCM-22. RSC Advances, 2018, 8, 15372-15379. 250 1.7 Integration of a metal–organic framework with zeolite: a highly sustainable composite catalyst for 251 2.5 19 the synthesis of \hat{I}^3 -valerolactone and coumarins. Sustainable Energy and Fuels, 2018, 2, 1287-1298. $\hat{I}\pm$ -Pinene oxide isomerization: role of zeolite structure and acidity in the selective synthesis of 2.1 campholenic aldehyde. Catalysis Science and Technology, 2018, 8, 2488-2501. 2D versus 3D MFI zeolite: The effect of Si/Al ratio on the accessibility of acid sites and catalytic 253 1.7 11 performance. Materials Today Chemistry, 2018, 8, 1-12. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction 5.3 36 of 2D Žeolites. ACS Central Science, 2018, 4, 235-245. Functionalizing New Intercalation Chemistry for Subâ€Nanometerâ€Scaled Interlayer Engineering of 2D 255 1.9 17 Transition Metal Oxides and Chalcogenides. Advanced Materials Interfaces, 2018, 5, 1701385. Pd Nanoparticles Encapsulated in FER Zeolite through a Layer Reassembling Strategy as Shapeâ€selective 1.8 Hydrogenation Catalyst. ChemCatChem, 2018, 10, 2254-2259. An unexpected relationship between solvent inclusion and gas sorption properties of chiral 257 1.5 6 calixsalen solids. Supramolecular Chemistry, 2018, 30, 479-487. Building Zeolites from Precrystallized Units: Nanoscale Architecture. Angewandte Chemie -126 International Edition, 2018, 57, 15330-15353. Inorganic modification of layered silicates toward functional inorganic-inorganic hybrids. Applied 259 2.6 39 Clay Science, 2018, 153, 187-197. From nZVI to SNCs: development of a better material for pollutant removal in water. Environmental Science and Pollution Research, 2018, 25, 6175-6195.

#	Article	IF	CITATIONS
261	Synthesis of Largeâ€Pore ECNUâ€19 Material (12 × 8â€R) <i>via</i> Interlayerâ€Expansion of HUSâ€2 Lamellar Silicate. Chinese Journal of Chemistry, 2018, 36, 227-232.	2.6	8
262	Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical, 2018, 261, 66-74.	4.0	13
263	Toward a New Era of Designed Synthesis of Nanoporous Zeolitic Materials. ACS Nano, 2018, 12, 4096-4104.	7.3	56
264	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	1.8	25
265	A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2018, 361, 135-142.	3.1	66
266	The Role of External Acidity of Hierarchical ZSMâ€5 Zeolites in <i>n</i> â€Heptane Catalytic Cracking. ChemCatChem, 2018, 10, 2655-2663.	1.8	35
267	The Lewis acidity of three- and two-dimensional zeolites: The effect of framework topology. Catalysis Today, 2018, 304, 12-21.	2.2	13
268	Pore size-tunable titanosilicates post-synthesized from germanosilicate by structural reorganization and H2TiF6-assisted isomorphous substitution. Applied Catalysis A: General, 2018, 550, 11-19.	2.2	32
269	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	1.6	16
270	The effect of hot liquid water treatment on the properties and catalytic activity of MWW zeolites with various layered structures. Catalysis Today, 2018, 304, 22-29.	2.2	10
271	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	2.2	32
272	Catalytic performance of advanced titanosilicate selective oxidation catalysts – a review. Catalysis Reviews - Science and Engineering, 2018, 60, 71-131.	5.7	135
273	Recent trends in the synthesis of high-silica zeolites. Catalysis Reviews - Science and Engineering, 2018, 60, 132-175.	5.7	61
274	<i>para</i> â€Xylene Ultraâ€selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air–Water Interface. Angewandte Chemie - International Edition, 2018, 57, 480-485.	7.2	130
275	Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 2018, 8, 770-784.	5.5	161
276	Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. Catalysis Science and Technology, 2018, 8, 521-533.	2.1	18
277	para â€Xylene Ultraâ€selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air–Water Interface. Angewandte Chemie, 2018, 130, 489-494.	1.6	42
278	Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production. ChemPhysChem, 2018, 19, 437-445.	1.0	12

#	Article	IF	CITATIONS
279	Forged and fashioned for faithfulness—ruthenium olefin metathesis catalysts bearing ammonium tags. Chemical Communications, 2018, 54, 122-139.	2.2	44
280	Synthesis of hexagonal aluminosilicate from liquid-crystalline mesophase using zeolitic nanoclusters: bottom-up versus top-down approach. Journal of Porous Materials, 2018, 25, 735-745.	1.3	2
281	Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 2018, 19, 1249-1297.	1.0	60
282	SSZ-70 borosilicate delamination without sonication: effect of framework topology on olefin epoxidation catalysis. Dalton Transactions, 2018, 47, 15082-15090.	1.6	16
283	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
284	MoO3 on zeolites MCM-22, MCM-56 and 2D-MFI as catalysts for 1-octene metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2931-2939.	1.3	3
285	IR Operando Study of Ethanol Dehydration over MFI Zeolites: Structure–Activity Relationships. Journal of Physical Chemistry C, 2018, 122, 24055-24067.	1.5	10
286	Synthesis and structure of a CDO zeolite precursor with a high Al content. Inorganic Chemistry Frontiers, 2018, 5, 2792-2797.	3.0	6
287	Synthesis of Hierarchical MWW Zeolites and Their Catalytic Properties in Petrochemical Processes (Review). Petroleum Chemistry, 2018, 58, 815-826.	0.4	8
288	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	1.6	38
289	Exploring the potential and design of zeolite nanosheets as pervaporation membranes for ethanol extraction. Chemical Communications, 2018, 54, 13200-13203.	2.2	13
290	Could Mesophases Play a Role in the Nucleation and Polymorph Selection of Zeolites?. Journal of the American Chemical Society, 2018, 140, 16071-16086.	6.6	23
291	Structure and Reactivity of Metals in Zeolite Materials. Structure and Bonding, 2018, , .	1.0	10
292	Choline-mediated synthesis of zeolite ERS-7 <i>via</i> an excess fluoride approach. Chemical Communications, 2018, 54, 10997-11000.	2.2	4
293	Mesoporogenâ€Free Synthesis of Hierarchical SAPOâ€34 with Low Template Consumption and Excellent Methanolâ€toâ€Olefin Conversion. ChemSusChem, 2018, 11, 3812-3820.	3.6	40
294	Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework. Inorganic Chemistry, 2018, 57, 11753-11760.	1.9	7
295	From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47, 8263-8306.	18.7	230
296	Large Crystals Synthesis of Siliceous Layered Zeolitic PLSâ€1 and CDSâ€1 Zeolite by Dry Gel Conversion Method. Crystal Research and Technology, 2018, 53, 1800036.	0.6	4

