Increased ice losses from Antarctica detected by CryoSa

Geophysical Research Letters 41, 3899-3905 DOI: 10.1002/2014gl060111

Citation Report

#	Article	IF	CITATIONS
1	Surface slope control on firn density at Thwaites Glacier, West Antarctica: Results from airborne radar sounding. Geophysical Research Letters, 2014, 41, 6787-6794.	4.0	40
2	Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere, 2014, 8, 1539-1559.	3.9	318
3	Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats. Cryosphere, 2014, 8, 2135-2145.	3.9	55
4	An Impact Assessment of GPS Radio Occultation Data on Prediction of a Rapidly Developing Cyclone over the Southern Ocean*. Monthly Weather Review, 2014, 142, 4187-4206.	1.4	21
5	Eisverlust in der Antarktis. Physik in Unserer Zeit, 2014, 45, 267-267.	0.0	0
6	Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 2014, 41, 8421-8428.	4.0	91
7	Rapid dynamic activation of a marineâ€based Arctic ice cap. Geophysical Research Letters, 2014, 41, 8902-8909.	4.0	43
8	The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 2014, 41, 6199-6206.	4.0	206
9	Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophysical Research Letters, 2014, 41, 5919-5926.	4.0	21
10	Height changes over subglacial Lake Vostok, East Antarctica: Insights from GNSS observations. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2460-2480.	2.8	29
11	Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEMâ€X satellite measurements. Geophysical Research Letters, 2014, 41, 8123-8129.	4.0	49
12	Modeling ice dynamic contributions to sea level rise from the Antarctic Peninsula. Journal of Geophysical Research F: Earth Surface, 2015, 120, 2374-2392.	2.8	2
13	Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1171-1188.	2.8	57
14	The Effect of Atmospheric Forcing Resolution on Delivery of Ocean Heat to the Antarctic Floating Ice Shelves*,+. Journal of Climate, 2015, 28, 6067-6085.	3.2	35
15	Land-ice elevation changes from photon-counting swath altimetry: first applications over the Antarctic ice sheet. Journal of Glaciology, 2015, 61, 17-28.	2.2	18
16	Uncertainty in mass-balance trends derived from altimetry: a case study along the EGIG line, central Greenland. Journal of Glaciology, 2015, 61, 345-356.	2.2	4
17	Coupling patterns between paraâ€glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms, 2015, 40, 1227-1238.	2.5	62
18	Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere, 2015, 9, 2429-2446.	3.9	42

#	Article	IF	Citations
19	CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps. Cryosphere, 2015, 9, 1895-1913.	3.9	48
20	Gains in Antarctic ice might offset losses. Nature, 2015, , .	27.8	0
21	Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 2015, 348, 899-903.	12.6	176
22	Multivariate spatioâ€temporal modelling for assessing Antarctica's presentâ€day contribution to seaâ€level rise. Environmetrics, 2015, 26, 159-177.	1.4	24
23	Assessment of TanDEM-X interferometry over the marginal region of Antarctic ice sheet. , 2015, , .		0
24	Antarctic ice shelf thickness from CryoSatâ€2 radar altimetry. Geophysical Research Letters, 2015, 42, 10,721.	4.0	36
25	Envisat and SARAL/AltiKa Observations of the Antarctic Ice Sheet: A Comparison Between the Ku-band and Ka-band. Marine Geodesy, 2015, 38, 510-521.	2.0	23
26	Climatic Consequences of a Pine Island Glacier Collapse. Journal of Climate, 2015, 28, 9221-9234.	3.2	7
27	Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 2015, 61, 1019-1036.	2.2	143
28	Iceâ€flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radarâ€imaged internal layering. Journal of Geophysical Research F: Earth Surface, 2015, 120, 655-670.	2.8	37
29	Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annual Review of Earth and Planetary Sciences, 2015, 43, 207-231.	11.0	83
30	Impacts of global climate change on the floras of oceanic islands – Projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 160-183.	2.7	147
31	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	13.7	1,311
32	Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea. Geophysical Journal International, 2015, 203, 737-754.	2.4	40
33	Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14191-14196.	7.1	151
34	Accuracy and Performance of CryoSat-2 SARIn Mode Data Over Antarctica. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1516-1520.	3.1	29
35	Recent Progress in Understanding and Projecting Regional and Global Mean Sea Level Change. Current Climate Change Reports, 2015, 1, 224-246.	8.6	42
36	Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters, 2015, 42, 8049-8056.	4.0	71