#	Article	IF	CITATIONS
297	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDIâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	1.7	65
298	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	1.4	66
299	Stepwise Gel Preparation for High-Quality CHA Zeolite Synthesis: AÂCommon Tool for Synthesis Diversification. Crystal Growth and Design, 2018, 18, 5652-5662.	1.4	15
300	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
301	Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science and Technology, 2018, 8, 4690-4701.	2.1	33
302	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	3.0	17
303	Two-dimensional lamellar magnesium silicate with large spacing as an excellent adsorbent for uranium immobilization. Environmental Science: Nano, 2018, 5, 2406-2414.	2.2	25
304	Synthesis of Extraâ€Largeâ€Pore Zeolite ECNUâ€9 with Intersecting 14*12â€Ring Channels. Angewandte Chemie International Edition, 2018, 57, 9515-9519.	7.2	29
305	A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures. Chemistry - A European Journal, 2018, 24, 12600-12606.	1.7	2
306	Synthesis of Extraâ€Largeâ€Pore Zeolite ECNUâ€9 with Intersecting 14*12â€Ring Channels. Angewandte Chemie 2018, 130, 9659-9663.	'1.6	7
307	10-ring Zeolites: Synthesis, characterization and catalytic applications. Catalysis Today, 2019, 324, 3-14.	2.2	23
308	Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods. Catalysis Today, 2019, 324, 123-134.	2.2	5
309	2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials, 2019, 31, e1801712.	11.1	88
310	The influence of ethanol-assisted washes to obtain swollen and pillared MWW-type zeolite with high degree ordering of lamellar structure. Microporous and Mesoporous Materials, 2019, 275, 26-30.	2.2	1
311	Catalytic activity of advanced titanosilicate zeolites in hydrogen peroxide S-oxidation of methyl(phenyl)sulfide. Catalysis Today, 2019, 324, 144-153.	2.2	22
312	Direct synthesis of hierarchically structured MFI zeolite nanosheet assemblies with tailored activity in benzylation reaction. Microporous and Mesoporous Materials, 2019, 273, 235-242.	2.2	23
313	Synthesis of Pt-MWW with controllable nanoparticle size. Catalysis Today, 2019, 324, 135-143.	2.2	17
314	New organicâ€pillared zincophosphate and interpenetratingâ€layered zinc coordination polymer: Crystal growth on tarbuttiteâ€like sheets with surfaceâ€active carboxylic acid groups. Journal of the Chinese Chemical Society, 2019, 66, 1195-1198.	0.8	0

\sim			<u> </u>	
(T	ΤΔΤ	$1 \cap N$	REE	DUBL
\sim	17.11		I CLI	

#	Article	IF	CITATIONS
315	Bridging the Gap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie - International Edition, 2019, 58, 14529-14533.	7.2	5
316	2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 2019, 31, e1900617.	11.1	309
317	2D materials as an emerging platform for nanopore-based power generation. Nature Reviews Materials, 2019, 4, 588-605.	23.3	253
318	Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications. Advanced Science, 2019, 6, 1900299.	5.6	127
319	Hierarchical Ti-containing hollownest-structured zeolite synthesized by seed-assisted method for catalytic epoxidation of alkenes efficiently. Materials Chemistry and Physics, 2019, 236, 121754.	2.0	8
320	Deleterious effects of non-framework Al species on the catalytic performance of ZSM-5 crystals synthesized at low temperature. Reaction Chemistry and Engineering, 2019, 4, 1957-1968.	1.9	16
321	DFT and spatial confinement: a benchmark study on the structural and electrical properties of hydrogen bonded complexes. Physical Chemistry Chemical Physics, 2019, 21, 17253-17273.	1.3	6
322	Formation of silicate nanoscrolls through solvothermal treatment of layered octosilicate intercalated with organoammonium ions. Nanoscale, 2019, 11, 12924-12931.	2.8	5
323	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	1.9	13
324	Regulating Nonclassical Pathways of Silicaliteâ€1 Crystallization through Controlled Evolution of Amorphous Precursors. Angewandte Chemie, 2019, 131, 15859-15863.	1.6	19
325	Regulating Nonclassical Pathways of Silicaliteâ€1 Crystallization through Controlled Evolution of Amorphous Precursors. Angewandte Chemie - International Edition, 2019, 58, 15712-15716.	7.2	36
326	Ultrafast synthesis of zeolites: breakthrough, progress and perspective. Inorganic Chemistry Frontiers, 2019, 6, 14-31.	3.0	72
327	Bridging the Cap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie, 2019, 131, 14671-14675.	1.6	2
328	A Supramolecular View on the Cooperative Role of BrÃ,nsted and Lewis Acid Sites in Zeolites for Methanol Conversion. Journal of the American Chemical Society, 2019, 141, 14823-14842.	6.6	80
329	SBA-15 as a Support for Effective Olefin Metathesis Catalysts. Catalysts, 2019, 9, 743.	1.6	11
330	Water adsorption on Al doped silicatene films grown on Mo(112). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041507.	0.9	1
331	Influences of metal-modification and lamellar zeolite structure on ethylene to liquid aromatics conversion reaction using MFI catalysts. Fuel, 2019, 256, 115953.	3.4	13
332	Controlling dispersion and accessibility of Pd nanoparticles via 2D-to-3D zeolite transformation for shape-selective catalysis: Pd@MWW case. Materials Today Nano, 2019, 8, 100056.	2.3	9

#	Article	IF	CITATIONS
333	Desulfurization of Liquid Hydrocarbon Fuels with Microporous and Mesoporous Materials: Metal-Organic Frameworks, Zeolites, and Mesoporous Silicas. Industrial & Engineering Chemistry Research, 2019, 58, 19322-19352.	1.8	34
334	Solvation effect on binding modes of model lignin dimer compounds on MWW 2D-zeolite. Journal of Chemical Physics, 2019, 151, 114708.	1.2	2
335	New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 1095-1149.	18.7	330
336	ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Research, 2019, 47, D660-D665.	6.5	363
337	Landscape of AIPO-based structures and compositions in the database of zeolite structures. Microporous and Mesoporous Materials, 2019, 280, 105-115.	2.2	17
338	Synthesis of novel aluminosilicate YNU-5 and enhancement of the framework thermal stability by post-synthesis treatment. Microporous and Mesoporous Materials, 2019, 280, 66-74.	2.2	11
339	Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials, 2019, 279, 364-370.	2.2	31
340	Carboxylic acid-protruding zincophosphate sheets exhibiting surface mechanochemical reactivity and intriguing nano-morphological reversibility. Chemical Communications, 2019, 55, 2429-2432.	2.2	3
341	Phase Transformation Behavior of a Twoâ€Dimensional Zeolite. Angewandte Chemie, 2019, 131, 10336-10341.	1.6	1
342	Vapor-Phase Strategy to Pillaring of Two-Dimensional Zeolite. Journal of the American Chemical Society, 2019, 141, 8712-8716.	6.6	27
343	2D-enabled membranes: materials and beyond. BMC Chemical Engineering, 2019, 1, .	3.4	27
344	Ultrathin nanosheets of aluminosilicate FER zeolites synthesized in the presence of a sole small organic ammonium. Journal of Materials Chemistry A, 2019, 7, 16671-16676.	5.2	27
345	Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous and Mesoporous Materials, 2019, 288, 109555.	2.2	8
346	Cooperative structure-directing effect of choline cation and *BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolite. Chinese Journal of Catalysis, 2019, 40, 856-866.	6.9	10
347	Oxy-functionalization of olefins with neat and heterogenized binuclear V(IV)O and Fe(II) complexes: Effect of steric hindrance on product selectivity and output in homogeneous and heterogeneous phase. Molecular Catalysis, 2019, 474, 110424.	1.0	4
348	Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation, 2019, 45, 1122-1147.	0.9	23
349	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
350	Phase Transformation Behavior of a Twoâ€Dimensional Zeolite. Angewandte Chemie - International Edition, 2019, 58, 10230-10235.	7.2	3

#	Article	IF	CITATIONS
351	Generalized ionothermal synthesis of silica-based zeolites. Microporous and Mesoporous Materials, 2019, 286, 163-168.	2.2	21
353	Hierarchically structured composites and porous materials from soft templates: fabrication and applications. Journal of Materials Chemistry A, 2019, 7, 8030-8049.	5.2	68
354	Synthesis of Titanium-Incorporated MWW Zeolite by Sequential Deboronation and Atom-Planting Treatment of ERB-1 as an Epoxidation Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 4764-4773.	1.8	32
355	Evaluation of Major Product Distribution Using Experimentalâ€Theoretical Comparative Studies on Toluene and Ethylbenzene Ethylation over Catalysts Zeolite MCMâ€22 and Modified MCMâ€22. ChemistrySelect, 2019, 4, 3047-3051.	0.7	1
356	A New Layered Silicogermanate PKU-23 and Its Transformation to a Zeolite with Three-Dimensional Channels. Crystal Growth and Design, 2019, 19, 2272-2278.	1.4	2
357	Mesoporogen-free synthesis of nanosized hierarchical ITQ-21 zeolites. Inorganic Chemistry Frontiers, 2019, 6, 1184-1188.	3.0	5
358	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	5.2	41
359	The BrÃ,nsted acidity of three- and two-dimensional zeolites. Microporous and Mesoporous Materials, 2019, 282, 121-132.	2.2	21
360	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 74, 141-177.	3.8	16
361	Overview of Current and Future Perspectives of Saudi Arabian Natural Clinoptilolite Zeolite: A Case Review. Journal of Chemistry, 2019, 2019, 1-16.	0.9	4
362	Catalytic Properties of Selected Transition Metal Oxides—Computational Studies. Challenges and Advances in Computational Chemistry and Physics, 2019, , 345-408.	0.6	2
363	Molecular Modifiers Suppress Nonclassical Pathways of Zeolite Crystallization. Chemistry of Materials, 2019, 31, 3228-3238.	3.2	39
364	2D nanoporous materials: membrane platform for gas and liquid separations. 2D Materials, 2019, 6, 042002.	2.0	37
365	Time-Resolved Dynamics of Intracrystalline Mesoporosity Generation in USY Zeolite. Chemistry of Materials, 2019, 31, 5005-5013.	3.2	17
366	Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins. Applied Catalysis A: General, 2019, 575, 101-110.	2.2	42
367	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie, 2019, 131, 17674-17689.	1.6	68
368	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie - International Edition, 2019, 58, 17512-17527.	7.2	186
369	Impact of BrÃ,nsted acid sites in MWW zeolites modified with cesium and amine species on Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 280, 288-296.	2.2	16

#	Article	IF	CITATIONS
370	Insight into the Formation of Nanostructured MFI Sheets and MEL Needles Driven by Molecular Recognition. Journal of Physical Chemistry C, 2019, 123, 5326-5335.	1.5	10
371	Fluoride etching opens the structure and strengthens the active sites of the layered ZSM-5 zeolite. Microporous and Mesoporous Materials, 2019, 280, 297-305.	2.2	17
372	Self-monitoring of fat metabolism using portable/wearable acetone analyzers. , 2019, , 307-322.		0
373	One-pot synthesis of lamellar mordenite and ZSM-5 zeolites and subsequent pillaring by amorphous SiO2. Applied Nanoscience (Switzerland), 2019, 9, 557-565.	1.6	8
374	The interaction of proteins with silica surfaces. Part II: Free energies of capped amino acids. Computational and Theoretical Chemistry, 2019, 1148, 38-43.	1.1	4
375	A novel and efficient strategy to exfoliation of covalent organic frameworks and a significant advantage of covalent organic frameworks nanosheets as polymer nano-enhancer: High interface compatibility. Journal of Colloid and Interface Science, 2019, 539, 609-618.	5.0	33
376	Epitaxial Growth of Layered-Bulky ZSM-5 Hybrid Catalysts for the Methanol-to-Propylene Process. Industrial & Engineering Chemistry Research, 2019, 58, 1580-1589.	1.8	23
377	Database of Computation-Ready 2D Zeolitic Slabs. Chemistry of Materials, 2019, 31, 353-364.	3.2	18
378	Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel, 2019, 236, 1243-1253.	3.4	58
379	Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination, 2019, 451, 18-34.	4.0	87
380	Methanol oxidation on AuAg-Zn/MCM-36 – The effect of catalyst components and pretreatment. Catalysis Today, 2020, 354, 123-132.	2.2	9
381	Structural transformation and chemical modifications of the unusual layered zeolite MWW form SSZ-70. Catalysis Today, 2020, 354, 133-140.	2.2	11
382	Manufacturing Nanoporous Materials for Energy-Efficient Separations. , 2020, , 33-81.		8
383	Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 2020, 345, 2-13.	2.2	40
384	Quantification of Lewis acid sites in 3D and 2D TS-1 zeolites: FTIR spectroscopic study. Catalysis Today, 2020, 345, 80-87.	2.2	28
385	Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution. Arabian Journal of Chemistry, 2020, 13, 4092-4101.	2.3	43
386	Some novel porous materials for selective catalytic oxidations. Materials Today, 2020, 32, 244-259.	8.3	44
387	Synthesis of aggregation-resistant MFI nanoparticles. Catalysis Today, 2020, 354, 151-157.	2.2	2