#	Article	IF	Citations
37	Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream. Cryosphere, 2016, 10, 2971-2980.	3.9	9
38	Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review. , 2016, 29, 144-153.		97
39	Decadal Ocean Forcing and Antarctic Ice Sheet Response: Lessons from the Amundsen Sea. , 2016, 29, 106-117.		122
40	Rising Sea Levels. , 2016, , 241-252.		Ο
41	An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem. Geoscientific Model Development, 2016, 9, 1891-1904.	3.6	14
42	Subglacial controls on the flow of Institute Ice Stream, West Antarctica. Annals of Glaciology, 2016, 57, 19-24.	1.4	33
43	Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams. Journal of Glaciology, 2016, 62, 552-562.	2.2	54
44	Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Science Advances, 2016, 2, e1501350.	10.3	44
45	Comment on â€~Mass gains of the Antarctic ice sheet exceed losses' by H. J. Zwally and others. Journal of Glaciology, 2016, 62, 599-603.	2.2	27
46	Polar opposites? Marine conservation tools and experiences in the changing Arctic and Antarctic. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 61-84.	2.0	38
47	An assessment of the Polar Weather Research and Forecasting (WRF) model representation of nearâ€surface meteorological variables over West Antarctica. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1532-1548.	3.3	26
48	Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula. Earth and Planetary Science Letters, 2016, 453, 161-170.	4.4	8
49	Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinelâ€1a radar interferometry data. Geophysical Research Letters, 2016, 43, 8572-8579.	4.0	67
50	A highâ€resolution record of Greenland mass balance. Geophysical Research Letters, 2016, 43, 7002-7010.	4.0	146
51	Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophysical Research Letters, 2016, 43, 367-376.	4.0	59
52	Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophysical Research Letters, 2016, 43, 6366-6373.	4.0	63
53	The Polar Regions as "barometers―in the Anthropocene: towards a new significance of non-state actors in international cooperation?. Polar Journal, 2016, 6, 379-397.	0.8	34
54	Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSatâ€2 altimetry. Geophysical Research Letters, 2016, 43, 12,138.	4.0	56

#	Article	IF	CITATIONS
55	Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. Journal of Glaciology, 2016, 62, 1104-1114.	2.2	28
56	A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations. Journal of Glaciology, 2016, 62, 888-904.	2.2	11
57	Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on â€~Mass gains of the Antarctic ice sheet exceed losses' by H. J. Zwally and others (2015). Journal of Glaciology, 2016, 62, 990-992.	2.2	4
58	Fourâ€decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophysical Research Letters, 2016, 43, 5741-5749.	4.0	49
59	Spatial and temporal Antarctic Ice Sheet mass trends, glacioâ€isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journal of Geophysical Research F: Earth Surface, 2016, 121, 182-200.	2.8	94
60	Glacial isostatic adjustment in response to changing Late Holocene behaviour of ice streams on the Siple Coast, West Antarctica. Geophysical Journal International, 2016, 205, 1-21.	2.4	17
61	The Response of the Southern Ocean and Antarctic Sea Ice to Freshwater from Ice Shelves in an Earth System Model. Journal of Climate, 2016, 29, 1655-1672.	3.2	87
62	Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Climate Dynamics, 2016, 46, 263-271.	3.8	59
63	Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 2017, 38, 89-104.	4.6	59
64	Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry. Remote Sensing of Environment, 2017, 190, 207-216.	11.0	46
65	How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Global and Planetary Change, 2017, 153, 16-34.	3.5	118
66	Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 2017, 44, 4159-4167.	4.0	47
67	Uneven onset and pace of iceâ€dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, 2017, 44, 910-918.	4.0	74
68	Improvements in ice-sheet sea-level projections. Nature Climate Change, 2017, 7, 672-674.	18.8	14
69	Accumulation in coastal West Antarctic ice core records and the role of cyclone activity. Geophysical Research Letters, 2017, 44, 9084-9092.	4.0	4
70	Bathymetric control of warm ocean water access along the East Antarctic Margin. Geophysical Research Letters, 2017, 44, 8936-8944.	4.0	38
71	Constraining the mass balance of East Antarctica. Geophysical Research Letters, 2017, 44, 4168-4175.	4.0	26
72	Improved simulation of Antarctic sea ice due to the radiative effects of falling snow. Environmental Research Letters, 2017, 12, 084010.	5.2	10

#	Article	IF	CITATIONS
73	Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sensing of Environment, 2017, 203, 256-275.	11.0	109
74	Geometry and ice dynamics of the Darwin–Hatherton glacial system, Transantarctic Mountains. Journal of Glaciology, 2017, 63, 959-972.	2.2	4
75	Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates. Earth and Planetary Science Letters, 2017, 473, 164-176.	4.4	29
76	Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, <i>Polytrichastrum alpinum</i> . Annals of Botany, 2017, 119, 27-38.	2.9	18
77	Bed conditions of Pine Island Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2017, 122, 419-433.	2.8	30
78	Highâ€resolution subâ€iceâ€shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1698-1714.	2.8	13
79	Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica. Geophysical Research Letters, 2017, 44, 7328-7337.	4.0	15
80	Antarctic Grounding Line Mapping From CryoSatâ€⊋ Radar Altimetry. Geophysical Research Letters, 2017, 44, 11,886.	4.0	10
81	Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. Cryosphere, 2017, 11, 427-442.	3.9	44
82	Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote Sensing, 2017, 9, 742.	4.0	36
83	Life Cycle Assessment of a Three-Bedroom House in Saudi Arabia. Environments - MDPI, 2017, 4, 52.	3.3	30
84	Grand Challenges in Cryospheric Sciences: Toward Better Predictability of Glaciers, Snow and Sea Ice. Frontiers in Earth Science, 2017, 5, .	1.8	20
85	The impact of healthcare on global warming and human health: connecting the dots. British Journal of Healthcare Assistants, 2017, 11, 348-353.	0.1	0
86	Validation of satellite altimetry by kinematic GNSS in central East Antarctica. Cryosphere, 2017, 11, 1111-1130.	3.9	35
87	Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarctic Science, 2017, 29, 468-483.	0.9	19
88	Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica. Journal of Glaciology, 2018, 64, 333-342.	2.2	14
89	Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence From the Wilkes Land Margin, East Antarctica. Paleoceanography and Paleoclimatology, 2018, 33, 76-92.	2.9	16
90	Assessment of CryoSat-2 interferometric and non-interferometric SAR altimetry over ice sheets. Advances in Space Research, 2018, 62, 1281-1291.	2.6	8