#	Article	IF	CITATIONS
388	Sustainable Synthesis of Hierarchical MWW Zeolites Using Silica from an Agro-industrial Waste, Rice Husk Ash. Crystal Growth and Design, 2020, 20, 178-188.	1.4	11
389	Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity. Frontiers of Chemical Science and Engineering, 2020, 14, 772-782.	2.3	5
390	Morphologyâ€Reserved Synthesis of Discrete Nanosheets of CuO@SAPOâ€34 and Pore Mouth Catalysis for Oneâ€Pot Oxidation of Cyclohexane. Angewandte Chemie, 2020, 132, 2628-2633.	1.6	12
391	Morphologyâ€Reserved Synthesis of Discrete Nanosheets of CuO@SAPOâ€34 and Pore Mouth Catalysis for Oneâ€Pot Oxidation of Cyclohexane. Angewandte Chemie - International Edition, 2020, 59, 2606-2611.	7.2	36
392	Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks. Advanced Materials, 2020, 32, e1906103.	11.1	81
393	Efficient and Sustainable Hydrogenation of Levulinic Acid to Î ³ -Valerolactone in Aqueous Phase over Ru/MCM-49 Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 17338-17347.	1.8	19
394	Fine-Tuned Hierarchical Architecture of MWW Zeolites for Highly Efficient Alkylation via Suitable Accommodation. Industrial & Engineering Chemistry Research, 2020, 59, 13932-13939.	1.8	5
395	Solid acids, surface acidity and heterogeneous acid catalysis. Advances in Catalysis, 2020, 67, 1-90.	0.1	13
396	Synthesis and Characterization of a New Aluminosilicate Molecular Sieve from Aluminosilica Perhydrate Hydrogel. Materials, 2020, 13, 5469.	1.3	3
397	Transformation Control of a Layered Zeolite Precursor by Simple Cation Exchange. Chemistry of Materials, 2020, 32, 9740-9746.	3.2	2
398	Zeolites Applications in Veterinary Medicine. , 2020, , .		4
399	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie, 2020, 132, 20106-20111.	1.6	0
400	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 19934-19939.	7.2	4
401	Synthetic zeolites and their characterization. , 2020, , 65-88.		7
402	Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite. ACS Central Science, 2020, 6, 1578-1586.	5.3	18
403	Synthesis and characterization of a layered aluminosilicate NUD-11 and its transformation to a 3D stable zeolite. Dalton Transactions, 2020, 49, 11682-11688.	1.6	2
404	Advances in the Synthesis of Ferrierite Zeolite. Molecules, 2020, 25, 3722.	1.7	14
405	Hierarchically Structured Zeolites: From Design to Application. Chemical Reviews, 2020, 120, 11194-11294.	23.0	328

#	Article	IF	CITATIONS
406	Gemini Surfactant-Directed Facile Pillaring of Two-Dimensional Zeolites with Enhanced Catalytic Activity in Friedel–Crafts Alkylation. Industrial & Engineering Chemistry Research, 2020, 59, 16312-16320.	1.8	10
407	Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy and Environment, 2020, 5, 405-413.	4.7	24
408	Local Structures of Two-Dimensional Zeolites—Mordenite and ZSM-5—Probed by Multinuclear NMR. Molecules, 2020, 25, 4678.	1.7	10
409	A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds. Chemistry - A European Journal, 2020, 26, 10459-10470.	1.7	6
410	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	3.0	65
411	Mesoporous HZSM-5 Supported Zn Catalyst for Improved Ethane Aromatization. Catalysis Letters, 2020, 150, 3495-3504.	1.4	8
413	One-step hydrothermal synthesis of TiO2-supported clinoptilolite: An integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media. Journal of Environmental Chemical Engineering, 2020, 8, 103852.	3.3	37
414	Facile In Situ Hydrothermal Synthesis of Layered Zirconium Phenylphosphonate Molecular Sieve Membranes with Optimized Microstructure and Superb H ₂ /CO ₂ Selectivity. ACS Applied Materials & Interfaces, 2020, 12, 15320-15327.	4.0	9
415	Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances, 2020, 6, eaay8163.	4.7	37
416	Assessment of coke deposits on lamellar metal-modified MFI zeolites in ethylene transformation to aromatic liquids. Applied Catalysis A: General, 2020, 595, 117510.	2.2	11
417	Hydrothermal synthesis of boron-free Zr-MWW and Sn-MWW zeolites as robust Lewis acid catalysts. Chemical Communications, 2020, 56, 4696-4699.	2.2	10
418	Generalized Methodology for Inserting Metal Heteroatoms into the Layered Zeolite Precursor RUB-36 by Interlayer Expansion. Crystals, 2020, 10, 530.	1.0	6
419	Ab initio investigation of the relative stability of silicogermanates and their (Alumino)Silicates counterparts. Microporous and Mesoporous Materials, 2020, 306, 110425.	2.2	3
420	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	11.1	148
421	One-pot fabrication of metal-zeolite catalysts from a combination of solvent-free and sodium-free routes. Catalysis Today, 2021, 371, 64-68.	2.2	4
422	Effect of mother liquor addition on (P)MCM-22 synthesis. Microporous and Mesoporous Materials, 2020, 306, 110370.	2.2	5
423	Methods and synthesis parameters affecting the formation of FAU type zeolite membrane and its separation performance: a review. Journal of Asian Ceramic Societies, 2020, 8, 553-571.	1.0	28
424	Fluoride-free Synthesis of Germanosilicate CIT-13 and Its Inverse Sigma Transformation To Form CIT-14. Chemistry of Materials, 2020, 32, 2014-2024.	3.2	10

#	Article	IF	CITATIONS
425	Effect of Milling Methods on Particulate Properties and Structure of Clinoptilolite. Crystal Research and Technology, 2020, 55, 1900180.	0.6	2
426	Nanosized zeolite beta - Determining the safety of usage by zebrafish Danio rerio embryos. Microporous and Mesoporous Materials, 2020, 299, 110103.	2.2	3
427	Effect of delamination on active base site formation over nitrided MWW-type zeolite for Knoevenagel condensation. Microporous and Mesoporous Materials, 2020, 299, 110104.	2.2	8
428	Steamâ€Induced Coarsening of Singleâ€Unitâ€Cell MFI Zeolite Nanosheets and Its Effect on External Surface BrÃ,nsted Acid Catalysis. Angewandte Chemie, 2020, 132, 9666-9672.	1.6	5
429	Steamâ€Induced Coarsening of Singleâ€Unitâ€Cell MFI Zeolite Nanosheets and Its Effect on External Surface BrÃ,nsted Acid Catalysis. Angewandte Chemie - International Edition, 2020, 59, 9579-9585.	7.2	26
430	Environment, Stability and Acidity of External Surface Sites of Silicalite-1 and ZSM-5 Micro and Nano Slabs, Sheets, and Crystals. ACS Catalysis, 2020, 10, 3297-3312.	5.5	32
431	Dissolution–Recrystallization Formation of Huge Thin 2D Silicalite Lamella for Promoted Sorption. Advanced Materials Interfaces, 2020, 7, 1901786.	1.9	2
432	Bolaform surfactant-directed synthesis of TS-1 zeolite nanosheets for catalytic epoxidation of bulky cyclic olefins. Catalysis Science and Technology, 2020, 10, 1323-1335.	2.1	15
433	A new synthetic smectite-like vanadosilicate containing V3+ in the framework. Applied Clay Science, 2020, 186, 105452.	2.6	1
434	Preparation and catalytic properties of a novel aluminosilicate zeolite with intersecting 14*12-Ring pore sizes. Microporous and Mesoporous Materials, 2020, 303, 110251.	2.2	5
435	Encapsulation of Cu nanoparticles in nanovoids of plate-like silica sodalite through interlayer condensation of Cu ²⁺ ion-exchanged layered silicate RUB-15. Dalton Transactions, 2020, 49, 8067-8074.	1.6	3
436	Hierarchical zeolites: synthesis, structural control, and catalytic applications. Emergent Materials, 2020, 3, 225-245.	3.2	22
437	Two-Dimensional Zeolite Materials: Structural and Acidity Properties. Materials, 2020, 13, 1822.	1.3	46
438	Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catalysis, 2020, 10, 5579-5601.	5.5	49
439	Enhanced Surface Activity of MWW Zeolite Nanosheets Prepared via a One-Step Synthesis. Journal of the American Chemical Society, 2020, 142, 8211-8222.	6.6	57
440	Relativistic distance-based topological descriptors of Linde type A zeolites and their doped structures with very heavy elements. Molecular Physics, 2021, 119, e1798529.	0.8	31
441	Manganese bridge of mercury and oxygen for elemental mercury capture from industrial flue gas in layered Mn/MCM-22 zeolite. Fuel, 2021, 283, 118973.	3.4	28
442	Catalytic and photocatalytic epoxidation over microporous titanosilicates with nanosheet or layered structure. Catalysis Today, 2021, 376, 28-35.	2.2	7

#	Article	IF	CITATIONS
443	Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous and Mesoporous Materials, 2021, 310, 110617.	2.2	13
444	Covalent Organic Frameworks in Catalytic Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 144-193.	2.1	49
445	Natureâ€Inspired, Computerâ€Assisted Optimization of Hierarchically Structured Zeolites. Advanced Materials Interfaces, 2021, 8, 2001409.	1.9	16
446	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, .	2.7	49
447	Controlled direct synthesis of single- to multiple-layer MWW zeolite. National Science Review, 2021, 8, nwaa236.	4.6	13
448	Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chemical Society Reviews, 2021, 50, 11156-11179.	18.7	100
449	MoC nanodots toward efficient electrocatalytic hydrogen evolution: an interlayer-confined strategy with a 2D-zeolite precursor. Journal of Materials Chemistry A, 2021, 9, 4724-4733.	5.2	19
450	Tracking the evolution of embryonic zeolites into hierarchical ZSM-5. Journal of Materials Chemistry A, 2021, 9, 13570-13587.	5.2	11
451	New avenues for mechanochemistry in zeolite science. Dalton Transactions, 2021, 50, 8995-9009.	1.6	36
452	Multiscale exploration of hydrocarbon adsorption and hopping through ZSM-5 channels $\hat{a} \in$ from Monte Carlo modelling to experiment. Physical Chemistry Chemical Physics, 2021, 23, 2981-2990.	1.3	4
453	Newly Emerging Metal–Organic Frameworks (MOF), MXenes, and Zeolite Nanosheets in Solutes Removal from Water. Springer Series on Polymer and Composite Materials, 2021, , 219-247.	0.5	0
454	Surface organometallic and coordination chemistry approach to formation of single site heterogeneous catalysts. , 2021, , .		0
455	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	2.6	27
457	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	5.5	63
458	Exfoliation of surfactant swollen layered MWW zeolites into two-dimensional zeolite nanosheets using telechelic liquid polybutadiene. Microporous and Mesoporous Materials, 2021, 315, 110883.	2.2	10
459	Extra-Large Pore Titanosilicate Synthesized via Reversible 3D–2D–3D Structural Transformation as Highly Active Catalyst for Cycloalkene Epoxidation. ACS Catalysis, 2021, 11, 2650-2662.	5.5	17
460	Hierarchicallyâ€Ordered Zeolites: A Critical Assessment. Advanced Materials Interfaces, 2021, 8, 2001841.	1.9	56
461	Zeolite-Based Catalysis for Phenol Production. Industrial & Engineering Chemistry Research, 2021, 60, 6379-6402.	1.8	17