CITATION REPOR	~		~	
	(ITA	TION		DUBL

#	Article	IF	CITATIONS
91	Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than Climate Model Projections. Geophysical Research Letters, 2018, 45, 1472-1480.	4.0	44
92	Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sensing of Environment, 2018, 211, 441-455.	11.0	50
93	CryoSat: ESA's ice mission – Eight years in space. Advances in Space Research, 2018, 62, 1178-1190.	2.6	35
94	Recent advance in earth observation big data for hydrology. Big Earth Data, 2018, 2, 86-107.	4.4	35
95	Net retreat of Antarctic glacier grounding lines. Nature Geoscience, 2018, 11, 258-262.	12.9	119
96	Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Scientific Reports, 2018, 8, 4477.	3.3	46
97	GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science. Geophysical Research Letters, 2018, 45, 2203-2212.	4.0	137
98	Mapping ice sheet grounding lines with CryoSat-2. Advances in Space Research, 2018, 62, 1191-1202.	2.6	11
99	High-Resolution Interannual Mass Anomalies of the Antarctic Ice Sheet by Combining GRACE Gravimetry and ENVISAT Altimetry. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 539-546.	6.3	5
100	Precision orbit determination performance for CryoSat-2. Advances in Space Research, 2018, 61, 235-247.	2.6	16
101	CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. Advances in Space Research, 2018, 62, 1226-1242.	2.6	55
102	A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geological Society Special Publication, 2018, 461, 231-248.	1.3	58
103	How dynamic are ice-stream beds?. Cryosphere, 2018, 12, 1615-1628.	3.9	11
104	Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability. Cryosphere, 2018, 12, 2461-2479.	3.9	14
105	Validation of CryoSat-2 SARIn Data over Austfonna Ice Cap Using Airborne Laser Scanner Measurements. Remote Sensing, 2018, 10, 1354.	4.0	13
106	AÂnew digital elevation model of Antarctica derived from CryoSat-2 altimetry. Cryosphere, 2018, 12, 1551-1562.	3.9	53
107	On the long-ignored scientific achievements of the <i>Belgica</i> expedition 1897–1899. Polar Research, 2018, 37, 1474695.	1.6	1
108	Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales. Journal of Geophysical Research: Oceans, 2018, 123, 8655-8669.	2.6	34

#	Article	IF	CITATIONS
109	Long Term Elevation Change Monitoring of Antarctic Ice Sheet by Combining ICESat, Envisat and CryoSat-2 Data. , 2018, , .		0
110	Crustal thickness of Antarctica estimated using data from gravimetric satellites. Solid Earth, 2018, 9, 457-467.	2.8	11
111	Climatic Effect of Antarctic Meltwater Overwhelmed by Concurrent Northern Hemispheric Melt. Geophysical Research Letters, 2018, 45, 5681-5689.	4.0	9
112	Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. Cryosphere, 2018, 12, 3123-3136.	3.9	26
114	Future Earth and the Cryosphere. , 0, , 91-113.		3
115	Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX ₈₆ -based sea surface temperature reconstructions. Climate of the Past, 2018, 14, 1275-1297.	3.4	42
116	Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere, 2018, 12, 521-547.	3.9	283
117	Mass Loss of Totten and Moscow University Glaciers, East Antarctica, Using Regionally Optimized GRACE Mascons. Geophysical Research Letters, 2018, 45, 7010-7018.	4.0	27
118	Elevation Change Derived from SARAL/ALtiKa Altimetric Mission: Quality Assessment and Performance of the Ka-Band. Remote Sensing, 2018, 10, 539.	4.0	6
119	Evaluation of SAR altimetry over the antarctic ice sheet from CryoSat-2 acquisitions. Advances in Space Research, 2018, 62, 1307-1323.	2.6	10
120	Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets. Geophysical Journal International, 2018, 215, 415-430.	2.4	52
121	Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves. Cryosphere, 2018, 12, 2307-2326.	3.9	17
122	A Regional Scale Approach to Assessing Current and Potential Future Exposure to Tidal Inundation in Different Types of Estuaries. Scientific Reports, 2018, 8, 7065.	3.3	56
123	The land ice contribution to sea level during the satellite era. Environmental Research Letters, 2018, 13, 063008.	5.2	177
124	Trends and connections across the Antarctic cryosphere. Nature, 2018, 558, 223-232.	27.8	130
125	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	27.8	759
126	Introduction to carbon dioxide sequestration–based cementitious construction materials. , 2018, , 3-12.		23
127	Multisurface Retracker for Swath Processing of Interferometric Radar Altimetry. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1839-1843.	3.1	3

#	Article	IF	CITATIONS
128	Turbulence Observations Beneath Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research: Oceans, 2019, 124, 5529-5550.	2.6	28
129	Antarctic ice shelf thickness change from multimission lidar mapping. Cryosphere, 2019, 13, 1801-1817.	3.9	8
130	Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 2019, 11, 1952.	4.0	34
131	Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results. Geosciences (Switzerland), 2019, 9, 415.	2.2	26
132	Ice Sheet Elevation Change in West Antarctica From Kaâ€Band Satellite Radar Altimetry. Geophysical Research Letters, 2019, 46, 13135-13143.	4.0	5
133	Evaluation of Regional Climate Models Using Regionally Optimized CRACE Mascons in the Amery and Getz Ice Shelves Basins, Antarctica. Geophysical Research Letters, 2019, 46, 13883-13891.	4.0	8
134	Assessing Uncertainty in the Dynamical Ice Response to Ocean Warming in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, 2019, 46, 11253-11260.	4.0	22
135	Mass Balance Assessment of the Amery Ice Shelf Basin, East Antarctica. Earth and Space Science, 2019, 6, 1987-1999.	2.6	9
136	Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era. Frontiers in Marine Science, 2019, 6, .	2.5	31
137	Wind analysis links West Antarctic ice loss to humans. Physics Today, 2019, 72, 14-15.	0.3	2
138	Antarctic ice sheet palaeo-thinning rates from vertical transects of cosmogenic exposure ages. Quaternary Science Reviews, 2019, 206, 65-80.	3.0	35
139	A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes From Heterogeneous Sea Ice Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 4164-4180.	6.3	38
140	Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Science Advances, 2019, 5, eaau3433.	10.3	109
141	Marked decrease in the near-surface snow density retrieved by AMSR-E satellite at DomeÂC, Antarctica, between 2002 and 2011. Cryosphere, 2019, 13, 1215-1232.	3.9	5
142	Trends in Antarctic Ice Sheet Elevation and Mass. Geophysical Research Letters, 2019, 46, 8174-8183.	4.0	118
143	Accuracy assessment and waveform analysis of CryoSat-2 SARIn mode data over Antarctica. International Journal of Remote Sensing, 2019, 40, 8418-8431.	2.9	2
144	New York City Panel on Climate Change 2019 Report Chapter 3: Sea Level Rise. Annals of the New York Academy of Sciences, 2019, 1439, 71-94.	3.8	22
145	Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere, 2019, 13, 427-449.	3.9	76

#	Article	IF	CITATIONS
146	Sentinel-3 Delay-Doppler altimetry over Antarctica. Cryosphere, 2019, 13, 709-722.	3.9	15
147	A Joint Inversion Estimate of Antarctic Ice Sheet Mass Balance Using Multi-Geodetic Data Sets. Remote Sensing, 2019, 11, 653.	4.0	10
148	Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 2019, 566, 65-72.	27.8	277
149	High-Resolution Mass Trends of the Antarctic Ice Sheet through a Spectral Combination of Satellite Gravimetry and Radar Altimetry Observations. Remote Sensing, 2019, 11, 144.	4.0	21
150	An empirical study on life cycle assessment of double-glazed aluminium-clad timber windows. International Journal of Building Pathology and Adaptation, 2019, 37, 547-564.	1.3	11
151	How Accurately Should We Model Ice Shelf Melt Rates?. Geophysical Research Letters, 2019, 46, 189-199.	4.0	47
152	Geoengineering: Sunlight reflection methods and negative emissions technologies for greenhouse gas removal. , 2019, , 581-636.		1
153	Calving Event Led to Changes in Phytoplankton Bloom Phenology in the Mertz Polynya, Antarctica. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016387.	2.6	11
154	Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry. Remote Sensing, 2020, 12, 3746.	4.0	9
155	Repeat Subglacial Lake Drainage and Filling Beneath Thwaites Glacier. Geophysical Research Letters, 2020, 47, e2020GL089658.	4.0	23
156	Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 2020, 13, 616-620.	12.9	169
157	The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 2020, 58, e2019RC000663.	23.0	49
158	Antarctic ice-shelf thickness changes from CryoSat-2 SARIn mode measurements: Assessment and comparison with IceBridge and ICESat. Journal of Earth System Science, 2020, 129, 1.	1.3	2
159	Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100. Cryosphere, 2020, 14, 1245-1258.	3.9	10
160	Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data. Cryosphere, 2020, 14, 1459-1474.	3.9	8
161	How Different Analysis and Interpolation Methods Affect the Accuracy of Ice Surface Elevation Changes Inferred from Satellite Altimetry. Mathematical Geosciences, 2020, 52, 499-525.	2.4	13
162	Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018. Journal of Glaciology, 2020, 66, 485-495.	2.2	33
163	Synergistic Use of Single-Pass Interferometry and Radar Altimetry to Measure Mass Loss of NEGIS Outlet Glaciers between 2011 and 2014. Remote Sensing, 2020, 12, 996.	4.0	9