#	Article	IF	CITATIONS
462	"Desert Rose―MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance. Microporous and Mesoporous Materials, 2021, 315, 110910.	2.2	16
463	Modified Zeolite Catalyst for a NOx Selective Catalytic Reduction Process in Nitric Acid Plants. Catalysts, 2021, 11, 450.	1.6	17
464	Two-dimensional Nanomaterials in Thermocatalytic Reactions: Transition Metal Dichalcogenides, Metal Phosphorus Trichalcogenides and MXenes. Catalysis Reviews - Science and Engineering, 2023, 65, 1-51.	5.7	10
465	Esterification of Oleic Acid to Produce Biodiesel over 12-Tungstophosphoric Acid Anchored Two-dimensional Zeolite. Chemical Research in Chinese Universities, 2021, 37, 1072-1078.	1.3	7
466	Hydrothermally stable ITH-type zeolite directed by a simple nonquaternary ammonium pyrrolidine derivative: Synthesis, characterization and catalytic performance. Microporous and Mesoporous Materials, 2021, 319, 111058.	2.2	3
467	Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chemical Engineering Journal, 2021, 412, 128599.	6.6	11
468	Modified Layered Silicas as Catalysts for Conversion of Nitrogen Pollutants in Flue Gases—A Review. Catalysts, 2021, 11, 644.	1.6	9
469	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
470	Optimal design of hierarchically structured <scp>ZSM</scp> â€5 zeolites for <scp><i>n</i>â€hexane</scp> isomerization. AICHE Journal, 2021, 67, e17355.	1.8	7
471	Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes. Journal of Industrial and Engineering Chemistry, 2021, 98, 189-199.	2.9	18
472	From nano aggregates to nano plates: The roles of gelatin in the crystallization of titanium silicate-1. Microporous and Mesoporous Materials, 2021, 321, 111100.	2.2	6
473	Methane oxidation by green oxidant to methanol over zeolite-based catalysts. Chinese Chemical Letters, 2022, 33, 1757-1762.	4.8	8
474	Microwave synthesis of zeolites and their related applications. Microporous and Mesoporous Materials, 2021, 323, 111262.	2.2	41
475	Two Coexisting Forms of Simple Molecules for Directing Sesqui-Unit-Cell Zeolite Nanosheets. Chemistry of Materials, 2021, 33, 6934-6941.	3.2	11
476	Lamellar-zeolitic transformations mediated by diffusionless and recrystallization mechanisms. Microporous and Mesoporous Materials, 2021, 323, 111189.	2.2	2
477	Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochemical Engineering Journal, 2021, 172, 108033.	1.8	24
478	Mixed zeolite hybrids combining the MFI structure with exfoliated MWW monolayers. Microporous and Mesoporous Materials, 2021, 324, 111300.	2.2	5
479	A Short Review on Synthesis, Characterization, and Applications of Zeolites. Advances in Materials Science and Engineering, 2021, 2021, 1-17.	1.0	39

#	ARTICLE	IF	CITATIONS
480	State of the art in the industrial production and application of zeolite-containing adsorbents and catalysts in Russia. Kataliz V Promyshlennosti, 2021, 21, 297-307.	0.2	2
481	In-situ construction and catalytic property of highly exposed Lewis acidity on hierarchical Zr-zeolite assisted by K+ cation. Microporous and Mesoporous Materials, 2021, 324, 110898.	2.2	9
482	Highly selective reduction of biomass-derived furfural by tailoring the microenvironment of Rh@BEA catalysts. Catalysis Today, 2022, 390-391, 295-305.	2.2	4
483	Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules, 2021, 26, 5916.	1.7	5
484	Excellent adsorption performance and capacity of modified layered ITQ-2 zeolites for elemental mercury removal and recycling from flue gas. Journal of Hazardous Materials, 2022, 423, 127118.	6.5	8
485	Core–Shell Structured Zeolite Catalysts with Enhanced Shape Selectivity. Nanostructure Science and Technology, 2021, , 181-186.	0.1	3
486	On the crystal chemistry of inorganic nitrides: crystal-chemical parameters, bonding behavior, and opportunities in the exploration of their compositional space. Chemical Science, 2021, 12, 4599-4622.	3.7	8
487	Spectroscopic Expression of the External Surface Sites of H-ZSM-5. Journal of Physical Chemistry C, 2021, 125, 2163-2181.	1.5	34
488	Nanosponge TSâ€1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	1.9	9
489	Structure–Property–Energetics Relationship of Organosulfide Capture Using Cu(I)/Cu(II)-BTC Edited by Valence Engineering. Industrial & Engineering Chemistry Research, 2021, 60, 371-377.	1.8	8
490	Mechanistic Understanding of Catalytic Conversion of Ethanol to 1-Butene over 2D-Pillared MFI Zeolite. Journal of Physical Chemistry C, 2020, 124, 28437-28447.	1.5	9
491	PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 4437-4446.	5.2	31
492	Prospects for the Development of Ethylene Oxide Production Catalysts and Processes (Review). Petroleum Chemistry, 2020, 60, 1191-1206.	0.4	18
493	One-Pot Exfoliation and Functionalization of Zeolite Nanosheets for Protection of Paper-Based Relics. ACS Applied Nano Materials, 2021, 4, 10645-10656.	2.4	7
494	Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catalysis Today, 2022, 390-391, 272-280.	2.2	5
496	Molecular dynamic simulation studies of adsorption and diffusion behaviors of methanol and ethanol through ZSM-5 zeolite. Journal of Molecular Graphics and Modelling, 2022, 110, 108048.	1.3	12
497	Preparation of MFI Nanosheets with Distinctive Microstructures via Facile Alkaline Etching. Industrial & Engineering Chemistry Research, 2021, 60, 16296-16303.	1.8	6
498	Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, , 259-317.	0.3	2

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
499	Ethanol and Water Adsorption in Conventional and Hierarchical All-Silica MFI Zeolites. ACS Physical Chemistry Au, 0, , .	1.9	4
500	Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity. Catalysis Today, 2021, , .	2.2	5
501	Zeolites catalyze selective reactions of large organic molecules. Advances in Catalysis, 2021, 69, 59-102.	0.1	0
502	High–aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes. Science Advances, 2022, 8, eabl6841.	4.7	40
503	Defect-induced formation of nickel silicates on two-dimensional MWW-type catalysts promoting catalytic activity for dry reforming of methane. Microporous and Mesoporous Materials, 2022, 332, 111683.	2.2	3
504	On the chemical condensation of the layers of zeolite precursor MCM-22(P). Microporous and Mesoporous Materials, 2022, 332, 111678.	2.2	6
505	Post-synthetic particle size reduction of a layered cesium titanate (Cs2Ti5O11) for the improvement of photocatalytic H2 production. Journal of Physics and Chemistry of Solids, 2022, 163, 110541.	1.9	3
506	SCM-25: A Zeolite with Ordered Meso-cavities Interconnected by 12Â×Â12Â×Â10-Ring Channels Determined l 3D Electron Diffraction. Inorganic Chemistry, 2022, 61, 4371-4377.	^{by} 1.9	5
507	MWW-type zeolite nanostructures for a one-pot three-component Prins–Friedel–Crafts reaction. Inorganic Chemistry Frontiers, 2022, 9, 1244-1257.	3.0	7
508	Wet-oxidization and exfoliation of non-swollen MCM-22P to dispersible two-dimensional MWW zeolite nanosheets. Microporous and Mesoporous Materials, 2022, 330, 111629.	2.2	3
509	A nucleation-tuned mechanism to prepare centre-crossed zeolite lamellas by the rotating/static switch crystallization strategy. Inorganic Chemistry Frontiers, 2022, 9, 889-901.	3.0	3
510	Ruthenium-containing MCM-22 and ITQ-2 as potential redox catalysts for benzhydrol oxidation. Journal of Porous Materials, 2022, 29, 591-599.	1.3	3
511	Reactivity of internal vs. external BrĄ̃nsted acid sites in nanosponge MFI: H/D exchange kinetic study. Microporous and Mesoporous Materials, 2022, 332, 111717.	2.2	1
512	Progress in Preparation and Catalysis of Two-dimensional (2D) and Three-dimensional (3D) Zeolites. Acta Chimica Sinica, 2022, 80, 180.	0.5	8
513	A lamellar structure zeolite LTA for CO ₂ capture. New Journal of Chemistry, 2022, 46, 6720-6728.	1.4	11
514	Zeolite nanosheets for catalysis. Chemical Society Reviews, 2022, 51, 2431-2443.	18.7	69
515	Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins. Catalysts, 2022, 12, 351.	1.6	6
516	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118

#	Article	IF	CITATIONS
517	Self-seeded growth of very large open-structured zeolite nanosheet assemblies with extraordinary micropore accessibility. Microporous and Mesoporous Materials, 2022, 336, 111854.	2.2	5
518	Host–Guest Silicalite-1 Zeolites: Correlated Disorder and Phase Transition Inhibition by a Small Guest Modification. Chemistry of Materials, 2022, 34, 366-387.	3.2	5
519	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie, 2022, 134, .	1.6	7
520	Synthesis of Pure Silica Zeolites. Chemical Research in Chinese Universities, 2022, 38, 9-17.	1.3	6
521	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
523	Stacking-faulted CDO zeolite nanosheets efficient for bulky molecular reactions. Chemical Communications, 2022, 58, 6008-6011.	2.2	1
524	Advances in zeolite-supported metal catalysts for propane dehydrogenation. Inorganic Chemistry Frontiers, 2022, 9, 3095-3115.	3.0	19
525	Disordered Hmww Zeolite Nanosheets Catalyzing Fructose to 5-Hydroxymethylfurfural. SSRN Electronic Journal, 0, , .	0.4	0
526	Ru and CE Modified Zsm-5 Catalysts for Deep Catalytic Oxidation and Catalytic Activity of Toluene. SSRN Electronic Journal, 0, , .	0.4	0
527	State-of-the-Art in the Industrial Production and Use of Zeolite-Containing Adsorbents and Catalysts in Russia. Catalysis in Industry, 2022, 14, 56-65.	0.3	2
529	Nanosheets of Ni‧APOâ€34 Molecular Sieve for Selective Oxidation of Cyclohexanone to Adipic Acid. Chemistry - A European Journal, 2022, 28, .	1.7	4
530	Structural Transformation-Involved Synthesis of Nanosized ERI-Type Zeolite and Its Catalytic Property in the MTO Reaction. Inorganic Chemistry, 2022, 61, 8066-8075.	1.9	4
531	Dual-template synthesis of thinner-layered MCM-49 zeolite to boost its alkylation performance. Molecular Catalysis, 2022, 524, 112333.	1.0	3
532	Assembly of É›â€Keggin Polyoxometalate from Molecular Crystal to Zeolitic Octahedral Metal Oxide. Chemistry - A European Journal, 2022, , .	1.7	5
533	Direct Synthesis and Delamination of Swollen Layered Ferrierite for the Reductive Etherification of Furfural. ChemCatChem, 2022, 14, .	1.8	3
534	Influence of the Zeolite ZSM-22 Precursor on a UF-PES Selective Substrate Layer for Salts Rejection. Membranes, 2022, 12, 553.	1.4	0
535	Delaminated MWW-type zeolite and its catalytic performance in alkylation of benzene with cyclohexene. Applied Catalysis A: General, 2022, 643, 118741.	2.2	7
536	Nanosponge hierarchical micro-mesoporous MFI zeolites as a high-performance catalyst for the hydroamination of methyl acrylate with aniline. Microporous and Mesoporous Materials, 2022, , 112087.	2.2	3

#	Article	IF	CITATIONS
537	Synthesis and interlayer structure reconstruction of a new layered zeolitic aluminosilicate. Journal of Porous Materials, 0, , .	1.3	0
538	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , .	23.0	9
539	Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316, 121582.	10.8	21
540	Synthesis strategies and design principles for nanosized and hierarchical zeolites. , 2022, 1, 521-534.		33
541	A review on the synthesis, structural modification and application of two-dimensional MFI zeolite. Journal of Porous Materials, 2022, 29, 1649-1666.	1.3	3
542	Angstrofluidics: Walking to the Limit. Annual Review of Materials Research, 2022, 52, 189-218.	4.3	16
543	Highly efficient and selective Ru and Ce modified ZSM-5 catalysts for catalytic oxidation of toluene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129709.	2.3	10
544	Direct Location of Organic Molecules in Framework Materials by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2022, 144, 15165-15174.	6.6	9
545	Two-dimensional MWW-type zeolite membranes for efficient dye separation and water purification. Desalination, 2022, 541, 116023.	4.0	6
546	Preparation and photocatalytic properties of highly dispersed samarium vanadate nanoparticles supported on H-mordenite composites by template-free method. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114207.	2.0	6
547	Understanding the synthesis and reactivity of ADORable zeolites using NMR spectroscopy. Current Opinion in Colloid and Interface Science, 2022, 61, 101634.	3.4	5
548	Efficient production of linear alkylbenzene by liquid alkylation between benzene and 1-dodecene over MWW zeolites. Molecular Catalysis, 2022, 531, 112642.	1.0	0
549	Recent advances in the imidazolium-based ionic liquid-templated synthesis of microporous zeolites. Materials Today Chemistry, 2022, 26, 101133.	1.7	2
550	Efficient Synthesis of High-Silica Ssz-13 Zeolite and its Catalytic Performance in Mto Reaction. SSRN Electronic Journal, 0, , .	0.4	0
551	Switching between classical/nonclassical crystallization pathways of TS-1 zeolite: implication on titanium distribution and catalysis. Chemical Science, 2022, 13, 10868-10877.	3.7	11
552	Efficient Synthesis of High-Silica Ssz-13 Zeolite and its Catalytic Performance in Mto Reaction. SSRN Electronic Journal, 0, , .	0.4	0
553	On route to one-pot synthesis of delaminated Al-SSZ-70 zeolite <i>via</i> partial substitution of OSDA with CTAOH surfactant. Inorganic Chemistry Frontiers, 2022, 9, 4939-4951.	3.0	1
554	Highly efficient mesoporous ZSM-5 for trace olefin removal from aromatic stream. Inorganica Chimica Acta, 2023, 544, 121201.	1.2	1