#	Article	IF	CITATIONS
164	Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017. Advances in Space Research, 2021, 68, 724-731.	2.6	14
165	Regional-scale abrupt Mid-Holocene ice sheet thinning in the western Ross Sea, Antarctica. Geology, 2021, 49, 278-282.	4.4	13
166	Drivers of Pine Island Glacier speed-up between 1996 and 2016. Cryosphere, 2021, 15, 113-132.	3.9	33
167	Comparisons of Satellite and Airborne Altimetry With Groundâ€Based Data From the Interior of the Antarctic Ice Sheet. Geophysical Research Letters, 2021, 48, e2020GL090572.	4.0	26
169	Towards a Shared Future. Advanced Sciences and Technologies for Security Applications, 2021, , 659-668.	0.5	0
170	Satellite Altimetry. Encyclopedia of Earth Sciences Series, 2021, , 1343-1349.	0.1	0
171	Widespread increase in dynamic imbalance in the Getz region of Antarctica from 1994 to 2018. Nature Communications, 2021, 12, 1133.	12.8	19
172	Long-Term Snow Height Variations in Antarctica from GNSS Interferometric Reflectometry. Remote Sensing, 2021, 13, 1164.	4.0	2
173	Mass balance of the Antarctic ice sheet 1992–2016: reconciling results from GRACE gravimetry with ICESat, ERS1/2 and Envisat altimetry. Journal of Glaciology, 2021, 67, 533-559.	2.2	9
174	Oceanâ€Driven and Topographyâ€Controlled Nonlinear Glacier Retreat During the Holocene: Southwestern Ross Sea, Antarctica. Geophysical Research Letters, 2021, 48, e2020GL091454.	4.0	9
175	Characterizing slope correction methods applied to satellite radar altimetry data: A case study around Dome Argus in East Antarctica. Advances in Space Research, 2021, 67, 2120-2139.	2.6	5
176	Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels. Remote Sensing, 2021, 13, 1736.	4.0	15
177	Modeled and Observed Bedrock Displacements in Northâ€East Greenland Using Refined Estimates of Presentâ€Đay Iceâ€Mass Changes and Densified GNSS Measurements. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005860.	2.8	9
178	Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019. Cryosphere, 2021, 15, 1845-1862.	3.9	33
179	The influence of Antarctic ice loss on polar motion: an assessment based on GRACE and multi-mission satellite altimetry. Earth, Planets and Space, 2021, 73, .	2.5	4
180	ICE FLOW VELOCITY MAPPING IN EAST ANTARCTICA USING HISTORICAL IMAGES FROM 1960s TO 1980s: RECENT PROGRESS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B3-2021, 491-496.	0.2	3
181	Brief communication: Thwaites Glacier cavity evolution. Cryosphere, 2021, 15, 3317-3328.	3.9	8
182	Glaciological Monitoring Using the Sun as a Radio Source for Echo Detection. Geophysical Research Letters, 2021, 48, e2021GL092450.	4.0	8

#	Article	IF	CITATIONS
183	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
184	Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2021, 2, 680-698.	29.7	85
185	Subglacial discharge weakens the stability of the Ross Ice Shelf around the grounding line. Polar Research, 0, 40, .	1.6	1
186	Mapping Basal Melt Under the Shackleton Ice Shelf, East Antarctica, From CryoSat-2 Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5091-5099.	4.9	4
187	Introduction to Biotechnologies and Biomimetics for Civil Engineering. , 2015, , 1-19.		3
188	A Study on the Effects of Global Warming in Bangladesh. International Journal of Environmental Monitoring and Analysis, 2015, 3, 118.	0.3	7
189	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	9.9	409
190	A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data, 2016, 8, 543-557.	9.9	144
191	CryoSat Ice Baseline-D validation and evolutions. Cryosphere, 2020, 14, 1889-1907.	3.9	26
192	Measuring the location and width of the Antarctic grounding zone using CryoSat-2. Cryosphere, 2020, 14, 2071-2086.	3.9	5
193	The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere, 2020, 14, 2235-2251.	3.9	48
194	Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing. Cryosphere, 2020, 14, 2883-2908.	3.9	27
195	Representative surface snow density on the East Antarctic Plateau. Cryosphere, 2020, 14, 3663-3685.	3.9	11
200	Non-structural carbohydrate content in cryptogamic Antarctic species after two years of passive warming on the Fildes Peninsula. Czech Polar Reports, 2015, 5, 88-98.	0.6	3
201	The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line position. Journal of Glaciology, 2022, 68, 473-485.	2.2	1
202	Report of Committee I.1: Environment. , 2015, , 1-72.		0
203	ANTARCTIC ICE SHEET SURFACE MASS BALANCE ESTIMATES FROM 2003 TO 2015 USING ICESAT AND CRYOSAT-2 DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B8, 549-553.	0.2	0
204	MASS BALANCE OF ANTARCTIC ICE SHEET FROM 2003 TO 2008: A SYSTEMATICALLY IMPROVED NEW ESTIMATION. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W13, 1765-1769.	0.2	0

# 205	ARTICLE Satellite Altimetry. Encyclopedia of Earth Sciences Series, 2020, , 1-7.	IF 0.1	CITATIONS
206	Effects of Atmospheric Rivers. , 2020, , 141-177.		2
207	Pleistocene depositional environments and links to cryosphere-ocean interactions on the eastern Ross Sea continental slope, Antarctica (IODP Hole U1525A). Marine Geology, 2022, 443, 106674.	2.1	7
208	Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Communications, 2021, 12, 6069.	12.8	23
209	Subglacial topography and ice flux along the English Coast of Palmer Land, Antarctic Peninsula. Earth System Science Data, 2020, 12, 3453-3467.	9.9	1
210	Satellite Altimetry in Earth Geophysics. Encyclopedia of Earth Sciences Series, 2020, , 1-7.	0.1	0
212	Die Beschleunigung durch arktische Rückkopplungen. , 2020, , 167-192.		0
213	Investigation of ice shelf ocean interaction in the Amundsen Sea using numerical modeling and ocean state estimates. Oceanography in Japan, 2020, 29, 233-244.	0.5	0
214	A 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters. Earth System Science Data, 2022, 14, 973-989.	9.9	7
215	Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography. Remote Sensing, 2022, 14, 154.	4.0	2
217	Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion. Cryosphere, 2022, 16, 1349-1367.	3.9	5
218	Global Environmental Problems: A Nexus Between Climate, Human Health and COVID 19 and Evolving Mitigation Strategies. , 2022, , 65-110.		0
219	The Relative Impacts of Initialization and Climate Forcing in Coupled Ice Sheetâ€Ocean Modeling: Application to Pope, Smith, and Kohler Glaciers. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	5
220	Buildings for sustainable energy future. , 2022, , 171-181.		1
221	An improved algorithm for extracting crossovers of satellite ground tracks. Computers and Geosciences, 2022, , 105179.	4.2	0
222	Impacts of climate extremes over Arctic and Antarctic. , 2022, , 191-215.		1
223	Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nature Reviews Earth & Environment, 2022, 3, 500-515.	29.7	11
224	A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2. Earth System Science Data, 2022, 14, 3075-3089.	9.9	3