#	Article	IF	CITATIONS
555	Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 6039-6106.	23.0	95
556	Synthesis and Crystal Growth Mechanism of PST-2: An Aluminosilicate SBS/SBT Zeolite Intergrowth. Journal of the American Chemical Society, 2022, 144, 18700-18709.	6.6	3
557	Efficient synthesis of high-silica SSZ-13 zeolite and its catalytic performance in MTO reaction. Microporous and Mesoporous Materials, 2022, 345, 112260.	2.2	2
558	Removal of Ammoniacal Nitrogen from Aqueous Solution Using Clinoptilolite as Adsorbent. Lecture Notes in Civil Engineering, 2023, , 295-305.	0.3	Ο
559	Plasma Functionalization of Silica Bilayer Polymorphs. ACS Applied Materials & Interfaces, 2022, 14, 48609-48618.	4.0	0
560	Beyond TS-1: Background and recent advances in the synthesis of Ti-containing zeolites. Microporous and Mesoporous Materials, 2022, 346, 112286.	2.2	9
561	Metal nanoparticles with a clean surface via clay-nanosheets as stabilizers and supports for catalytic hydrogenation reactions in aqueous-phase. Fuel, 2023, 334, 126648.	3.4	0
562	Kaolin-derived zeolite-A-supported catalysts for catalytic methanation of carbon dioxide. Journal of the Australian Ceramic Society, 0, , .	1.1	0
563	Co-MOF nanosheet supported on ZSM-5 with an improved catalytic activity for air epoxidation of olefins. Materials Chemistry and Physics, 2023, 294, 127001.	2.0	4
564	Ex-situ catalytic fast pyrolysis of wood chips over lamellar MFI zeolite supported nickel catalyst. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105821.	2.6	2
565	Synthesis and Crystal Structure of a New RTHâ€Type Precursor and Its Interlayer Expanded Zeolite. Chemistry - A European Journal, 2023, 29, .	1.7	1
566	Our journey in zeolite science. Microporous and Mesoporous Materials, 2023, 358, 112368.	2.2	3
567	Can We Form Mesoporous Zeolites by Steam Assisted Crystallization of MCM-41?. Molecules, 2022, 27, 8934.	1.7	0
568	Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis. Chemical Reviews, 2023, 123, 877-917.	23.0	25
569	A core-shell confined Pd@TS-1Â@meso-SiO2 catalyst and its synergy effect on styrene oxidation. Applied Catalysis A: General, 2023, 650, 119016.	2.2	3
570	Tin Active Sites Confined in Zeolite Framework as a Promising Shapeâ€ S elective Catalyst for Ethylene Oxide Hydration. Chemistry - A European Journal, 2023, 29, .	1.7	3
571	Exfoliating layered zeolite MFI into unilamellar nanosheets in solution as precursors for the synthesis of hierarchical nanocomposites and oriented films. Inorganic Chemistry Frontiers, 2023, 10, 1511-1521.	3.0	6
572	Dendritic nanoarchitecture imparts ZSM-5 zeolite with enhanced adsorption and catalytic performance in energy applications. Journal of Energy Chemistry, 2023, 80, 77-88.	7.1	5

#	Article	IF	CITATIONS
573	State of the art and prospects of zeolites and metal organic frameworks (MOFs) for nitrogen and phosphorus removal in dairy wastewater. Chemosphere, 2023, 329, 138531.	4.2	2
574	Disordered HMWW Zeolite Nanosheets Catalyzing Fructose to 5-Hydroxymethylfurfural. Catalysis Letters, 2024, 154, 181-190.	1.4	1
575	Solid-State Synthesis of Aluminophosphate Zeotypes by Calcination of Amorphous Precursors. Journal of the American Chemical Society, 2023, 145, 4860-4870.	6.6	3
576	Emerging Applications of ¹⁷ O Solid-State NMR Spectroscopy for Catalytic Oxides. ACS Catalysis, 2023, 13, 3485-3500.	5.5	5
577	Advancements in Basic Zeolites for Biodiesel Production via Transesterification. Chemistry, 2023, 5, 438-451.	0.9	3
578	Controllable surfactant-directed zeolitic-imidazolate-8 growth on swollen 2D zeolites. APL Materials, 2023, 11, .	2.2	2
579	Twin suppression effect of dihydroxy-benzene isomers during the secondary growth of <i>b</i> -oriented zeolite MFI nanosheet films. CrystEngComm, 2023, 25, 2359-2365.	1.3	3
580	Synthesis and Structure of COE-11, a New Borosilicate Zeolite with a Two-Dimensional Pore System of 12-Ring Channels. Chemistry, 2023, 5, 730-752.	0.9	1
581	Molecular Views on Mechanisms of BrÃ,nsted Acid-Catalyzed Reactions in Zeolites. Chemical Reviews, 2023, 123, 6107-6196.	23.0	22
582	Meerwein-Ponndorf-Verley reduction in current heterogeneous catalysis research: a review. Catalysis Reviews - Science and Engineering, 0, , 1-42.	5.7	4
584	Solid Materials for Heterogeneous Catalysis. , 2017, , 345-395.		0
590	Lamellar Membranes. Engineering Materials, 2023, , 23-48.	0.3	0