#	Article	IF	CITATIONS
225	Sea Level Change in the Canary Current System during the Satellite Era. Journal of Marine Science and Engineering, 2022, 10, 936.	2.6	1
226	Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters. Journal of Applied Remote Sensing, 2022, 16, .	1.3	3
227	Elevation change of the Antarctic Ice Sheet: 1985 to 2020. Earth System Science Data, 2022, 14, 3573-3598.	9.9	12
228	An elevation change dataset in Greenland ice sheet from 2003 to 2020 using satellite altimetry data. Big Earth Data, 0, , 1-18.	4.4	5
229	Antarctica ice-mass variations on interannual timescale: Coastal Dipole and propagating transports. Earth and Planetary Science Letters, 2022, 595, 117789.	4.4	4
230	POPs in Antarctic ecosystems: is climate change affecting their temporal trends?. Environmental Sciences: Processes and Impacts, 2022, 24, 1631-1642.	3.5	5
231	Antarctic Ice Mass Change (2003–2016) Jointly Estimated by Satellite Gravimetry and Altimetry. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
232	Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experiments. Journal of Geodesy, 2022, 96, .	3.6	5
233	Spatiotemporal change analysis for snowmelt over the Antarctic ice shelves using scatterometers. Frontiers in Remote Sensing, 0, 3, .	3.5	1
234	Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry. Remote Sensing, 2022, 14, 6210.	4.0	0
235	Episodic dynamic change linked to damage on the Thwaites Glacier Ice Tongue. Nature Geoscience, 2023, 16, 37-43.	12.9	10
236	Constructing large nonstationary spatio-temporal covariance models via compositional warpings. Spatial Statistics, 2023, 54, 100742.	1.9	2
237	Temporal Variations in Ice Thickness of the Shirase Glacier Derived from Cryosat-2/SIRAL Data. Remote Sensing, 2023, 15, 1205.	4.0	2
238	A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sensing, 2023, 15, 1425.	4.0	3
239	Migration of the Shear Margins at Thwaites Glacier: Dependence on Basal Conditions and Testability Against Field Data. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	1
240	The Rise and Fall of Alaska and Yukon Glaciers Detected by TOPEX/Poseidon and Jasonâ€2 Altimeters Using a Novel Glacierâ€Threshold Method. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	0
241	Cook Ice Shelf and Ninnis Glacier Tongue Bathymetry From Inversion of Operation Ice Bridge Airborne Gravity Data. Geophysical Research Letters, 2023, 50, .	4.0	2
242	Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking. Remote Sensing, 2023, 15, 3079.	4.0	1

		CITATION REPORT		
щ			IF	CITATIONS
#	Article		IF	CITATIONS
243	Geophysics in Antarctic Research: A Bibliometric Analysis. Remote Sensing, 2023, 15,	3928.	4.0	0
244	Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay East Antarctica. Cryosphere, 2023, 17, 3593-3616.	Wilkes Land,	3.9	1
245	Widespread slowdown in thinning rates of West Antarctic ice shelves. Cryosphere, 20	23, 17, 3409-3433.	3.9	2
246	Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using c velocity and elevation change. Journal of Glaciology, 0, , 1-11.	bservations of	2.2	1
247	Constraints on subglacial melt fluxes from observations of active subglacial lake recha of Glaciology, 0, , 1-15.	irge. Journal	2.2	0
248	Multipeak retracking of radar altimetry waveforms over ice sheets. Remote Sensing of 2024, 303, 114020.	Environment,	11.0	0